4.5 实变函数 习题讲解
实变函数第一章习题解答(罗绍辉)
A = U Α n 为正交可数集,即 Α n ≤ C 0 n∈N
{ 又因为 Q ~ { x} | x ∈ Q
n =1
∞
n n
n
1 ⇒ x ∈ U E{x | f ( x ) ≥ a + } ⇒ E{x | f ( x ) > a} ⊂ n =1 n ∞ 1 U E{x | f ( x ) ≥ a + } n =1 n ∞ 1 反过来, ∀x ∈ nU1 E{x{x | f ( x) ≥ a + n }, ∃n ∈ N ,使 = 1 x ∈ E{x | f ( x ) ≥ a + } n 1 即 f ( x ) ≥ a + n > a且x ∈ E 故 x ∈ E{x | f ( x) > a} ∞ 1 ∪ E{x | f ( x ) ≥ a + } ⊂ E{x | f ( x ) > a} . 故 所以 n =1 n ∞ 1 E{x | f ( x) > a} U E{x | f ( x) ≥ a + } n =1 n
所以中直线上每个闭集必是可数个开集的交每个开集必是可数个闭集的并
第一章习题参考解答
3.等式 ( A − B) ∪ C = A − ( B − C ) 成立的的充要条件是什么? 解:若 ( A − B) ∪ C = A − ( B − C ) 则
C ⊂ ( A − B) ∪ C = A − ( B − C ) ⊂ A .即, C ⊂ A .
Bn = An − U Ai ⊂ An − Am ,又因为 Bm ⊂ Am ,所以 i =1
实变函数难题七大题型解题技巧
实变函数难题七大题型解题技巧引言实变函数作为数学中的一个重要分支,经常出现在各类数学考试和问题中。
解题时,掌握一些常见的难题题型的解题技巧是非常有帮助的。
本文将介绍实变函数中的七大题型,并提供相应的解题技巧。
题型一:函数极限函数极限是实变函数中的重要概念。
求解函数极限问题时,可以采取以下策略:1. 利用极限的性质,如有界性、保号性等,简化运算过程;2. 利用夹逼定理,找出函数极限的上下界,从而确定极限值;3. 通过变形或换元的方式,将问题转化为已知的极限问题。
题型二:连续性与间断点连续性和间断点是研究实变函数的重要概念。
解决连续性与间断点的问题时,可以采取以下方法:1. 分析函数定义域和值域的关系,确定连续性的条件;2. 利用分段函数的性质,将函数的定义区分开来,讨论连续性;3. 利用间断点的分类,将间断点问题转化为已知的情况进行分析。
题型三:导数与导函数导数和导函数是实变函数中的重要概念。
解决导数与导函数的问题时,可以采取以下策略:1. 利用导数的定义和性质,对函数进行求导;2. 利用导数的几何意义和物理意义,分析函数的变化趋势;3. 使用求导法则和运算规则简化导数运算过程。
题型四:中值定理与极值问题中值定理和极值问题是实变函数中经常遇到的难题。
解决这类问题时,可以采用以下方法:1. 利用罗尔定理、拉格朗日中值定理等中值定理,探究函数的特征;2. 分析函数的单调性和凹凸性,找出极值点;3. 通过求导和解方程的方式,确定函数的极大值和极小值。
题型五:泰勒展开与近似计算泰勒展开和近似计算是实变函数中的重要工具。
解决近似计算问题时,可以采用以下策略:1. 利用泰勒展开公式,将函数按照一定精度进行近似展开;2. 针对特定问题,选择合适的近似计算方法,如线性逼近、二次逼近等;3. 注意计算精度和误差的控制,评估近似计算的结果。
题型六:定积分与不定积分定积分和不定积分是实变函数中的重要内容。
解决积分问题时,可以采取以下方法:1. 利用定积分的性质,如线性性、换元积分等,简化积分运算;2. 通过分部积分和换元积分的组合运用,解决复杂积分问题;3. 利用积分的几何和物理意义,对积分问题进行实际解释。
实变函数习题与解答(电子科大) (2)
由 f 在 E 上的可测性知,每个 E{x | α i < f ( x) < 可测. 若O是 的无解开集时,对于 ∀n ∈
∞
β i } 可测,从而 f −1 (O)
,记 E n = [ − n, n] ,则 On =
O ∩ En 是
中有界开集,并且 O = ∪ On ,故
n =1
f
再由 f
故, E{ x | f ( x ) > α } 是可测集,从而 f ( x ) 在 E 上可测. 7. 设 f 是 E 上的可测函数,证明: (1)对 (2)对 (3)对 上的任意开集 O , f 中的任何开集 F , f
−1 −1
(O) 是可测集; ( F ) 是可测集;
−1
中的任何 Gδ 型集或 Fσ 型集 M , f
证明 设 f ( x ) 和 g ( x ) 是 E 上的两个可测函数,令
E 0 = E − E{x | g ( x) = ±∞}
并且对于 ∀a ∈ , 因为
E0 {x | f ( x) + g ( x) > a} = E0 {x | f ( x) > a − g ( x)}
= ∪ E0 {x | f ( x) > ri > a − g ( x)}
f
由f
−1
−1
(G ) = ∩ f −1 [G k ] 且 f
k =1
∞
−1
( F ) = ∪ f −1 [ Fk ] .
k =1 −1
(G k ) 与 f
−1
( Fk ) 的可测性知, f
−1
(G ) 与 f
( F ) 均可测.
8. 证明: E 上两个可测函数的和仍是可测函数.
实变函数习题与解答(唐山师范张玲).doc
1、 下列对象不能构成集合的是:() A 、全体自然数 B 、0,1之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、 下列对彖不能构成集合的是:()3、下列对象不能构成集合的是:()4、下列对象不能构成集合的是:()5、下列对象不能构成集合的是:()6、下列对象不能构成集合的是:()7、设凡={x:a-l<x<a }, I 为全体实数,则o A a =( ael8、设={x:-l+^<x<l--}, ze N,则»&•=( ii/=!9、设 A/ = {x: 0 < x < 1 + 7}, iw N,则c&•=()11、设A,. ={x:/<x<z + -}, ie N,则nA z =(2曰C 、{x : x>l}D 、{全体胖子}A 、{全体实数}B 、{全体整数}C 、{x : x>l}D 、 {全体瘦子}A 、{全体小孩子}B 、{全体整数}C 、{x : x>l}D 、{全体实数}A 、{全体实数} B. {全体大人} C 、{x : x>l} D. {全体整数}A 、(」1)B 、(J 0)D 、 (h+ oo )A 、(-1J)B 、(-1,0) C> [0J]D 、卜 1,1]A 、(0,1)B 、[0, 1]C> [OJ]D 、 (0,+°°)10、设 A. = {%: 1 - - < x < 2 4- ,i i则扣( A 、[1,2]B 、(1,2) C> (0,3) D 、 (1,2)A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x : x>l}A 、{全体实数} B. {全体整数}12、设A i ={x:--<x<-}9 ze N ,则nA.= ( i ii=l13、设=[0,2-—L-], A 2n = [0,1 +丄],neN^hrnA n =( 2n 一 1 2nA 、(-1, 1)B. [0, 1] D 、A 、(-1J)B 、[0, 1] D 、{0}nTgA 、[0,2] [0,2] C> [0, 1] D 、[0, 1]14、设=[0,2-—^-],码=[0,1 +丄],nw N,则丽A” 二(2n 一 1 2n A. [0, 2]B 、[0, 2]C. [0,1]D 、[0, 1]15、设 A tt = (0,/i), ne N,则limA n =()A 、①B 、[0, n]C 、RD 、(0, oo)16> 设 A n =(0,—), HG n N, 则 lim A n =()”T8A 、(0, 1)B 、(0, 1 -)nC 、{0}D 、①17、设令"_]=(0,丄),企“=(0,〃),nw N ,则 lim A z ,=()TlXT8A 、①B 、(0, -)C 、(0, n)D 、(0, oo)n18、设 %“一1 = (0,—), A“=(0/), ne N,则 lim&,=()n 〃T8 A 、①B 、(0, -)C 、(0, n)nD 、(0,°°) 19、设 A 、B 、C 是三个集合,则A-(A-B)=( )A 、BB 、AC 、AnBD 、AUB 20、设 A 、B 、C 是三个集合,则A-(B U C)=( )A 、(A-B)n (A-C)B 、(A-B) U (A-C)C 、AnBD 、AnC21、设 A 、B 、C 是三个集合,则A-(B n C)=( )A 、(A-B)A (A-C)B 、(A-B)U (A-C)C 、AnBD 、AnC22、设 A . B . S 是三个集合,且 AuS, BuS,则 C v (A-B) = ()23、设A > B . S 是三个集合,ILAuS ,A 、C v AuC vB B 、C v AnC v BC 、CAuBD 、AuCB5524、 设A 、B 、C 是三个集合,贝lj A-(B-C)=( )A 、AUC-BB 、A-B-CC 、(A-B)U(AnC)D 、C-(B-A)25、 集合E 的全体内点所成的集合称为E 的() A 、开核 B 、边界 C 、导集 D 、闭包 26、 集合E 的全体聚点所成的集合称为E 的() A 、开核 B 、边界 C 、导集D 、闭包A^ C S A<J C S B B 、C$A C C、BC 、CAu B3D 、C AnB3BuS,则C v (AuB) = (27、集合E 的全体边界点和内点所成的集合是E 的()28、E-E z 所成的集合是()29. E 的全体边界点所成的集合称为E 的30、设点P 是集合E 的边界点,则()A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点 31、设G = (0」)u (2,3),则下列那一个是G 的构成区间:()1 336、设G, = (0,1)u(1,2), G 2 =(-l,0)u(-,-) G = G,U G 2,则下列那一个是 G 的构成区间:()B 、(1, 2)C 、(0, 1)D 、(-1, 0)则下列命题错误的是:则下列命题错误的是:(A 、开核B 、边界C 、导集D 、 闭包A 、开核B 、边界C 、外点D 、 {E 的全体孤立点}A.开核B.边界 C 、导集D 、 闭包 A 、(0, 1) B 、(-, 1) C 、[0, 1] D 、(0,2)32、设& =(0,1), G 2 =(-l,0)u(|,2)G = G, O G 2,则下列那一个是G 的构成区间:( X 、(0, 1) B 、(0, 2) C 、(-1,|) D 、(-1, 2)33、设 & =(04), G 2 = (0J) u (3,4) G = G|UG2,则下列那一个是G 的构成区间:( A 、(0,1) B 、(3,4) C 、(0, 4) D 、 (1,4)34、设 G, = (0J), G 2 = (1,2) u (3,4) G = G } U G 2,则下列那一个是G 的构成区间:( A 、(0, 1) B 、(0, 3) C 、(0,4) D 、(1,4)35、设 G=(0,2), G 2 = (1,2) u (3,4)G = G } U G 2,则下列那一个是G 的构成区间:(A. (0, 1) B 、(0, 2)C> (1, 2) D 、(1, 4)1 3A 、(p38、若 A\J B = C, A 、uB° =C 的孤立点}Bs A' uB‘ C 、OAudB则下列命题正确的是:( B 、 A' =C fC 、D 、 A u B= D 、{A 的孤立^}u {B 的孤立点}=9A、A =C°B、C f u A z CBC、A c B = CD、{A的孤立点}62 的孤立点戶{C的孤立点}A、C(A°) = (CA)°B、dA = 3(CA)C、C(A」= (CATD、C(A) = CA41 >设A—B=C,则下列命题正确的是:()A、3A-dB = dCB、A°-B = C°C、A‘ 一B‘ =C rD、{A 的孤立点}-{B 的孤立点}={。
实变函数课后习题答案
第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。
当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。
{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。
实变函数论习题集选解
