2014全国大学生数学建模竞赛A题论文示范
2014年数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):小区开放对道路通行的影响摘要2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。
2014数学建模国赛A题

模型一:软着陆轨道运动学与力学模型问题分析由于月球没有大气,探测器着陆时无法利用大气制动,只能利用制动发动机来减制了探测器所能携带有效载荷的质量。
探测器在月面着陆可以分为硬着陆和软着陆。
硬着陆对月速度不受限制,探测器撞上月球后设备将损坏,只能在接近月球的过程中传回月面信息;软着陆对月速度比较小,探测器着陆后可继续在月面进行考察,因此相比于硬着陆,软着陆更具有实用意义模型的建立与求解:1、建立坐标系:建立坐标系如图所示, 月心惯性坐标系m O XYZ :原点位于月球中心, m O Z 轴指向动力下降起始点, m O X 轴位于环月 轨道平面内且指向前进方向, m O Y 轴按右手定则确定, 着陆器在m O XYZ 系下的位置用极坐标(,,)r a 来表示, r 为月心到着陆器的距离矢量( r 表示大小) , A 和B 分别表示经度和纬度。
轨道坐标系Oxyz 原点位于着陆器的质心, Oz 轴为月心指向着陆器质心的方向, Ox 轴位于当地水平面内指向着陆器运动方向, Oy 轴按照右手定则确定。
制动推力F 的方向与着陆器本体轴重合, 推力方位角W 和推力仰角H 描述了制动推力F 与轨道坐标系之间的位置关系, 推力方位角W 绕正Oz 轴逆时针旋转为正, 推力仰角H 绕正Oy 轴顺时针旋转为正。
2、确定卫星在椭圆轨迹方程式:嫦娥三号在轨道上高速飞行时,设嫦娥三号卫星的质量为m ,卫星在轨道上任意点速度为v ,设月球的质量为M ;卫星与月亮之距为r ;卫星—月球系统的总能量为E ;由能量守恒定律可得:212GMm mv E r -=得:v =对于月球—卫星系统,当行星在椭圆轨迹上运动时,在卫星轨迹上有存在一点p ,月球中心和p 点的矢径为p r 该点的卫星速度为p v ,p r 与p v 之间的夹角为p β。
如果月球中心与卫星运动方向之间的垂直距离为b 。
sin p p b r β=;这个b 是卫星轨道为椭圆的短半轴;根据角动量守恒定律:sin sin p p p mvr mv r ββ=因为 sin p p b r β= 所以 sin p vr v b β= 即:sin p v b vr β=结合上述式子可以推出:sin β= (1) 式(1)为卫星椭圆轨道表达式;3、确定近月点的速度:开普勒第二定律:根据开普勒第二定律知:行星和太阳的连线在相等时间内扫过相等的面积;设近月点A 与远月点B 距离月球的距离为,A B L a c L a c =-=+,在近月点与远月点两点分别取极短的相等的时间,故有A B S S ∆=∆ 代入得:B B a c v v a c-=+ 卫星运动的总机械能等于其动能和引力势能之和,故当卫星分别经过A 、B 时的机械能为:222211()2211()22A A A A B B B B GMm GMm E mv mv L a cGMm GMm E mv mv L a c =+=--=+=--由于卫星在椭圆轨道上只受万有引力作用,所以遵循机械能守恒:A B E E =最后由椭圆方程可以求出:A B b v a c v =-=由于B v 大小为在100km 轨道上的速度,可以根据万有引力求出,即,A B v v 可以求出,其中1.73/A v km s =;它的方向为轨迹的切线方向;4、制动过程的力学与运动学分析:忽略其他星球对卫星的引力影响,则可以把嫦娥卫星的制动过程看成是一个类平抛运动;其中v 为平抛的初速度;设',F F 为万有引力和卫星的推力,S 为主减速区的竖直高度 由物理关系可以得出下列等式:'2'1()2()B BA mv F F s F F t mv l v t →→→→=++== (图)解得:728.4l km =再根据数学几何关系可以求出近月点与处在主减速区的着陆点的直线距离为746.46L km =设近着陆点与月点的坐标分别为'''(,,),(,,)x y z x y z 则可以列出下列等式L = (2)5、坐标系的转换设纬度α,经度β,海拔为h (米)月球上任意一点(,,)h αβ表示三维体系中的点(,,)x y z ,则:东经:(1737.01/1000)(cos )(sin )x h αβ≈+西经:(1737.01/1000)(cos )(sin(180))x h αβ≈++(1737.01/1000)(cos )(sin())y h αβ≈+北纬:(1737.01/1000)sin z h α≈+ 南纬:(1737.01/1000)sin(90)z h α≈++ 海拔计算时单位是米,,,x y z 单位是千米则着陆点(,,)x y z 为((1138.08,1173.58,579.23))近月点'''(,,)x y z 为(1752.013cos()sin(180),1752.013cos sin ,1752.013sin )αβαβα+ 综上所述,联立上述的式(1)和式(2),并且将所有已知的条件带入公式中,得到近月点的位置坐标为:'''1387.28470.281752.01x y z ⎧=⎪=⎨⎪=⎩所以容易求出远日点的位置坐标为: ''''''1452.49492.391834.37x y z ⎧=-⎪=⎨⎪=⎩;。
2014数学建模国赛A题教程

承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下 载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
在模型优化中,我们考虑了在桌面上均匀分布的力的情况,通过建立空间力系的平
衡模型,在临界条件下(桌子支撑腿受到指向桌内的摩擦力取最大值),由理论力学知
识推导出桌面上均匀分布的力 F 与 角、钢筋位置之间的函数式。计算得出桌子的稳定
性与钢筋位置无关,桌子在这种受力情况下的稳定性只与支撑腿与竖直方向的夹角有
2. 提出问题
(1). 给定长方形平板尺寸为 120 cm × 50 cm × 3 cm,每根木条宽 2.5 cm, 连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为 53 cm。 试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数 (例如,桌腿木条开槽的长度等)和桌脚边缘线的数学描述。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
B
我们的报名参赛队号为(8 位数字组成的编号):
27006025
所属学校(请填写完整的全名):
长安大学
二、 问题分析
(1).折叠桌以铰链连接,外形由直纹曲面构成。通过反复研究折叠桌的动态视频, 分析出折叠桌的运动特性,我们采用几何投影法,化三维运动为二维运动,简化模型。 同时,为了便于分析几何关系,我们仅对单组木条中最长与最短两根木条进行探究。并 通过 Solidwoks 软件绘画其几何关系图。根据各木条之间的连动原理推导出所有木条间 的关系,建立曲线参数方程表示折叠桌整体的动态变化过程。最后计算出折叠桌的设计 加工参数,并通过函数式和三维曲线图描述桌角边缘线。
2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
2014全国大学生数学建模竞赛省一等奖论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):13003018所属学校(请填写完整的全名):厦门理工学院参赛队员(打印并签名) :1. 刘得星2. 黄少红3. 陈明芳指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 09 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对“嫦娥三号软着陆轨道设计与控制策略”这一问题进行探讨,结合嫦娥三号探测器(下文简称探测器)软着陆过程的运动特性建立两大模型,并采用最优解方案对模型进行求解,得到最优控制方案条件下准备轨道和软着陆轨道的参数方程和相应的特征量。
2014年数学建模A题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的报名参赛队号为(8位数字组成的编号):01024007所属学校(请填写完整的全名):中国矿业大学(北京)参赛队员(打印并签名):1.何芬2.赵赞3.范越指导教师或指导教师组负责人(打印并签名):张磊(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2014年9月14日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号软着陆轨道设计与控制策略是一个综合物理以及数学综合知识的问题。
