高中数学 映射的概念

合集下载

《映射的概念》课件

《映射的概念》课件
《映射的概念》ppt课件
CONTENTS
• 映射的定义 • 一一映射 • 连续映射 • 映射的应用
01
映射的定义
什么是映射
01
映射是指将一个集合的元素按照 某种规则一一对应到另一个集合 中的元素,建立元素之间的对应 关系。
02
映射通常用函数来表示,函数是 从一个集合到另一个集合的映射 ,表示输入和输出之间的对应关 系。
机器学习
在机器学习中,输入数据与输出结果的聆听
THANKS
一一映射的例子
要点一
总结词
例如,将一组数或集合中的元素一一对应地映射到另一组 数或集合中的元素。
要点二
详细描述
在实际应用中,一一映射的例子很多。例如,在数学中, 可以将一组数或集合中的元素一一对应地映射到另一组数 或集合中的元素。在计算机科学中,文件系统中的文件名 到文件内容的映射、数据库中的记录到数据的映射等都是 一一映射的例子。此外,在现实生活中,一对一的约会、 一对一的商品交易等也可以看作是一一映射的实例。
详细描述
一一映射是一种特殊的映射关系,它要求每个原像都与一个唯一的像相对应, 并且每个像也都有其唯一的原像。也就是说,在映射过程中,每一个元素都不 被重复地映射到同一个像上,也不存在未被映射的原像。
一一映射的性质
总结词
一一映射具有可逆性、一一对应性和确定性等性质。
详细描述
一一映射是一种可逆的过程,即通过映射的反向操作可以找到原像。同时,一一映射确保了每个原像都与一个唯 一的像相对应,并且每个像也都有其唯一的原像。此外,一一映射还具有确定性,即每个原像都映射到唯一的像 上,没有歧义或不确定性。
拓扑学
在拓扑学中,映射用于研究空间之间的连 续变换和不变性。

函数、映射的概念

函数、映射的概念

函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。

显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。

注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。

高中数学竞赛辅导第二讲 映射及映射法

高中数学竞赛辅导第二讲 映射及映射法

高中数学竞赛辅导第二讲 映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的. 任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得 ⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u 同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合图Ⅰ-1-2-1(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接 B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖; (iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→… ①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())(( ②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()( ③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(([由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。

高中数学复习课件-第二章 映射

高中数学复习课件-第二章  映射

f(a) f(b) f(c)
0
0
0
1
0
1
0
1
1
-1
0
-1
0
-1
-1
1
-1
0
-1
1
0
由上表可知满足条件的映射有 7 个.
小结:
1、映射的概念 2、映射与函数的区别与联系
思考:映射与函数有什么区别与联系?
函数 映射
建立在两个非空数集上的特殊对应
扩展
建立在两个任意集合上的特殊对应
(1)函数是特殊的映射,映射是函数概念的扩展
1.可以是“一对一” 2.可以是“多对一” 3.不能“一对多”
4.A中不能有剩余元素
5.B中可以有剩余元素
例1 说出下图所示的对应中,哪些是A到B的映射?
求一定条件下映射的个数
已知 A={a,b,c},B={-1,0,1},映射 f:A→B 满足
f(a)+f(b)=f(c),求映射 f:A→B 的个数.
【解析】(法一)由于 f(a),f(b),f(c)∈{-1,0,1},故符合
f(a)+f(b)=f(c)条件的 f(a),f(b),f(c)的取值情况如下表所示:
练习1:下列对应是否为从集合A到集合B的映射?
(1)A R, B {y | y 0}, f : x | x |;
(2) A R, B R, f : x x2;
(3) A Z , B R, f : x x; (4) A Z, B N, f : x x2 3
练习2 :已知集合A={a , b},集合B={c, d, e}. (1)一共可建立多少个从集合A到集合B的映射?
(1)点(2,3)在映射f下的像是(1,7);

映射概念

映射概念

记为 f ◦g。
z ( f g)(x)
x
y f (x) g(y) z
由复合函数定义知,
( f g)(x) g( f (x))
15
注意:要保证复合映射有意义,必须:
f (A) dom(g)
例:设 R 到 R 有两个映射 f 和 g,定义如下: f (x) x2, g(x) x 2, 试分别计算复合映射 f g和g f . 解:对任意的 x R , 分别有
x1 f是
x2时f (x1) f (x2)),则称 A 到 B 的一对一映射。
f

2 满射
定义:f:AB, 若对任意y∈B,均存在x∈A,使得 y=f(x),则称 f 是 A 到 B的满射,或称 f 是 A 到 B 的 映上的映射。
3 双射
定义:f:AB, 若f既是单射又是满射,则称 f 是 A 到 B的双射,或称 f 是 A 到 B 的一一对应。
由此可见,复合函数g◦f是单射函数 同理可证明(2)与(3) 。
18
定理 设 f:AB, g:BC, (1)若 f ◦ g 是单射,则 f 是单射但 g不一定; (2)若 f ◦ g 是满射,则 g 是满射而 f 不一定。
f(x) = g(x), 则称映射f, g是相等的,或是同一映射。
4
3 几个相关的称谓 假定 f:AB, y=f(x),通常把 x称为自变量,自变量的取值范 围称为定义域,记为 dom f。将 y 称为因变量,而把由所有 因变量构成的集合称为值域,记为 ran f。 对映射而言:
对映射 f:AB 而言, 必有 dom f = A, ran f ⊆B
等映射,记为 I A 。
定理 若f:AB 是双射, 则有
f f 1 I A, f 1 f IB.