《实变函数论》习题选解一、集合与基数1.证明集合关系式:(1))()()()(B D C A D C B A --⊂--- ; (2))()()()(D B C A D C B A -=--; (3)C B A C B A )()(-⊆--;(4)问)()(C B A C B A --=- 成立的充要条件是什么?证 (1)∵cB A B A =-,cc c B A B A =)((对偶律),)()()(C A B A C B A =(交对并的分配律), ∴)()()()()()(D C B A D C B A D C B A c c cc c==---第二个用对偶律)()()()()()(B D C A D B C A D B A C B A c c c c c --=⊆=交对并分配律.(2))()()()()()(c c c cD B C A D C B A D C B A ==--交换律结合律)()()()(D B C A D B C A c-==第二个用对偶律.(3))()()()()(C A B A C B A C B A C B A c ccc ===--分配律C B A C B A c )()(-=⊆.(4)A C C B A C B A ⊆⇔--=-)()( . 证 必要性(左推右,用反证法):若A C ⊄,则C x ∈∃ 但A x ∉,从而D ∀,)(D A x -∉,于是)(C B A x --∉; 但C B A x )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上,∵A C ⊆,∴C C A = ,如图所示:故)()(C B A C B A --=- .2.设}1 ,0{=A ,试证一切排列A a a a a n n ∈ ),,,,,(21所成之集的势(基数)为c .证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n 为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ,令 n a a a a f 21.0)(=,特别,]1 ,0[0000.0)0(∈== f ,]1 ,0[1111.0)1(∈== f ,即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ n a a a ,则f 是一一对应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.3.证明:整系数多项式的全体是可列的(可数的).证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++= 2210对应于一个序列:n a a a a ,,,,210 ,而每个)0(n i a i ≤≤取自可数集N N Z }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合 N∈=n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E 的基数c E =,为证c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数]1 ,0[ Q 排列成 ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在 ,,,,21n r r r 处的值 ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:)(lim )(k n k r f x f ∞→=.现在,作映射E C →]1 ,0[:ϕ,)),(,),(),(()(21 n r f r f r f x f ,则ϕ是单射,而集E C f r f r f r f A n ⊂∈=}]1 ,0[)),(,),(),({(21 是全体实数列E 的一个子集,故]1 ,0[C ~E A ⊂,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.附注 ①若∅=21A A ,∅=21B B ,又1f :1A ~1B ,2f :2A ~2B .则存在f :21A A ~21B B ;假如21A A ⊂,21B B ⊂,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?解 若∅=21A A ,∅=21B B ,令⎩⎨⎧∈∈=,),(,),()(2211A x x f A x x f x f 则)(x f 就是21A A 到21B B 的一一对应.若21A A ⊂,21B B ⊂,则12A A -与12B B -之间不一定存在一一对应.例如:} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211 n B A n B n A ====,),3 ,2( 1:1 =+n n n f ,),2,1( :2 =n n n f ,则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.②几个常见的一一对应:(ⅰ)) ,(b a ~R ,()) ,( , tan )(2b a x x f a b ax ∈-⋅=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x xxx f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为 , , , ,21n r r r ,而]1 ,0[中的有理数排列为 , , , , ,1 ,021n r r r .作其间的对应f 如下:⎪⎪⎩⎪⎪⎨⎧>====+,中无理数时是当当当当)1 ,0(, ),2( ,,,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).(ⅲ)N N ⨯~N ,()N N ⨯∈-=-),( , )12(2),(1j i j j i f i .这是因为任一自然数均可唯一表示为q n p⋅=2(p 非负整数,q 正奇数),而对非负整数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c F 2=. 证 1.c F 2≥;设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即⎩⎨⎧-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记}]1 ,0[{⊂=E E M ,}]1 ,0[)({⊂=X E x E χ,则M ~X ,c M 2==X .而F ⊂X ,从而有F ≤X ,即F c ≤2.2.cF 2≤.对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而cB 2=,从而有cF G F 2≤=.综合 1, 2立知 cF 2=.附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ⊂⊂,而A ~C ,则B ~C (此结果更便于应用).5.试证任何点集的内点全体组成的集是开集.证 设集F 的内点集为0F (称为F 的内部),下证0F 为开集.F x ∈∀,由内点的定义,存在x 的邻域F I x x x ⊆=),(βα.现作集 Fx x I G ∈=,则显然G 为开集,且G F⊆0.另一方面,对任意G y ∈,存在0x I ,使得F I y x ⊆∈0,所以,y 为F 的内点,即0F y ∈,也就是说0F G ⊆.综上有G F =0为开集. 6.开映射是否连续?连续映射是否开?解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[ ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而 +∞-∞==n n P P , +∞-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{( =k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )现在R 上定义函数 ⎪⎩⎪⎨⎧∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k kk k π 则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (kk k k k k a b b a b b ------βπαπ;若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f 的不连续点.又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)1 ,0[非开非闭.7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '.解 P E ='.分以下三步:①设Cantor 集为P ,其补集(或叫余集)为G ,则 ),(),(),(989792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ⎩⎨⎧=,2,0i a ⎪⎩⎪⎨⎧=,2,1,0i b ( ,3 ,2 ,1=i ).由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设n a a a y 21.0=;当G x ∈时,可设 2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有0200.021n a a a y =右;对于G 的构成区间的左端点左y 有 20222.021n a a a y =左.由此可见,G E ⊆,且当E z ∈时,有 111.0)(2121n a a a y y z =+=右左.②下证Cantor 集P 中的点都是E 的极限点:对P y ∈∀,由于 n a a a y 21.0=,取E z k ∈,则 111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而k k k k k y z 3131********1<⋅=++≤-+++ , 故,0 ,0>∃>∀N ε当N k >时,有ε<k 31,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.③下证G x ∈∀,有E x '∉.事实上,有两种情况:10.若E x ∈,则只能是G 的构成区间的中点,即 111.021n a a a x =.由Cantor集的构造知:对)( x z E z ≠∈∀,都有 n x z 31≥-,所以,E x '∉; 20.若E x ∉且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ,于是,E z ∈∀,有m x z 31>-,所以,E x '∉. 故G 中的点不属于E '.综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证∅≠∞= 1k k E .证 用反证法:若∅=∞= 1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞=∞= ,从而} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列),且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c k=,使得] ,[1b a E nk ck ⊇= ,即()] ,[\] ,[1b a E b a n k k == . ∴ ] ,[\] ,[1b a E b a n k k == ,从而∅== nk k E 1,故∅=n E ,矛盾!附注 更一般地,若非空闭集套}{n E : ⊃⊃⊃⊃n E E E 21满足0sup )(,−−→−-=∞→∈n E y x n y x E nρ,则存在唯一的 ∞=∈10n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”) 证 由n E 非空,取) ,3 ,2 ,1( =∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+⊃n n E E ,所以,) ,2 ,1 ,0( =⊂∈++m E E x n m n m n ,从而0)(sup ,−−→−=-≤-∞→∈+n n E y x n m n E y x x x nρ,由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n −−→−∞→.又由n E 为闭集立知n E x ∈0,从而 ∞=∈10n n E x .存在性得证.下证唯一性:若另有 ∞=∈10n n E y ,则) ,2 ,1( 00 =∈n E y x n 、,而0)(00→≤-n E y x ρ,所以,00x y =.这就证明了唯一性.9.若] ,[)(b a C x f ∈,则 ()αα≥∈∀f E , R 为闭集.证 只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( =∈n E x n ,满足0lim x x n n=;又由于诸 ] ,[ b a E x n ⊂∈以及)(x f 的连续性,从而有] ,[ ,)(0b a x x f n ∈≥α 以及 α≥=)(lim )(0n nx f x f .