《结构力学习题集》8-矩阵位移法
结构力学[第八章矩阵位移法]课程复习
![结构力学[第八章矩阵位移法]课程复习](https://img.taocdn.com/s3/m/85ffbb50be23482fb4da4c34.png)
第八章矩阵位移法一、基本内容及学习要求本章内容包括:矩阵位移法的解题思路,单元刚度矩阵及其坐标变换,直接刚度法(先处理),等效结点荷载以及矩阵位移法应用中的问题。
要求会用矩阵位移法计算结构的位移和内力。
通过本章的学习应达到:(1)掌握矩阵位移法的解题思路和步骤,了解矩阵位移法与位移法的内在联系。
(2)建立单元坐标系下的单元刚度矩阵,明确单元刚度矩阵的特性及矩阵元素的物理概念。
(3)弄清坐标变换的含义,形成结构坐标系下的单元刚度矩阵。
(4)借助定位向量,熟练应用直接刚度法(先处理)形成结构刚度矩阵。
(5)计算综合结点荷载。
(6)利用结构刚度方程求解结点位移进而计算杆端内力。
二、学习指导(一)矩阵位移法的解题思路与步骤矩阵位移法与位移法的解题思路基本相同,两者的差异仅在于前者从机算考虑,采用矩阵使公式规格化,以适应程序设计的要求,故解题步骤和处理方法都有所不同。
为使读者抓住学习要领,现用简例扼要说明两者间的关系。
图8.1所示三跨连续梁承受结点集中力偶作用。
用位移法求解时若将其转化为三根两端固定梁,按以下步骤直接建立位移法方程。
(1)把三根梁作为三个单元,利用转角位移方程将其杆端弯矩表示成杆端位移的函数矩阵位移法和位移法两者比较,求解过程基本相同,关键不同之处在于矩阵位移法利用了K的组合特性,解算时绕过平衡条件直接建立结构刚度矩阵。
下面对此作简要说明,使读者有大致的了解。
位移法通过单元刚度方程,利用平衡条件建立位移法方程,其系数由各单元刚度方程的系数组合而成。
矩阵位移法则借助各单元刚度矩阵的元素直接形成结构刚度矩阵,只要把单元刚度矩阵的元素按其附标放到结构刚度矩阵的相应位置(有一方附标为零或两方附标均为零的元素不进入),再将同一位置的元素相加即可,故又称直接刚度法。
这一过程归纳为“对号入座、同位相加”,本题按此即得读者把K的建立过程与式(g)对照,不难发现二者的共同之处,其差别仅在于位移法的处理较为直观,矩阵位移法更加直接却稍嫌繁琐,以分别适应手算和机算的要求。
矩阵位移法的计算步骤及示例

单元①②和③:
35
⎡ 500 0 0 − 500 0 0 ⎤
⎢ ⎢
0
12 24
0
− 12
24
⎥ ⎥
(1)
k
=
(2)
k
=
(3)
k
=
10
3
⎢ ⎢⎢−
0 500
24 0
64 0
0 − 24 32 ⎥
500 0
0
⎥ ⎥
⎢ 0 −12 − 24 0 12 − 24⎥
⎢ ⎢⎣ 0
24 32
0
− 24
⎥ 64 ⎥⎦
8-8 矩阵位移法的计算步骤及示例 1
矩阵位移法的计算步骤:(以后处理为例)
(1)对结点和单元进行编号,建立结构(整
体)坐标系和单元(局部)坐标系,并对结
点位移进行编号。
(2)计算各杆的单元刚度矩 k (e)、k (e) 。
(3)形成结构原始刚度矩阵K。
(4)计算固端力
F
(e) F
、等效结点荷载FE及综合
⎢⎣0.0 0.0 6.0 12.0⎥⎦
由于连续梁的单元刚度矩阵为非奇异矩阵, 由此组集而成的结构刚度矩阵K 也是非奇异 的,故无需再进行支座约束条件处理。
(4)计算固端力列阵及等效结点 15 荷载列阵。
②单元的固端力列阵
F (2) F
=
⎧ 300 ⎫ ⎩⎨− 300⎭⎬kN
⋅
m
等效结点荷载列阵:
k(3)
=
⎢ ⎢ ⎢
l(3) 2EI
⎢⎣ l ( 3 )
4
2EI l(3) 4EI l(3)
⎤ ⎥ ⎥ ⎥ ⎥⎦
3 4
(3)集成结构刚度矩阵K
《结构力学习题集》-矩阵位移法习题及答案

第八章 矩阵位移法 – 老八校一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
10、矩阵位移法既能计算超静定结构,也能计算静定结构。
11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.2134123412341234( )二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
123ll4l5EI2EIEA(0,0,0)(0,0,1)(0,2,3)(0,0,0)(0,2,4)(0,0,0)EI13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
l14、计算图示结构整体刚度矩阵的元素665544,,K K K 。
E 为常数。
ll1342A , I AA /222A I , 2A15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
[][]k k 1112 [][]k k 2122 []k =ii iii单刚分块形式为 :16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。
结构力学应用-矩阵位移法