映射的概念和函数的概念

映射的概念和函数的概念

映射的概念和函数的概念映射的概念和函数的概念都涉及了数学中的一种关系,在数学中常被用来描述元素之间的对应关系。

虽然映射和函数都描述了元素之间的关系,但在不同的数学领域和语境中,这两个术语的使用可能略有不同。

下面将分别对映射和函数这两个概念进行较为详细的解释。

映射是数学中的一个概念,它描述了元素之间的一种对应关系。

简单来说,映射就是将一个集合中的元素对应到另一个集合中的元素,其中每个元素在映射中只能被对应一次。

映射通常用箭头“→”或者表示,例如“f: A →B”,表示把集合A中的元素映射到集合B中的元素。

其中,A称为映射的定义域或者输入域,B称为映射的值域或者输出域。

映射的定义可以相当灵活,可以是任意类型的元素之间的对应关系,不仅局限在数字之间的对应关系。

例如,我们可以定义一个映射f,把一个人的名字对应到他的年龄上。

在这个例子中,映射的定义域是人的名字的集合,值域是人的年龄的集合。

我们可以通过查找映射f来找到某个人的年龄。

函数是映射的一种特殊情况,它在数学中具有更为具体严格的定义。

函数是一种关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数通常用一种常见的表示法“y = f(x)”来展示,其中y是函数的输出,x是函数的输入。

函数的定义域是所有可能的输入,而值域则是所有可能的输出。

函数的定义域和值域可以是实数集、整数集或者其他类型的集合,取决于问题的具体上下文,而函数的定义域和值域通常具有一定的关系。

例如,我们可以定义一个函数f(x) = x²,其中定义域和值域都是实数集。

这个函数接受一个实数作为输入,并将其平方作为输出。

函数在数学中有很多重要的属性和性质。

比如,函数可以是线性的、非线性的、一一对应的、多对一的、单射的、满射的等等。

函数之间可以进行运算,比如函数的加法、减法、乘法和除法。

函数还可以进行复合,即将一个函数的输出作为另一个函数的输入。

在计算机科学中,函数被广泛应用于编程和算法设计中。

高一数学映射的概念

高一数学映射的概念

所以, (1,-2)在 f 作用下的象是(-1,-2)
x y 2 (2)设它的原象是(x , y),则有: x 1 xy 1 解得:
y 1 所以,原象是(1,1)
体验2:已知(x , y)在映射 f 的作用下的象是 (x+y , x-y) (1)求(2,-2)在 f 作用下的象; (2)若在 f 作用下的象是(3,-1),求它的原象.
, 记作 集合 B的映射 m apping
f : A B.
函数是映射, 但映射不一定是函数 .
例1 下图所示的对应中 , 哪些是A到 B的映射?
a 1 b c
A
1 2
B
1 2 2
A
a b c
B
1 3 2 3
A
a b
B
a 4 b c
A
1 2
B
答案:(4)
思考 映射与函数有什么区别 与联系?
f :x y
y为x的体重数
A B
再如, 坐标平面内的所有点组 成的集合为A, 所有 的有序数对组成的集合 为 B x, y | x R, y R.
让每一点与其坐标对应 , 则 A中每一个元素点, 在B中都有惟一元素有序数对 与之对应.
一般地 , 设A, B是两个集合 , 如果按某种对应法则 f , 对于 A中的每一个元素 , 在 B中者有惟一的元 素与之对应 , 那么, 这样的单值对应叫做集 合A到
2 .1 8 映 射 的 概 念
问题情境:
• (1)看电影时,电影票和座位之间存在一一对 应关系吗? • (2)每个人和他的老师可建立一种对应关系, 它是不是一种单值对应? • (3)任意一个三角形,都有惟一确定的面积与 此对应,它是不是一种单值对应? 答案: (1) 是 ; (2) 不是 (它是一对多)

高一数学映射的概念

高一数学映射的概念

D { 0,1,2 }
1 1 1 3、集合A={1,2,3,-----,10} , B= {1, , , } , 4 9 100
设x∈A, y∈ B , 试写出一个对应法则 f ,使f:A
是 从集合A到集合B的一个映射. f:x
1 y= 2 x
B
4、已知集合A={ a,b,c },集合B={ -1,0,1 } ,映射 f:A B满足f(a)+f(b)=f(c),则 f : A
f :x y
y为x的体重数
A BΒιβλιοθήκη 再如, 坐标平面内的所有点组 成的集合为A, 所有 的有序数对组成的集合 为 B x, y | x R, y R.
让每一点与其坐标对应 , 则 A中每一个元素点, 在B中都有惟一元素有序数对 与之对应.
一般地 , 设A, B是两个集合 , 如果按某种对应法则 f , 对于 A中的每一个元素 , 在 B中者有惟一的元 素与之对应 , 那么, 这样的单值对应叫做集 合A到
体验1:1、下图表示集合A到集合B的映射的是____
A
1
B
A B C d
A
1
2 3 4
B
B C d
2
3 4
(1) (4)
(1)
(2)
A
1
B
A B C d
A
1
B
A B C d
2
3 4
2
3 4
(3)
(4)
2、判断以下对应是否是从A到B的映射?
(1)、设A={矩形},B={实数} ,对应法则f为矩形到它的面 积的对应; (2)、A={实数},B={正实数},对应法则f为:x 答案:(1)是 (2)不是