这就证明了E x ∈0.9*.若在],[b a 上,)()(lim x f x f n n=,记}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,证明:() ∞=∞→+=11lim )(k kn n E E αα. 证 一方面,当)(αE x ∈时,α>)(x f ⇒, k ∃使得kx f 1)(+>α,即kn nx f 1)(lim +>α, N ∃⇒当N n >时,kn x f 1)(+>α()() ∞=∞→∞→+∈⇒+∈⇒111lim lim k kn n kn n E x E x αα. 另一方面,() ∞=∞→+∈11lim k kn n E x αk ∃⇒,使()k n n E x 1lim +∈∞→α, N ∃⇒当N n >时, ()k n E x 1+∈α. 即 kn x f 1)(+>α(N n >)k n nx f x f 1)(lim )(+≥=⇒α, α>⇒)(x f ,从而)(αE x ∈. 综上可得 () ∞=∞→+=11lim )(k kn n E E αα. 10.每一个闭集是可数个开集的交集.证 设F 为闭集,作集) ,2 ,1( }),( {1 =<=n F x x G nn ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证: nn G F =.事实上,由于对任意N ∈n 有n G F ⊂,故有 nn G F ⊂;另一方面,对任意 nn G x ∈0,有 ) ,2 ,1( ),(010 =<≤n F x nρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G nn ⊂ .综上可知: nn G F =.附注 此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.证 可有两种证法(很麻烦):一种是反证法,即若 nn F b a I ==) ,(0,其中}{n F 为两两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但 nn F x ∉0,从而得出矛盾;另一种证法是:记) ,(b a =∆,证明下述更强的结果:若}{n F 为含于∆内的任一组两两互不相交的闭集列,则 nn F -∆的势(基数)等于连续势c ,从而立知不可能有nn F b a ==∆) ,(.取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且100000] ,[ , F b a I b b a a ⊃=<≤<.又记) ,( , ) ,(0201b b a a =∆=∆(非空),则有两种情况: ①若)2 , 1( 2=∆∞=i F n n i中至少有一个空集,比如 21∅=∆∞= n n F ,而∅=∆⊂∆0111I F ,所以, 11∅=∆∞= n n F , 11∆⊃-∆∞= n n F .因此,c F nn=∆≥-∆1 .问题得证.②)2 , 1( 1=∆∞=i F n n i均不为空集,对)2 , 1( =∆i i ,在 , ,32F F 中存在最小的下标)(1i n 使∅≠∆i n i F )(1,显然,2},min{)2(1)1(11≥=n n n 以及)(1, , ,00i n F b b a a ∉,从而i n i n i i F F ∆=∆ )(1)(1为含于开区间i ∆内的闭集,对此闭集仿上作出两个闭区间)2 ,1( )(1=i I i ,它们满足:(ⅰ))2(1)1(10 , ,I I I 互不相交; (ⅱ)21121)(101===⊃⊃i i n i i i i F F I I .对在∆中挖去)2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )(N k N k I =,它们满足:(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==互不相交;(ⅱ)111121)(0)]([+====⊃⊃N i i n i i N n j j n F F I I N n(因为1+≥N n N ).在开区间∆中挖去闭区间) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==后余下的12+N 个开区间中,如果至少有一个开区间比如0i ∆与2+≥N n n F 的交为空集,则由(ⅱ)知与 ∞=1n n F 的交也为空集,从而c F i nn=∆≥-∆0 .问题得证.若不然,则这12+N 个开区间均与2+≥N n n F 相交,重复上述步骤得到一列闭区间} ,{)(0j n I I ,再利用完备集的结构定理可知它关于] ,[b a 的余集为非空完备集,又在(ⅱ)中令∞→N ,得∞=∞==⊃1121)(0)]([i i n j j n F I I n所以,集 ∞=-1) ,(i i F b a 的势(基数)等于连续势c .附注 ①我们知道:可数个闭集的并集不一定是闭集,而此题结果又说明了“开区间(是开集)却不能表示成可数个互不相交的闭集的并集”,所以又引出了σF -集. ②任何闭区间不可能表示成可数个疏集的并集(提示:用反证法,若 ii F b a =],[,其中),2,1( =i F i 为疏集,可构造一闭区间套,则导出矛盾!)12.证明:用十进位小数表示]1 ,0[中的数时,其用不着数字7的一切数成一完备集.证 对]1 ,0[中的任一数x 均可表示为) ,2 ,1 },9 , ,2 ,1 ,0{( 101=∈=∑∞=k a a x k k k k(x的这种表示法不一定唯一),而如此表示的级数其值都在]1 ,0[内. 记G 表示]1 ,0[中数的十进位可能表示101∑∞=k k ka 中必有某一个7=k a 的那些数的全体,从而只要证明G 关于]1 ,0[的余集G P -=∆]1 ,0[为完备集.作开区间()1081070,=δ,),2 ,1( 10810 , 1071011111=⎪⎪⎭⎫⎝⎛++=+=+=∑∑n a a n n k k k n n k k k aa nδ其中n a a ,,1 为不等于7而小于10的非负整数.显见这些开区间为]1 ,0[中可数无穷个无公共端点的互不相交的开区间,其内点用十 进位数表示时至少有一个7=n a ,而端点用十进位数表示时可使所有7≠k a .作这些开 区间的并集记为U ,则U 为开集,且根据完备集的结构定理知U 关于]1 ,0[的余集为一 完备集,于是,只要证明U G =即可.由U 的定义显见G U ⊂;另一方面,若G x ∈,则在x 的所有可能的十进位表示101∑∞=k k ka 中均必有一个7=n a ,且不妨设此n 为满足等式的最小整数即11,,-n a a 均不等于7.首先证明下述两种情况不能发生:①) ,2 ,1( 0 ++==n n m a m ,此时x 表示 区间11-n a a δ的左端点,它有另一十进位表示:∑∑+≥-=++11110910610n i in n i iia ,在此表示中一 切7≠n a ,因此x 不可能是这种情况;②) ,2 ,1( 7 ++==n n m a m ,此时x 表示区 间11-n a a δ的右端点,它有另一十进位表示:n n i i ia 1081011+∑-=,在此表示中一切7≠n a ,因此x 也不可能是这种情况.由此可知U x n aa ⊂∈-11δ.综上所证可知U G =.证毕!附注 ①c P =; ②P 在]1 ,0[中不稠密(因∅=)7.0 , 28.0( P ).13.试在]1 ,0[上定义一个函数,它在任一有理点不连续,但在任一无理点连续.解 ①设∑∞=1n n a 为一收敛的正级数,因]1 ,0[上全体有理数可数,故可记为},,,,{21 n r r r Q =.对]1 ,0[∈∀x ,定义函数∑<=xr n n a x f )(,其中和式是对x r n <的那些相应的n a 求和.则)(x f 为]1 ,0[上单调递增函数且在无理点连续,有理点不连续其跃度为000)()(n n n a r f r f =--+. 事实上,因为对任意x y >,0)()(≥=-∑<≤y r x n n a x f y f ,所以,)(x f 为增函数;又记}{y r x r E n n y x <≤=,当x 为无理数时,∅=+→y x xy E lim ,所以,)()0(x f x f =+. 同理可证)()0(x f x f =-,所以,)(x f 在无理点连续;当x 为有理数0n r 时,有0lim n y x x y r E =+→,所以,0)()0(n a x f x f =-+,且此时类似亦有)()0(x f x f =-(0n r x =),从而 000)()(n n n a r f r f =--+0>. ②微积分中熟知的Riemann 函数 ⎪⎩⎪⎨⎧≥==中无理数,为,,互素正整数]1,0[0),,( ,)(1x q p q p x x R p q p亦为所求函数.附注 ①不存在]1 ,0[上这样的函数,它在每一有理点连续,而在每一无理点不连续; (提示:只要证任何在]1 ,0[中有理点连续的函数)(x f ,至少在一个无理点上连续.可利用闭区间套定理).②设B A ,为非空不交闭集(可无界),则存在) ,()(∞+-∞∈C x f 满足:1)(0≤≤x f ,且当A x ∈时,0)(=x f ,而当B x ∈时,1)(=x f ; (提示:),( , ),(),(),()(+∞-∞∈+=x B x A x A x x f ρρρ,其中),(A x ρ为点x 到集A 的距离.再证分子连续,分母大于0连续,从而)(x f 连续.而满足条件显然)更一般地,此结果可推广到n 个非空不交闭集上:设),,2,1(n k A k =为n 个非空不交 闭集,∃连续函数)(x f 使得k A x ∈时,k C x f =)((k C 为常数,n k ,,2,1 =),则⎪⎪⎪⎩⎪⎪⎪⎨⎧∉=∈====∑∑. ,),(1),(,,,2,1 , ,)(111 n k k nk k nk kk k k A x A x A x C n k A x C x f ρρ即可. 二、勒贝格(Lebesgue )测度1.设1E 、2E 均为有界可测集,试证()()212121E E m mE mE E E m -+=.证 因1E 、2E 可测,则21E E 可测,212E E E -可测,且)()(212212E E m mE E E E m -=-.又由()∅=-2121E E E E ,得()()()2121212121E E m mE mE E E E m mE E E m -+=-+=.2.试证可数个零测度集的并仍是零测度集.证 设 ∞====1, ,2 ,1 ,0n n n E E n mE ,则E 可测,且有0011=≤⎪⎪⎭⎫ ⎝⎛=≤∑∞=∞=n n n n mE E m mE ,∴ 0=mE .3.设有两个开集21G G 、,且21G G ⊆,那么是否一定有21mG mG <?解 不一定成立.例:)2 ,1()1 ,0(1 =G ,)2 ,0(2=G ,则21G G ⊂,但212mG mG ==.4.对任意开集G ,是否一定有mG G m =成立?解 不一定.例 :对]1 ,0[中的所有有理数} , , , ,{21 n r r r ,作开集如下:∞=++⎪⎭⎫ ⎝⎛+-=12221 ,21n n n n n r r G ,则G 为开集,且2121*11=≤=∑∞=+n n G m mG .但由]1 ,0[⊇G ,可得1]1 ,0[=≥m G m .故mG G m ≠.5.设n A A A 、、、 21是]1 0[,中n 个可测集,且满足11->∑=n mA nk k ,试证01>⎪⎪⎭⎫ ⎝⎛= n k k A m .证 由1题可知:)()(212121E E m mE mE E E m -+=.又∵]1 ,0[⊆i A ,∴ 1≤i mA ,n i , ,2 ,1 =,而cn i c i ni i A A ⎪⎪⎭⎫⎝⎛=== 11,∴∑∑====--=-≥⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛n i i n i ci n i c i n i i mA m mA A m A m 1111)]1 ,0[(1110)1(111>--=+-=∑∑==n mA mA n n i i n i i .(由已知11->∑=n mA nk k )6*.设0*>=q E m ,则对任何) ,0(q p ∈,存在E E ⊂0,使得p E m =0*(称为“外测度的介值定理”).(以下证明最好能看懂,否则Pass !)证 ①先设E 是有界集,即] ,[b a E ⊆,0*>=q E m .令()] ,[**)(x a E m E m x f x ==,] ,[b a x ∈,则)(x f 是] ,[b a 上单调不减的连续函数.事实上,10.