月球软着陆是未来月球探测中的一项关键技术。
本文建立数学模型,得出近月点,远月点嫦娥三号的运行状态以及其他六个着陆阶段的轨道设计。
2014年全国大学生数学建模优秀论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):C我们的参赛报名号为(如果赛区设置报名号的话):20030002所属学校(请填写完整的全名):广西机电职业技术学院参赛队员(打印并签名) :1. 李宪周2. 周永强3. 周光华指导教师或指导教师组负责人(打印并签名):数模组日期: 2014 年 9 月15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):生猪养殖产的经营管理摘要国家物价局相关负责人介绍,肉禽类产品价格之所以上升势头快,原因有三:一是养殖成本剧增;二是市场需求的逐步攀升;三是肉禽类价格的周期性波动实乃正常情况。
养殖者希望能在投资不断增大的情况下获取最大经济效益,而消费者则希望能以最实惠的价格购买到优质的放心肉,于是本文的模型概念也就应运而生了。
本文主要建立生猪养殖场应该通过怎样的经营管理方式以达到最大利润化的模型。
以10000头猪来限制猪场的数量而展开的对三个问题的求解问题。
针对问题一,对每头母猪每年平均产仔量的要求必须要满足达到或超过盈亏平衡点的求解,我们通过对可查数据进行的查询和对未知数据进行的假设,最后运用盈亏平衡点的求解公式,所以要达到或超过盈亏平衡点,每头母猪每年平均产仔量约达到9头。
2014年数学建模A题-省一等奖

关键词:软着陆、SQP算法、轨道优化、景象匹配
1
一
1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。
2014全国大学生数学建模竞赛A题题目及参考答案_

2014全国大学生数学建模竞赛A题题目及参考答案_ 2011高教社杯全国大学生数学建模竞赛题目,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息,有了这些信息,如何建立模型解决问题,DJHFSJKDHFKDSJKFHSJKDFHJKDSHFDJKSFHJKDSHFJKDSHFJK题目 A题城市表层土壤重金属污染分析摘要,本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
2014高教社杯全国大学生数学建模竞赛A题_共26页

2014 高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
嫦娥三号软着陆轨道设计与控制策略 摘要
本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信 息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈 密尔顿函数为理论基础进行了完整的建模工作。首先,通过建立坐标系结合物 理学运动公式求解出了近月点与远月点的位置及相应的速度;在此基础上,利 用 B 样条函数逼近的方法确定了嫦娥三号的着陆轨;最后通过分解着陆过程并 利用非线性规划问题及哈密尔顿函数确定着陆阶段的最优控制策。
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上
内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖
资格。)
日期: 2014 年 9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号):
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
A
我们的报名参赛队号为(8 位数字组成的编号):
07033001
所属学校(请填写完整的全名):吉林师范大学博达学院
针对问题二,采用 B 样条函数逼近的运动学统计定位方法确定了在着陆弧 段上任意时刻的位置方程,从而刻画出了嫦娥三号的着陆轨道,并用 matlab 对轨 迹进行了模拟。在 6 个阶段的最优控制策略上,先通过直角坐标系得出质心的运 动方程,再通过对 6 个阶段初始条件和终端状态的分解,利用非线性规划问题 求解哈密尔顿函数,得出性能指标(耗燃量)的最小值为:382.6531kg,从而确 定了最优控制策略。
