人教版高中数学必修三第二章单元测试(二)及参考答案

合集下载

人教版高中数学选修三第二单元《随机变量及其分布》测试题(包含答案解析)(2)

人教版高中数学选修三第二单元《随机变量及其分布》测试题(包含答案解析)(2)

一、选择题1.某人射击一发子弹的命中率为0.8,现他射击19发子弹,理论和实践都表明,这19发子弹中命中目标的子弹数n 的概率()f n 如下表,那么在他射击完19发子弹后,其中击中目标的子弹数最大可能是( )A .14发B .15发C .16发D .15或16发2.《山东省高考改革试点方案》规定:2020年高考总成绩由语文、数学、外语三门统考科目和思想政治、历史、地理、物理、化学、生物六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为A 、B +,B 、C +、C 、D +、D 、E 共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%,7%,16%,24%,24%、16%、7%、3%,选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100,[81,90],[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30、八个分数区间,得到考生的等级成绩,如果山东省某次高考模拟考试物理科目的原始成绩X ~()50,256N ,那么D 等级的原始分最高大约为( )附:①若X ~()2,Nμσ,X Y μσ-=,则Y ~()0,1N ;②当Y ~()0,1N 时,()1.30.9P Y ≤≈.A .23B .29C .36D .433.某种疾病的患病率为0.5%,已知在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为( ) A .0.495% B .0.940 5%C .0.999 5%D .0.99%4.已知随机变量()2,1XN ,其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( ) 附:若随机变量()2,N ξμσ,则()0.6826P μσξμσ-≤≤+=,()220.9544P μσξμσ-≤≤+=.A .0.1359B .0.7282C .0.6587D .0.86415.已知随机变量ξ,η的分布列如下表所示,则( )ξ1 2 3P131216η1 2 3P161213A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=6.已知随机变量()2~0,X N σ,若()10.2P X>=,则()01P X <<的值为( )A .0.1B .0.3C .0.6D .0.47.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为34,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为( )A .13B .25C .23D .458.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( ) A .342+B .622+C .322+D .642+9.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .1210.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于3”;事件B :“甲、乙两骰子的点数之和等于7”,则P (B /A )的值等于( ) A .118B .19C .16D .1311.随机变量()~1,4X N ,若()20.2p x ≥=,则()01p x ≤≤为( ) A .0.2B .0.3C .0.4D .0.612.下列关于正态分布2(,)(0)N μσσ>的命题: ①正态曲线关于y 轴对称;②当μ一定时,σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”; ③设随机变量~(2,4)X N ,则1()2D X 的值等于2;④当σ一定时,正态曲线的位置由μ确定,随着μ的变化曲线沿x 轴平移. 其中正确的是( ) A .①②B .③④C .②④D .①④二、填空题13.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为X ,则X 的数学期望为___________.14.随机变量X 的取值为0、1、2,()00.2P X ==,0.4DX =,则EX =______. 15.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________. 16.甲、乙等4人参加4100⨯米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是______.17.某校高二学生一次数学诊断考试成绩(单位:分)X 服从正态分布()2110,10N ,从中抽取一个同学的数学成绩ξ,记该同学的成绩90110ξ<≤为事件A ,记该同学的成绩80100ξ<≤为事件B ,则在A 事件发生的条件下B 事件发生的概率()P B A =______.(结果用分数表示)附参考数据:()0.68P X μσμσ-<≤+=;()220.95P X μσμσ-<≤+=;()330.99P X μσμσ-<≤+=.18.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;三、解答题19.某高校为了加快打造一流名校步伐,生源质量不断改善.据统计,该校2014年到2020年所招的学生高考成绩不低于600分的人数y 与对应年份代号x 的数据如下:(1)若关于具有较强的线性相关关系,求关于的线性回归方程y bx a =+,并预测2021年该校所招的学生高考成绩不低于600分的人数;(2)今有A 、B 、C 、D 四位同学报考该校,已知A 、B 、C 被录取的概率均为13,D 被录取的概率为12,且每位同学是否被录取相互不受影响,用X 表示此4人中被录取的人数,求X 的分布列与数学期望.参考公式:()()()121niii nii x x y y b x x ==--=-∑∑,ˆa y bx=-.参考数据:71301ii y==∑,()()71140iii x x y y =--=∑.20.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩ξ近似服从正态分布()70,100N .已知成绩在90分以上(含90分)的学生有12名.(1)此次参赛的学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,则设奖的分数线约为多少分? 说明:对任何一个正态分布()2~,X Nμσ来说,通过1X Z μσ-=转化为标准正态分布()~0,1Z N ,从而查标准正态分布表得到()()1P X X Z <=Φ. 参考数据:可供查阅的(部分)标准正态分布表()Z Φ21.魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974 年发明的.魔方与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,为333⨯⨯的正方体结构,由26个色块组成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.截至2020年,三阶魔方还原官方世界纪录是由中国的杜宇生在2018年11月24日于芜湖赛打破的纪录,单次3.475秒.(1)某魔方爱好者进行一段时间的魔方还原训练,每天魔方还原的平均速度y (秒) 与训练天数x (天)有关,经统计得到如下数据:现用y a x=+作为回归方程类型,请利用表中数据,求出该回归方程,并预测该魔方爱好者经过长期训练后最终每天魔方还原的平均速度y 约为多少秒(精确到1) ?参考数据(其中1i iz x =)对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计公式分别为:1221ˆˆˆ,ni i i nii u vnuv av u unu ββ==-==--∑∑. (2)现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面.某人按规定将魔方随机扭动两次,每次均顺时针转动90︒,记顶面白色色块的个数为X ,求X 的分布列及数学期望()E X .22.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数; (2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 23.2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如图:(Ⅰ)现从2020年6月至12月中随机选取1个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的概率;(Ⅱ)从2020年6月至12月中任意选取2个月,记X 为选取的这2个月中回收的废纸可再造好纸超过3.0吨的月份的个数. 求X 的分布列及数学期望;(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a 吨. 当a 为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)24.某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(1)现从去年的消费金额超过3 200元的消费者中随机抽取2人,求至少有1位消费者去年的消费金额在(3 200,4 000]内的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表: 会员等级消费金额(1 600,3 200]内的消费者都将会申请办理银卡会员,消费金额在(3 200,4 800]内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案: 方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.25.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求: (1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.26.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A 、B 两个靶进行射击,先向A 靶射击一次,命中得1分,没有命中得0分;再向B 靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,射击B 靶如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练甲同学的射击水平显著提高,目前的水平是:向A 靶射击,命中的概率是45;向B 靶射击,命中的概率为34.假设甲同学每次射击结果相互独立. (1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设第k 发子弹击中目标的概率最大,根据题意,可以表示第1k -、k 、1k +发子弹击中目标的概率,进而可得()()1f k f k ≥+且()()1f k f k ≥-,即可得关于k 的不等式组,求解可得答案. 【详解】根据题意,设第k 发子弹击中目标的概率最大,而19发子弹中命中目标的子弹数n 的概率()19190.80.2k k k P n k C -⋅⋅==(0k =,1,2,,19),则有()()1f k f k ≥+且()()1f k f k ≥-,即191118191919112019190.80.20.80.20.80.20.80.2k k k k k kkk k k k kC C C C -++-----⎧⋅⋅≥⋅⋅⎨⋅⋅≥⋅⋅⎩ ,解可得1516k ≤≤ , 即第15或16发子弹击中目标的可能性最大,则他射完19发子弹后,击中目标的子弹最可能是第15或16发. 故选:D . 【点睛】本题考查n 次独立重复试验中发生k 次的概率问题,考查逻辑思维能力和运算求解能力,属于常考题.2.B解析:B 【分析】由于原始分与对应等级分的分布情况是相同的,由(P 等级分≥40)0.9=即有(P 原始分≥5016x -)0.9=,结合原始分满足X ~()50,256N 的正态分布即可得均值和标准差,而X Y μσ-=且()1.30.9P Y ≤≈知( 1.3)0.9P Y ≥-≈,即有5016x - 1.3=-求解即可 【详解】由题意知:X ~()50,256N 则有50μ=,16σ=设D 等级的原始分最高大约为x ,对应的等级分为40 ,而(P 等级分≥40)1(7%3%)0.9=-+=∴有(P 原始分≥5016x -)0.9= 而()1.30.9P Y ≤≈,由对称性知( 1.3)0.9P Y ≥-≈∴有5016x - 1.3=-,即29.229x =≈ 故选:B 【点睛】本题考查了正态分布的应用,根据两个有相同分布情况的数据集概率相等,由已知数据集上某点上的概率找到另一个数据集上有相等概率的点,即可找到等量关系,进而求点的位置。

2017-2018学年高中数学人教A版数学必修3练习:第二章测评 含答案 精品

2017-2018学年高中数学人教A版数学必修3练习:第二章测评 含答案 精品

第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要从容量为102的总体中用系统抽样法随机抽取一个容量为9的样本,则下列叙述正确的是()A.将总体分11组,每组间隔为9B.将总体分9组,每组间隔为11C.从总体中剔除3个个体后分11组,每组间隔为9D.从总体中剔除3个个体后分9组,每组间隔为11解析:102=9×11+3,所以需从总体中剔除3个个体后分9组,每组间隔为11.答案:D2.(2016山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140解析:由频率分布直方图可知,这200名学生每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故该区间内的人数为200×0.7=140.故选D.答案:D3.容量为20的样本数据,分组后的频数如下表所示:则样本数据落在区间[10,40)的频率为()A.0.35B.0.45C.0.55D.0.65解析:由表可知,样本数据落在区间[10,40)的频数为2+3+4=9,又样本容量为20,则频率为错误!未找到引用源。

=0.45.故选B.答案:B4.某市正在全面普及数字电视,某住宅区有2万户住户,从中随机抽取200户,调查是否安装数字电视.调查的结果如下表所示,则估计该住宅区已安装数字电视的户数是()A.5 500B.5 000C.8 000D.9 500解析:因为样本中安装数字电视的频率为错误!未找到引用源。