因∅==或}{}{a a E E a ,E b a E E b ==] ,[ ,则0)(=a f ,0)(>=q b f ;当21x x <,且] ,[21b a x x ∈、时,21] ,[] ,[21x x E x a E x a E E =⊆= ,由外测度的单调性,有)(**)(2121x f E m E m x f x x =≤=.所以,)(x f 是] ,[b a 上的单调不减函数.20.因()1112*]),[(***)()(2112x x x x E m x x E E m E m E m x f x f -=-=-()122121],[*],[*x x x x m x x E m -=≤≤ ;同理,当12x x <时,2121)()(x x x f x f -≤-. ∴ 2121)()(x x x f x f -≤-.于是,让1x 为] ,[b a 上任意一点x ,而] ,[2b a x x x ∈∆+=,则有x x f x x f ∆≤-∆+)()(,故当0→∆x 时,)()(x f x x f →∆+,即] ,[)(b a C x f ∈.②由] ,[)(b a C x f ∈,) ,0(q p ∈∀,即)()(b f p a f <<,由闭区间上连续函数的介值定理,] ,[0b a x ∈∃,使得p x f =)(0,即()p x a E m =] ,[*0 . ③当E 无界时,令] ,[][n n E E n -= ,N ∈n ,则n E ][可测,满足⊆⊆⊆⊆n E E E ][][][21,且有 ∞==1][n n E E ,∴ 0*][*lim >>==∞→p q E m E m n n .由极限的保号性,N ∈∃0n ,使得p E m n >0][*.记)( ][*00p p E m n >=,而0][n E 为有界集:] ,[] ,[][000n n n n E E n -⊆-= .如前两步所证,作函数()] ,[][**)(00x n E m E m x f n x -==则)(x f 在] ,[0n n -上连续不减,且000)(0)(p n f n f =<=-.由00p p <<,) ,( 00n n x -∈∃,使得p x f =)(0,即p E m x =0*.附注 若E 可测,0>=q mE ,则 q p p <<∀0 ,,∃可测集E E ⊂1,使p mE =1.7.试作一闭集]1 ,0[⊂F ,使F 中不含任何开区间,但21=mF . 解 仿照Cantor 集的方法构造闭集F : 第一步:将]1 ,0[作12等份,挖去中央的开区间1)127,125(G =,长度为61; 第二步:将余下的两个闭区间]125,0[和]1 ,127[再各12等份,分别挖去中央的开区间2)7259,7255()7217,7213(G = ,各长6131⨯,共长61312⨯⨯; ……第n 步:在余下的12-n 个闭区间中,分别挖去其中央处长为()61131⨯-n 的开区间,记这12-n个互不相交的开区间之并为n G ,其长度为12-n ()()1326161131--⨯=⨯⨯n n ;将这手续无限进行下去,得一串开集 ,, , , ,321n G G G G . 令 ∞==1n n G G ,则G 为开集,且G F \]1 ,0[=有与Cantor 集类似的性质:①F 为闭集且是完备集; ②F 不含任何开区间(疏集); ③F 可测,且由于()21132611132611=-===∑∑∞=-∞=n n n n mG mG , 故21211]1 ,0[=-=-=mG m mF . 附注 ①当第n 次去掉的12-n 个开区间的长度为n51时,则32115121525111=--=⋅-=∑∞=-n n n mF ;②对任何10 ,<<αα,当第n 次去掉的12-n 个开区间的长度为()13131--⋅n α时,所得开集G 的测度为()ααα-=-⋅==-∞=--∑1113231113231n n mG ,则 α=-=mG mF 1,这可作为一般公式来应用.8.试证定义在) ,(∞+-∞上的单调函数的不连续点集至多可数,因而是0测度集.证 设)(x f 为) ,(∞+-∞上的单增函数,则间断点必为第一类间断点,即若0x 为)(x f 的间断点,则0)0()0(00>--+x f x f .记}0)0()0({>--+=x f x f x E ,则E x ∈∀,))0( ),0((+-x f x f 为y 轴上的一个开区间,每个开区间中可取一有理数x r ,则E 中每个元x 与有理数集中一元x r 相对应,即E 与Q 的一个真子集一一对应,故Q ≤E ,即E 至多可数,故0=mE .9.设N ∈n E n },{为可测集列,且∞<∑∞=1n n mE ,则0lim =⎪⎭⎫ ⎝⎛∞→n n E m .证 ∵∞<∑∞=1n n mE ,∴ , ,0N ∃>∀ε使ε<∑∞=Nn n mE .而∞=∞=∞=∞→⊆=Nn n k k n n n n E E E 1lim ,∴ε<≤⎪⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∞=∞=∞→N n n N n n n n mE E m E m lim . 故 0lim =⎪⎭⎫ ⎝⎛∞→n n E m .10.试举出一列可测集}{n E ,含在一个有限区间中,而且n n mE ∞→lim 存在,但⎪⎭⎫ ⎝⎛≠⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m lim lim .解 考察如下集列 ⎪⎩⎪⎨⎧=+=--=), ,6 ,4 ,2( )1 ,0[),,5 ,3 ,1( ]0 ,1(11 n n E n n n显然 ),3,2,1( )2 ,2( =-⊂n E n .又 ()()]1 ,1[1 ,1 1 ,1 lim 1111111-=⎥⎥⎦⎤⎢⎢⎣⎡+--⎥⎥⎦⎤⎢⎢⎣⎡+--==++∞=∞= 为偶数为奇数n nn n n n n n k k n nE E , }0{}0{lim 11 ===∞=∞=∞= n n nk k n n E E .(从而n nE lim 不存在) 所以,0lim 2lim =⎪⎭⎫ ⎝⎛≠=⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m .虽然n nE lim 不存在,但}{n mE 存在极限:()11lim lim 1=+=nnn nmE . 附注 一般,若}{n E 为可测集列,且∞=1n n E 有界,则n n n n mE E m ∞→∞→≤⎪⎭⎫ ⎝⎛lim lim ,n n n n mE E m ∞→∞→≥⎪⎭⎫ ⎝⎛lim lim .(不妨一证) 11*.设N ∈n En },{为R 中互不相交的点集列, ∞==1n n E E,则∑∞=≥1**n n E m E m .证 因 ∞==1n n E E ,且n E 互不相交,则对每个n E ,有σF 型集n F ,使n n E F ⊂,且n n E m mF *=.∴ ∞=1n n F 仍为σF 型集.又对于E 的σF 型集E F ⊂,且E m mF *=.但F F n n ⊂∞= 1,故有∑∞=≥1**n n E m E m .三、可测函数1.证明)(x f 是E 上可测函数的充要条件是:对任一有理数r ,集)(r f E >恒可测.如果集)(r f E =恒可测,问)(x f 是否一定可测? 证 必要性:显然,∵ 有理数属实数集.充分性:设对任一有理数r ,集)(r f E >恒可测,则对R ∈∀α,∃有理数列∞=1}{n n r ,α>n r ,使得α=∞→n n r lim .从而 ∞=>=>1)()(n n r f E f E α为可测集.又如果对任何有理数r ,集)(r f E =恒可测,则f 不一定是可测的.例如:R =E ,F 是E 中的不可测集(它是存在的,尽管不容易构造,教材P65定理2.5.7),对任意F x ∈,3)(=x f ;F x ∉,2)(=x f .则对任何有理数r ,∅==)(r f E 恒可测,但F f E =>)2(是不可测集,从而f 不可测.2.设)(x f 是E 上的可测函数,F G 、分别为R 中的开集和闭集,试问)(G f E ∈和)(F f E ∈是否可测?这里记号})(:{)(A x f E x A f E ∈∈=∈.答 )(G f E ∈和)(F f E ∈均可测. 证 令 ∞==1) ,(n n n b a G ,j i ≠时,∅=) ,() ,(j j i i b a b a ,即) ,(n n b a (N ∈n )为开集G 的构成区间.∵)(x f 是E 上的可测函数,∴)(n n b f a E <<是E 中的可测集,从而∞=<<=∈1)()(n n n b f a E G f E 仍为可测集.又对R 中的闭集F ,令F G \R =,则G 为开集.由上面证明可知)(G f E ∈可测,故)(\)(G f E E F f E ∈=∈仍可测.3.(1)证明:)(lim lim n n n n A S A S -=-∞→∞→;(2)设n A 是下述点集:当n 为奇数时,)1 ,0(1n n A -=;当n 为偶数时,)1 ,(1nn A =.证明:∞=1}{n n A 有极限,并求此极限.证 (1))(lim )(lim 111n n k kn n k k n n k k n n n n A S A S A S A S A S -=-=⎪⎪⎭⎫ ⎝⎛-=-=-∞→∞=∞=∞=≥∞=∞=∞→ .(2))1 ,0()1 ,0(lim 11===∞=∞=≥∞→ k k kn n n n A A ,())1 ,0(1 ,lim 1111=-==∞=∞=≥∞→ k kk k kn n n n A A , ∴ )1 ,0(lim =∞→n n A .4.试作]1 ,0[=E 上的可测函数)(x f ,使对任何连续函数)(x g 有0)(≠≠g f mE .此结果与鲁金(Lusin )定理是否矛盾?解 作函数⎩⎨⎧=∞+∈=,0 , ],1 ,0( , )(1x x x f x 则显然)(x f 是]1 ,0[=E 上的可测函数.设)(x g 是]1 ,0[=E 上的任一连续函数,则)(x g 在]1 ,0[=E 上有界,于是,∃0>N ,使得N x g ≤)((]1 ,0[∈x ).而在] ,0[1N 上,N x f >)(,所以有]) ,0[( )()(1N x x g x f ∈≠.故0] ,0[)(11>=≥≠NN m g f mE .这就是说,]1 ,0[=E 上任何连续函数)(x g 都有0)(≠≠g f mE .此结果与鲁金定理并不矛盾.事实上,0>∀ε,可取闭集E F ⊂=]1 ,[2ε,则 εε<=2)\(F E m ,而所作的函数)(x f 在F 上显然是连续的.此题也说明鲁金定理结论中的0>ε可任意小,但都0≠.5.设)(x f 是) , (∞+-∞上的连续函数,)(x g 是] , [b a 上的可测函数,试证明:)]([x g f 是可测函数.证 R ∈∀α,由)(x f 在R 上连续可知:)(α>f R 是开集,设其构成区间为) ,(i i βα ( ,2 ,1=i ).于是,N ∈∀i ,当) ,()(i i x g βα∈时,α>)]([x g f ;反之,若α>)]([x g f ,则必有N ∈i ,使) ,()(i i x g βα∈.所以,()()() ii i ii i x g E x g E x g f E βαβαα<<=∈=>)() ,()()]([.但由题设:)(x g 在] , [b a 上可测,则()i i x g E βα<<)(可测,故()α>)]([x g f E 可测.6.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f (即f f n−→−μ),且在E 上几乎处处有)( )()(N ∈≤n x g x f n .试证在E 上几乎处处有 )()(x g x f ≤.证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使f f k n →,a.e.于E (∞→k ),即E E ⊂∃0,f f kn →于0E ,且0)(0=-E E m .令()()f f E g f E A k n n n →/⎪⎪⎭⎫⎝⎛>= ,则()0=→/f f mE k n ;而由题设:g f n ≤,a.e.于E (N ∈n )可知,nn g f mE 2)( ,0εε<>>∀(N ∈n ),则有()()()εε=<+><→/+⎪⎪⎭⎫ ⎝⎛>≤∑∑∞=∞=1120n n n n n n n g f mE f f mE g f E m mA , 即0=mA ,而在A E -上有g f n ≤(0E x ∈∀)且f f k n →(0E x ∈∀).故)()(lim )(x g x f x f k n k ≤=∞→(0E x ∈∀),即)()(x g x f ≤,a.e.于E .7.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,且在E 上几乎处处有)()(1x f x f n n +≤)( N ∈n ,则)(x f n 在E 上几乎处处收敛于)(x f (即f f n →,a.e.于E ).证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使 f f kn →,a.e.