2014全国大学生数学建模比赛A题国一优秀论文

r ' dr d , r '' d 2 r d 2 dr h ' r dr dt 2r d r d r h2 2 1 r d r dt 2 ( 3 r ' 2 2 r '' ) d r r r
利用 2.10 式得
u '' u
h2
该方程给
r
1 h2 u 1 e cos( )
e 和 即两个新积分常数。 这是一圆锥曲线, 在一定条件下它表示椭圆, 中心 M (即坐标原点 O )在其一个焦点上。考虑实际应用的需要,这里首先讨论椭圆运 动的情况。既然是椭圆,可令 p a 1 e 2 h 2
2.38 km s
18.28 ~ 28.58
318.15
27.32 天
2
建立模型 一、问题一分析 1.1 嫦娥三号近月点与远月点状态分析
月球探测器轨道运动按近似分析方法分为两个阶段:一个是以地球引力为主 的阶段; 另一个是以月球引力为主的阶段。两者以月球相对于地球的作用球半径 为 6.6 万公里的球面为分界。当航天器与月球的距离大于 6.6 万公里时,认为航 天器受到的力主要是地球引力, 并近似地认为航天器相对地球的轨道是开普勒轨 道。当航天器进入月球作用球时,认为航天器是相对于月球运动。如果将进入月 球作用球的速度换算成相对月球的速度,这个速度往往超过月球的脱离速度, 因 而航天器相对月球的轨道是双曲线。 两个阶段轨道连接起来就是月球探测器的轨 道。这种近似方法称为双二体问题。如果两个阶段的轨道都用航天器轨道摄动的 方法解出, 可以得到比较精确的轨道。月球探测器轨道依顺序可以分为停泊轨道 和过渡轨道,过渡轨道一直延伸到月球附近。 此后,不作机动飞行时便分为击中月 球轨道和绕飞轨道;作机动飞行时,可成为月球卫星轨道或在月球表面软着陆。
2014全国大学生数学建模竞赛A题论文解析

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s,2方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
2014全国数学建模A题一等奖论文

v2 = 526.94m / s 。即远月点的速度为 526.94 m / s .方向为水平方向。
图 3 着陆准备轨道环绕模拟
由于近月点和远月点分别是椭圆轨道的长半轴的两个端点, 且两点的连线经过月心 (图 3),因此由对称性可知远月点的位置为(19.51E,32.31S),高度为 100000 米。
360 = 30.301千米 / 度 2πR P 为纬度改变 1o 水平距离的改变量。 p=
根据能量守恒定律可知:
1 2 1 2 mv1 + mg ′h近 = mv 2 + mg ′h远 2 2 其中: v1 为近月点的速度; v2 为远月点的速度。
⑵模型的求解 在本题中由于我们无法确定任意时刻减速动力以及速度的大小及方向, 因此我们通 过假设简化模型,从而对问题进行求解。由于发动机推力主要是用于减少飞行器的横向 速度,同时克服由月球引力引起的径向速度,我们假设了嫦娥三号可以通过自身调节机 制使得自己在运动过程中竖直方向受恒力作用,方向向下,水平方向也受恒力作用,方 向与水平速度方向相反,初速度为 1700m/s。 因此我们可以将抛物线下降的过程分解成竖直方向匀加速,水平方向匀减速的运 动。(如图 1)由附件 2 可知,嫦娥三号在 3000m 时已经基本位于目标上方,所以我们 认为在 3000 米处水平速度近似为 0,57 m / s 为其竖直方向速度。
§3 模型的假设
1.由给出的附件月球的形状扁率为1/963.7256,数量级较小,假设月球为一个球体。 2.由于从近月点100km左右的高度降落到地球表面的时间比较对短,假设嫦娥三号不受 非球项、日月引力摄动等影响因素的影响。 3.假设月球引力场为平行定常引力场,嫦娥三号着陆轨道不受月球自转的影响。 4.假设月球表面海拔为零的球面势能为0。 5.假设嫦娥三号水平移动的距离近似为着陆划过月球表面弧度长度。 6.假设月球的重力加速度恒定,为 1 / 6 g 。
2014年全国数学建模大赛A题

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
2014年数学建模国家一等奖优秀论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):创意平板折叠桌摘要目前住宅空间的紧张导致越来越多的折叠家具的出现。