最新人教版高中数学必修3第二章单元测试(第二章过关检测)

最新人教版高中数学必修3第二章单元测试(第二章过关检测)

第二章过关检测(时间:90分钟,满分:100分)知识点分布表一、选择题(每小题4分,共40分)1.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必然进行()A.每层等可能抽样B.每层不等可能抽样C.所有层用同一抽样比,等可能抽样D.所有层抽同样多个体,每层都是等可能抽样2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积3.一个容量为32的样本,已知某组样本的频率为0.125,则该组样本的频数为()A.2B.4C.6D.84.某校高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为()A.15、5、25B.15、15、15C.10、5、30D.15、10、205.要从165个人中抽取15人进行身体健康检查,现采用分层抽样法进行抽取,若这165个人中有老年人22人,则老年人中被抽取到参加健康检查的人数是()A.5B.2C.3D.16.有一个样本容量为100的数据分组,各组的频数如下:(17,19],1;(19,21],1;(21,23],3;(23,25],3;(25,27],18;(27,29],16;(29,31],28;(31,33],30. 根据样本的频率分布,估计小于等于29的数据大约占总体的( ) A.42%B.58%C.40%D.16%7.有甲、乙两种水稻,测得每种水稻各10株的分蘖数后,计算出样本方差分别为s 甲2=11,s 乙2=3.4,由此可以估计( ) A.甲种水稻比乙种水稻分蘖整齐 B.乙种水稻比甲种水稻分蘖整齐 C.甲、乙两种水稻分蘖整齐程度相同 D.甲、乙两种水稻分蘖整齐程度不能比较8.下图是根据《山东统计年鉴2009》中的资料作成的1999年至2008年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1999年至2008年我省城镇居民百户家庭人口数的平均数为( )A.304.6B.303.6C.302.6D.301.69.下列说法:①一组数据不可能有两个众数;②一组数据的方差不可能是负数;③将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的个数有( ) A.0个B.1个C.2个D.3个10.下列说法不正确的是( )A.线性回归方法就是用样本点去寻找一条贴近这些样本点的直线的方法B.利用样本点的散点图可以直观判断两个变量的关系是否可用线性关系表示C.通过线性回归方程a bx y+=ˆ,可以估计和预测变化规律 D.最小二乘法指的是把各个离差加起来作为总离差,并使之达到最小值的方法 二、填空题(每小题4分,共16分)11.某公司生产三种型号的轿车,产量分别是1 200辆、6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则这三种型号的轿车依次应抽取辆_______、辆_______、辆_______.12.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为90,则90~100分数段的人数为_______.13.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系为:Sxx sZ -=(其中x 是某位学生的考试分数,x 是该次考试的平均分,S 是该次考试的标准差,Z 是这位学生的标准分)转化成标准分后可能出现小数或负值.因此,又常常再将Z 分数作线性变换转化成其他分数.例如某次学业选拔考试采用的是T 分数,线性变换公式是:T =40Z +60.已知在这次考试中某位考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数为________________.14.对于回归直线方程yˆ=4.75x +257,当x =28时,y 的估计值是. 三、解答题(共44分)15.(10分)某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查.如何采用系统抽样方法完成这一抽样?16.(10分)统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本的频率分布直方图〔每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500).(1)求月收入在[3 000,3 500)的频率;(2)根据频率分布直方图估计样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的应抽取多少?17.(12分)某个服装店经营某种服装,在某周内获纯利y(元) 与该周每天销售这些服装件数x 之间有如下一组数据:已知,(1)求x,y;(2)求纯利y与每天销售件数x之间的回归直线方程;(3)每天多销售1件,纯利y增加多少元?18.(12分)甲、乙两台机床在相同的条件下同时生产一种零件,现在从中各抽测10个,它们的尺寸分别为(单位:mm):甲:10.210.110.98.99.910.39.710.09.910.1乙:10.310.49.69.910.110.09.89.710.210.0分别计算上面两个样本的平均数与标准差,如果图纸上的设计尺寸为10 mm,从计算结果看,用哪台机床加工这种零件较合适?参考答案1答案:C2解析:A、B、D均是函数关系,C是相关关系.答案:C3解析:32×0.125=4.答案:B4解析:1590030045=⨯,1090020045=⨯,2090040045=⨯. 答案:D 5解析:1651522⨯. 答案:B 6解析:%4230281618331116183311=++++++++++++.答案:A7解析:∵s 甲2>s 乙2, ∴s 甲>s 乙.∴乙种水稻比甲种水稻分蘖整齐. 答案:B 8解析:6.303103173143123103063022982952291=++++++++⨯=x .答案:B9解析:只有①是错误的. 答案:B10解析:最小二乘法是把各个离差的平方和加起来作为总离差,并使之达到最小的方法. 答案:D 11解析: 620012009200461200==⨯,309200466000=⨯ ,109200462000=⨯. 答案:6 30 10 12解析:设总人数为N ,由题图可知N 900.05=,∴05.090=N . ∴所求人数为81045.005.09045.0=⨯=⨯N . 答案:810 13答案:8414解析:因为回归方程yˆ=4.75x +257,当x =28时,y 的估计值是4.75×28+257=390.代入x 值求得y 值不一定是准确值,而是近似值,有一些偏离. 答案:39015解:第一步,将624名职工用随机方式进行编号;第二步,从总体中剔除4人(剔除方法可用随机数法),将剩下的620名职工重新编号(分别为000,001,002,…,619),并分成62段;第三步,在第一段000,001,002,…,009这十个编号中用简单随机抽样法确定起始号码i 0; 第四步,将编号为i 0,i 0+10,i 0+20,…,i 0+610的个体抽出,组成样本. 16解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.所以,样本数据的中位数24004002000005.0)2.01.0(5.02000=+=+-+(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人). 再从10 000人用分层抽样方法抽出100人, 则月收入在[2 500,3 000)的这段应抽取2510002500100=⨯(人). 17解:(1) 71=(3+4+5+…+9)=6, 71=y (66+69+…+91)≈79.86. (2)设回归直线方程为a bx y+=ˆ, 则.∴所求的回归直线方程为yˆ=51.36+4.75x . (3)由回归直线方程知,每天多销售1件,纯利增加4.75元. 18解: 101=甲x (10.2+10.1+10.9+…+10.1)=10, 101=乙(10.3+10.4+9.6+…+10.0)=10; s 甲=101[(10.2-10)2+(10.1-10)2+…+(10.1-10)2]=0.228≈0.478, s 乙=101[(10.3-10)2+(10.4-10)2+…+(10-10)2]=0.06≈0.245, 因为x 甲=x 乙=10,s 甲>s 乙,所以乙比甲稳定,用乙较合适.。

高一数学必修三第二章检测题(答案)

高一数学必修三第二章检测题(答案)

高一《统计》单元测试班级姓名总分一、选择题:(本大题共10小题,每小题5分,共50分)1.下列说法不正确的是( )A.简单随机抽样是从个体数较少的总体中逐个抽取个体B.系统抽样是从个体数较多的总体中,将总体均分,再按事先确定的规则在各部分抽取C.系统抽样是将差异明显的总体分成几部分,再进行抽取D.分层抽样是将差异明显的部分组成的总体分成几层,分层进行抽取思路分析:若总体是由差异明显的部分组成,则应进行分层抽样.答案:C2.一学校高中部有学生2 000人,其中高一学生800人,高二学生600人,高三学生600人.现采用分层抽样的方法抽取容量为50的样本,则高一、高二、高三各年级被抽取的学生人数分别为( )A.15,10,25B.20,15,15C.10,10,30D.10,20,20思路分析:高一、高二、高三各年级被抽取的学生人数分别为20、15、15.3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( A )A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是( B )A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法5..一个容量为10的样本数据,分组后,组距与频数如下:[1,2),1;[2,3),1;[3,4),2;[4,5),3;[5,6),1;[6,7),2.则样本在区间[1,5)上的频率是( )思路分析:[1,5)上的频率为=0.70.6.观察新生婴儿的体重表,其频率分布直方图如图2-1所示,则新生婴儿体重在[2 700,3 000)的频率为( )图2-1思路分析:由频率分布直方图知频率应为(3 000-2 700)×0.001=0.3. 7..有甲、乙两种水稻,测得每种水稻各10株的分蘖数后,计算出样本方差分别为s甲2=11乙2=3.4,由此可以估计( )A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较思路分析:由方差的意义可知选B.答案:B8.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(),得到频率分布直方图如下:根据上图可得这100名学生中体重在(56.5,64.5)的学生人数是( ).A.20 B.30 C.40 D.507.C解析:根据运算的算式:体重在(56.5,64.5)学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在(56.5,64.5)学生的人数为0.4×100=40.9. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温/℃1813104-1杯数2434395163若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是( C )A. B. C. D.10.从观测所得的数据中取出m个x1,n个x2,p个x3组成一个样本,则这个样本的平均数是( D ).A.B.C.D.二、填空题一、选择题:(本大题共4小题,每小题5分,共20分)11.一个总体容量为60,其中的个体编号为00,01,02,…,59.现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11~12列的18开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 6011.18,05,07,35,59,26,39.解析:先选取18,向下81,90,82不符合要求,下面选取05,向右读数,07,35,59,26,39,因此抽取的样本的号码为:18,05,07,35,59,26,39.12.一个容量为40的样本,分成若干组,在它的频率分布直方图中,某一组相应的小长方形的面积为0.4,则该组的频数是.12.16.解析:频数=频率×样本容量.13..将一个总体的100个个体编号为0,1,2,…,99,并依次将其分为10个组,组号为0,1,2,…,9.要用系统抽样法抽取一个容量为10的样本,如果在第0组(号码为0—9)随机抽取的号码为2,则抽取的10个号码为.思路分析:用系统抽样法,且间隔为10.答案:2 12 22 32 42 52 62 72 82 9214.若施化肥量x与水稻产量y的回归直线方程为5250,当施化肥量为80 时,预计的水稻产量为.思路分析:将80代入方程可得5×80+250=650.答案:650三、解答题一、选择题:(本大题共3小题,每小题10分,共30分)15某私立学校共有员工160人,其中有任课教师120人,管理人员16人,后勤服务人员24人,为了了解员工的某种情况,要从中抽取一个容量为20的样本.用分层抽样方法抽取样本,写出过程.思路分析:本题考查分层抽样的步骤和方法.解:因为样本容量与总体的容量的比为20∶160=1∶8,所以在各类人员中抽取的个体数依次是,即15,2,3.下面我们利用系统抽样在120名教师中抽取容量为15的样本,假定这120名教师的编号是1,2,…,120,由于15∶120=1∶8,我们将120名教师分成15个部分,每个部分包括8名教师,然后在这15个部分中每一部分抽一个号码,如果它是3号,则从3号起,每隔8个抽取1个号码,这样得抽得的15位教师的号码为3,11,19,27,35,43,51,59,67,75,83,91,99,107,115.假定16位管理人员的编号是121,122,…,136,24位后勤服务人员的编号是137,138,…,160.则同理可采用系统抽样法抽出的个体为123,131和139,147,155.将以上各类人中抽取的个体合在一起,得所要抽取的样本为:3,11,19,27,35,43,51,59,67,75,83,91,99,107,115,123,131,139,147,155.16.从某校高一年级的1 002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下:(单位:)(1)试作出该样本的频率分布表;(2)画出频率分布直方图;(3)估计总体中身高小于160 的频率.思路分析:本题考查频率分布表和频率分布直方图的作法.解:该组数据中最小值为151,最大值为180,它们相差29,可取区间[150.5,180.5),并将此区间分成10个小区间,每个小区间长度为3,再统计出每个小区间内的频数并计算相应的频率.(1)在全部数据中找出最大值180和最小值151,两者之差为29,确定全距为30,决定以组距3将区间[150.5,180.5)分成10个组,从第一组[150.5,153.5)开始,分别统计各组中的频数,再计算各组的频率,并将结果填入下表:分组个数累计频数频率[150.5,153.5)正40.04[153.5,156.5)80.08[156.5,159.5)90.09[159.5,162.5)110.11[162.5,165.5)220.22[165.5,168.5)180.18[168.5,171.5)140.14[171.5,174.5)70.07[174.5,177.5)40.04[177.5,180.5)30.03合计100100 1.00(2)频率分布直方图如图所示.(3)从频率分布表可以看出,该样本中小于160 的频率为0.04+0.08+0.09=0.21,故可估计该校高一新生中身高小于160 的频率为0.21.17.假设关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:x23456y 2.2 3.8 5.5 6.57.0若由资料知,y对x呈线性相关关系.试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用约是多少?思路分析:本题考查线性回归方程的求法和利用线性回归方程求两变量间的关系.解:(1)i12345234562.23.8 5.5 6.57.04.411.422.032.542.01.23,5-1.23×4=0.08.所以,回归直线方程为=1.230.08.(2)当10时,=1.23×10+0.08=12.38(万元),即估计使用10年时维修费约为12.38万元.11 / 11。