3、集成总刚
(6)定位向量法:对号入座,同号相加 定位向量法:对号入座,
4.综合结点荷载
综合结点荷载 {F}={FD}+{FE} }――直接结点荷载 ①{FD}――直接结点荷载 }――等效结点荷载 ②{FE}――等效结点荷载 (7-1)局部坐标系单元固端力 (7-2)整体坐标系单元固端力 (7-3)单元等效结点荷载。 单元等效结点荷载。
等效原则: 等效原则: ——两种荷载对基本体系产生相同的结点位移。 两种荷载对基本体系产生相同的结点位移 ——两种荷载对基本体系产生相同的结点位移。
矩阵位移法的计算步骤及示例
矩阵位移法计算平面刚架 计算机计算――程序化) 程序化) (计算机计算 程序化
1. 编码、整理原始数据 编码、
(1)整体与局部坐标系 ) (2)结点位移编码 ) 单元编码 (3)原始数据: )原始数据: E 、A i、I i、l i 定位向量{λ} 定位向量 e, αi([ T ]) ])
几点补充说明
1、结点位移分量编号,定位向量 、结点位移分量编号,
——引入支承条件:已知位移约束的方向,编码为零。 引入支承条件:已知位移约束的方向,编码为零。 引入支承条件
2、铰结点处理: 铰结点处理: 铰结点处理
铰结的各杆杆端的转角均为基本未知量 ——分别编码(统一单元,程序简单) 分别编码(统一单元,程序简单) 分别编码
矩阵位移法
矩阵位移法——基本原理与位移法相同 基本原理与位移法相同 矩阵位移法 *数学工具 —— 矩阵运算
1、矩阵知识 矩阵: (1)矩阵:A 方阵: 方阵: 阶方阵A相应的行列式 (2)行列式:n阶方阵 相应的行列式 )行列式: 阶方阵 相应的行列式D 若D=0,A为奇异矩阵 (3)矩阵运算 相等:加减:数乘: 相等:加减:数乘: l aik 乘法: 乘法:Cmn=Aml*Bln,则 cij =
关于《结构力学》中矩阵位移法的教学反思

关于《结构力学》中矩阵位移法的教学反思在《结构力学》课程教学中,矩阵位移法是一种重要的分析工具,用于解决结构的位移和应力问题。
然而,在实际教学中,我发现学生对矩阵位移法的理解和应用还存在一些困难和问题。
因此,我在本文中将对《结构力学》中矩阵位移法的教学进行反思,并提出改进的建议。
首先,在教学过程中,我发现许多学生对矩阵位移法的基本概念理解不够清晰。
因此,在今后的教学中,我将更加重视概念的讲解和示意图的绘制。
通过图示的方式,让学生更直观地理解矩阵位移法的基本原理和基本步骤。
同时,我会鼓励学生多进行实例分析,通过实例的演练,进一步加深他们对概念的理解和应用能力。
其次,在教学过程中,我发现学生对于矩阵位移法的推导过程和计算方法比较陌生。
因此,在今后的教学中,我将更加详细地进行推导过程的讲解,并结合实例进行计算演示。
同时,我将设计一些与实际工程相关的习题,让学生通过解答习题来巩固和应用所学的知识。
通过理论与实践的结合,提升学生的计算能力和实际应用能力。
除了以上改进措施,我还计划引入一些现代的教学手段来辅助矩阵位移法的教学。
例如,使用多媒体技术展示矩阵位移法的应用场景,让学生更好地理解其实际意义。
此外,还可以利用网络资源,提供一些矩阵位移法的教学视频和在线学习资料,供学生自主学习和深入研究。
通过引入现代技术手段,提升教学效果,并培养学生的自主学习和探究的能力。
最后,在课程安排上,我将更加充分地利用实践性教学机会。
例如在实验室课程中,设置与矩阵位移法相关的实验项目,让学生通过实际操作来感受和理解矩阵位移法的原理和应用。
此外,还可以组织学生参加一些结构分析类的竞赛和比赛,通过与其他学生的交流和比拼,提高学生对矩阵位移法的学习兴趣和应用能力。
总之,《结构力学》中的矩阵位移法作为一种重要的结构分析方法,在教学中应给予足够重视。
通过反思和改进,可以提高学生对矩阵位移法的理解和应用能力,培养学生的工程实践能力。
我相信,在不断改进和创新的教学方法下,学生的学习效果会得到显著提高,他们也会更好地掌握矩阵位移法这一重要工具。
《结构力学课件》矩 阵 位 移 法

将(17—21)及(17—25) T F 式代入上式得: e
K
T
e
T e
e
F
T
K
T e
e 另 [T]T[ K ] [I]=[K]e 则 用结分点块式表示为:
{F}e=[K]e{}e
e Fi e F j e Kii e K ji e e Kij i e Ke jj j
• 注:1) F , 为结构坐标的杆端力和杆端位移。 • 2) Kij e 表示单元e 的j端三个位移分别产生单位位移时在i 端各力 • 分量分别产生的力。 • 3) Kii , Kij , K ji , K jj 分别为单元在结构整体坐标中刚度。
e e
返回 下一张 上一张 小结图17-4来自返回 下一张 上一张 小结
• 17.1.6 引入支承条件,求结点位移
• 已知上例支承条件 1 =0,连同已获得的[K],以及各结点 荷载值(M1、M2、及M3=0)一起代入基本方程(7—6)式中,得:
4i1 2i 1 0 2i1 4i1 4i 2 2i 2 0 0 2i 2 2 4i 2 3 M1 M 2 0
{
矩阵位移法是以位移法为力学原理,应用矩阵理论,以电子 计算机为工具的结构分析方法。 有限单元法包含两个基本环节:一是单元分析;一是整体分析。
在矩阵位移法中:单元分析的任务是建立单元刚度方程,形 成单元刚度矩阵——讨论任意坐标系中单元刚度方程的通用形式; 整体分析的任务是将单元及合成整体,由单元刚度矩阵按照 刚度集成规则形成整体刚度矩阵,建立整体结构的位移法基本方 程,从而求解。 直接由单元刚度矩阵导出整体刚度矩阵的集成规则,是矩阵 位移法的核心内容。
第8章矩阵位移法例题 结构力学