于E (∞→k );再由)()(1x f x f n n +≤,a.e.于E ,则必有f f n →,a.e.于E .8.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,而)(x f n ~)(x g n )( N ∈n (称为对等,也即n n g f =,a.e.于E ),则)(x g n 在E 上也依测度收敛于)(x f .证 ∵ f f n −→−μ,且n n g f =,a.e.于E ,则0>∀ε,()0lim =≥-∞→εf f mE n n 且()0=≠n n g f mE .∵ f f f g f g n n n n -+-≤-,∴ ()()()εεε≥-≥-⊆≥-f f E f g E f g E n n n n .又()()()()0−−→−≥-≤≥-+≥-≤≥-∞→n n n n n n f f E f f E f g mE f g mE εεεε∴ ()0−−→−≥-∞→n n f g mE ε,即 f g n −→−μ.9.试举例说明:对于叶果洛夫(Egorov )定理,不能加强为除掉一个0测度集外,)(x f n一致收敛于)(x f .解 构造函数列)}({x f n 如下:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-⋅+-<≤<<+==+++++,1 ,0 , ,)1(1, ,1 ,0 ,)2( ,0 ,0 )(111111112121x x x n n x x x n x x f n n n n n n n n 则)(x f n 是]1 ,0[=E 上的连续函数列,必可测,且 )(0)(lim x f x f n n ==∞→于]1 ,0[=E .下面证明:对任一0 ,00=⊂mE E E 时,)}({x f n 在0E E -上不会一致收敛. 取210=ε,无论N 取得多么大,总可取N N n >+=1,令[)02131 ,E A n n -=++,则显然A 非空(为什么?).但A x x f N ∈=+ ,1)(1, A x x f x f x f N N ∈>==-++ ,1)()()(011ε.所以,)}({x f n 在0E E -上不一致收敛.由此可知:叶果洛夫定理不能加强为:除掉一个0测度集外,)(x f n 一致收敛于)(x f .10.几乎处处有限的可测函数列)}({x f n )(x f −→−μ的充要条件是:对任何正数σ和ε,存在N ,当N m N n >> ,时,()εσ<≥-m n f f mE (即它是依测度的Cauchy 列). 证 必要性由)()(x f x f n −→−μ,则N n N >∃>>∀ , ,0 ,0εσ时,()22εσ<≥-f f mE n . 又易知:()()()22σσσ≥-≥-⊂≥-f f E f f E f f E m n m n ,则 ()()()22σσσ≥-+≥-≤≥-f f E f f E f f mE m n m n ,从而当N m N n >> ,时,()εσ<≥-m n f f mE .下证充分性:先找出一个子序列f x f k n k −−→−∞→)}({,a.e.于E .任取数列+∞<>∑∞=1,0 },{i i i i ηηη.由题设条件可知:存在k n ,使得()) ,2 ,1 ; ,2 ,1( 21==<≥-+m k f f mE km n n kk k η,从而可取+∞↑kn ,且有 ()kn n kkk f f mE η<≥-+211.对这串}{kn 作P Q ,:() ∞=∞=≥-=+1211i ik n n kk k f f E Q ,() ∞=∞=<-=-=+1211i ik n n kk k f fE Q E P .令() ∞=≥-=+ik n ni kk k f f E R 211,则 ⊃⊃⊃⊃⊃+121n n R R R R, ∞==1i i R Q .因此,()0lim limlim 211=≤≥-≤=∑∑∞=∞→∞=∞→∞→+ik ki ik n ni i i kk k f f mE mR mQ η,所以,0=mQ .下面证明)}({x f k n 是P 上的收敛基本列.记 () ∞=∞=∞==<-=+11211i ii ik n nA f f E P kk k ,则 ⊂⊂⊂++21i i iA AA .若P x ∈,则存在0i ,使得 ⊂⊂∈+100i i A A x .对任给的0>ε,必有0i i >,使得ε<-121i ,故对一切 ,2 ,1 ,=>m i l ,有 ε<=≤-≤-≤--∞=∞==∑∑∑+++1212111i i j j ij n n m ij n n n n j j j j m l l f f f f f f . 所以,)}({x f kn 在P 上的收敛于)(x f ,其中)( )(lim )(P x x f x f k n k ∈=∞→.显然,f f k n −→−μ,于是,对任何正数σ和ε,存在N ,当N n N n k >> ,时,()22εσ<≥-k n n f f mE ,()22εσ<≥-f f mE kn . 而()⊂>-σf f E n () 2σ≥-k n n f f E ()2σ≥-f f E k n ,所以,当N n >时, ()εσ<>-f f mE n ,即 f f n −→−μ于E .四、Lebesgue 积分1.设)()(x g x f 、都是E 上的可测函数,)()(E L x g ∈,且在E 上几乎处处成立)()(x g x f ≤,问在E 上)(x f 是否一定可积?解 )(x f 未必可积,因)(x f 不一定满足非负性.例如:取]1 ,0[=E ,0)(=x g ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∈-∈-∈-=-.0 ,0 ], ,( ,2, ], ,( ,4],1 ,( ,2)(12121214121x x x x x f n n n 则显然 )()(E L x g ∈,)()(x g x f ≤,但-∞=⋅-=∑⎰∞=1]1 ,0[ 21)2(d )(n n n m x f 不可积. 2.设在Cantor 集P 上定义函数)(x f 为零,而在P 的补集中长为n31的构成区间上定义)(x f 为n (N ∈n ),试证L x f ∈)(,并求积分值. 解 令 n e 为P 的补集G 中长为n 31的各构成区间之并,则 ∞==1n n e G ,n me n n 321-=.令 ⎪⎩⎪⎨⎧-∈=∈==, ]1 ,0[ ,0),, ,2 ,1( ,)(1 n i i i n e x n i e x i x ϕ 则简单函数列)}({x n ϕ满足 )()()()(021x f x x x n ≤≤≤≤≤≤ ϕϕϕ,且 f x n →)(ϕ.∴ 33232lim d )( lim d )( 1111]1 ,0[ ]1 ,0[ =⋅=⋅==∑∑⎰⎰∞=-=-∞→∞→n n n ni i i n n n n i m x m x f ϕ.即 ]1 ,0[L f ∈,且3d )( ]1 ,0[ =⎰m x f .3.设0)(≥x f 为可测函数,令 ⎩⎨⎧>≤=,)( ,0 ,)( ),()]([N x f N x f x f x f N 若若 试证明⎰⎰=EEN Nm x f m x f d )( d )]([ lim .证 由题设知: ≤≤≤≤≤N f f f ][][][021,且 f f N N −−→−∞→][,则由勒维(Levi )定理可知 ⎰⎰=E E N Nm x f m x f d )( d )]([ lim.4.设从]1 ,0[中取n 个可测子集n E E E 、、、 21,假定]1 ,0[中任一点至少属于这n 个子集中的p 个.试证:必有一集,它的测度不小于np.证 令 i E 的特征函数为)(x iE χ,则⎰⎰⎰+++=+++11 01 021d )(d )(d )(21x x x x x x mE mE mE n E E E n χχχp x p x x ni E i =≥⎪⎪⎭⎫⎝⎛=⎰⎰∑=1 0 1 0 1d d )(χ. 令 } , , , m ax {21n mE mE mE mE =,则 1≤mE ,从而 p mE mE mE mE n n ≥+++≥⋅ 21, ∴ npmE ≥.5.勒维(Levi )定理中去掉函数列的非负性假定,结论是否成立?解 Levi 定理中函数列的非负性条件是必要的,不可去,否则结论未必成立.例如: ,2 ,1 ,0 ,0 ],1 ,1[,0 ,)(11=⎩⎨⎧=-∈≠-=n x x x x f nx n , ⎩⎨⎧=-∈≠=,0,0 ],1 ,1[,0 , )(1x x x x f x则 0)(≠x f ,a.e.于]1 ,1[-,且有≤≤≤≤)()()(21x f x f x f n ,)()(lim x f x f n n =∞→.但()+∞=-⎰-01 11d x x n ,故 ⎰-1 1 d )(x x f n 不存在;同理,⎰-11 d )(x x f 也不存在. 因此,Levi 定理不成立.容易证明:若存在)()(E L x g ∈,满足 ≤≤≤≤≤)()()()(21x f x f x f x g n ,则Levi 定理成立(不妨一证).6.设0>mE ,又设E 上的可积函数)()(x g x f 、满足)()(x g x f <,试证⎰⎰<E E m x g m x f d )( d )( .证 ∵ 0)()(>-x f x g ,∴ 由L 积分的单调性(3L )可知0d )]()([d )(d )( ≥-=-⎰⎰⎰E E E m x f x g m x f m x g .(设法去掉等号!) 若0d )()(d )]()([ =-=-⎰⎰E E m x f x g m x f x g ,则由命题3.2.5的(ⅲ)可知0)()(=-x f x g ,a.e.于E ,与)()(x g x f <矛盾!故0d )(d )( >-⎰⎰E E m x f m x g .7.设)(x f 为E 上的可积函数,如果对任何有界可测函数)(x ϕ,都有0d )()( =⎰Em x x f ϕ,则0=f ,a.e.于E ,试证明之.证 由 )(x ϕ的任意性,不妨设⎪⎩⎪⎨⎧=∈<∈->∈=),0( ,0 ),0( ,1),0( ,1 )(f E x f E x f E x x ϕ 则)(x ϕ为E 上的有界可测函数,由题设,应有0d d )()( )0( ==⎰⎰>f E E m f m x x f ϕ.而()()()0d d d d 0 0 0 ==+=⎰⎰⎰⎰>=>f E f E f E E m f m f m f m f ,故由命题3.2.5的(ⅲ)可知:0=f ,a.e.于E .8 设)(x f 为]1 ,0[上的可积函数,若对任何)1 ,0(∈a ,恒有0d )( ),0( =⎰a m x f ,则0=f ,a.e.于]1 ,0[.证 用反证法:设在]1 ,0[上)(x f 不是几乎处处为零,令 )1 ,0(=E ,)0(1>=f E E , )0(2<=f E E ,则21 mE mE 、中至少有一个大于0.不妨设01>mE ,则存在闭集 )1 ,0(1⊂⊂E F ,满足0>mF ,从而0d )( >⎰F m x f .令}sup{ },inf{F x x F x x ∈=∈=βα,则 10<<<βα.现取)1 ,(β∈r ,并令F r G -=) ,0(,则G 为开集.由于对任何)1 ,0(∈a ,恒有0d )( ) ,0( =⎰a m x f ,于是有0d )( ) ,0( =⎰r m x f ,所以,0d )(0d )(d )(d )( ) ,0( <-=-=⎰⎰⎰⎰F F r G m x f m x f m x f m x f . (*)又设 ∞==1) ,(i i i b a G ,其中) ,(i i b a 为互不相交的构成区间,则必存在某个G b a k k ⊂) ,(,使得0d )(),( <⎰k k b a m x f (否则必有0d )( ≥⎰Gm x f 而与(*)式矛盾!).但000d )(d )(d )() ,0( ) ,0( ) ,( =-=-=⎰⎰⎰kkkka b b a m x f m x f m x f ,为此矛盾!故 0=f ,a.e.于]1 ,0[.9.设]) ,([)(b a L x f ∈,试证:对每个N ∈n ,)]([x nf (取整函数)可积且有等式⎰⎰=∞→),( ),( 1d )( d )]([ limb a b a n n m x f m x nf.证 当n k n k x f 1)(+<≤(Z ∈k )时,1)(+<≤k x nf k ,k x nf =)]([,nkn x nf =)]([1. ∴ ][)(1nf x nn =ϕ 为简单函数列,且 )()(lim x f x n n =∞→ϕ. 故 ⎰⎰⎰==∞→∞→),( ) ,( 1),( 1d )(d )]([lim d )]([limb a b a nn b a n n m x f m x nf m x nf.10.设对每个N ∈n ,)(x f n 在E 上可积,f f n →,a.e.于E ,且一致有K m x f En ≤⎰ d )(,K 为常数,则)(x f 在E 上可积.试证明之.证 设()f f E E n →=0,由f f n →于0E ,得 f f n →于0E . 由法都(Fatou )定理,得K m f m f m f En n E n n E≤≤=⎰⎰⎰∞→∞→0d limd lim d .∵ ()00=-E E m ,∴0d 0=⎰-EE m f ,于是有∞<≤=⎰⎰K m f m f E E 0d d ,即 f 在E 上可积,从而 )(x f 在E 上可积.11.设)(x f ,)(x f n (N ∈n )均是E 上的可积函数,f f n →,a.e.于E ,且⎰⎰=∞→EEn n m x f m x f d )( d )( lim.试证:在任意可测子集E e ⊂上,有 ⎰⎰=∞→een n m x f m x f d )( d )( lim .证 由法都(Fatou )定理,有 ⎰⎰⎰∞→∞→≤=en n e n n e m f m f m f d lim d lim d ①;同理有⎰⎰-∞→-≤eE n n eE m f m f d limd ;运用性质若()n n ny x +lim 存在,则()n n n n ny x y x lim lim lim+=+,(*)则有⎰⎰⎰⎰⎰---=-=eE En neE Ee mf m f m f m f m f d d lim d d d。