映射的概念分析

映射的概念分析

映射的概念分析映射是数学中的一个重要概念,它描述了一个集合中的每个元素与另一个集合中的元素之间的对应关系。

在数学中,我们可以将映射理解为函数,其中一个集合是定义域,另一个集合是值域。

映射可以用于描述数学模型、图论、集合论等各种数学领域中的概念与关系。

映射有很多种形式,可以分为单射、满射和双射三种类型。

首先,单射是指一个集合中的不同元素在映射的结果中有不同的映射元素。

换句话说,映射的结果中不存在重复的映射元素。

对于集合A到集合B的映射f:A →B,如果对于集合A中的任意两个不同的元素a1和a2,有f(a1)≠f(a2),那么这个映射就是单射。

可以通过绘制函数图像来判断一个映射是否为单射,如果函数的图像没有任何两点在同一水平线上,那么这个函数是单射。

其次,满射是指映射的结果包含了值域中的每一个元素。

也就是说,对于集合A 到集合B的映射f:A→B,如果对于集合B中的任意一个元素b,存在集合A 中的元素a,使得f(a)=b,那么这个映射就是满射。

可以通过在值域上滑动水平线来判断一个映射是否为满射,如果水平线与函数的图像相交于每个y值上至少一个点,那么这个函数就是满射。

最后,双射是指一个集合中的每个元素与另一个集合中的元素存在唯一的对应关系。

也就是说,对于集合A到集合B的映射f:A→B,既是单射又是满射,那么这个映射就是双射。

可以通过绘制函数的图像并判断是否为一一映射来判断一个映射是否为双射。

映射还有一些衍生的概念。

首先是像、原像和逆映射。

对于映射f:A→B,如果b是集合B中的一个元素,a是集合A中满足f(a)=b的元素,那么b是元素a的像,元素a是元素b的原像。

逆映射是指如果映射f:A→B是双射,那么可以构造一个逆映射f^(-1):B →A,满足f^(-1)(f(x))=x和f(f^(-1)(y))=y。

其次是复合映射。

如果映射f:A→B和映射g:B→C都存在,那么可以定义一个复合映射h:A→C,使得h(x)=g(f(x))。

8第八讲 映射、函数的定义域及值域讲解

8第八讲 映射、函数的定义域及值域讲解

第八讲映射、函数的定义域及值域一、知识概要1、函数的概念:(1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f表示对应法则,b=f(a)。

若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。

既是单射又是满射的映射称为一一映射。

(2)函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为基本的因素。

逆过来,值域也会限制定义域。

求函数定义域,通过解关于自变量的不等式(组)来实现的。

要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。

复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。

理解函数定义域,应紧密联系对应法则。

函数定义域是研究函数性质的基础和前提。

函数对应法则通常表现为表格,解析式和图象。

其中解析式是最常见的表现形式。

求已知类型函数解析式的..方法是待定系数法,抽象函数的解析式常用换元法及凑合法。

求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。

在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。

(3)求函数解析式的常用方法:注意新元的取值范围)f(x)为奇函数且g(x)为偶函数等)时也要注意变量的实际意义。

(4) 配方法、分离变量法、单调性法、图象法、换元法、不等式法(5)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综(6)力和数学建模能力二、题型展示例1. 设A={1,2,3,4,5},B={6,7,8},从集合A到集合B的集合的映影中,满足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射有()A 27个B 9个C 21个 D. 12个例2.已知集合M={a,b,c},N={-1,0,1}从M到N的映射满足f(a) — f(b) = f(c)那么映射f的个数为()A. 2B. 4C. 5D. 7 ⎧1x⎪()(x≥4)例3给出函数f(x)=⎨2则f(log23)等于()⎪⎩f(x+1)(x<4)A.-23111B.C.D. 1119248例4.设函数f(2x)的定义域是[-1,1],求f(log2x)的定义域34例5.已知函数f(x)的值域是[,],试求的值域 89例6设二次函数f(x)满足f(x-2)=f(-x-2),且函数图像在y轴上的截距为1,被X轴截得的线段长为f(x)的解析式.三、题型训练1.函数f(x))A.1D.2ax-1(a>0且a≠1)的值域是_________ 2.函数y=xa+13.(2000全国理,1)设集合A和B都是自然数集合N,映射f:A→B把集合A 中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.54.(1999全国,2)已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数是()A.4B.5C.6D.7x2115.(2002全国理,16)已知函数f(x)=,那么f(1)+f(2)+f()+f(3)+f()+f(4)+f2231+x(1)=_____. 41,若f(1)=-5,则fx四、真题演练 1.(2006年安徽卷)函数f(x)对于任意实数x 满足条件f(x+2)=f(f(5))=__________。

高中数学知识点:函数、映射的概念

高中数学知识点:函数、映射的概念

高中数学知识点:函数、映射的概念1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{ f(x)|x∈A}叫做函数f (x)的值域。

显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。

注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。

映射 数学

映射 数学

映射数学
映射是数学中的术语,指的是两个元素的集之间元素相互“对应”的关系。

具体来说,对于两个非空集合X和Y,如果存在一个法则使得对X中的每个元素x 都能按照法则在Y中找到唯一对应值,那么就称这个关系为映射。

映射有多种类型,包括单射、满射和双射。

当Y中的元素都能在X中找到原像时,这个映射被称为满射。

当在映射中X与Y的关系,也就是像与原像的关系是一一对应时,这个映射被称为单射。

当一个映射既是单射又是满射时,这个映射被称为双射。

此外,映射也可以被分为部分映射和完全映射。

部分映射相当于部分函数,而完全映射相当于完全函数。

在映射中,逆映射的概念也很重要。

只有在单射的情况下才存在逆映射,也就是说双射是逆运算的充要条件。

高一数学 映射的概念

高一数学 映射的概念

想一想:

设f : A B中,A={(x,y)|x,y是
实数},B={(x,y)|x、y是实数},对应
法则f是 “A中的元素(x,y)和B中元
素(x+y,x-y)对应”,