人教版高中数学必修三单元测试题及答案 综合测试卷(二)

人教版高中数学必修三单元测试题及答案  综合测试卷(二)

综合测试题(二) (时间120分钟,满分150分) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷( 选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某影院有50排座位,每排有60个,分别编号00,01,…59,一次报告会影院内坐满了听众,会后留下每排座位号为18的所有人进行座谈,这种抽样方式属于A .简单随机抽样B .分层抽样C .系统抽样D .放回抽样2.任取一个三位正整数N ,对数2log N 是一个正整数的概率是A. 1225B. 3899C. 1300D. 14503.从装有2个红球和2个黑球的口袋内任取2个球,则互斥而不对立的两个事件是A.至少有一个黑球与都是黑球B.至少有一个红球与都是黑球C.至少有一个黑球与至少有1个红球D.恰有1个黑球与恰有2个黑球4.在一次学生联欢会上,到会的女学生比男学生多12人,从这些学生中随机挑选一人表演节目, 若选到男学生的概率为920,则参加联欢会的学生共有A .120人.B .144人C .240人D .360人5.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60), [60,70), [70,80), [80,90), [90,100]加以统计,得到如图所示的频率分布直方图。

已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.1206. 某程序框图如图所示,若输出的结果为12,则输入的实数x 的值是 A .32- B .2 C .52 D .47.要将一根长为60cm 的木棒截成两段,有一段小于15cm 的概率是 A.41 B. 21 C. 31 D. 32 8.右面是求[]1,1000内所有偶数的和的程序,把程序框图补充完整,则A .①处为S =S +i ,②处为i =i +1.B .①处为S =S +i ,②处为i =i +2.C .①处为i =i +1,②处为S =S +i .D .①处为i =i +2,②处为S =S +i .9.甲、乙两人街头约会,约定谁先到后须等待10分钟,这时若另一个人还没有来就可离开.如果甲1点半到达.假设乙在1点到2点之间何时到达是等可能的,则甲、乙能会面的概率为A.12B. 13C.14D.1610.在所有两位数中任取一个数,则这个数能被2或3整除的概率是A. 56B. 45C. 23D. 1211. 甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现在任意找两人玩这个游戏,则他们“心有灵犀”的概率为A. 736B. 1136C. 512D. 4912.如图所示的程序框图所进行的求和运算是A .10131211++++B .19151311++++ C .201614121++++ D .103221212121++++第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.如图,在长为12,宽为5的矩形内随机地撒1000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .14. 抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员 第一次 第二次 第三次 第四次 第五次甲87 91 90 89 93 乙89 90 91 88 92 则成绩较为稳定(的那位运动员成绩的方差为 .15.将5进制的数241(5)化为2进制的数 .16. 从某校参加数学竞赛的试卷中抽取一个样本,考查竞赛的成绩分布,将样本分成6组,得到频率分布直方图如图,从左到右各小组的小长方形的高的比为1:1:3:6:4:2,最右边的一组的频数是8.估计这次数学竞赛成绩的平均数 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相邻整数的概率;(Ⅱ)求取出的两个球上标号之和能被3整除的概率.甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.P A;(Ⅰ)若以A表示和为6的事件,求()(Ⅱ)这种游戏规则公平吗?试说明理由.设集合33xA xx⎧+⎫=<⎨⎬-⎭⎩,若,p q A∈,求方程22210x px q+-+=有两实根的概率.现有8名奥运会志愿者,其中志愿者123,,A A A 通晓日语,123,,B B B 通晓俄语,12,C C 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名组成一个小组.(Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分; (Ⅲ)从成绩是[)40,50和[]90,100的学生中选两人,求他们在同一分数段的概率.数学必修三综合测试题(二)参考答案一、选择题:1.C.知识点:抽样方法;解析:每排都留下座位号为18的人,符合系统抽样的特征2.C.知识点:古典概型;解析:基本事件共900个,N 只有取128、256、512三个数才满足题意,所以所求概率为31900300p ==. 3.D.知识点:互斥事件和对立事件;解析:符合不能同时发生,但可以都不发生的只有D 选项 4.A.知识点:古典概率;解析:设男生有x 人,可知()91220x x x =++,解得54x =,所以共有()545412120++=人.5.B.知识点:频率分布直方图;解析:60分以上所占的比例为()0.030.0250.0150.010100.8+++⨯=,所以成绩不少于60分的学生人数为6000.8480⨯=. 6. B.知识点:程序框图;解析:由题可知输入的x 的值一定大于1,所以有21log 2x =,解得x =7.B.知识点:几何概型;解析:设折点到棍子左端点的距离为x cm ,由题可知015x <<或者4560x <<,所以所求概率为()()150********p -+-==.8.B.知识点:程序框图;解析:程序框图求的是[]1,1000内所有偶数的和,故i 步长为2,应有i =i +2,排除A 、C ;i 初值为2,S 应加的第一个偶数为2,而不是4,故语句S =S +i应在i =i +2的前面,排除D .9.B.知识点:几何概型;解析:设事件1A 表示“乙在1点到1点20分内到达”;事件2A 表示“乙在1点20分到1点40分内到达”;事件3A 表示“乙在1点40分到2点内到达”.由题设知,以上三个事件的发生是等可能的.在1A 或3A 发生的情况下,甲、乙不能见面,在2A 发生的情况下,甲、乙能够见面,所以甲、乙能见到的概率为13. 10.C.知识点:古典概率;解析:两位数共90个,设被2整除的数为2x ,则10299x ≤≤,又N x ∈,所以共有45个,同理能被3整除的数共有30个,能被6整除的数共有15个,所以能被2或3整除的数共有45301560+-=个,因此概率为602903P ==. 11.C.知识点:古典概型;解析:基本事件共36个,所求事件所含的基本事件共16个,所以所求概率为164369p ==. 12.C.知识点:程序框图;解析:注意到框图中是2n n =+,并且循环10次,所以C 正确.二、填空题:13. 33 .知识点:几何概型;解析:所求面积为55060331000⨯=. 14. 2 .知识点:方差;解析:由分析可知乙运动员稳定,由方差公式可得其方差为2.15. 1000111(2) .知识点:进位制;解析:5进制数241(5)化作10进制数得71,10进制数71化为2进制数得1000111(2).16. 75 .知识点:频率分布直方图;解析: 从左到右各小组的频率分别为113642,,,,,;171717171717平均数的估计值是 11364245556575859575171717171717⨯+⨯+⨯+⨯+⨯+⨯=. 三、解答题:、17. 本题主要考查的知识点是:古典概型解析:利用树状图可以列出从甲、乙两个盒子中各取出1个球的所有可能结果:………………4分 (Ⅰ)所取两个小球上的标号为相邻整数的结果有12,21,23,32,34,43------,共6种,故所求概率63168P ==. ………………7分 (Ⅱ)所取两个球上数字和能被3整除结果有12,21,24,33,42-----,共5种.故所求概率为516P =. ………… 10分 18.本题主要考查的知识点是:古典概型 解析:(Ⅰ)基本事件与点集(){},N,N,15,15S x y x y x y =∈∈≤≤≤≤中的元素一一对应.因为S 中点的总数为5525⨯=个,所以基本事件总数为25. …………4分事件A 包含的基本事件共5个: ()()()()()1,5,2,4,3,3,4,2,5,1.所以()51P A .255== …………7分 (Ⅱ)这种游戏规则不公平.由(Ⅰ)知和为偶数的基本事件为13个:()()()()()()()()()()()()()1,1,1,3,1,5,2,2,2,4,3,1,3,3,3,5,4,2,4,4,5,1,5,3,5,5. …………10分所以甲赢的概率为1325,乙赢的概率为131212525-=,所以这种游戏规则不公平. …………12分 19. 本题主要考查的知识点是:几何概型解析:}{33A x x =-<<,因为,p q A ∈,所以点(),p q 在 33,33p q -<<-<<的正方形区域Ω内,区域面积为36. …………4分若使方程有两实根,应有()()222410p q ∆=--+≥,即221p q +≥,而(){}22,1p q pq +≤是一个圆形区域, 面积为π. …………8分 由题点(),p q 应落在圆221x y +=的外部,由几何概型的定义知,所求概率为正方形的面积减去圆的面积与圆的面积之比,即36ππP -=. …………12分 20. 本题主要考查的知识点是:古典概型解析:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果为1 1234 2 1 2 3 4 3 1 2 3 4 4 1 2 3 4()()()()()()()111112121122131132211,,,,,,,,,,,,,,,,,,,,,A B C A B C A B C A B C A B C A B C A B C ()()()()()()()212221222231232311312,,,,,,,,,,,,,,,,,,,,,A B C A B C A B C A B C A B C A B C A B C ,()()()()321322331332,,,,,,,,,,,,A B C A B C A B C A B C 即共包含了18个基本事件. …………4分由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”,则()()()(){}111112121122,,,,,,,,,,,M A B C A B C A B C A B C =,事件M 由6个基本事件组成,因而()61=183P M =. …………7分(Ⅱ)用N 表示“B 1、C 1不全被选中”,则其对立事件N 表示“B 1、C 1全被选中”, 由于()()(){}111211311,,,,,,,,N A B C A B C A B C =,事件N 由3个基本事件组成,所以()31=186P N =. …………10分由对立事件的概率公式得()()151=1=66P N P N =--. …………12分21.本题主要考查的知识点是:茎叶图和平均数的求解.解析:(Ⅰ)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y ,由观测结果可得1(0.6 1.2 1.2 1.5 1.5 1.8 2.2 2.3 2.3 2.4 2.5 2.6 2.7 2.7 2.820x =+++++++++++++++ 2.9 3.0 3.1 3.2 3.5) 2.3++++= …………2分1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.120y =+++++++++++++++2.4 2.5 2.6 2.73.2) 1.6++++= …………4分由以上计算结果可得x y >,因此可看出A 药的疗效更好 …………6分从以上茎叶图可以看出,A 药疗效的试验结果显示710的叶集中在茎2,3上,而B 药疗效的试验结果显示710的叶集中在茎0,1上,由此可看出A 药的疗效更好. …………12分 22. 本题主要考查的知识点是:频率分布直方图和古典概型. 解析:(Ⅰ)因为各组的频率和等于1,故第四组的频率:()10.0250.01520.010.005100.03-+⨯++⨯=. …………2分其频率分布直方图如图所示.…………4分(Ⅱ)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为()0.0150.0300.0250.005100.75+++⨯=.所以,估计这次考试的合格率是75%. …………6分 利用组中值估算这次考试的平均分,可得:450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=.所以估计这次考试的平均分是71分. …………8分 (Ⅲ) [)40,50与[]90,100的人数分别是6和3,所以从成绩是[)40,50与[]90,100的学生中选两人,将[)40,50分数段的6人编号为126,A A A ,将[]90,100分数段的3人编号为123,,B B B ,从中任取两人,则基本事件构成集合()()()()()()()()(){}121316111213232423,,,,,,,,,,,,,,,,A A A A A A A B A B A B A A A A B B Ω=共有36个, …………10分其中,在同一分数段内的事件所含基本事件为()()()()()()()()1213162356121323,,,,,,,,,,,,,A A A A A A A A A A B B B B B B 共18个,故概率181362P ==. …………12分。