0
K
(2)
0
对
0 0.0142
称
0 0.060 0.3396
2.8285 0 0
2.8285
0 0.0142
0.060 0
0.0142
0
0.060
0.
1698
0
105
0.060
0.3396
4.列出整体坐标表示的单元刚度矩阵
单元(1)(3)的单元坐标和整体坐标一致,所以
4 0
0 4 0
l
1 ql
1 ql
2
2
p
1 pl 8
1 pl 8
l
l
2
2
1p
1p
2
2
第8章矩阵位移法
例题 2 (1)求各单元在局部坐标系中固端力向量
例题 2
第8章矩阵位移法
(2)将
转换成
单元①
单元②
例题 2
第8章矩阵位移法
(3)利用单元定位向量,将
中元素反号后叠加集成
第8章矩阵位移法
例题 3
图示桁架,已知结点位移列阵
0
0
0.04 0.12
0
0.04 0.12
K
(1)
K
(3)
0
0.48
0 4
0.12 0
0.24 0
105
对 称
0.04 0.12
0.48
单元(2)的单元坐标和整体坐标不一致,必须经过以下变换
第一种方法: 直接代入公式:
2 1 2i 2 BCx l2 Cy
(e)
K
1 2i (B l2 )CxC y
0
0
1
第8章矩阵位移法
结构力学大作业(矩阵位移法)