(1)求(3,-1)的象;
(2)求(4,2)的原象。
小结
今天,我们学习了映射的概念。 一、映射是一种 特殊的对应--象 都存在且唯一; 二、映射由三个部分组成:两个集 合和一个对应法则; 三、映射的记号是:f : A B
b 4
a 4
b 4
(1)
(2)
A
B
A
a
b
1
1
a
a 2
b 2
b
B e f g
a 3
b 3
c d
a 4
b 4
h i
(3)
(4)
b 的原象 1
一个从A 到B的映射, 如果
a A,b B 且b与a对应, 我们就把元 素b叫做元素 a的象,元素 a叫做元素b 的原象。
一、下列图中所表示的对应是不是从A到B的
3
1
12
0
2、设A=R,B=R,对于A中任一元素x,按 “取x的绝对值”和B中元素对应,这种对应 是不是从A到B的映射?
-2 -1 0 1 2 3
B
A -2 -1 0 1 2 3 3、设A={正数},B=R,对应法则是“求 平方根”,这个对应是不是A到B的映射?
4、设A={x|x>0},B={x|0<x<12},对应法则是 “求算术平方根”,这个对应 是不是从A到 B的映射?
高一数学研究课
课题:
射映
前面我们在学习了集合的初步

高一数学 2.3 映射的概念

高一数学  2.3 映射的概念

发 挥 榜 样 的 力 量
第 1页
多”的对应. (2)映射中所允许的“一对一”与“多对一”这两种对应的特点,从 A 到 B 的映射 f: A→B 实际是要求集合 A 中的任一元素都必须对应于集合 B 中惟一的元素.但对集合 B 中的 元素并无任何要求, 即允许集合 B 中的元素在集合 A 中可能有一个元素与之对应, 可能有两 个或多个元素与之对应,也可能没有元素与之对应. 题型一 映射的概念 【例 1】下列对应是不是从 A 到 B 的映射? (1)A=Q,B={x∈Q|x>0},f:x→|x|; * (2)A=B=N ,f:x→|x-2|; 2 (3)A={x∈N|x≥2},B={y∈Z|y≥0},f:x→y=x -2x+1; (4)A={x|x>0},B={y|y∈R},f:x→y=± x. 解:(1)中,当 x=0∈A 时,|x|=0 B,即 A 中的元素 0 按照对应法则在 B 中找不到应 该对应的元素,故(1)不是映射. (2)中,当 x=2∈A 时,|x-2|=0 B,与(1)类似,(2)也不是映射. 2 2 (3)中,因为 y=(x-1) ≥0,所以对任意 x,总有 y≥0;又当 x∈N 时,x -2x+1 必为 2 整数,即 y∈Z.所以当 x∈A 时,x -2x+1∈B,且对 A 中每一个元素 x,在 B 中都有惟一 的 y 与之对应,故(3)是映射. (4)中,任意一个 x 都有两个 y 与之对应,故不是映射. 反思:给定两集合 A、B 及对应法则 f,判断是否是从集合 A 到集合 B 的映射,其基本 方法是利用映射的定义.用通俗的语言讲:A→B 的对应有“多对一”“一对一”及“一对 多”,前两种对应是 A→B 的映射,而后一种不是 A→B 的映射. 题型二 映射的个数问题 【例 2】 已知 M={a, b, c}, N={-2,0,2}, 且从 M 到 N 的映射满足 f(a)>f(b)≥f(c), 试确定这样的映射 f 的个数为__________. 解析:因为从 M 到 N 的映射满足 f(a)>f(b)≥f(c),所以,(1)当 f(a)=2 时,有 f(b)=0, f(b)=-2, f(b)=0, 或 或 f(c)=0 f(c)=-2 f(c)=-2. f(b)=-2, (2)当 f(a)=0 时,有 f(c)=-2. 综上,从 M 到 N 满足 f(a)>f(b)≥f(c)的映射 f 的个数是 4. 答案:4 反思:对于这类有条件的映射问题,求解时要注意考虑周到,注意分情况讨论,切勿遗 漏情况. 【例 3】已知 A={1,2,3,4},B={6,7},则以 A 为定义域,B 为值域的不同函数的个数 为__________. 解析:当 A 中有三个元素对应 B 中元素 6 时,另一个元素必须对应 B 中元素 7,这样可 组成 4 个满足题意的不同函数; 当 A 中有三个元素对应 B 中元素 7 时,另一个元素必须对应 B 中元素 6,这样可组成 4 个满足题意的不同函数; 当 A 中有两个元素对应 B 中元素 6 时,剩下两个元素必对应 7,这样可组成 6 个满足题 意的函数. 所以共可组成 4+4+6=14(个)不同函数. 答案:14 反思:求解此题要特别注意集合 B 必须为函数的值域的特别要求,它实际是要求集合 B 恰好是集合 A 中的所有元素所对应的元素组成的.

大一高数映射知识点汇总

大一高数映射知识点汇总

大一高数映射知识点汇总在大一的高等数学课程中,映射是一个重要的概念。

它在数学中有着广泛的应用,并且在不同的领域中都有着重要的作用。

本文将汇总大一高数中与映射相关的各个知识点,以帮助读者全面了解和掌握映射的概念和应用。

定义和基本概念在开始探讨映射的不同方面之前,我们需要了解一些基本的定义和概念。

在数学中,映射可以被定义为一个将一个集合中的元素映射到另一个集合中的元素的规则。

其中,我们称映射的起始集合为定义域,映射的终止集合为值域。

映射通常用符号表示,如f: A → B,表示从集合 A 到集合 B 的映射 f。

映射的分类根据映射的性质和特点,可以将映射分为不同的类型。

以下是几种常见的映射分类:1. 单射:如果映射中的每一个元素都对应不同的元素,则称其为单射,也叫一一映射。

2. 满射:如果映射中的每一个元素都有至少一个元素与之对应,则称其为满射,也叫到上映射。

3. 双射:如果一个映射既是单射又是满射,则称其为双射,也叫一一对应。

4. 非单射:如果一个映射中存在不同的元素对应到相同的元素,则称其为非单射。

5. 非满射:如果一个映射中存在无元素与之对应的元素,则称其为非满射。

映射的性质映射具有一些重要的性质,其对于研究映射的特性和应用至关重要。

以下是映射的一些常见性质:1. 传递性:对于映射f: A → B 和g: B → C,如果 f 和 g 都是映射,那么 f ∘ g 也是映射。

2. 反函数:对于映射f: A → B,如果对于任意的 y ∈ B,存在唯一的 x ∈ A,使得 f(x) = y,则称g: B → A 为 f 的反函数。

3. 复合函数:对于映射f: A → B 和g: B → C,定义 f ∘ g(x) =f(g(x)),其中 x ∈ A,称 f ∘ g 为映射 f 和 g 的复合函数。