某公司设计制作了一款折叠桌以满足市场需要。
以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。
2014全国大学生数学建模a题

2014高教社杯全国大学生数学建模竞赛a题摘要2013年嫦娥三号成功发射,标志着我国航天事业上的又一个里程碑,针对嫦娥三号软着陆问题,分别建立着陆前轨道准备模型和软着陆轨道模型,建立动力学方程,以燃料最省为目标进行求解。
问题一:在软着陆前准备轨道上利用开普勒定律、能量守恒定律以及卫星轨道的相关知识,利用牛顿迭代法分别确定了近月点和远月点的速度分别为 1.6925km/s、1.6142km/s,位置分别为(19.91W,20.96N),(160.49E,69.31S)。
问题二:在较为复杂的软着陆阶段,因为相对于月球的半径,嫦娥三号到月球的表面的距离太小,如果以月球中心建立坐标系会造成比较大的误差,因此选择在月球表面建立直角坐标系,在主减速阶段的类平抛面上建立相应的动力学模型,求出关键点的状态和并设计出相应的轨道,接下来通过利用灰度值阀值分割方法和螺旋搜索法对粗避障阶段和精避障阶段的地面地形进行相应的分析,找出安全点,然后调整嫦娥三号的方向以便安全降落,最后在落地时通过姿态发动机调整探测器的姿态,使之可以平稳的落到安全点上,在以上的各个阶段都可以以燃料最省为最优指标,从而建立非线性的最优规划的动力学模型,并基于该动力学模型可以对各个阶段的制导率进行优化设计由此就可以得到各个阶段的最优控制策略,问题三:最后针对所设计的轨道和各个阶段的控制策略进行了误差分析和灵敏度分析。
对系统误差和偶然误差都做了解释;通过灵敏度分析发现,嫦娥三号在近月点的位置对结果的影响最大。
关键字牛顿迭代法,灰度值阀值分割,螺旋搜索法,灵敏度分析一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
2014年第十一届五一数学建模联赛A优秀论文

2014年第十一届五一数学建模联赛承诺书我们仔细阅读了五一数学建模联赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们授权五一数学建模联赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号为(从A/B/C中选择一项填写): A我们的参赛报名号为:参赛组别(研究生或本科或专科):所属学校(请填写完整的全名)参赛队员(打印并签名) :1.2.3.日期:年月日获奖证书邮寄地址:邮政编码2014年第十一届五一数学建模联赛编号专用页竞赛评阅编号(由竞赛评委会评阅前进行编号):评阅记录裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号):参赛队伍的参赛号码:(请各参赛队提前填写好):2014年第十一届五一数学建模联赛题 目 对黑匣子落水点的分析和预测摘 要本文通过对飞机以及黑匣子受力情况进行分析,构建正交分解模型,得出飞机的坠落轨迹和黑匣子的落水点,及黑匣子在水中的移动情况。
问题一要求在考虑空气气流影响的前提下,建立数学模型,描述飞机坠落轨迹并推测黑匣子的落水点。
本文对飞机失去动力后的全过程建立动力学方程:22d r m mg f dt=-+r r r 然后对动力学方程进行正交分解,在水平和竖直方向上分别进行分析,根据伯努利方程求得升力的计算公式,得出飞机在刚刚失去动力时,升力大于重力,所以飞机会先上升一段距离,随着水平速度的减小,升力也逐渐减小,然后飞机再下降,通过模拟计算可以得出当飞机坠落至失事点下10000m 时,飞机坠入海面,其飞行速度为515.994m s ,飞机向东北方向飞行了28697m 。
2014年本科数学建模优秀论文设计

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号): 10009062 所属学校(请填写完整的全名):东南大学参赛队员 (打印并签名) :1. 陶雷2. 廖如天3. 胡尊丽指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文围绕嫦娥三号软着陆过程运行轨道以及控制方案,首先,运用由繁到简思想对问题进行简化理出思路,再由简到繁,应用Pontryagin 极大值原理,求解主减速段运行轨迹。