矩阵位移法编程大作业姓名:学号:一、编程原理本程序的原理是基于结构力学矩阵位移法原理,以结构结点位移作基本未知量,将要分析的结构拆成已知节点力—结点力位移关系的单跨梁集合,通过强令结构发生待定的基本未知位移,在各个单跨梁受力分析结果的基础上通过保证结构平衡建立位移法的线性方程组,从而求得基本未知量。
二、程序说明本程序是计算10个节间距的悬索-拱组合体系主塔顶节点水平位移、主塔底截面弯矩、拱顶节点竖向位移、拱顶截面弯矩和轴力的程序。
首先将各杆件的交汇点作为结点,共有20个结点,51个位移,然后根据不同结构单元分别建立单元刚度矩阵,然后转换为整体坐标系下的刚度矩阵,然后将所有杆件的单元刚度矩阵整合成为总体刚度矩阵,在进行整合时连续运用for函数,最终形成51阶的总体刚度矩阵。
然后通过对荷载的分析确定出荷载矩阵,直接写进程序。
这样就可以把20个结点的51个位移求得,然后再利用各个单元的单元刚度矩阵和所得的位移求得单元杆件的内力。
三、算法流程建立各单位在局部结构离散化编号进行单元分析坐标系下的单位刚度方程确定各单位在总体将单元刚度矩阵集合确定综合结点坐标系下的单元矩阵方程成总体刚度矩阵点荷载矩阵建立方程利用杆件单元刚度矩阵输出结果求解位移和所求位移求内力结束四、源代码L=input('输入单节间L:');EIc=input('主塔的抗弯刚度EIc:');EAc=input('主塔的抗压刚度EAc:');EAb=input('悬索和斜索的抗拉刚度EAb:');EAt=input('吊杆的抗拉刚度EAt:');EIa=input('拱的抗弯刚度EIa:');EAa=input('拱的抗压刚度EAa:');q=input('拱上沿轴向均布荷载集度q:');T1=[0,1,0,0,0,0;-1,0,0,0,0,0;0,0,1,0,0,0;0,0,0,0,1,0;0,0,0,-1,0,0;0,0,0,0,0,1;];%主塔的转换矩阵h=(5*L)/2;KcO=[EAc/h,0,0,-EAc/h,0,0;0,12*EIc/(h*h*h),6*EIc/(h*h),0,-12*EIc/(h*h*h),6*EIc/(h*h);0,6*EIc/(h*h),4*EIc/h,0,-6*EIc/(h*h),2*EIc/h;-EAc/h,0,0,EAc/h,0,0;0,-12*EIc/(h*h*h),-6*EIc/(h*h),0,12*EIc/(h*h*h),-6*EIc/(h*h);0,6*EIc/(h*h),2*EIc/h,0,-6*EIc/(h*h),4*EIc/h;];%主塔的单元刚度矩阵x=atan(2*L/h);T2=[cos(x),sin(x),0,0;-sin(x),cos(x),0,0;0,0,cos(x),sin(x);0,0,-sin(x),cos(x);];y=-atan(2*L/h);T21=[cos(y),sin(y),0,0;-sin(y),cos(y),0,0;0,0,cos(y),sin(y);0,0,-sin(y),cos(y);];%斜索的转换矩阵s1=sqrt(2*L*2*L+h*h);KbO1=(EAb/s1)*[1 0 -1 0;0 0 0 0;-1 0 1 0;0 0 0 0;];%斜索的单元刚度矩阵f2(1)=5*L/2;f2(2)=58*L/25;f2(3)=109*L/50;f(4)=52*L/25;f2(5)=101*L/50;f2 (6)=2*L;f2(7)=101*L/50;f2(8)=52*L/25;f2(9)=109*L/50;f2(10)=58*L/25;f2(1 1)=5*L/2;y=zeros(10,1);for i=1:10y(i)=atan((f2(i+1)-f2(i))/L);endT3=zeros(4,40);for i=1:10T3(1:4,4*i-3:4*i)=[cos(y(i)),sin(y(i)),0,0;-sin(y(i)),cos(y(i)),0,0;0,0,cos(y(i)),sin(y(i));0,0,-sin(y(i)),cos(y(i));];end%悬索的转换矩阵s2=zeros(10,1);for i=1:10s2(i)=sqrt((f2(i+1)-f2(i))^2+L^2);endKbO2=zeros(4,40);KbO2(1:4,4*i-3:4*i)=(EAb/s2(i))*[1 0 -1 0;0 0 0 0;-1 0 1 0;0 0 0 0;];end%悬索的单元刚度矩阵f1(1)=0;f1(2)=9*L/20;f1(3)=4*L/5;f1(4)=21*L/20;f1(5)=6*L/5;f1(6)=5*L/4; f1(7)=6*L/5;f1(8)=21*L/20;f1(9)=4*L/5;f1(10)=9*L/20;f1(11)=0;z=zeros(10,1);for i=1:10z(i)=atan((f1(i+1)-f1(i))/L);endT4=zeros(6,60);for i=1:10T4(6*i-5:6*i,6*i-5:6*i)=[cos(z(i)),sin(z(i)),0,0,0,0;-sin(z(i)),cos(z(i)),0,0,0,0;0,0,1,0,0,0;0,0,0,cos(z(i)),sin(z(i)),0;0,0,0,-sin(z(i)),cos(z(i)),0;0,0,0,0,0,1;];end%拱的转换矩阵s3=zeros(10,1);for i=1:10s3(i)=sqrt((f1(i+1)-f1(i))^2+L^2);endKaO=zeros(6,60);for i=1:10KaO(1:6,6*i-5:6*i)=[EAa/s3(i) 0 0 -EAa/s3(i) 0 0;0 12*EIa/(s3(i)*s3(i)*s3(i)) 6*EIa/(s3(i)*s3(i)) 0-12*EIa/(s3(i)*s3(i)*s3(i)) 6*EIa/(s3(i)*s3(i));0 6*EIa/(s3(i)*s3(i)) 4*EIa/s3(i) 0 -6*EIa/(s3(i)*s3(i)) 2*EIa/s3(i);-EAa/s3(i) 0 0 EAa/s3(i) 0 0;0 -12*EIa/(s3(i)*s3(i)*s3(i)) -6*EIa/(s3(i)*s3(i)) 012*EIa/(s3(i)*s3(i)*s3(i)) -6*EIa/(s3(i)*s3(i));0 6*EIa/(s3(i)*s3(i)) 2*EIa/s3(i) 0 -6*EIa/(s3(i)*s3(i)) 4*EIa/s3(i);]; end%拱的单元刚度矩阵T5=[0 1 0 0;-1 0 0 0;0 0 0 1;0 0 -1 0;];%吊杆的转换矩阵s4=zeros(9,1);s4(i)=f2(i+1)-f1(i+1);endKtO=zeros(4,36);for i=1:9KtO(1:4,4*i-3:4*i)=(EAt/s4(i))*[1 0 -1 0;0 0 0 0;-1 0 1 0;0 0 0 0;];end%吊杆的单元刚度矩阵Kc=T1'*KcO*T1;%总体坐标下主塔的单元刚度矩阵Kb1=T2'*KbO1*T2;Kb11=T21'*KbO1*T21;%总体坐标下斜索的单元刚度矩阵Kb2=zeros(4,40);for i=1:10T3O=T3(1:4,4*i-3:4*i);Kb2(1:4,4*i-3:4*i)=T3O'*KbO2(1:4,4*i-3:4*i)*T3O;end%总体坐标下悬索的单元刚度矩阵Ka=zeros(6,60);for i=1:10T4O=T4(6*i-5:6*i,6*i-5:6*i);Ka(1:6,6*i-5:6*i)=T4O'*KaO(1:6,6*i-5:6*i)*T4O;end%总体坐标下拱的单元刚度矩阵Kt=zeros(4,36);for i=1:9KtOO=KtO(1:4,4*i-3:4*i);Kt(1:4,4*i-3:4*i)=T5'*KtOO*T5;end%总体坐标下吊杆的单元刚度矩阵%定义51阶0矩阵K1=zeros(51,51);K2=zeros(51,51);K3=zeros(51,51);K4=zeros(51,51);K5=zero s(51,51);X=zeros(51,51);Y=zeros(51,51);Z=zeros(51,51);%把主塔整合到整体刚度矩阵中:K1(1:3,1:3)=KcO(4:6,4:6);K1(22:24,22:24)=KcO(4:6,4:6);%把斜索整合到整体刚度矩阵中:K2(1:2,1:2)=Kb1(3:4,3:4);K2(22:23,22:23)=Kb11(1:2,1:2);%把悬索整合到整体刚度矩阵中:K3(1:2,1:2)=KbO2(1:2,1:2);K3(1:2,4:5)=KbO2(1:2,3:4);for i=2:10X(2*i:2*i+3,2*i:2*i+3)=KbO2(1:4,4*i-3:4*i);K3=K3+X;end%把拱整合到整体刚度矩阵中:K4(25:27,25:27)=KaO(4:6,4:6);K4(49:51,49:51)=KaO(1:3,55:57);for i=2:9Y(3*i+19:3*i+24,3*i+19:3*i+24)=KaO(1:6,6*i-5:6*i); K4=K4+Y;end%把吊杆整合到整体刚度矩阵中:for i=1:9Z(2*i+2:2*i+3,2*i+2:2*i+3)=KtO(1:2,1:2);Z(2*i+2:2*i+3,3*i+22:3*i+23)=KtO(1:2,3:4);Z(3*i+22:3*i+23,2*i+2:2*i+3)=KtO(3:4,1:2);Z(3*i+22:3*i+23,3*i+22:3*i+23)=KtO(3:4,3:4);K5=K5+Z;endK=K1+K2+K3+K4+K5;%荷载矩阵:P=zeros(51,1);P(26,1)=-q*L/(2*cos(s3(1)));P(27,1)=q*L*L/(12*cos(s3(1)));P(50,1)=-q*L/(2*cos(s3(10)));P(51,1)=-q*L*L/(12*cos(s3(10)));for i=2:9P0=zeros(51,1);P0(3*i+20,1)=-q*L/(2*cos(s3(i)));P0(3*i+21,1)=-q*L*L/(12*cos(s3(i)));P0(3*i+23,1)=-q*L/(2*cos(s3(i)));P0(3*i+24,1)=q*L*L/(12*cos(s3(i)));P=P+P0;endA=K\P;%结构的位移%主塔底截面的弯矩:Ac(4:6,1)=A(1:3,1);Bc=KcO*Ac;Mc=Bc(3,1);%拱顶截面的弯矩和轴力:Aa=A(34:39,1);KaO17=KaO(1:6,25:30);Ba=KaO17*Aa;Ma=Ba(6,1);Fa=Ba(4,1);%输出结果fprintf('主塔顶结点的水平位移%f\n',A(1,1)); fprintf('主塔底截面的弯矩%f\n',Mc);fprintf('拱顶结点的竖向位移%f\n',A(38,1)); fprintf('拱顶截面的弯矩%f\n',Ma);fprintf('拱顶截面的轴力%f\n',Fa);五、试算算例输入单节间L:1主塔的抗弯刚度EIc:1主塔的抗压刚度EAc:1悬索和斜索的抗拉刚度EAb:1吊杆的抗拉刚度EAt:1拱的抗弯刚度EIa:1拱的抗压刚度EAa:1拱上沿轴向均布荷载集度q:1主塔顶结点的水平位移NaN主塔底截面的弯矩NaN拱顶结点的竖向位移0.016046拱顶截面的弯矩3.791098拱顶截面的轴力0.000000。
结构力学第8章 矩阵位移法