4. 逆映射:对于映射f: A → B,如果存在映射g: B → A 使得 f ∘ g = I_B 和 g ∘ f = I_A,其中 I_A 和 I_B 分别是集合 A 和集合 B 上的恒等映射,则称 g 为 f 的逆映射。

高一数学映射的概念

高一数学映射的概念

劳汉堡包”、“肯德基炸鸡”都成了非常迷人的回忆,非常老掉牙的故事。如果,我的孙子或曾孙子因看到我在偷吃一个油汤汤的汉堡而骂我“老番婆”,不知道七十多岁的简嫃会不会暗地掉泪? 算了,不要吵醒在地底的伏流。让阿嬷在她的年代里梳髻,我在我的年代里散发,我
们只不过共用一个晨光而已。
? 到现在,还是喜欢看阿嬷梳头,及腰雪发与晨丝相缠。“茶仔油”的味道依然熟悉--她终于探听到“利泽简”有一家杂货店还卖这种油,专程坐火车回去打两瓶。日子不会老,老的是肉体凡躯。二十多年过了,我变了千万个脸孔心性,
?“你要买水果,不要在外头买,贵参参地给人唬不知,去给巷子底那个查甫人买,伊爱饮烧酒,不
时一个面红光光,臭酒现,若是到十二点,日头一下晒,伊就人晕头壳痛,伊就轻彩卖,外头的红肉木瓜一斤三十,伊喊三斤五十。” 持家的学位在此吧!要不然,苦日子怎么捱得过?如果战争、灾荒、病乱的年岁让我碰上了,为着存活,也许还捏得更紧更狠?
? 生命就是要受这么多苦楚,才能扶养上一世、哺育下一代,谁敢说老来得福呢?社会永远是属于年轻人的,所有的衣食、流行、玩乐,
都为年轻的人设计。老者,才是真正的“稀少民族”,单单活在他们旧有的观念、制度、秩序、情法、宗教、语言之中,那是一个不易改变的世界,用长长的一辈子吐丝结出来的茧,而他们除了这个温暖的茧还能去哪里落脚?总有一天,我及我的同代也会到了七十岁,那时,也许“麦当
变式:
若 A={正实数}, B={实数},对应法则f为:x
答案:是
1 x。
例2、已知(x , y)在映射 f 的作用下的象是
(x+y , xy) (1)求(1,-2)在 f 作用下的象; (2)若在 f 作用下的象是(2,1),求它的原象.
的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,