高中数学必修3第二章课后习题解答

高中数学必修3第二章课后习题解答

新课程标准数学必修3第二章课后习题解答第二章统计2.1随机抽样练习(P57)1、.之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性. 练习(P62) 1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间. 2、调查的总体是所有可能看电视的人群.学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本. (2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释. 2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息. 在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少. (3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上. (4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T . A B C D E F GH I J 1(20)2T -÷ 0.00 1.50 2.00 -1.00 -1.50 -2.00 2.50 2.000.50-0.502(35)3T -÷ -1.331.331.33-2-2.33 -1.331.67-1.67 -1.33 -1.67G E .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,$147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值$y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值$y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793).(1)散点图如下:但是从散点图的分布特点来看,它们之间的线性相关性不强.习题2.3 A组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:(2)回归方程为:$0.66954.933y x=+.(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:(2)回归直线如下图所示:(2)回归方程为:$0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为:$1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为$42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略. (2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%. (3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把 指标定为17.46千元时,月65%的推销员 经过努力才能完成销售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为$ 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.分组频数 频率 累计频率 [12.34,13.62] 2 0.04 0.04 (13.62,14.9] 4 0.08 0.12 (14.9,16.18] 3 0.06 0.18 (16.18,17.46] 8 0.16 0.34 (17.46,18.74] 13 0.26 0.6 (18.74,20.02] 11 0.22 0.82 (20.02,21.3]3 0.06 0.88 (21.3,22.58]3 0.06 0.94 (22.58,23.86]1 0.02 0.96 (23.86,25.14]20.041。

人教A版高中数学必修三试卷第二章测试.doc

人教A版高中数学必修三试卷第二章测试.doc

高中数学学习材料鼎尚图文*整理制作第二章测试(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额.采取如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按顺序往后将65号,115号,165号,…抽出,发票上的销售额组成一个调查样本.这种抽取样本的方法是() A.简单随机抽样B.系统抽样C.分层抽样D.其他方式的抽样答案 B2.①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学月考中,某班有10人在100分以上,32人在90~100分,12人低于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加4×100 m接力赛的6支队伍安排跑道.就这三件事,恰当的抽样方法分别为() A.分层抽样、分层抽样、简单随机抽样B.系统抽样、系统抽样、简单随机抽样C .分层抽样、简单随机抽样、简单随机抽样D .系统抽样、分层抽样、简单随机抽样解析 ①中总体容量较多,抽取的样本容量较大,用系统抽样比较恰当;②中考试成绩各分数段之间的同学有明显的差异,应按分层抽样比较恰当;③中个体较少,按简单随机抽样比较恰当.答案 D3.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( )A .40B .48C .50D .80解析 ∵一、二、三年级的人数比为,∴从高三应抽取的人数为120×512=50.答案 C4.将一个样本容量为100的数据分组,各组的频数如下: (17,19],1;[19,21),1;(21,23],3;(23,25],3;(25,27],18;(27,29],16;(29,31],28;(31,33],30.根据样本频率分布,估计小于或等于29的数据大约占总体的( )A .58%B .42%C .40%D .16%解析 依题意可得1+1+3+3+18+16100=42%. 答案 B5.工人的月工资y (元)依劳动生产率x (千元)变化的回归方程为y^=50+80x,下列判断正确的是()A.劳动生产率为1000元时,工资为130元B.劳动生产率提高1000元,则工资提高80元C.劳动生产率提高1000元,则工资提高130元D.当月工资为210元时,劳动生产率为2000元解析由回归系数b^的意义知,当b^>0时,自变量和因变量正相关,当b^<0时,自变量和因变量负相关,回归直线的斜率b^=80,所以x每增加1个单位(千元),工人工资y平均增加80个单位(元),即劳动生产率提高1000元时,工资提高80元,故选B.答案 B6.甲、乙两名同学在五次数学测试中的成绩统计用茎叶图表示如下,若甲、乙两人的平均成绩分别用X甲,X乙表示,则下列结论正确的是()A.X甲>X乙,甲比乙成绩稳定B.X甲>X乙,乙比甲成绩稳定C.X甲<X乙,甲比乙成绩稳定D.X甲<X乙,乙比甲成绩稳定解析由茎叶图知,X甲=15×(68+69+70+71+72)=70,X乙=15×(63+68+69+69+71)=68,∴X甲>X乙,且甲比乙成绩稳定.答案 A7.已知数据x1,x2,x3的中位数为k,众数为m,平均数为n,方差为p,则下列说法中,错误的是()A.数据2x1,2x2,2x3的中位数为2kB.数据2x1,2x2,2x3的众数为2mC.数据2x1,2x2,2x3的平均数为2nD.数据2x1,2x2,2x3的方差为2p解析2x1,2x2,2x3的方差应为4p,∴选项D错.答案 D8.随机调查某校50个学生在“六一\”儿童节的午餐费,结果如下表:餐费(元)34 5人数102020 这50个学生“六一\”儿童节午餐费的平均数和方差分别为()A.4.2,0.56 B.4,0.6C.4,0.6 D.4.2,0.56解析平均数x=3×10+4×20+5×2050=4.2.方差s2=150×[(4.2-3)2×10+(4.2-4)2×20+(4.2-5)2×20]=150×(14.4+0.8+12.8)=150×28=0.56.答案 A9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4解析由平均数及方差的意义知,①,②,③,④都正确.答案 D10.10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>aC.c>a>b D.c>b>a解析把10个数据从小到大排列为10,12,14,14,15,15,16,17,17,17.∴中位数b=15,众数c=17,平均数a=110×(10+12+14×2+15×2+16+17×3)=14.7.∴a <b <c . 答案 D11.观察新生婴儿的体重,其频率分布直方图如图,则新生婴儿体重在(2700,3000)的频率为( )A .0.001B .0.1C .0.2D .0.3解析 由直方图可知,所求频率为0.001×300=0.3. 答案 D12.设矩形的长为a ,宽为b ,其比满足b :a =5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是( )A .甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析甲批次的样本平均数为15×(0.598+0.625+0.628+0.595+0.639)=0.617;乙批次的样本平均数为15×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.答案 A二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.若x1,x2,…,x2010,x2011的方差为3,则3(x1-2),3(x2-2),…,3(x2010-2),3(x2011-2)的方差为________.解析由方差的计算公式知,方差为原来方差的9倍,因此,所求的方差为27.答案2714.如图是CBA篮球联赛中,甲、乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的运动员是________.解析由茎叶图知平均得分高的运动员是甲,或计算得x甲=20.4,x2=19.3,x甲>x乙.答案甲15.防疫站对学生进行身体健康调查,采用分层抽样法抽取.某中学共有学生1600名,抽取一个容量为200的样本,已知女生比男生少抽了10人,则该校的女生人数应为________人.解析由题意知,样本中有女生95人,男生105人,则全校共有女生为95÷2001600=760人.答案76016.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析 由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,∴x =720.答案 720三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)某中学初中部有三个年级,其中初二、初三共有学生1500人,采用分层抽样从初中部抽取一个容量为75的样本,初二年级抽取30人,初三年级抽取20人.问初中部共有多少学生?解 设初中部共有x 名学生,依题意可得75x =30+201500,解得x =2250.即初中部共有2250人.18.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.19.(12分)对某400件元件进行寿命追踪调查情况频率分布如下:寿命(h)频率[500,600)0.10[600,700)0.15[700,800)0.40[800,900)0.20[900,1000]0.15合计 1(1)列出寿命与频数对应表;(2)估计元件寿命在[500,800)内的频率;(3)估计元件寿命在700 h以上的频率.解(1)寿命与频数对应表:寿命(h)[500,600)[600,700)[700,800)[800,900)[900,1000] 频数40601608060(2)估计该元件寿命在[500,800)内的频率为0.10+0.15+0.40=0.65.(3)估计该元件寿命在700 h以上的频率为0.40+0.20+0.15=0.75.20.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲1,0,2,0,2,3,0,4,1,2乙1,3,2,1,0,2,1,1,0,1(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2. ∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.21.(12分)某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427 ,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403 ,406,407,410,412,415,416,422,430(1)完成数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.解(1)(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A 的亩产平均数(或均值)比品种B 高;②品种A 的亩产标准差(或方差)比品种B 大,故品种A 的亩产量稳定性较差.22.(12分)某个体服装店经营各种服装,在某周内获纯利润y (元)与该周每天销售这种服装件数x 之间的一组数据关系如下表:x3456789y66 69 73 81 89 90 91已知:∑i =17x 2i =280,∑i =17x i y i =3487.(1)求x ,y ; (2)画出散点图;(3)观察散点图,若y 与x 线性相关,请求纯利润y 与每天销售件数x 之间的回归直线方程.解 (1)x =3+4+5+6+7+8+97=6, y =66+69+73+81+89+90+917=5597≈79.86. (2)散点图如图所示.(3)观察散点图知,y 与x 线性相关.设回归直线方程为y ^=b^x +a ^. ∵∑i =17x 2i =280,∑i =17x i y i =3487, x =6,y =5597,∴b ^=3487-7×6×5597280-7×36=13328=4.75.a ^=5597-6×4.75≈51.36.∴回归直线方程为y ^=4.75x +51.36.。