单元两端的杆端位移分别在单元坐标系和整体坐标系 下分解,其位移分量就构成上面的杆端位移向量。
与坐标轴的正方向一致者为正;
返回目录
作业1:已知单元的内力图,列出单元坐标下 及整体坐标下的杆端力向量。
3.04
1.24
y 0.43
4.38N)
x
作业2:已知单元的杆端力如图,写出单元坐 标及整体坐标表示的单元杆端力向量,并 作出单元的内力图。
2EI
l
x
2EI EI
l 6EIl x x
l2
EuIj 1
6EIl
x
l 2 uj 1
EA
l
x
EI
EuIj 1
l
平l面梁单元ul j 的1 x单元刚度矩阵
l
y
ui=1
6EI
l2
N ElA i y
6EI
l
12 2EI l3
12EI
Qi
0l 3
y
2EI
0 Ml iy
2EI 6EI
l
l2
vi =1 θi=1
等截面直杆的刚度方程
适用于两端都是刚结点的杆, 基本未知量为杆两端的转角和侧移;
刚度方程:
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
QAB
QBA
1 l
(
M
AB
M BA)
QAB
QBA
6i l
A
6i l
B
1 2i l2
4i
❖ 写成矩阵的形式:
❖ 杆端弯矩、剪力、杆端 侧移均以绕杆端顺时针 为正。关键掌握每个系
结构力学课件矩阵位移法整体分析-先处理法

Global analysis
第八章 矩阵位移法 8.5 先处理法
后处理法的计算步骤
1. 结点、单元标码,并选择整体坐标系和局部坐标系; 2. 结点位移分量编码,建立整体坐标系下的结点位移列阵和结
点力列阵; 3. 建立局部坐标系下单元刚度矩阵,坐标变换,建立整体坐标
4(0,0,7) x
O
(2)建立结点位移列阵和结点力列阵
y
FP1 2(1,2,3) FP2 3(4,5,6)
②
①
③
1(0,0,0) O
4(0,0,7)
FP1
0
1
2
F
0 0
,
3 4
FP
2
5
0
6
0
7
x
(3)建立整体坐标系下单元刚度矩阵
k e
ke TT k eT
k (3) 46
k (2) 56
k (3) 56
k (2) 66
k (3) 66
0 1
0
2
0 k (3)
47
3 4
k
(3) 57
5
k
(3) 67
6
k
(3) 77
7
先处理法的计算步骤
1. 结点、单元标码,并选择整体坐标系和局部坐标系; 2. 结点位移分量编码,建立整体坐标系下的结点位移列阵和结
l 6EI
l2
4 0
0
0
4EI
0
l
②单元
y 3(1,0,3)
2(1,0,2)
②
4(1,0,4)
①
③
1(0,0,0)
5(0,0,0) x
矩阵位移法

D1 = D2 = 0
; D5 = D6 = 0
则有修正后的总刚度矩阵:
-100 2 [K ] = 100 600
[k11 ] [k12 ] {F1} = {F2 } [k 21 ] [k 22 ]
{D1} {D 2 }
@
单元刚度矩阵的性质:①对称性;②奇异性; ③主对角元恒为正值
3、整体刚度矩阵
K ij :单元仅发生第j个杆端单位位移时,在第
Y2 = QBA
写成矩阵表达式为:
4 EI 2 EI 6 EI q + q + -v ) ( v l 1 l 2 l2 1 2 2 EI 4 EI 6 EI q + q + -v ) ( M2 = v l 1 l 2 l2 1 2 6 EI 12 EI (v1 - v2 ) Y1 = (q1 +q 2 ) + l2 l2 6 EI 12 EI = q + q (v1 - v2 ) Y2 ( 1 2) l2 l2 M1 =
2
3
1 2
Hale Waihona Puke 3-1 50 1 50 50 300 -50 150 -1 -50 2 -100 -1 -50 = 50 150 -100 600 50 150 -1 50 1 50 -50 150 50 300
计入边界条件:因边界结点1和3 为固定端,故有:
0 12EI l3 6 EI - 2 l 0 12EI l3 6 EI - 2 l
@
0 6 EI l2 2 EI l 0 6 EI - 2 l 4 EI l
EA l 0 0
结构力学——矩阵位移法