学高中数学第二章映射讲解与例题北师大版必修1

学高中数学第二章映射讲解与例题北师大版必修1

2.3 映射两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素x,B中总有唯一的一个元素y与它对应,就称这种对应为从A到B的映射,记作f:A→B.A中的元素x称为原像,B中的对应元素y称为x的像,记作f:x→y.谈重点映射定义的理解(1)映射中的集合A和B是非空集合,它们可以是数集、点集或由图形组成的集合以及其他元素的集合.(2)映射是一种特殊的对应,其特殊性在于:集合A中的每一个元素,在集合B中都有唯一的元素与之对应,这种集合A中元素的任意性和集合B中对应的元素的唯一性构成了映射的核心.对应关系常用图示或文字描述的方式来表达.(3)对应有“方向性”,即“从A到B的对应”与“从B到A的对应”一般是不同的,因此,从A到B的映射与从B到A的映射是不同的.(4)映射允许集合A中不同的元素在集合B中有相同的像,即映射可以是“多对一”或“一对一”,但不能是“一对多”.(5)映射允许集合B中的某些元素在集合A中没有原像,也就是由像组成的集合C⊆B.【例1-1】给出下列四个对应,其中构成映射的是( ).A.(1)(2) BC.(1)(3)(4) D.(3)(4)解析:判断一个对应是否为映射,必须严格根据定义,观察A中每一个元素是否在B中都有唯一的元素与之对应.说明一种对应关系不是映射,只需找到一个反例即可.在(2)中,集合A中的元素3在集合B中没有元素与它对应;在(3)中,集合A中的元素2在集合B中有两个元素4和5与它对应,因此(2)和(3)不是映射,故选B.答案:B解技巧判断映射的技巧映射应满足存在性(即A中每一个元素在B中都有像)和唯一性(即像唯一).所以,判断一个对应是否为映射,关键是看是否具备:①“一对一”或“多对一”;②A中元素都有像.【例1-2】下列对应是不是从A到B的映射?(1)A=B=N+,f:x→|x-3|;(2)A={x|x≥2,x∈N},B={y|y≥1,y∈Z},f:x→y=x2-2x+2;(3)A=R,B={0,1},f:x→y=10 00xx≥⎧⎨<⎩,,,;(4)A={x|x>0},B={y|y∈R},f:x→y=(5)设A={矩形},B={实数},对应关系f为矩形到它的面积的对应;(6)设A={实数},B={正实数},对应关系f为x→1||x.解:(1)当x=3∈A时,|x-3|=0∉B,即A中的元素3按对应关系f,在B中没有元素和它对应,故(1)不是映射.(2)∵y=x2-2x+2=(x-1)2+1,对任意的x,总有y≥1.又当x∈N时,x2-2x+2必为整数,即y∈Z.∴当x ∈A 时,x 2-2x +2∈B .∴对A 中每一个元素x ,在B 中都有唯一的y 与之对应,故(2)是映射.(3)按照对应关系f ,在A 中任意一个非负数,在B 中都有唯一的数1与之对应;在A 中任意一个负数,在B 中都有唯一的数0与之对应,故(3)是映射.(4)对任意的x ∈A ={x |x >0},按对应法则f :x →y=,存在两个y ∈B ={y |y ∈R },即y =y =与之对应,故(4)不是映射.(5)∵对每一个矩形,它的面积是唯一确定的,∴对于集合A 中的每一个矩形,B 中都有唯一的实数与之对应,故(5)是映射.(6)∵实数0的绝对值还是0,其没有倒数,∴对于A 中的实数0,B 中没有元素与之对应,故(6)不是映射.2.一一映射的概念若从A 到B 的映射满足下列条件:①A 中每一个元素在B 中都有唯一的像与之对应;②A 中的不同元素的像也不同;③B 中的每一个元素都有原像.就称此映射为一一映射.有时,我们把集合A ,B 之间的一一映射也叫作一一对应.映射造出多少个映射?其中有多少个一一映射?分析:可根据映射的定义,构造从集合A 到集合B 的映射,即让A 中的每一个元素在B 中都有唯一的元素与之对应.从集合A 到集合B 的映射,若对应关系不同,则所得到的映射不同.最后依据一一映射的概念从中数出一一映射的个数.解:从集合A 到集合B 可构造如下映射(其中的对应关系用箭头表示):(3),A 到集合B 能构造出4个映射,其中有2个一一映射.【例2-2】若M ={x |0≤x ≤2},N ={y |0≤y ≤1},下列对应关系f :x →y 是从M 到N 的一一映射的是( ).A .12y x =B .13y x = C .212y x = D .y =(x -1)2 解析:一一映射首先是映射,其次是A 中的不同元素在B 中的像不同,且B 中的每一个元素在A 中都有原像,只有满足这三个条件的对应关系,才是从A 到B 的一一映射.在选项A 中,当0≤x ≤2时,0≤y ≤1,对于集合M 中的每一个元素在N 中都有唯一的像与之对应,且M 中的不同元素的像也不同,N 中的每个元素都有原像,符合一一映射的三个条件;在选项B 中,当0≤x ≤2时,0≤y ≤23,所以集合N 中的元素y ∈213y y ⎧⎫<≤⎨⎬⎩⎭在M 中没有原像;在选项C 中,当0≤x ≤2时,0≤y ≤2,所以集合M 中的元素x ∈{x x ≤2}在N 中没有像;在选项D 中,当x =0和2时,都有y =1,所以集合M 中的不同元素的像可能相同,故选A.(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素:非空集合A 、非空集合B 以及A ,B 之间的对应关系.(2)函数定义中的两个集合为非空数集;映射中两个非空集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个数x ,在值域中都有唯一确定的函数值和它对应,在映射中,对集合A 中的任意元素a 在集合B 中都有唯一确定的像b 和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的值和它对应;在映射中,对于集合B 中的任一元素b ,在集合A 中不一定有原像.(5)函数是一种特殊的映射,是从非空数集到非空数集的映射.函数概念可以叙述为:设A ,B 是两个非空数集,f 是A 到B 的一个映射,那么映射f :A →B 就叫作A 到B 的函数.在函数中,原像的集合称为定义域,像的集合称为值域.(1)A =R ,B =R ,f :x →y =11x +;(2)A ={三角形},B ={圆},f :三角形的内切圆; (3)A =R ,B ={1},f :x →y =1;(4)A =[-1,1],B =[-1,1],f :x →x 2+y 2=1.分析:映射是一种特殊的对应,函数是一种特殊的映射,判断两个集合间的对应关系是否为函数时,只需把握两点:一、两个集合是否都是非空数集;二、对应关系是否为映射.解:(1)当x =-1时,y 的值不存在,所以不是映射,更不是函数.(2)由于A ,B 不是数集,所以(2)不是函数,但每个三角形都有唯一的内切圆,所以(2)是A 到B 的映射.(3)A 中的每一个数都与B 中的数1对应,因此,(3)是A 到B 的函数,也是A 到B 的映射.(4)取x =0,则由x 2+y 2=1,得y =±1,即A 中的一个元素0与B 中的两个元素±1对应,因此(4)不是A 到B 的映射,也不是从A 到B 的函数.警误区 关系式x =1是函数吗?有的同学问:关系式y =1是y 关于x 的函数,那么关系式x =1是y 关于x 的函数吗?函数是一种特殊的映射,是非空数集间的一种映射.对于关系式x=1,显然有x∈{1},y∈R,则1与全体实数建立对应关系,不符合函数的定义,因此,“x=1”不是y关于x的函数.4.像与原像的求解问题(1)对于一个从集合A到集合B的映射f而言,A中的每个元素x,在f的作用下,在B 中都对应着唯一的元素y,则y称为像,而x叫原像.(2)对于给出原像求像的问题,只需将原像代入对应关系式中,即可求出像.对于给出像求原像的问题,可先设出原像,再代入对应关系式中得到像,而它与已知的像是同一个元素,从而求出原像;也可根据对应关系式,由像逆推出原像.解答此类问题,关键是:①分清原像和像;②搞清楚由原像到像的对应关系.例如:已知M={自然数},P={正奇数},映射f:a(a∈M)→b=2a-1(b∈P).则在映射f下,M中的元素11对应着P中的元素________;P中的元素11对应着M中的元素________.∵2×11-1=21,∴M中的元素11对应着P中的元素21.由2a-1=11,得a=6,∴P中的元素11对应着M中的元素6.【例4-1】已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原像分别对应6和9,则19在f作用下的像为( ).A.18 B.30 C.272D.28解析:由题意,可知64,910,a ba b+=⎧⎨+=⎩解得a=2,b=-8,∴对应关系为y=2x-8.故19在f作用下的像是y=2×19-8=30.答案:B【例4-2】已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y +1,4x+3y-1).(1)求A中元素(1,2)的像;(2)求B中元素(1,2)的原像.分析:解答(1)可利用x=1,y=2代入对应关系求出3x-2y+1与4x+3y-1的值便可,解答(2)可利用方程的观点解方程组321=1431=2x yx y-+⎧⎨+-⎩,,求出x,y的值便可.解:(1)当x=1,y=2时,3x-2y+1=0,4x+3y-1=9,故A中元素(1,2)的像为(0,9).(2)令32114312x yx y-+=⎧⎨+-=⎩,,得6,179.17xy⎧=⎪⎪⎨⎪=⎪⎩故B中元素(1,2)的原像是69, 1717⎛⎫ ⎪.(1)一般地,若集合A中含有m个元素,集合B中含有n个元素,则从A到B的映射有n m 个,从B到A的映射有m n个.例如:求集合A={a,b,c}到集合B={-1,1}的映射的个数.按照映射的定义,A中元素可都对应B中同一个元素,即a→-1,b→-1,c→-1或a→1,b→1,c→1,共有2个不同的映射;A中元素也可对应B中两个元素,即a→-1,b→-1,c→1或a→-1,b→1,c→-1或a→1,b→-1,c→-1或a→1,b→1,c→-1或a→1,b→-1,c→1或a→-1,b→1,c→1,共有6个不同的映射,综上可知,从A到B的映射共有2+6=8=23个.以后可以根据两个集合中元素的个数直接计算映射的个数.(2)计算满足某些特定要求的映射的个数时,关键是将映射具体化、形象化(如用列表法、图像法、数形结合等).例如,设M={a,b,c},N={-1,0,1},若从M到N的映射f满足f(a)+f(b)=f(c),求这样的映射f的个数.要确定映射f,则只需要确定M中的每个元素对应的像即可,即确定f(a),f(b),f(c)的值.而f(a),f(b),f(c)∈{-1,0,1},还满足f(a)+f(b)=f(c),因此要确定这样的映射f的个数,则只需要确定由-1,0,1能组成多少个等式( )+( )=( ).注意到映射不要求N f(c)的取值情况表示出来.【例5-1】集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.解析:由于f(3)=3,因此只需考虑剩下的两个元素1和2的像的问题,总共有如图所示的4种可能(也可直接利用公式得到这样的映射共有22=4个).答案:4【例5-2】已知集合A={a,b,c},B={1,2},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有________个.解析:要确定映射f,则只需确定A中的每个元素对应的像即可,即确定f(a), f(b),f(c)的值,而f(a),f(b),f(c)∈{1,2},还满足f(a)+f(b)+f(c)=4,所以f(a),f(b),f(c)中有一个是2,另两个是3个.答案:3【例5-3】设集合A={1,2,3},集合B={a,b,c},那么从集合A到集合B的映射的个数为________,从集合A到集合B的一一映射的个数为________.解析:因为集合A中有3个元素,集合B中有3个元素,所以从集合A到集合B的映射有33=27个.其中A到B的一一映射有下面6种情形.答案:27 6。