建立基于局部燃料最优的最优评价模型,同时以各阶段任务需求为基础,结合实际,考虑燃料最优和实际着陆安全性,对于结果进行一定的修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s,2方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
二、问题分析2.1问题(1)的分析首先根据问题的假设、题目中所提供的数据及图片分析,可以知道嫦娥三号绕月球的轨道是由圆形轨道变为椭圆形轨道,借助开普勒定律、能量守恒定律求解出近月点的速度。
为了确定近月点和元月点的精确位置及相应的速度方向,我们建立以赤道(月球的赤道)平面为xoy平面、月心为原点、月心与零度经线和零度纬线交线的交点的连线为坐标轴的坐标系和赤道(月球的赤道)平面为xoy 平面,为极轴(月球的极轴)为z轴建立空间直角坐标系,x轴与极坐标系的轴相重合。
首先根据着陆点的经度、纬度及月球的半径求解出着陆点和近月点(带参数α)的空间直角坐标。
其次利用两点间的距离公式,并借助MATLAB软件求解出近月点与着陆点最短距离。
从而计算出α(近月点的经度)=。
最后利用卫星的轨迹是以月心为其中一个焦点,以近月点与远月点的距离为长轴的椭圆,从而求解出卫星的轨迹方程,再运用隐函数求导的应用的知识,求解出在近月点和远月点的方向导数,进而求解近月点和远月点方向余即为近月点和远月点的速度的方向。
2.2问题(2)的分析首先在根据题意,将嫦娥三号软着陆问题,分为6个阶段依次为主减速、快速调整、粗避障、精避障、缓慢下降、自由下降,我们先将6个阶段分为4个阶段,依次为第一阶段(主减速和快速调整)、第二阶段(粗避障)第三阶段(精避障),第四阶段(缓慢下降和自由下降)。
其次在第一阶段粗避障阶段,嫦娥三号悬停在月球表面约2400米上方,对星下月表进行二维和三维成像,利用遗传算法的思想,从图像中先随机选取部分点,能直接从三维图像中得知该点的海拔高度,再分别扫描这些点附近的地貌,找出一些地势平坦的区域,我们用区域内所有点与中心点海拔的均方差作为地势判断依据之一,保留这些坐标,并进行重新组合,并改变某些坐标以便能获得其他新区域的坐标,再次搜索地势平坦的区域,重复进行多次搜索,直到没有出现崎岖地势的时候,我们将此时地势最平坦的地方作为全局最优降落地点三、模型假设1、不考虑空间飞行器上各点因燃料消耗而产生的位移;2、在对卫星和空间飞行器进行轨道估计时,认为作用于其上的所有外力都通过其质心;3、卫星和空间飞行器的运动是在真空中进行的;4、卫星只受重力影响,空间飞行器除自身推力外只受重力影响;5、卫星的观测图片及数据精准;6、四、变量与符号说明C一条车道的基本通行能力L连续车流的车头间距C n 条车道的基本通行能力y排队长度x车流量1x横断面通行能力系数车流量2x持续时间3五、模型建立与求解5.1 问题(1)的分析、模型建立与求解5.1.1建模准备(1)开普勒定律开普勒第一定律开普勒第一定律开普勒第一定律,也称椭圆定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律开普勒定律开普勒第二定律,也称面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。
这一定律实际揭示了行星绕太阳公转的角动量守恒。
用公式表示为开普勒定律开普勒第三定律开普勒定律开普勒第三定律,也称调和定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。
由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。
这是牛顿的万有引力定律的一个重要基础。
用公式表示为32a K T=开普勒定律这里,是行星公转轨道半长轴,是行星公转周期,是常数 。
(2)万有引力万有引力:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
即:122M M F Gr=, 其中12M M ,为两物体的质量,11226.6710..G N m kg -=⨯(牛顿每平方米二次方千克)5.1.2 模型的建立根据以上的分析,建立以月球赤道平面为xOy 平面,月心为原点O 、Ox 为月心与零度经线和零度纬线交线的交点的连线,Oz 为极轴(月球的极轴),Oy 与Ox 和Oz 满足右手标架,建立空间直角坐标系(如图5-1所示)。
图5-1 卫星绕月轨迹及软着陆轨迹由于着陆点在球面上且近月点与远月点是由月球的经度、纬度及高度唯一确定,在此为了便于计算 将极坐标转化为空间直角坐标,并代数题中相关数据,反解出经度α。