实变函数课后答案
实变函数课后答案以下是十道实变函数的课后试题及答案:1.计算函数f(x)=2x+3在x=4处的取值。
答案:f(4)=2(4)+3=112.证明函数f(x)=x^2在定义域内是增函数。
答案:对于任意x1<x2,在区间(x1,x2)内有f(x1)<f(x2)。
证明:f(x2)-f(x1)=x2^2-x1^2=(x2+x1)(x2-x1)>0,其中x2+x1>0且x2-x1>0。
因此,f(x)=x^2在定义域内是增函数。
3. 求函数f(x) = ln(x)的定义域。
答案:由于ln(x)的定义域是(0, +∞),所以函数f(x) = ln(x)的定义域是(0, +∞)。
4.求函数f(x)=,x-3,的值域。
答案:由于,x-3,的值域是[0,+∞),所以函数f(x)=,x-3,的值域是[0,+∞)。
5.计算函数f(x)=e^x在x=2处的导数。
答案:f'(x)=e^x,所以f'(2)=e^26. 计算函数f(x) = sin(x)在x = π/4处的导数。
答案:f'(x) = cos(x),所以f'(π/4) = cos(π/4) = 1/√27.证明函数f(x)=x^3是奇函数。
答案:对于任意x,f(-x)=(-x)^3=-x^3=-f(x),所以函数f(x)=x^3是奇函数。
8. 证明函数f(x) = sin(x)在定义域内是周期函数。
答案:sin(x)的周期是2π,对于任意实数x,有sin(x + 2π) = sin(x),所以函数f(x) = sin(x)在定义域内是周期函数。
9.求函数f(x)=e^x的反函数。
答案:令y = e^x,解得x = ln(y),所以函数f(x) = e^x的反函数是f^(-1)(x) = ln(x)。
10.计算函数f(x)=1/x在x=2处的极限。
答案:lim(x→2)(1/x) = 1/2。
实变函数引论课后习题解答
习题4.21.设A 是]1,0[=E 中的不可测集, ⎩⎨⎧∈-∈=,\]1,0[,;,)(A x x A x x x f 试问:f 与||f 在E 上是否可测? 答 f 不可测,但f 可测. 事实上,若A ∈0,则A f E =≥]0[不可测. 若A ∉0,则A f E =>]0[不可测. 所以f 不可测。
因为当[0,1]x ∈时,()f x x =,所以||f 在E 连续函数,从而可测.2.证明:若函数f 在可测集1E 及2E 上可测,则函数f 在21\E E 与1E 2E 上也可测. 证明 因为f 在12,E E 上可测,所以12,[],[]a R E f a E f a ∀∈≥≥可测,从而 1212()[][][]E E f a E f a E f a ≥=≥≥可测。
因此,f 在12E E 上可测。
因为 1212(\)[][]\[]E E f a E f a E f a ≥=≥≥,可测,所以f 在12\E E 上可测.3.证明:若函数f R →),(:b a 在任意闭区间),(],[b a a ⊂β上可测,则f 在开区间),(b a 上可测. 证明 因为111(,)[,]n a b a b n n ∞==+-,其中11[,](,)a b a b n n +-⊂,又由题意知:f 在每一个11[,](1,2,)a b n n n +-=上可测,所以由定理4.2.6知:f 在 111[,](,)n a b a b n n ∞=+-=上可测. 4.证明:点集n S R ⊂的特征函数S χ在可测集n E R ⊂上可测当且仅当S E 是可测集. 证明 因为⎩⎨⎧∉∈=,,0;,1)(S x S x x S χ所以R ∈∀a 有 ,1[],01,0.s a E x a E S a E a ∅>⎧⎪≥=<≤⎨⎪≤⎩,, 充分性. 若E S 是可测集,则对任意的a ∈R , []s E a χ≥可测,所以s χ在E 上可测. 必要性. 设s χ在E 上可测,则对任意的a ∈R , []s E a χ≥可测。
实变函数习题精选讲解
实变函数习题精选讲解实变函数是数学分析中的一个重要概念,涉及到实数域上的函数。
在学习实变函数时,习题练习非常重要。
本文将选取一些代表性的实变函数习题进行讲解,帮助读者加深对实变函数的理解。
一、求极限1. $\lim\limits_{x\to0}\frac{\sin(\pi x)}{x}$解:当$x\to 0$时,$\sin(\pi x)\to 0$,$x\to 0$,所以可以使用洛必达法则。
$\lim\limits_{x\to0}\frac{\sin(\pix)}{x}=\lim\limits_{x\to0}\frac{\pi\cos(\pi x)}{1}= \pi$2. $\lim\limits_{x\to\infty}\left(1+\frac{a}{x}\right)^{bx}$解:将$x=\frac{1}{t}$代入式子,可得:$\lim\limits_{t\to0^{+}}\left(1+\frac{a}{\frac{1}{t}}\right)^{b\frac{1}{t}}=\lim\limits_{t\to0^{+}}\left(1+at\right)^{\frac{b}{t}}$令$y=\frac{1}{t}$,则原式可表示为:$\lim\limits_{y\to\infty}\left(1+\frac{a}{y}\right)^{by}=\lim\limits _{y\to\infty}\left(\left(1+\frac{1}{\frac{y}{a}}\right)^{\frac{y}{a}}\ri ght)^{ab}=e^{ab}$二、求导数1. 求$f(x)=\int_{0}^{\sqrt{x}}\frac{\sin t^2}{\sqrt{t}}dt$的导数。
解:使用莱布尼茨公式求导数。
$f'(x)=\frac{d}{dx}\int_{0}^{\sqrt{x}}\frac{\sint^2}{\sqrt{t}}dt=\frac{\sin \sqrt{x}}{\sqrt{x}}$2. 求$f(x)=\int_{0}^{x}e^{t^2}dt$的导数。
实变函数第二章习题解答
第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:(1)先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n n I εεε.故0*=E m .所以E 可测且0=mE .(2)再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n 无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i nIQ I IQ m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM x x ni i ni i ≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i n i i +-⊂∏=.所以+∞<=≤+-≤∑∏==nni ini i M M M x M x m E m )2(2],[**113.至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集? 解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立? 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ]][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[.11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m IE m n n.另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列(不一定可测)且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I 使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n i i i i n n E m I I m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .∆⊂=⊂=∞=∞=A A E E n n n n 11从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将n R 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkE m mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jn nj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因j nj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:(1)先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=(2)再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理(平移不变性)设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE(1)当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .。
实变函数部分课后习题答案(最新版)
备注:证明题每章都是二选一,计算题在第五章第二章1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂,从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明:对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>, 使()(){}00,,;a x x N x x f x a δ∈⊂≥,这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥,故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥.,故(){};x f x a ≥是闭集.第三章68页3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*) 证明:若()m A B =∞ ,则,A B A B ⊂∞=∞=∞=⋃⇒)(,)(,)(B m A m B A m∞=+=⋂+⋃=∞∴)()()()(B m A m B A m B A m 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+- 注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+-A 可测()()()()()c m B m A B m A B m A B m B A =+=+-)()()()(B A m B m A B m B A m ⋂-=-∴∞<⋂()()()()m A B m A m B m A B ∴=+-9、设n E R ⊂,那么E 可测当且仅当对任意正数ε,存在开集G E ⊃及闭集F E ⊂使得()m G F ε-<。
实变函数胡适耕完整
f n m N , n N , k n ,有 f k m
m N , n N , k n, x Amk
X ( f n ) Amk lim Amn .