【精】高中数学知识点总结-映射与函数概念

【精】高中数学知识点总结-映射与函数概念

映射与函数的概念1.映射的概念设A ,B 为非空集合,在某种对应关系f 的作用下,使集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么称f:A →B 为从集合A 到集合B 的一个映射。

2.函数的概念从非空数集A 到非空数集B 的映射叫做函数,其中A 是定义域,C 是值域(C ⊆B )。

函数的三要素:定义域,对应关系,值域。

定义域和对应关系确定,则值域确定,函数确定。

(1)求定义域①分式:分母不能为0。

②根式:偶次根式的被开方数大于等于0。

③指数:底数大于0且不等于1。

④对数:底数大于0且不等于1,真数大于0。

⑤x 0中x ≠0。

⑥tanx 中的x ≠k π+π/2。

(2)求值域①观察法:求函数y =x+1+1的值域。

解:该函数的定义域为[﹣1,+∞].∵√x +1≥0,∴√x +1+1≥1,∴0<√x+1+1≤1. 该原函数的值域为(0,1].②换元法:求函数y =x +√x −1的值域。

解:该函数的定义域为[﹣1,+∞). 令√x −1=t (t ≥0),则x =t ²-1.∴y=t ²+t +1.(t ≥0)求得y=t ²+t +1值域为[1,﹢∞),即原函数的值域.③分离常数法:求函数y =﹣x²x²+1的值域。

解:该函数的定义域为R.该函数=﹣(x 2+1)−1x²+1=﹣1+1x²+1.∵x ²+1≥1,∴0<1x²+1.≤1,∴﹣1<﹣1+1x²+1≤0.该函数的值域为(﹣1,0]. 归纳:形如y =Cx+D Ax+B (A,B,C,D 为常数且A ≠0)或y =Cx²+DAx²+B (A,B,C,D 为常数且A ≠0)的函数可以采用分离常数法,分离到y =c ax+b +d (a,b,c,d 为常数且a ≠0)或y =c ax²+b +d (a,b,c,d 为常数且a ≠0),前者的值域为y ≠d ,求后者的值域是y =c ax²+b 的值域加上d 。