高中数学必修3第二章:统计测试题及其答案

高中数学必修3第二章:统计测试题及其答案

高中数学必修3第二章(统计)检测题班级姓名得分一、选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有( D ).A.a>b>c B.b>c>a C.c>a>b D.c>b>a3.下列说法错误的是( B ).A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大4.下列说法中,正确的是( C ).A.数据5,4,4,3,5,2的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数5.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( A ).A.甲班10名学生的成绩比乙班10名学生的成绩整齐B.乙班10名学生的成绩比甲班10名学生的成绩整齐C.甲、乙两班10名学生的成绩一样整齐D.不能比较甲、乙两班10名学生成绩的整齐程度6.下列说法正确的是( C ).A.根据样本估计总体,其误差与所选择的样本容量无关B.方差和标准差具有相同的单位C.从总体中可以抽取不同的几个样本D.如果容量相同的两个样本的方差满足S12<S22,那么推得总体也满足S12<S22是错的7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( B ).A.3.5 B.-3 C.3 D.-0.58.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是(B )分.A.97.2 B.87.29 C.92.32 D.82.869A.37.0%10.如果一组数中每个数减去同一个非零常数,则这一组数的( 10 ).A.平均数不变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数改变,方差不变11. 为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是(A)A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是10012.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为(A)A.3,2 B.2,3 C.2,30 D.30,213.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法(D)①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③14.下列说法不正确的是(A)A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布直方图能直观地表明样本数据的分布情况15A.0.35 B.0.45 C.0.55 D.0.6516.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有(D)A.a>b>c B.a>c>b C.c>a>b D.c>b>a17. 已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为(B)A.1 B. 2 C. 3 D.218. 如图是2012年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为(C)A.84,4.84 B.84,1.6 C.85,1.6 D.85,0.419.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(A)A.100 B.150 C.200 D.25020.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是(A)A.32,0.4 B.8,0.1C.32,0.1 D.8,0.4二、填空题:(本题共4小题,每小题3分,共12分)21.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是 5 。

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

人教版高中数学必修三单元测试题及答案 第二单元 基本算法语句与算法案例

人教版高中数学必修三单元测试题及答案  第二单元  基本算法语句与算法案例

第二单元测试卷(基本算法语句与算法案例)(时间90分钟,满分100分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 运行下面程序,输出结果为 a =3b =5 a =a +b b =a\bPRINT a ,bA .3,5B .8,53C .8,1D .8,852. 从键盘上输入16和5,执行下列算法语句后的结果为 INPUT “x ,y =”;x ,y A =x*yB =x MOD yC =A*y +BPRINT A ,B ,C END(x MOD y 表示整数x 除以整数y 的余数)A .A =80,B =1,C =401 B .A =80,B =3,C =403 C .A =80,B =3.2,C =403.2D .A =80,B =3.2,C =404 3. 用辗转相除法求294和84的最大公约数时,需要做除法的次数是 A .1 B .2 C .3 D .44. 用秦九韶算法计算多项式()654323456781f x x x x x x x =++++++,求当0.4x =时的值时,需要做乘法和加法的次数分别是A .6,6B .5,6C .5,5D .6,5 5. 下边程序运行后输出的结果是 n=5s=0WHILE s<15 s =s +n n=n-1 WEND PRINT n ENDA .-1B .0C .1D .2 6. 下列程序语句的算法功能是 INPUT a ,b ,c IF a<b THEN a =b END IFIF a<c THEN a =c END IF PRINT a ENDA .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列 7. 如果下边程序运行后输出的结果是132,那么在程序UNTIL 后面的“条件”应为 i=12 s=1DOs=s*i i=i-1LOOP UNTIL “条件” PRINT s ENDA .11i >B .11i >=C .11i <=D .11i < 8. 运行以下程序输出结果为 s =0T =0 i =1 DOT =T +i s =s +T i =i +1LOOP UNTIL i>10 PRINT s ENDA .55B .165C .220D .12二、填空题:本大题共4小题,每小题5分,共20分9. 下列程序语句是求函数41y x =-+的函数值,则①处为INPUT “x=”;x IF x>=4 THEN y=x-3 ELSE ○1 ; END IF PRINT y END10. 下面程序是求1~1000内所有能被3整除的数的和,则横线处缺的程序项是 ; S=0 i=3WHILE i<1000 S=S+i WENDPRINT “S=”;S END11. 下面程序的功能是________. INPUT “n=”;nS=0 i=1WHILE i<=n S=S+1/(i*(i+1))i=i+1WEND PRINT S END12. 下面程序是求使147300n ++++≥成立的最小的正整数n ,则横线处缺的程序项是 ; S =0i =1 DO S =S +i i =i +3LOOP UNTIL S>=300PRINT nEND三、解答题:本大题共4小题,共40分.解答应写出文字说明,证明过程或演算步骤.13.(本小题满分10分)某居民小区的物业部门每月向居民收取一定的物业费,收费办法为:住房面积不超过100m2的每月20元,超过部分每30m2每月加收10元(不足30m2以30m2计算).若该小区住房面积最大为150m2,试设计一个程序,求出每户居民应收取的物业费.14. (本小题满分10分)编制程序:给出30个数:1,2,4,7,11,…,其规律是:第一个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,计算这30个数的和。