m 1 n 1 k n m 1 n
11. f : X Y 是满射 B Y : f ( f 1 ( B)) B . 证 “ ” f : X Y 是满射, B Y , y B, x X ,
n 1 k n
c . Akc lim An n 1 k n n
8. lim An 存在 lim
n n
A 存在;A lim An A lim A .
n
n
n
n
证
lim An 存在 lim An lim An , lim An 存在 lim An lim An .
n
n
n
n
n
n
下证: lim A lim An
n n
n
2
x limAn N , n N , 使得 x An { An ( x)} n 1 中有无限多个取值为 1
n
lim An ( x) l im sup Ak ( x) 1;
n n k n
源自lim An Ak ( Ak ) ( A B) A B .
n n 1 k n n 1 k n n 1
10.设 f n : X R(n=1,2, „ ),用 Amn X ( f n m) 表示
X ( f n )( {x X : f n ( x) }) .
所以由上证明可知 ( X \ A)
实变函数 课后习题答案
实变函数课后习题答案实变函数是高等数学中的重要概念,它在微积分、数学分析等领域都有广泛应用。
在学习实变函数的过程中,课后习题是不可或缺的一部分,通过解答习题可以加深对概念和定理的理解,提高问题解决能力。
下面将结合一些常见的实变函数习题,给出详细的解答过程。
1. 设函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。
解答:将x = -1代入函数f(x)中,得到f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 - 3 - 5 = -6。
因此,f(-1)的值为-6。
2. 设函数f(x) = √(x + 3),求f(4)的值。
解答:将x = 4代入函数f(x)中,得到f(4) = √(4 + 3) = √7。
因此,f(4)的值为√7。
3. 设函数f(x) = |x - 2|,求f(3)的值。
解答:将x = 3代入函数f(x)中,得到f(3) = |3 - 2| = 1。
因此,f(3)的值为1。
4. 设函数f(x) = e^x,求f(0)的值。
解答:将x = 0代入函数f(x)中,得到f(0) = e^0 = 1。
因此,f(0)的值为1。
5. 设函数f(x) = ln(x + 1),求f(2)的值。
解答:将x = 2代入函数f(x)中,得到f(2) = ln(2 + 1) = ln3。
因此,f(2)的值为ln3。
通过以上习题的解答,我们可以看出,实变函数的求值可以通过将给定的x值代入函数表达式中来完成。
在解答过程中,需要注意运算的顺序和符号的使用,特别是绝对值、指数函数和对数函数等特殊函数的运算规则。
除了求函数值的问题,实变函数的习题还包括求函数的定义域、极限、导数、积分等。
这些问题需要运用到实变函数的相关概念和定理,下面将以一些典型的习题为例,给出解答过程。
1. 设函数f(x) = x^2 - 1,求函数的定义域。
解答:对于实变函数来说,定义域是指函数能够取到的所有实数值的集合。
实变函数论作业部分习题解(参考)
《实变函数论》作业部分习题解(参考)说明:1. 本题解是视频课体置的全部习题,只是作业1~作业4的部分习题。
2.题序为“章——节——题号”作业1(第一章~第二章)1-1-1 证明(B —A ) A=B 的充要条件是A ⊂B.证:必要性显然,事实上A 为B 的子集,因而A ⊂B. 充分性:由A ⊂B 知B-A ⊂B ,所以(B-A ) A ⊂B. 但(B-A ) A ⊃B 恒成立,于是得证. 1-1-2 证明A-B=A BC证:B A x -∈∀,即A x ∈且B x ∈,亦即c B x A x ∈∈且,于是c B A x ∈.再c B A x ∈∀ ,即A x ∈且c B x ∈. 亦即B x A x ∈∈且,边就是B A x -∈.综上述得证. 1-1-3 证明定理4中的(3),(4),定理6中第二式。
证:定理4(3):00,λλλλB x B x ∈∈∀∧∈使必存在 ,从而0λA x ∈,当然有 ∧∈∈λλA x ,又,由上述c x ∈显然成立. 证毕.定理4(4):∈∀x 左边,必存在000λλλB A x ∈有, 由0λA x ∈,当然有 ∧∈∈λλ0A x ,由0λB x ∈,当然有 ∧∈∈λλB x . 所以∈x 右边. 再∈∀x 右边,则 ∧∈∈λλA x 或 ∧∈∈λλB x ,由 ∧∈∈λλA x ,则存在某λ使λA x ∈,又由 ∧∈∈λλB x ,也存在某λλB x ∈使,从而λλB A x ∈,故 ∧∈∈λλλ)(B A x =左边. 综上述,命题得证 定理6(第二式):∈∀x 左边,解 ∧∈∈λλA x ,必存在某λ使λA x ∈,即cA x λ∈,从而 ∧∈∈λλcA x 显然成立.再,∈∀x 右边,存在某λ使cA x λ∈,即λA x ∈,当然满足 ∧∈∈λλA x ,即有cA x )( ∧∈∈λλ综上述,得证.1-1-4 证明(A-B ) B=(A B )—B 的充要条件是B=φ. 证:充分性显然,现证必要性:用反证法,若φ≠B ,则可令B x ∈,从而)(B A B x -∈ .但由题设又有B B A x -∈)( 推到B x ∈产生矛盾证毕.1-2-1 用解析式给出(-1,1)和(),+∞-∞之间的一个1-1对应。
实变函数自考真题答案解析
实变函数自考真题答案解析是大家在学习数学中经常会涉及的一个重要内容。
在自考中,也是一个考点。
下面,我将为大家解析一道自考真题,帮助大家更好地理解和掌握的知识。
首先,让我们来看一道自考真题的具体内容:【真题内容】设$f(x)$在区间$(a,b)$内连续,且存在$f'(x)$,则以下命题中正确的是()。
A. 若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递增;B. 若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递减;C. 若$f'(x)=0$,则$f(x)$在$(a,b)$内存在极大值或极小值;D. 若$f'(x)=0$,则$f(x)$在$(a,b)$内不存在极值。
接下来,让我们逐个选项对这道题进行解析。
选项A中说若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递增。
在微积分中,我们知道导数表示函数的变化率,当导数大于0时,函数是递增的。
所以选项A是正确的。
选项B中说若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递减。
根据我们刚才的分析可知,选项B是错误的。
选项C中说若$f'(x)=0$,则$f(x)$在$(a,b)$内存在极大值或极小值。
在函数的极值点处,导数为0。
但是导数为0并不一定代表函数存在极值点,这取决于函数的二阶导数。
所以选项C是错误的。
选项D中说若$f'(x)=0$,则$f(x)$在$(a,b)$内不存在极值。
这个选项显然是错误的,因为我们知道函数在极值点的导数为0。
通过分析,我们可以得出正确答案是选项A。
综上所述,本题的正确答案是选项A。
通过这道题,我们可以进一步理解在微积分中的应用,以及导数和函数的变化关系。
当然,的知识远不止于此,还包括函数极限、连续性、导数、积分等内容。
在自考中,我们需要充分掌握这些概念和定理,并能够熟练运用于解题。
希望通过以上的解析,大家对有了更深入的理解,并能在自考中更好地应用这些知识。
(完整word版)实变函数习题解答(2)
第二章 习题解答P ∈E '的充要条件是对任意含有0P 的邻域U(P ,δ)(不一定以0P 0P 的点1P 属于E (事实上,这样的1P 还有无穷多个)。
而0P ∈0E 的充要条件则是有含0P 的邻域U(P ,δ)(同样,不一定以0P 为中心)存在,使U(P ,δ)⊂E 。
证明:(1)充分性,用反证法,若0P ∈E ',则0P 的某一邻域U(0P ,0δ)中至多有有限个异于0P 的点1X ,2X ,…,n X 属于E ,令ni ≤≤1min d(0P ,i x )=δ',在U(0P ,δ')中不含异于0P 的点属于E ,这与条件矛盾。
必要性,设U(P ,δ)是任意一个含有0P 的邻域,则d(0P ,E )<δ,令1δ=δ- d(0P ,P )>0,则U(0P ,1δ)⊂U(P ,δ)。
因为0P ∈E ',所以,在U(0P ,1δ)中含于无穷多个属于E 的点,其中必有异于0P 的点1P ,即U(P ,δ)中有异于0P 的点1P 。
(20P 的邻域U(P ,δ)⊂E ,则d(0P ,P )<δ,令1δ=δ- d(0P ,P ),01)⊂U(P ,δ),从而U(0P ,1δ)⊂E ,故0P ∈0E 。
2、设nR =R '是全体实数,1E 是[0,1]上的全部有理点,求1E ',01E ,1E 。
解:1E '=[0,1],01E =φ,1E =[0,1] 。
3、设nR =2R 是普通的x o y 平面,2E ={(x ,y )|2x +2y <1},求2E ',02E ,2E 。
解:2E '={(x ,y )|2x +2y ≤1}, 02E ={(x ,y )|2x +2y <1}, 2E ={(x ,y )|2x +2y ≤1}。
4、设n R =2R 是普通的x o y 平面,3E 是函数y =⎪⎩⎪⎨⎧=≠001sinx x x当当的图形上的点作成的集合,求3E ',03E 。
实变函数习题与解答
实变函数复习范围1.设1[,2(1)],1,2,n n A n n=+-=,则( B )(A) lim [0,1]n n A →∞= (B )=∞→n n A lim (0,1] (C) lim (0,3]n n A →∞= (D )lim (0,3)n n A →∞=2、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( A )A 、(-1, 1)B 、(-1, 0)C 、[0, 1]D 、[-1, 1]3、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( B )A 、(0, 1)B 、[0, 1]C 、(0, 1]D 、(0, +∞)4、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( C )A 、[1, 2]B 、(1, 2)C 、 (0, 3)D 、(1, 2]5、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( C )A 、(-1, 1)B 、[0, 1]C 、φD 、{0}6、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( D )A 、(-1, 1)B 、[0, 1]C 、ΦD 、{0} 7、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( C )A 、[0, 2]B 、[0, 2)C 、[0, 1]D 、[0, 1) 8、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2)C 、[0, 1]D 、[0, 1] 9、设),0(n A n =, N n ∈, 则=∞→n n A lim ( C )A 、ΦB 、[0, n]C 、RD 、(0, ∞) 10、设)1,0(nA n =, N n ∈, 则=∞→n n A lim (D )A 、(0, 1)B 、(0,n1) C 、{0} D 、Φ11、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( A )A 、ΦB 、(0,n1) C 、(0, n) D 、(0, ∞) 12、集合E 的全体内点所成的集合称为E 的 ( A ) A 、开核 B 、边界 C 、导集 D 、闭包 13、集合E 的全体聚点所成的集合称为E 的 ( C ) A 、开核 B 、边界 C 、导集 D 、闭包14、集合E 的全体边界点和内点所成的集合是E 的 ( D ) A 、开核 B 、边界 C 、导集 D 、闭包 15、E-E '所成的集合是 ( D )A 、开核B 、边界C 、外点D 、{E 的全体孤立点} 16、E 的全体边界点所成的集合称为E 的 ( B ) A 、开核 B 、边界 C 、导集 D 、闭包 17、设点P 是集合E 的边界点, 则 (D )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点18、设E 是[]0,1上有理点全体,则下列各式不成立的是( D ) (A )'[0,1]E = (B) oE =∅ (C) E =[0,1] (D) 1mE =19、若}{n A 是一开集列,则n n A ∞=⋃1是:(A )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 20、若}{n A 是一开集列,则n n A ∞=⋂1是:( D )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 21、若}{n A 是一闭集列,则n n A ∞=⋃1是:( D )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 22、若}{n A 是一闭集列,则n n A ∞=⋂1是:( B )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 23、下列集合不是可数集的是( C )A. 1R 中的有理数集QB. 