学习内容
有限单元法的基本概念,结构离散化。 平面杆系结构的单元分析:局部坐标系下的单元刚度矩
阵和整体坐标系下的单元刚度矩阵。 平面杆系结构的整体分析:结构整体刚度矩阵和结构整
体刚度方程。 边界条件的处理,单元内力计算。 利用对称性简化位移法计算。 矩阵位移法的计算步骤和应用举例。
2
学习目的和要求
2、局部坐标系中的单元刚度矩阵
k
e
EA l
1 1
1
1
kk1211
k12 k22
刚度系数的物理意义: • 单元刚度矩阵是杆端力与杆端位移之物理关系; • 矩阵的阶数与杆端位移分量数相等; • kij 表示 uj 1 引起的杆端力Fi 的大小。
15
第二节 单元分析(局部坐标系下的单元分析 )
5
第一节 矩阵位移法概述
结构力学传统方法与结构矩阵分析方法,二者同源而有别:
在原理上同源,在作法上有别
前者在“手算”的年代形成,后者则着眼于“电算”,计算手 段的不同,引起计算方法的差异。
与传统的力法、位移法相对应,在结构矩阵分析中也有矩阵力 法和矩阵位移过程程序化的优点而广为流传。
3、局部坐标系中的单元刚度矩阵性质
矩阵位移法的要点 :
化整为零
集零为整
(离散化、单元分析) (结点力平衡、位移协调)
9
第一节 矩阵位移法概述
2、单元划分
将一个在荷载作用下的连续结构剖分成若干个各自独立 的单元,原结构可以看成是由各单元在连接点(称结点) 连接而成的体系——化整为零
在杆件结构矩阵分析中,一般 是把杆件的转折点、汇交点、 边界点、突变点或集中荷载作 用点等列为结点,结点之间的 杆件部分作为单元。
3
结构力学自测题(第八单元)矩阵位移法

q M
10kN/m 2EI 6m
y
l
y
M, x
l
七、图 a 所示结构,整体坐标见图 b,图中圆括号内数码为
结点定位向量(力和位移均按水平、 竖直、 转动方向顺序排列 )。求等效结点荷载列阵 PE 。(不考虑轴向变形)
于: A. 6 ; C.10 ;
20kN/m M1 1 Y1 2m 2 4m 3 y M, x
e
T K
e
。
(
)
二、选择题(将选中答案的字母填入括弧内) 1、已知图示刚架各杆 EI=常数,当只考虑弯曲变形,且各
杆单元类型相同时,采用先处理法进行结点位移编号,其正 确编号是:
是:
附:
EA l 0 0 EA l 0 0
0 12EI l 6 EI l 0 12EI l 6 EI l
2 3 2 3
0 6 EI
2
EA l 0 0 EA l 0 0
0 12EI l 6 EI l
2 3
l 4 EI l 0 6 EI l 2 EI l
(1,0,2) i 6m ② (0,0,0) 6m (a) y M, x (b) i ① (1,0,3)
1 3 1m 1m
y 5
M, x
十、试用矩阵位移法解图示连续梁,绘弯矩图。EI=已知常
数。
50 kN. m B EI 4m 20 kN C 2m D x M,
六、求图示结构的自由结点荷载列阵 P 。
A. 2(0,1,2) 1(0,0,0) 4(0,0,0) 3(0,1,3) C. 2(1,0,2) 1(0,0,0) 4(0,0,0) 3(1,0,3) 1(0,0,0) D. 2(0,1,2) 4(0,0,0) 1(0,0,0) B. 2(1,2,0) 4(0,0,0) 3(0,0,3) y M, x
结构力学课后答案第8章矩阵位移法

习 题8-1 试说出单元刚度矩阵的物理意义及其性质与特点。
8-2 试说出空间桁架和刚架单元刚度矩阵的阶数。
8-3 试分别采用后处理法和先处理法列出图示梁的结构刚度矩阵。
(a)解:(a )用后处理法计算 (1)结构标识(2)建立结点位移向量,结点力向量[]T44332211 θνθνθνθν=∆[]Ty M F M F M F M F F 4y43y32y211 =θ(3)计算单元刚度矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=2222322211211462661261226466126122EI 21 l l -l l l -l -l l -l l l l - l k k k k k ①①①①①⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222233332232223 33 6 3632336 362EI 21 l l - l l l - l -l l -l l l -l l k k k k k ②②②②②lll⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222234443343323 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ③③③③③(4)总刚度矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=222222222234443343333322322222112112 3300003 6 3 6 000 03403003601236000 0 3632600 363186120000 26460 0 0 06126122EI 0 0 00 0 0 4 3 2 1 4 3 2 1 l l -l l l - l - - l l -l l l l - l - - l l -l l -l l l l - -l -- l l -l l l l - l k k k k k k k k k k k k k ③③③③②②②②①①①①θ (5)建立结构刚度矩阵支座位移边界条件[][]00004311 θ θ θν=将总刚度矩阵中对应上述边界位移行列删除,得刚度结构矩阵。
结构力学习题集矩阵位移法习题及答案老八校

1文档收集于互联网,已整理,word 版本可编辑.第八章 矩阵位移法 – 老八校一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
10、矩阵位移法既能计算超静定结构,也能计算静定结构。
11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
14、计算图示结构整体刚度矩阵的元素665544,,K K K 。
E 为常数。
15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。
,cos α=C ,sin α=S ,C C A ⋅= S S D S C B ⋅=⋅=,,各杆EA 相同。
2文档收集于互联网,已整理,word 版本可编辑.17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。
设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。
18、计算图示结构原始刚度矩阵的元素4544,K K 。
结构力学矩阵位移法学习