高中数学人教A版必修三课时习题:第二章 章末检测含答案

高中数学人教A版必修三课时习题:第二章 章末检测含答案

第二章章末检测班级____姓名____考号____分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况答案:D解析:抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A、B、C都是从总体中抽取部分个体进行检验.选项D是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法,故选D.2.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一件产品,看其质量是否合格C.某学校分别从行政人员、老师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验答案:D解析:根据简单随机抽样的定义及特点.3.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个答案:A解析:抽取的样本容量与总体的比值为20300=115,所以抽取的样本中,进口的标志灯抽取的数量为30×115=2(个).4.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)答案:D解析:根据题目所提供的信息,题图(1)表示函数的图象;题图(2)上的点分布在某一条直线附近,所以它们是相关关系;题图(3)上的点分布在某一个二次函数的图象附近,所以这两个变量之间也是相关关系;题图(4)表示的点不具有相关关系.所以题图(2)和题图(3)表示的点对应的两个变量具有相关关系.5.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设平均数为a,中位数为b,众数为c,则有()A.a<b<c B.a>b>cC.a<c<b D.c>a>b答案:A解析:众数c=17,中位数b=15,平均数a=110×(10+12+14×2+15×2+16+17×3)=14.7,所以a<b<c.6.现有60瓶矿泉水,编号为1至60,若从中抽取6瓶检验,用系统抽样法确定所抽的编号应分别为()A.3,13,23,33,43,53B.2,14,26,38,42,56C.5,8,31,36,48,54D.5,10,15,20,25,30答案:A解析:由系统抽样的特征得此答案.(2x1-2x)2+(2x2-2x)2+…+(2x n-2x)2n-x)2+(x2-x)2+…+(x n-x)2]=4n[(x1=4s2.故选C.10.某人5次上班途中所花的时间(单位:分)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为() A.1 B.2C.3 D.4答案:D-=解析:根据题意,这组数据的平均数为10,则xx+y+10+11+9=10,5即x+y=20.①又由于这组数据的方差为2,则12+(y-10)2+(10-10)2+(11-10)2+(9-10)2]=2.②5[(x-10)由①②,得x2+y2=(x+y)2-2xy=208,即2xy=192,所以|x-y|=(x-y)2=x2+y2-2xy=208-192=4.11.如图所示是一样本的频率分布直方图,则由图中的数据,可以估计平均数是()A.13 B.12C.11 D.10答案:A解析:平均数=7.5×0.2+12.5×0.5+17.5×0.3=13.12.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差答案:C解析:由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9,所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C对;甲乙的成绩的极差均为4,D错.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的线性回归方程:y^=0.254x+0.321.由线性回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.答案:0.254解析:由题意,知其回归系数为0.254,故家庭年收入每增加1万元,年饮食支出平均增加0.254万元.14.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是________.答案:54解析:成绩在[16,18]的学生的人数所占比例为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为120×920=54.15.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.答案:910 31010解析:s 2=140×56-⎝ ⎛⎭⎪⎫222=910,s =31010. 16.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.答案:42 3解析:由41+432=42,得中位数是42.母亲平均年龄为42.5,父亲平均年龄为45.5, 因而父亲平均年龄比母亲的平均年龄多3岁.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.试用两种简单随机抽样方法分别取样(要求书写过程).解:抽签法:以姓名制签,在容器中搅拌均匀,每次从中抽取一个,连续抽取5次,从而得到一容量为5的人选样本.随机数表法:以00,01,02,…,42逐个编号,拿出随机数表前先确定起始位置,确定读数方向(可以向上、向下、向右或向左),读数在总体编号内的取出,而读数不在内的和已取出的不算,依次下去,直至得到容量为5的样本.18.(12分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差.解:(1)由题意,第5组抽出的号码为22.因为k+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为x=110(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为s2=110(102+12+22+52+72+82+92+62+42+122)=52.19.(12分)某农场为了从三种不同的西红柿品种中选取高产稳产的西红柿品种,分别在5块试验田上做实验,每块试验田均为0.5公顷,产量情况如下:问:哪一品种的西红柿既高产又稳定?解:x1=21.0,x2=20.06,x3=20.5,s1=0.756,s2=1.104,s3=1.901,x1>x3>x2,s1<s2<s3;说明第一个西红柿品种既高产又稳定.20.(12分)抽样调查30个工人的家庭人均月收入,得到如下数据(单位:元):404444556430380420500430420384420404424340424412388472358476376396428444366436364438330426(1)取组距为60,起点为320,列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计人均月收入在区间[440,500)上的家庭所占的百分比.解:(1)频率分布表为:分组频数频率[320,380) 6 0.20[380,440) 18 0.60[440,500) 4 0.13[500,560) 2 0.07合计30 1.00(2)频率分布直方图如图所示:(3)人均月收入在区间[440,500)上的家庭所占的百分比约为0.13=13%.所以估计人均月收入在区间[440,500)上的家庭所占的百分比约为13%.21.(12分)每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压强度(单位:kg/cm2)之间的关系有如下数据:x 150 160 170 180 190 200 210 220 230 240 250 260y 56.958.361.664.668.171.374.177.480.282.686.489.7(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线的附近,求y与x之间的回归直线方程.解:(1)散点图如图所示:(2)制表:i x i y i x i y i1 150 56.9 8 5352 160 58.3 9 3283 170 61.6 10 4724 180 64.6 11 6285 190 68.1 12 9396 200 71.3 14 2607 210 74.1 15 5618 220 77.4 17 0289 230 80.2 18 44610 240 82.6 19 82411 250 86.4 21 60012 260 89.7 23 322b^=182 943-12×205×72.6518 600-12×2052=4 34714 300≈0.304.a^=y--b^x-=72.6-0.304×205=10.28.于是所求的线性回归方程是y=0.304x+10.28.22.(12分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15.(2)∵0.000 2×(1 500-1 000)=0.1,0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).。

最新人教版必修三高中数学配套习题第二章 统计 2.2.2 及答案

最新人教版必修三高中数学配套习题第二章 统计 2.2.2 及答案

2.2.2 用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,xn,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=______________________________________________________________________ __.(2)方差的求法:标准差的平方s2叫做方差.s2=______________________________________________________________________ __.一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C.方差的求法是求出各个数据与平均值的差的平方后再求和D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A.甲B.乙C.甲、乙相同D.不能确定4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( )A.13s2B.s2C.3s2D.9s25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )A.84,4.84 B.84,1.6C.85,1.6 D.85,0.46.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为xA和xB ,样本标准差分别为sA和sB则( )A.xA >xB,sA>sBB.xA<xB,sA>sBC.xA >xB,sA<sBD.xA<xB,sA<sB7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________. 8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a 2,…,a20,x这21个数据的方差为________.三、解答题10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11.下面是一家快餐店所有工作人员(共7人)一周的工资表:(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:1.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2.2.2 用样本的数字特征估计总体的数字特征知识梳理1.(1)最多(2)中间①中间位置的②平均数(3)①x1+x2+…+xnn②总体中样本中2.(1)1n[(x1-x)2+(x2-x)2+…+(xn-x)2] (2)1n[(x1-x)2+(x2-x)2+…+(xn-x)2]作业设计1.B[A中平均值和方差是数据的两个特征,不存在这种关系;C中求和后还需取平均数;D中方差越大,射击越不平稳,水平越低.]2.D[由题意a=110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b=16,c=18,∴c>b>a.]3.B[方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.]4.D[s20=1n[9x21+9x22+…+9x2n-n(3x)2]=9·1n(x21+x22+…+x2n-n x2)=9·s2(s2为新数据的方差).]5.C[由题意x=15(84+84+86+84+87)=85.s2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6.B[样本A数据均小于或等于10,样本B数据均大于或等于10,故x A<x B,又样本B波动范围较小,故sA >sB.]7.91解析由题意得8.甲解析x甲=9,2S甲=0.4,x乙=9,2S乙=1.2,故甲的成绩较稳定,选甲.9.0.19解析这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19.10.解由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x甲=110×(5+6×2+7×4+8×2+9)=7010=7(环),x乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.根据以上的分析与计算填表如下:2 S 甲<2S乙,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11.解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元). (2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410) =16×2 250=375(元). 这个平均工资能代表一般工作人员一周的收入水平. 12.解 设第一组20名学生的成绩为x i (i =1,2,…,20), 第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20) =140(90×20+80×20)=85; 又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s2=140(x21+x22+…+x220+y21+y22+…+y220-40z2)=140(20s21+20x2+20s22+20y2-40z2)=12(62+42+902+802-2×852)=51.s=51.所以全班同学的平均成绩为85分,标准差为51.。

高中数学(人教版A版必修三)配套单元检测第二章 单元检测 A卷 Word版含答案

高中数学(人教版A版必修三)配套单元检测第二章 单元检测 A卷 Word版含答案

第二章统计()(时间:分钟满分:分)一、选择题(本大题共小题,每小题分,共分).从某年级名学生中抽取名学生进行体重的统计分析,就这个问题来说,下列说法正确的是().名学生是总体.每个被抽查的学生是个体.抽查的名学生的体重是一个样本.抽取的名学生的体重是样本容量.由小到大排列的一组数据,,,,,其中每个数据都小于-,那么对于样本,,-,,-,的中位数可以表示为()(+) (-)(+) (-).某单位有老年人人,中年人人,青年人人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为的样本,则老年人、中年人、青年人分别应抽取的人数是().....对变量,有观测数据(,)(=,…,),得散点图;对变量,有观测数据(,)(=,…,),得散点图.由这两个散点图可以判断().变量与正相关,与正相关.变量与正相关,与负相关.变量与负相关,与正相关.变量与负相关,与负相关.已知一组数据,,,,的平均数是,方差是,那么另一组数-----的平均数,方差分别是().,..,..某学院有个饲养房,分别养有只白鼠供实验用.某项实验需抽取只白鼠,你认为最合适的抽样方法是().在每个饲养房各抽取只.把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定只.从个饲养房分别抽取只.先确定这个饲养房应分别抽取只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定.下列有关线性回归的说法,不正确的是().相关关系的两个变量不一定是因果关系.散点图能直观地反映数据的相关程度.回归直线最能代表线性相关的两个变量之间的关系.任一组数据都有回归直线方程.已知施肥量与水稻产量之间的回归直线方程为=+,则施肥量=时,对产量的估计值为().....在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续天,每天新增疑似病例不超过人”.根据过去天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是().甲地:总体均值为,中位数为.乙地:总体均值为,总体方差大于.丙地:中位数为,众数为.丁地:总体均值为,总体方差为.某高中在校学生人,高一与高二人数相同并都比高三多人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:。