映射定理的内容

映射定理的内容

映射定理的内容
映射定理:探究函数映射的本质
在数学中,映射是一种非常重要的概念,它描述了一个集合中的元素如何对应到另一个集合中的元素。

而映射定理则是探究函数映射的本质,它是数学中的一个基本定理,也是函数论中的重要内容。

映射定理的核心思想是:对于一个函数,如果它是一一映射,那么它一定存在一个逆函数。

也就是说,如果一个函数能够将一个集合中的每个元素映射到另一个集合中的唯一元素,那么它就是一一映射,而且它一定存在一个逆函数,可以将另一个集合中的元素映射回原来的集合。

映射定理的证明非常简单,只需要利用函数的定义和逆函数的定义即可。

假设函数f是一一映射,那么对于任意的x和y,如果f(x)=f(y),那么x=y。

因此,我们可以定义一个函数g,使得g(f(x))=x,这个函数就是f的逆函数。

同样地,如果一个函数存在逆函数,那么它一定是一一映射。

映射定理的应用非常广泛,它在数学、物理、工程等领域都有着重要的应用。

例如,在密码学中,映射定理被用来设计加密算法,保护数据的安全性。

在信号处理中,映射定理被用来分析信号的特征,提取有用的信息。

在控制系统中,映射定理被用来设计控制器,实现对系统的精确控制。

映射定理是函数论中的一个基本定理,它揭示了函数映射的本质,为我们理解和应用函数提供了重要的理论基础。

在实际应用中,映射定理也发挥着重要的作用,为我们解决各种问题提供了有力的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建构:
2.映射的类型.
映射可以是“一对一”或“多对一”的对应,但不能是“一对多”.
即映射应是单值对应,或称单射.
数学应用:
1.请分析下列对应,哪些是A到B的映射? (1)A=R,B={x|x是数轴上的点},f:实数与数轴上的点对应;
(2)A={中国,日本,韩国},B={北京,东京,汉城,华盛顿},
f:相应国家的首都; (3)A={x|x是高一年级有QQ号的学生},B={x|x是QQ号码}, f:该生对应的QQ号; (4)A={x|x是我校高一年级的班级},B={x|x是我校高一年级的学生}, f:该班级对应的学生.
数学应用:
2.已知M={x|0≤x≤2},N= {y|0≤y≤2},下列图中表示从M到N的映射共 有多少个? y y y
4.若元素(x,y)在映射f的象是(2x,x+y),则(-1,3)在f下的象是 (-1,3)在f下的原象是 .

反馈练习:
例3.设集合A={x|0≤x≤6 },集合B={y|0≤y≤2 },下列从A到B的对应 法则f,其中不是映射的是( )
1 A.f:x→y=2x 1 C.f:x→y=4x 1 B.f:x→y=3x 1 D.f:x→y=6x
2 1 O 2 1 2 1
y
2 1 O
1
2
x
O y
1
2
x
O y 2 1
1
2
x
2
1
1
2
x
O
1
2
x
O
1
2
x
数学应用:
例2.若A={-1,m,3},B={-2,4,10},定义从A到B的一个映射 f:x→y=3x+1,求m值.
逆映射
数学应用:
3.已知A=R,B=R,则在f:A →B使A中任一元素a与B中元素2a-1 相对应,则在f:A→ B中,A中元素9与B中元素_________对应;与集合 B中元素9对应的A中元素为_________.
一性(多一个也不行).
数学应用:
例1.下列对应是不是从集合A到集合B的映射,为什么? (1) A=R, B={xR∣x≥0 }, f:“求平方”; (2) A=R, B={xR∣x>0 }, f:“求平方”; (3)A={x∈R∣x>0 },B=R, f:“求平方根”; (4)A={平面上的圆},B={平面上的矩形}, f:“圆的内接矩形”.
高中数学 必修1
情境问题:
函数的本质是建立在两个非空数集A、B上的单值对应,在我们的 周围,还存在着不是数与数的对应关系,比如: (1)A={P|P是数轴上的点},B=R,f:点的坐标; (2)对于任意的△ABC,B=R,f:三角形的面积.
如何刻画这些对应关系呢?
数学建构:
1.映射的定义. 一般地,设 A,B是两个非空的集合,如果按某种对应法则 f,对 于集合A中的每一个元素 x,在集合B中都有惟一的元素 y 和它对应, 这样的单值对应叫做从集合A 到集合 B的映射,记作:f:A→B. (1)映射是函数概念的推广,函数是一类特殊的映射; (2)映射f:A→B中,集合A、B可以是数集,也可以是点集或其他集合; (3)映射的方向性:映射f:AB与f:BA是不一样的. (4)箭尾集合中元素的任意性(少一个也不行),箭头集合中元素的唯
表示从M到N的映射的是(
y x O O y x
)
y x O O y x
(1)
(2)
(3)
(4)
小结:
A
f
B
b是4的原象

b c
1
2 3 4叫做b的象
4
一对一 单值对应 对应 多对一 一对多 两个数集之间的 对应 函数 映射
一一对应
一定是映射,且存在逆映射.
作业:
课本P47练习1,2题,P48第5,6题.
数学应用:
5.下列对应中,哪些是 从A到B的映射? x 1 2 3 4
f
y 2 4 6 8
x 1 2 3 4
f
y 2 4 6 8
x 1 2 3 4
f
y 2 4 6 8
x 1 2 3 4
f
y 2 4 6 8
(1)
(2)
(3)
(4)
数学应用:
6.设集合M={x∣0≤x≤1 },集合N={y∣0≤y≤1 },则下列四个图象中,
相关文档
最新文档