第8章 矩阵位移法 ♍♦♐ 制作同济大学教材笔记(本章答案陆续上传中)一、知识要点: 1.结构坐标系一般采用右手坐标系,记为xoy 。
此时,结点位移和结点力均取与结构坐标系方向一致为正,其中结点的角位移和结点力矩按右手法则均取逆时针方向为正。
2.局部坐标系主要注意α角的定义,看如下图示即明白。
yxoijexyα3.桁架单元刚度方程000000000000eeexi i yi i xj j yj j EAEA F u l lF v EA EAF u l l F v ⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭桁架结构变换矩阵Tcos sin 00sin cos 0000cos sin 00sin cos T αααααααα⎛⎫⎪-⎪= ⎪ ⎪-⎝⎭桁架在结构坐标系下的单元刚度矩阵22222222ee c sc c sc sc s sc s EA k l c sc c sc sc s sc s ⎛⎫-- ⎪-- ⎪=⎪-- ⎪⎪--⎝⎭4.刚架单元刚度方程32322232322212612664621261266264eeeyi i i i yj j j j EIEI EI EI l l l l F v EI EI EI EI M l l l l EI EI EI EI F v l l l l M EI EI EI EI l l l l θθ⎛⎫- ⎪⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪-⎝⎭5.受轴向力作用的一般刚架单元刚度方程32322232322200001261260064620000001261260062640eexi i yi i i i xj j yj j EAEA ll EI EIEI EI F u l l l l F v EI EI EI EI M l l l l EA EA F u l l F v EIEI EI EI M l l l l EI EI EI EI l lllθ⎛⎫- ⎪⎪ ⎪⎛⎫- ⎪ ⎪⎪ ⎪ ⎪ ⎪- ⎪ ⎪=⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪⎝⎭⎪ ⎪- ⎪⎝⎭ej j ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭一般刚架单元刚度方程的坐标变换矩阵Tcos sin 0000sin cos 0000001000000cos sin 0000sin cos 0001T αααααααα⎛⎫⎪- ⎪ ⎪=⎪ ⎪ ⎪- ⎪ ⎪⎝⎭结构坐标系下的一般刚架单元刚度矩阵e k12412423523545645612412423523545645622ea a a a a a a a a a a a a a a a a a k a a a a a a a a a a a a a a a a a a --⎛-- --=---- ---- --⎝6.为什么已知杆端位移能求得单元的唯一杆端力,而已知杆端力却无法唯一确定杆端位移这是因为支座位移条件不已知,可能相差一个刚体位移,即位移的绝对值不同。
《结构力学习题集》8-矩阵位移法