极坐标转化为空间直角坐标即:sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩( 5.1.1)'''sin(90-sin(90-cos(90-x r y r z r βαβαβ⎧=⎪=⎨⎪=⎩)cos(-))cos(-)) (5.1.2) 距离公式:d =(5.1.3)其中:β为纬度;α为经度;r 为嫦娥三号距月心的距离;d 为嫦娥三号距着陆点的距离;根据能量守恒、开普勒第二定律(面积定律),建立以下模型 即:112222121122r v r v mv mgh mv mgH =⎧⎪⎨+=+⎪⎩ (5.1.4)则近月点的速度,近月点的速度:12v v ⎧=⎪⎪⎨⎪=⎪⎩(5.1.5)其中:m 为卫星的质量,1h 为海拔高度,h 近月点距月球表面的距离;101r h r h =++,201r H r h =++,0r 月球半径,H 远月点距月球表面的距离, g 月球重力加速度,1v 近月点的速度,2v 近月点的速度。
5.1.3模型的求解5.1.3.1 近月点与远月点的位置根据题目所给数据以上分析,可知:010,15000,1737013,2641h m r m h m β====-将以上数据代入(5.1.1)式可得,着陆点及近月点的空间直角坐标分别为:()()()()000000000sin(90)cos sin(9019.51)cos 44.12sin(90)sin sin(9019.51)sin 44.12cos(90)cos(9019.51)x r r y r r z r r βαβαβ⎧=--=--⎪⎪=--=--⎨⎪=-=-⎪⎩ (5.1.6)'0'0'sin(90-)cos sin(90-)sin cos(90-x r h y r h z r βααβααβ⎧=+⎪=+⎨⎪=⎩)cos(-)=(r )sin(-)=-(r )=0 (5.1.7)再将(5.1.6)式和(5.1.7)式代入(5.1.3)式可得关于α与d (近月点和着陆点距离)的函数,?利用Mathematica 5.0编程求解可得:α=-139.1075.1.3.2近月点与远月点的速度大小及方向近月点与远月点的速度方向,即为相应速度在x 轴与y 轴方向上的投影(如图5-2所示)图5-2 近月点与远月点的速度方向示意图由图易知:5.2 模型二的建立 5.2.1模型准备 5.2.1.1系统模型1、着陆器的动力下降段一般从15km 左右的轨道高度开始,下降到月球表面的时间比较短,在几百秒范围内,所以可以不考虑月球引力摄动。
月球自转速度比较小,也可忽略。
因此,可以利用二体模型描述系统的运动。
建立图5-2所示的着陆坐标系,并假设着陆轨道在纵向平面内,令月心为坐标原点,Oy 指向动力下降段的开始制动点,Ox 指向着陆器的开始运动方向。
则着陆器的质心动力学方程可描述如下:22(/)sin /[(/)cos 2]//SPr vv F m r r F m v r m F I ψμωθωωψω=⎧⎪=-+⎪⎪=⎨⎪=-+⎪=-⎪⎩ ⑴ 式中:,,r θω和m 分别为着陆器的月心距、极角、角速度和质量;v 为着陆器沿r 方向上的速度;F 为制动发动机的推力(固定的常值或0);SP I 为其比冲;μ为月球引力常数;ψ为发动机推力与当地水平线的夹角即推力方向角。
图5-3 月球软着陆坐标系动力下降的初始条件由霍曼变轨后的椭圆轨道近月点确定,终端条件为着陆器在月面实现软着陆。
令初始时刻00t =,终端时刻f t 不定,则相应的初始条件为0000,0,L o r r h v ωω=+== ⑵终端约束为,0,0f L f f r r v ω=== ⑶式中:L r 为月球半径;0h 为初始轨道高度;o ω为轨道角速度。
月球软着陆的最优轨道设计就是要在满足上述初始条件和终端约束的前提下,调整推力大小和方向9使得着陆器实现燃料最优软着陆,即要求以下性能指标达最大。
ft J mdt =⎰5.2.1.2模型归一化在轨道优化过程中,由于各状态变量的量级相差较大,寻优过程中可能会导致有效位数的丢失。
通过归一化处理可以克服这一缺[9]点,提高。
计算精度。
令00,ref tef r r m m ==,则/,/,/,/ref ref ref ref Sp ref r r r v v v v r I I r μμ====2/,/,/,/ref ref ref ref ref ref ref F F F F m v r m m m t t t ω=====,/,ref ref t r v θθ==。