自然数集NC. []0,1中的无理数集D. 1R 中互不相交的开区间族24、P 表示康托尔(cantor )集,则mP =( A )A 、0B 、1C 、2D 、325、 集合列1{[0,],1,2,3,}n n=的上限集为 ( C )A [0, 1]B φC {0}D [0, 1) 26、下列集合不是可数集的是( C ) A. 1R 中的整数集Z B. 自然数集N C. []0,1中的Cantor 集 D. 1R 中互不相交的开区间族27、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( B )A 、0B 、1C 、2D 、328、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( C ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -29、若)(x f 可测,则它必是( D ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限 30、若QE -=]1,0[,则=mE ( B ) A 、0 B 、1 C 、2 D 、3 31、下列说法不正确的是( A )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、nR 的测度无限 32、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( A ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -33、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( C ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -34、设E 为可测集,则下列结论中正确的是( D )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f35、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( D )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f 36、关于连续函数与可测函数,下列论述中正确的是( C )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数37、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( A )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -38、关于简单函数与可测函数下述结论不正确的是( C )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念39、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π则下列函数在]2,0[π上可测的是( B ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -40、关于依测度收敛,下列说法中不正确的是( C ) A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上a.e.收敛于a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f41、设)(x f 是可测集E 上的非负可测函数,则)(x f ( C )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定 42、设)(x f 在可测集E 上可积,则在E 上( B )A 、)(x f +与)(x f -只有一个可积 B 、)(x f +与)(x f -皆可积 C 、)(x f +与)(x f -不一定可积 D 、)(x f +与)(x f -至少有一个不可积 43、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( C ) A 、)(x f 在E 上不一定可测 B 、)(x f 在E 上可测但不一定可积 C 、)(x f 在E 上可积且积分值为0 D 、)(x f 在E 上不可积 44、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为(D )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数 45、设)(x D 为狄立克雷函数,则⎰=1)()(dx x D L ( A )A 、 0B 、 1C 、1/2D 、不存在46、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( A )A 、 0B 、 1/3C 、2/3D 、 147、 设f(x)是],[b a 上有界变差函数,则下面不成立的是( D )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('48、设}{n E 是一列可测集, ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有( A )(A )n n n n mE E m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) n n n n mE E m ∞→∞=≤⎪⎭⎫⎝⎛⋃lim 1(C )n n n n mE E m ∞→∞=<⎪⎭⎫⎝⎛⋂lim 1;(D )以上都不对49、设f(x)是],[b a 上绝对连续函数,则下面不成立的是( B )(A) )(x f 在],[b a 上的一致连续函数 (B) )(x f 在],[b a 上处处可导 (C ))(x f 在],[b a 上L 可积 (D) )(x f 是有界变差函数二 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B = 2n2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B = c3、若c A =, c B =, 则=⋃B A c4、若c A =, B 是一可数集, 则=⋃B A c5、若c A =, n B =, 则=⋃B A c6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 c7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m __n n mS ∞→lim ______。
实变函数 习题答案
实变函数习题答案实变函数是数学分析中的一个重要概念,它在微积分和数学分析的学习中起着重要的作用。
在学习实变函数的过程中,习题是非常重要的,通过解答习题可以加深对实变函数的理解和掌握。
本文将通过一些典型的实变函数习题,来讨论实变函数的一些基本性质和解题技巧。
一、实变函数的定义实变函数是指定义在实数集上的函数,即函数的自变量和因变量都是实数。
常见的实变函数有多项式函数、指数函数、对数函数、三角函数等。
实变函数的定义域是实数集,值域可以是实数集或者是实数集的子集。
二、实变函数的性质1. 实变函数的奇偶性:若函数f(-x) = f(x),则函数f(x)是偶函数;若函数f(-x) = -f(x),则函数f(x)是奇函数。
通过奇偶性的判断,可以简化实变函数的求解过程。
2. 实变函数的周期性:若存在正数T,使得对于任意实数x,有f(x+T) = f(x),则函数f(x)是周期函数。
常见的周期函数有正弦函数、余弦函数等。
3. 实变函数的单调性:若对于任意的x1 < x2,有f(x1) < f(x2),则函数f(x)是递增函数;若对于任意的x1 < x2,有f(x1) > f(x2),则函数f(x)是递减函数。
4. 实变函数的极限:实变函数的极限是指当自变量趋于某个特定值时,函数的值趋于某个特定值。
通过求解实变函数的极限,可以判断函数的收敛性和发散性。
三、实变函数习题解答1. 求函数f(x) = 2x^2 - 3x + 1的奇偶性和周期性。
解答:首先,将函数f(x)代入奇函数和偶函数的定义中,得到f(-x) = 2(-x)^2 -3(-x) + 1 = 2x^2 + 3x + 1。
由于f(-x) ≠ f(x),所以函数f(x)不是奇函数。
然后,将函数f(x)代入周期函数的定义中,得到f(x+T) = 2(x+T)^2 - 3(x+T) + 1 = 2x^2 + (4T-3)x + (2T^2-3T+1)。
实变函数计算题
实变函数计算题【最新版】目录1.实变函数计算题的概念和基本知识2.实变函数计算题的解题技巧3.实变函数计算题的例题解析正文实变函数是数学中的一个重要分支,主要研究实数的变化规律和性质。
实变函数计算题是实变函数中的一种题型,主要考察学生对实变函数概念的理解和运用。
在解决实变函数计算题时,需要掌握一些基本的知识和技巧。
首先,要熟悉实变函数的基本概念和性质,如极限、连续性、微积分等。
其次,要熟练掌握实变函数的计算方法,如求导、积分等。
最后,要善于运用数学分析的方法,如比较法、代换法、割补法等,来解决实变函数计算题。
例如,下面是一道实变函数计算题的例题解析:题目:设函数 f(x)=x^2+ax+1,求函数在区间 [0,1] 上的最大值和最小值。
解析:Step 1: 求导数f"(x) = 2x + aStep 2: 求导数为零的点2x + a = 0x = -a/2Step 3: 分析函数在区间 [0,1] 上的单调性当 x < -a/2时,f"(x) < 0,函数单调递减;当 x > -a/2时,f"(x) > 0,函数单调递增。
Step 4: 求函数在区间 [0,1] 上的最大值和最小值当 a >= 0 时,函数在区间 [0,1] 上单调递增,最大值为 f(1) = a + 2,最小值为 f(0) = 1;当 a < 0 时,函数在区间 [0,1] 上单调递减,最大值为 f(0) = 1,最小值为 f(1) = a + 2。
通过以上步骤,我们可以求得函数在区间 [0,1] 上的最大值和最小值。
总之,解决实变函数计算题需要掌握实变函数的基本知识和解题技巧,并且善于运用数学分析的方法。