矩阵位移法一、是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。
7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
11、矩阵位移法既能计算超静定结构,也能计算静定结构。
二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是:A .非对称、奇异矩阵;B .对称、奇异矩阵;C .对称、非奇异矩阵;D .非对称、非奇异矩阵。
3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。
jxi4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 矩阵位移法一、是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K ij = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。
7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
11、矩阵位移法既能计算超静定结构,也能计算静定结构。
二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵;C .对称、非奇异矩阵;D .非对称、非奇异矩阵。
3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。
jxij4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。
5、单 元 刚 度 矩 阵 中 元 素 k ij 的 物 理 意 义 是 : A .当 且 仅 当 δi =1 时 引 起 的 与 δj 相 应 的 杆 端 力 ; B .当 且 仅 当 δj =1时 引 起 的 与 δi 相 应 的 杆 端 力 ; C .当 δj =1时 引 起 的 δi 相 应 的 杆 端 力 ; D .当 δi =1时 引 起 的 与 δj 相 应 的 杆 端 力。
三、填充题1、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
2、图 示 刚 架 用 两 种 方 式 进 行 结 点 编 号 ,结 构 刚 度 矩 阵 最 大 带 宽 较 小 的 是 图 。
35641271234567(a)(b)3、图 示 梁 结 构 刚 度 矩 阵 的 主 元 素K K 1122==, 。
ll4、图 示 桁 架 结 构 刚 度 矩 阵 有个 元 素 ,其 数 值 等 于 。
3m3mABCDEAEAEA y5、用 矩 阵 位 移 法 解 图 示 连 续梁 时 ,结 构 的 综 合 结 点 荷 载 是l /2lll /26、已知图示桁架杆件①的单元刚度矩阵为式(a),又已知各结点位移为式(b),则杆件①的轴力(注明拉力或压力)应为N①=。
l1[]k E A l u v u v u v u v P lE A ①=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎧⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎫⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪=-⎧⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎫⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪1(a) b)01000001010005100230011223344 (四、计算题1、用先处理法写出图示梁的整体刚度矩阵[]K 。
123llli 0123i i 2、用先处理法写出图示梁的结构刚度矩阵[]K 。
123ll4lEIEI EI 233、计算图示结构的综合结点荷载列阵{}P 。
l /2l /2l /2l /2ll4、计算图示连续梁对应于自由结点位移的荷载列阵{}P 。
l /2ll /25、已 知 图 示 连 续 梁 结 点 位 移 列 阵 {}θ如 下 所 示 ,试 用 矩 阵 位 移 法 求 出 杆 件 23 的 杆 端 弯 矩 并 画 出 连 续 梁 的弯 矩 图 。
设 q = 20kN /m ,23 杆 的i =⨯⋅10106.kN cm 。
{}rad 108627251475734-⨯⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=θ....6m3m3m6、已知图示梁结点转角列阵为{}[]∆=056516822-/ /Tql i ql i,EI =常数。
计算B 支座的反力。
1m1m7、试 用 矩 阵 位 移 法 解 图 示 连 续 梁 ,绘 弯 矩 图 。
EI = 已 知 常 数 。
20 40 m 20 myM ,8、试 求 结 构 原 始 刚 度 矩 阵 中 的 子 块[]K 22 ,已 知 单 元 ①的 整 体 坐 标 的 单 元 刚 度 矩 阵 为 :[]K ①=-⨯-⨯---⨯-⨯⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥72360072360036003600723600360036001103600210442101107244ll9、用先处理法写出图示结构的结构刚度矩阵[]K 。
E =常数。
ll10、用先处理法计算图示连续梁的结点荷载列阵{}P 。
m4m4m411、计算图示连续梁对应于自由结点位移的荷载列阵{}P 。
m3m3m4m 412、已 知 图 示 两 端 固 定 梁 跨 中 结 点 C 的 竖 向 位 移 为 ∆CV l EI =-5123() ,转 角 ϕC =0 ,l =5m ,EI =常 数 。
试 求 单 元① 、② 的 杆 端 力 列 阵。
ll13、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
123ll4l5E I2E IE A(0,0,0)(0,0,1)(0,2,3)(0,0,0)(0,2,4)(0,0,0)E I14、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
l15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
[][]k k 1112 [][]k k 2122 []k =ii ii i单刚分块形式为 :16、已知图示结构在整体坐标系中的单元刚度矩阵。
用先处理法集成结构刚度矩阵[]K 。
(用子块形式写出)。
5[][]k k 1112 [][]k k 2122 []k =ii ii i单刚分块形式为 :17、用先处理法写出图示刚架的结构刚度矩阵[]K ,只考虑弯曲变形。
EI EI EIEI=oolll18、用先处理法写出图示结构的结构刚度矩阵[]K 。
各杆长度为l ,EA 、EI 为常数。
ABCD19、用先处理法写出以子块表示的图示结构的结构刚度矩阵[]K 。
m12m20、用先处理法写出图示刚架结构刚度矩阵[]K 。
已知:[][][]k kk①②③===⨯--------⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥1030000300000123001230030100030503000030000012300123003050301004x21、计算图示结构结点3的等效结点荷载列阵{}P 3E 。
2222、计算图示结构结点2的等效结点荷载列阵{}P 2E 。
l /2l /223、计算图示结构的综合结点荷载列阵元素431,,P P P 。
ll l24、用先处理法计算图示结构的综合结点荷载列阵{}P 。
l/2/225、计算图示结构结点荷载列阵中的元素654,,P P P 。
l/2l /2(0,0,0)(0,0,0)(0,7,8)q 13226、计算图示结构综合结点荷载列阵中的元素431,,P P P 。
P ll l /2P 27、计算图示结构综合结点荷载列阵{}P 。
ll228、计算图示刚架对应于自由结点位移的综合结点荷载列阵{}P 。
m3m33kN/mm29、计算图示刚架对应自由结点位移的综合结点荷载列阵{}P 。
各杆长度为 4m 。
30、计算图示结构结点2的综合结点荷载列阵{}P 2。
l /2l l /2ll31、计算图示刚架考虑弯曲、轴向变形时的综合结点荷载列阵{}P 。
32、若考虑弯曲、轴向变形,用先处理法写出图示结构综合结点荷载列阵{}P 。
l/2l/2ql33、考虑弯曲、轴向变形,计算图示结构综合结点荷载列阵{}P 。
mm2m2m334、考虑弯曲、轴向变形时,用先处理法计算图示结构综合结点荷载列阵{}P 。
8mm5m635、用先处理法计算图示结构的综合结点荷载列阵{}P 。
/2/2ll36、试 用 矩 阵 位 移 法 解 图 示 结构,绘 内力 图 。
m 1mm1kN m.37、计算下图结构(a )中杆34的杆端力列阵中的第3个元素和第6个元素。
不计杆件的轴向变形。
已知下图结构(a )结点位移列阵为:{}[]T 0.66667 0.2 0.7556- 0 0.3667 0 0.3333 0.2 0.2- 0.1333 00.2- 0 0 0=∆。
1m 1mll(a ) (b ) 38、计算上图结构(b )单元③的杆端力列阵{}③F,已知各杆,cm 300 ,kN/cm101.2424=⨯=I E ,cm 202=A cm l 100=,结点2位移列阵{}[][]T 2T 2222rad5313.0 cm 4596.0 cm 4730.0101 --⨯⨯==∆-θv u 。
39、考虑杆件的轴向变形,计算图示结构中单元①的杆端力{}F ①。
已知:I =(/),124m 4E =⨯3107kN /m2,m2A =05.。
结点1的位移列阵{}[]T61r a d1485.5 m 7101.2 m 7002.3101--⨯⨯=-δ。
5m m m40、计算图示刚架单元①在局部坐标下的杆端力{}F ①。
已知各杆E 、A 、I 、l 均为常数,不考虑杆件的轴向变形,{}[][]T19 5 --==∆l EIqlu T2710002322θθ。
lq41、已求得图示结构结点2、3的结点位移为式(a)、(b)并已知单元②的整体坐标的单元刚度矩阵。
计算单元②2端的弯矩。
(长度单位m ,力单位kN ,角度单位弧度)(b)10108.1593.0 , (a)1040-160-0.2=5-3335-222 ⨯⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⨯⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθv u v u[]510205.115.1050005005.105.15.105.1105.1205.1050005005.105.15.105.1⨯⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------=②k42、用先处理法写出图示桁架的结构刚度矩阵[]K 。