人教版高中数学必修3第三章单元测试(二)- Word版含答案

人教版高中数学必修3第三章单元测试(二)- Word版含答案

必修三第三章训练卷概率(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()①选出1人是班长的概率为140;②选出1人是男生的概率是125;③选出1人是女生的概率是115;④在女生中选出1人是班长的概率是0.A.①②B.①③C.③④D.①④3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A.12B.13C.14D.184.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不是对立事件D.以上答案都不对A.110B.310C.710D.9106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?()A.①②B.①③C.②③D.①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为()A.16B.16.32C.16.34D.15.968.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是()A.13B.12C.310D.7109.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A.0.45B.0.67C.0.64D.0.3210.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为()A.9100B.350C.3100D.2911.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.710B.310C.35D.2512.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.4πB.12πC.14π-D.112π-二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[]200,300内的概率为0.5,那么重量超过300克的概率为________.14.在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A B+发生的概率为________.(B表示B的对立事件)15.先后两次抛掷同一枚骰子,将得到的点数分别记为a,b.将a,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.16.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04(1(2)至少3人排队等候的概率是多少?18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程20x m +=有实根的概率.20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x ,y )表示“甲在x 号车站下车,乙在y 号车站下车”. (1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来; (2)求甲、乙两人同在第3号车站下车的概率; (3)求甲、乙两人在不同的车站下车的概率.21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.2018-2019学年必修三第三章训练卷概率(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】D【解析】A选项,此概率只说明发生的可能性大小,具有随机性,并非一定是5场胜3场;B选项,此治愈率只说明发生的可能性大小,具有随机性,并非10人一定有人治愈;C选项,试验的频率可以估计概率,并不等于概率;D选项,概率为90%,即可能性为90%.故选D.2.【答案】D【解析】本班共有40人,1人为班长,故①对;而“选出1人是男生”的概率为255 408=;“选出1人为女生”的概率为153408=,因班长是男生,∴“在女生中选班长”为不可能事件,概率为0.故选D.3.【答案】C【解析】抛掷两枚质地均匀的硬币,可能出现“正、正”、“反、反”、“正、反”、“反、正”,因此两个正面朝上的概率14P=.故选C.4.【答案】C【解析】由互斥事件的定义可知:甲、乙不能同时得到红牌,由对立事件的定义可知:甲、乙可能都得不到红牌,即“甲、乙分得红牌”的事件可能不发生.故选C.5.【答案】B6.【答案】A【解析】从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A“两球都为白球”发生时,①②不可能发生,且A不发生时,①不一定发生,②不一定发生,故非对立事件,而A发生时,③可以发生,故不是互斥事件.A选项正确.7.【答案】B【解析】由题意204300SS=阴矩,∴204=24=16.32300S⨯阴.故选B.8.【答案】C【解析】∵(]15,25a∈,∴()201731720251510P a-<<==-.故选C.9.【答案】D【解析】摸出红球的概率为45.45100=0,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为10.450.230.32--=.故选D.10.【答案】A【解析】任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i)(i=0,1,2,…,9);(1,i)(i=0,1,2,…,9);(2,i)(i=0,1,2,…,9);…;(9,i)(i =0,1,2,…,9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种.故所求概率为9100.故选A.11.【答案】A【解析】建立平面直角坐标系(如图所示),则由图可知满足m>n的点应在梯形OABD内,所以所求事件的概率为7=10OABDOABCSPS=梯形矩形.故选A.12.【答案】C【解析】4144P--ππ===-正方形面积圆锥底面积正方形面积.故选C.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0.3【解析】所求的概率10.20.50.3P =--=. 14.【答案】23【解析】事件A 包含的基本事件为“出现2点”或“出现4点”;B 表示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与B 是互斥的,故()()()112333P A B P A P B +==+=.15.【答案】718【解析】基本事件的总数为6×6=36.∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情况; 当a =2时,b =5符合题意,有1种情况; 当a =3时,b =3或5符合题意,即有2种情况; 当a =4时,b =4或5符合题意,有2种情况; 当a =5时,b ∈{1,2,3,4,5,6}符合题意, 即有6种情况;当a =6时,b =5或6符合题意,即有2种情况. 故满足条件的不同情况共有14种, 所求概率为1473618=. 16.【答案】1936【解析】基本事件总数为36个,若使方程有实根,则Δ=b 2-4c ≥0,即b 2≥4c .当c =1时,b =2,3,4,5,6;当c =2时,b =3,4,5,6; 当c =3时,b =4,5,6;当c =4时,b =4,5,6; 当c =5时,b =5,6;当c =6时,b =5,6.符合条件的事件个数为5+4+3+3+2+2=19,因此方程x 2-bx +c =0有实根的概率为1936.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)0.56;(2)0.44.【解析】记“有0人等候”为事件A ,“有1人等候”为事件B ,“有2人等候”为事件C ,“有3人等候”为事件D ,“有4人等候”为事件E ,“有5人及5人以上等候”为事件F ,则易知A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C , 所以()()()()()=0.10.160.30.56P G P ABC P A P B P C =++=++=.(2)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44. 也可以这样解,G 与H 互为对立事件, 所以()()110.560.44P H P G --===.18.【答案】(1)A ,B ,C 分别抽取2人,3人,2人;(2)1121. 【解析】(1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为71639=,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2人,3人,2人.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个, 全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)共有11种,所以这2个工厂中至少有1个来自A 区的概率为()1121P X =. 19.【答案】18.【解析】在平面直角坐标系中,以x 轴和y 轴分别表示m ,n 的值,因为m ,n 在(0,1)内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A 表示方程20x nx m +=有实根,则事件()40,0101n m A m n m n ⎧⎫-≥⎧⎪⎪⎪=<<⎨⎨⎬⎪⎪⎪<<⎩⎩⎭,所对应的区域为图中的阴影部分,且阴影部分的面积为18,故()18S P A S ==阴影正方形,即关于x 的一元二次方程20x nx m +=有实根的概率为18.20.【答案】(1)见解析;(2)19;(3)23.【解析】(1)甲、乙两人下车的所有可能的结果为:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4).(2)设甲、乙两人同在第3号车站下车的事件为A ,则()19P A =.(3)设甲、乙两人在不同的车站下车的事件为B ,则()121393P B =-⨯=.21.【答案】(1)0.05;(2)40元.【解析】(1)把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123, 共20个.事件E ={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123,()10.0520P E ==. (2)事件F ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P (F )=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件F 发生有10次,不发生90次.则一天可赚90×1-10×5=40,每天可赚40元. 22.【答案】(1)400;(2)710;(3)34. 【解析】(1)设该厂这个月共生产轿车n 辆,由题意得5010100300n =+,所以n =2000. 则z =2 000-(100+300)-(150+450)-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得40010005a=,即a =2. 因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”, 则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故()710P E =,即所求概率为710. (3)样本平均数()19.48.69.29.68.79.39.08.298x =⨯+++++++=.设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有: 9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以()6384P D ==,即所求概率为34.。

最新人教版高中数学必修3第二章同步训练2(附答案)

最新人教版高中数学必修3第二章同步训练2(附答案)

2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布1.(2009福建高考,文3)一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 A .0.13 B .0.39 C .0.52 D .0.642.对于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是( ) A .频率分布直方图与总体密度曲线无关 B .频率分布直方图就是总体密度曲线C .样本容量很大的频率分布直方图就是总体密度曲线D .如果样本容量无限增大,分组的组距无限减小,那么相应的频率分布折线图会越来越接近一条光滑曲线,则这条光滑曲线为总体密度曲线3.容量为100的样本数据,按从小到大的顺序分为8组,但是记录时不小心把第3组组号1 2 3 4 5 6 7 8 频数10 13 14 15 13 12 频率0.10 0.13 0.14 0.15 0.13 0.12 0.09 4.有100个数据,最大的是101,最小的是79,那么要绘制频率分布直方图,首先要求出极差(最大值与最小值的差)为______.如果选择组距为3,那么合适的分组数是____________.答案:1.C 样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.2.D3.0.14 9 根据第8组的频率为0.09可计算出第8组的频数是9,根据总的频率之和为1,可以得出第3组的频率是1-0.10-0.13-0.14-0.15-0.13-0.12-0.09=0.14,频数为14.4.22 8 极差为101-79=22,由于22÷3=713,所以合适的分组数应该是8组.1.(2009安徽皖南八校二模,2)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为() A.10 B.20 C.8 D.162.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为()A.100 B.1000 C.90 D.9003.“毒奶粉”事件引起了社会对食品安全的高度重视,各级政府加强了对食品安全的检查力度.某市工商质检局抽派甲、乙两个食品质量检查组到管辖区域内的商店进行食品质量检查.下图表示甲、乙两个检查组每天检查到的食品品种数的茎叶图,则甲、乙两个检查组每天检查到的食品种数的中位数的和是()A.56 B.57 C.58 D.594.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图(如图所示),则这20名工人中一天生产该产品数量在[55,75)的人数是__________.5.为了解电视对生活的影响,就平均每天看电视的时间,一个社会调查机构对某地居民调查了10000人,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人做进一步调查,则在[2.5,3.5)(小时)时间段内应抽出的人数共有__________人.6.对某400(1)(2)估计元件寿命在500~800 h以内的频率.答案:1.B视力在0.9以上的频率为(1+0.75+0.25)×0.2=0.4,故能报A专业的人数为0.4×50=20.2.A支出在[50,60)元的同学的概率为0.03×10=0.3,因此n=300.3=100.3.B根据中位数的定义知,甲的中位数为32,乙的中位数为25,故中位数的和是32+25=57.4.1320×(0.065×10)=13(人).5.40通过频率分布直方图可知,在[2.5,3.5)内的频率为(0.5+0.3)×0.5=0.4,频数为100×0.4=40(人).6.解:(1)(2)0.15+0.4=0.65.解法二:1-(0.2+0.15)=0.65.点评:频数分布图(表)能使我们清楚地知道数据分布在各个小组的个数;而频率分布图(表)则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.它可以使我们看到整个样本数据的频率分布.在上述图表中,各组频数之和等于样本容量,各组频率之和等于1.1.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……;第六组,成绩大于等于18秒且小于等于19秒.下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,45 答案:A 由题意可知x =0.02+0.18+0.36+0.34=0.9, y =(0.36+0.34)×50=35(名).2.一个社会调查机构就某地居民的月收入调查了20000人,并根据所得数据画出了样本频率分布直方图.为了分析居民的收入与年龄、学历、职业等方面的关系,按月收入用分层抽样方法抽样,若从月收入[3000,3500)(元)段中抽取了30人,则这20000人中共抽取的人数为( )A .200B .100C .20000D .40答案:A 由题意得,月收入在[3000,3500)(元)段中的频率是0.0003×500=0.15,该收入段的人数是20000×0.15=3000,从中抽取了30人,说明从每100人中抽取1人,故共抽取20000100=200(人).3.某市某机构调查小学生课业负担的情况,设平均每人每天做作业时间为X(单位:分钟),按时间分下列四种情况统计:①0~30分钟;②30~60分钟;③60~90分钟;④90分钟以上,有1000名小学生参加了此项调查,如图是此次调查中某一项的流程图,其输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是( )A .0.20B .0.40C .0.60D .0.80答案:B 此框图输出的是平均每天做作业时间大于60分钟的学生的人数,故小于等于60分钟的有400人,其频率为0.40.4.如图,从参加知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,估计这次知识竞赛的及格率(大于或等于60分为及格)为__________.答案:75% 频率分布直方图中大于或等于60的面积为(0.015+0.025+0.03+0.005)×10=0.75,所以及格率为75%.5.(2009浙江高考,文14)某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数..为__________.答案:30 由题意可知区间[4,5)上的数据频率为0.30,则频数为0.30×100=30.6.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图).已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列各题.(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪一组获奖率较高?答案:解:(1)依题意可算出第三组的频率为42+3+4+6+4+1=15.设共有n 件作品,则12n =15,∴n =60(件).(2)由直方图可看出第四组上交作品数量最多,共有60×620=18(件).(3)第四组获奖率为1018=59,第六组获奖率为260×120=23=69,∴第六组获奖率较高.7.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00间各自的点击量,得如下图所示的茎叶图,根据茎叶图:(1)甲、乙两个网站点击量的极差分别是多少? (2)甲网站点击量在[10,40]间的频率是多少?(3)甲、乙两个网站哪个更受欢迎?并说明理由.答案:解:(1)甲网站的极差为73-8=65;乙网站的极差为71-5=66.(2)甲网站点击量在[10,40]间的频率为414=27=0.28571.(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.点评:用茎叶图表示数据有两个突出优点:一是茎叶图上没有原始数据的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图可以随时记录数据,方便记录与表示.但茎叶图也有其局限性,当数据量很大或有多组数据时,茎叶图就不那么直观、清晰了.8.从一批灯泡中抽取50只灯泡作使用寿命的测试,所得数据如下(单位:h): 886 928 999 946 950 864 1050 927 949 852 1027 928 978 816 1000 918 1040 854 1100 900 866 905 954 890 1006 926 900 999 886 1120 893 900 800 938 864 919 863 981 916 818 946 926 895 967 921 978 821 924 651 850根据上面的数据列出频率分布表,画出频率分布直方图、频率分布折线图,并估计寿命在1000~1150 h 的灯泡在这批灯泡中所占的百分比.答案:解:频率分布直方图:频率分布折线图:估计寿命在1000~1150 h的灯泡在这批灯泡中所占的百分比为14%.。

(最新)高中数学必修三第二章《统计》单元测试(含答案)

(最新)高中数学必修三第二章《统计》单元测试(含答案)

(最新)高中数学必修三第二章《统计》单元测试(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面抽样方法是简单随机抽样的是( D )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号)2.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现用分层抽样抽取30人,则各职称抽取人数分别为 ( B )A.5,10,15B.3,9,18C.3,10,17D.5,9,163.在一次数学测试中,有考生1 000名,现想了解这1 000名考生的数学成绩,从中抽取100名学生的数学成绩进行统计分析,在这个问题中,总体是指 ( B )A.1 000名考生B.1 000名考生的数学成绩C.100名考生的数学成绩D.100名考生4.如图是某校高一学生到校方式的条形统计图,根据图形可得出骑自行车人数占高一学生总人数的 ( B )A.20%B.30%C.50%D.60%5.用抽签法进行抽样有以下几个步骤:①把号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条制作)②将总体中的个体编号;③从这个容器中逐个不放回地抽取号签,将取出号签所对应的个体作为样本;④将这些号签放在一个容器内并搅拌均匀;这些步骤的先后顺序应为 ( A )A.②①④③B.②③④①C.①③④②D.①④②③6.由观测的样本数据算得变量x与y满足线性回归方程=0.6x-0.5,已知样本平均数=5,则样本平均数的值为 ( C )A.0.5B.1.5C.2.5D.3.57.用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下列数据,读出的第三个样本编号是( B )18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 7123 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 7552 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39A.841B.114C.014D.1468.某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( B )A.5B.7C.11D.139.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( C )A.15B.18C.21D.2210.某校为了了解高三学生的身体状况,抽取了100名女生的体重.将所得的数据整理后,画出了如图的频率分布直方图,则所抽取的女生中体重在40~45 kg的人数是( A )A.10B.2C.5D.1511.有关部门从甲、乙两个城市所有的自动售货机中各随机抽取了16台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示:设甲、乙的平均数分别为,,标准差分别为s1,s2,则 ( D )A.>,s1>s2B.>,s1<s2C.<,s1<s2D.<,s1>s212.某人对一个地区人均工资收入x与该地区人均消费水平y进行统计调查,y与x 有相关关系,得到线性回归方程为y=0.66x+1.562(单位:百元).若该地区人均消费水平为7.675百元,估计该地区人均消费水平占人均工资收入的百分比约为( D )A.66%B.72.3%C.67.3%D.83%二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 1 800件.14.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是18,00,38,58,32,26,25,39.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60 15.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是6.16.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为=0.85x-0.25.由以上信息,可得表中c的值为6.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)某校高三的某次数学测试中,对其中100名学生的成绩进行分析,按成绩分组,得到的频率分布表如下:(1)求出频率分布表中①,②位置相应的数据.(2)为了选拔出最优秀的学生参加即将举行的数学竞赛,学校决定在成绩较高的第3,4,5组中分层抽样取5名学生,则第4,5组每组各抽取多少名学生?【解析】(1)①处的数据为:15÷100=0.15,②处的数据为:0.35×100=35.(2)第三、四、五组中共有学生20+20+10=50人,故抽样比k=1/10,故应从第四组中抽取20×1/10=2人,应从第五组中抽取10×1/10=1人.18.(12分)高一(3)班有学生60人,为了了解学生对目前高考制度的看法,现要从中抽取一个容量为10的样本,问此样本若采用简单随机抽样,将如何获得?试设计抽样方案.【解析】抽签法:①将这60名学生按学号编号,分别为1,2, (60)②将这60个号码分别写在60张相同纸片上;③将这60张相同纸片揉成团,放到一个不透明的盒子里搅拌均匀;④抽出一张,记下上面的号码,然后再搅拌均匀,接着抽取第2张,记下号码.重复这个过程直到取到10个号码为止.这样,与这10个号码对应的10名学生就构成了一个简单的随机样本.19.(12分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.02 40.00 39.98 40.00 39.9940.00 39.98 40.01 39.98 39.9940.00 39.99 39.95 40.01 40.0239.98 40.00 39.99 40.00 39.96(1)完成下面的频率分布表,并画出频率分布直方图.分组频数频率[39.95,39.97)[39.97,39.99)[39.99,40.01)[40.01,40.03)合计(2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.【解析】(1)分组频数频率[39.95,39.97)20.105[39.97,39.99)40.2010[39.99,40.01)100.5025[40.01,40.03]40.2010合计20150(2)因为抽样的20只产品中在[39.98,40.02]范围内有18只,所以合格率为×100%=90%,所以10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000.20.(12分)一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:转速x(转/秒) 16 14 12 8 每小时生产缺损零件数y(件) 11 9 8 5(1)作出散点图.(2)如果y与x线性相关,求出回归直线方程.(3)若实际生产中,允许每小时生产的产品中有缺损的零件最多为10个,那么,机器的转速应控制在什么范围内?(结果保留整数)附:线性回归方程=x+a中,=,=-.【解析】(1)散点图如图:(2)由题中数据列表如下:i1234x i1614128y i11985x i y i1761269640=12.5,=8.25,=660,x i y i=438,所以=≈0.73,=8.25-0.73×12.5=-0.875,所以=0.73x-0.875.(3)令0.73x-0.875≤10,解得x≤14.9≈15,故机器的运转速度应控制在15转/秒内.21.(12分)为缓解堵车现象,解决堵车问题,北京市交通局调查了甲、乙两个交通站的车流量,在2018年5月随机选取了14天,统计每天上午7:30~9:00间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由.(3)计算甲、乙两交通站的车流量在[10,40]之间的频率.【解析】(1)甲交通站的车流量的中位数为(58+55)/2=56.5.乙交通站的车流量的中位数为(36+37)/2=36.5.(2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.(3)甲交通站的车流量在[10,40]之间的有4天,所以频率为4/14=2/7,乙交通站的车流量在[10,40]之间的有6天,所以频率为6/14=3/7.22.(12分)某重点中学100位学生在市统考中的理科综合分数,以[160,180), [180,200),[200,220),[220,240),[240,260), [260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值.(2)求理科综合分数的众数和中位数.(3)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人?【解析】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,解得x=0.007 5,所以直方图中x的值为0.007 5.(2)理科综合分数的众数是(220+240)/2=230,因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以理科综合分数的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)理科综合分数在[220,240)的学生有0.012 5×20×100=25(位),同理可求理科综合分数为[240,260),[260,280),[280,300]的学生分别有15位、10位、5位, 故抽取比为11/(25+15+10+5)=1/5,所以从理科综合分数在[220,240)的学生中应抽取25×1/5=5人.。

人教版高中数学必修三第二章单元测试(二)-Word版含答案

人教版高中数学必修三第二章单元测试(二)-Word版含答案

号位座 封号场考号证考准只 名姓卷 此2018-2019学年必修三第二章训练卷统计(二)注意事项:1 .答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2 .选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3 .非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4 .考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共 12个小题,每小题 5分,共60分,在每小题给出的四个选 项中,只有一项是符合题目要求的)已知x, y 是两个变量,下列四个散点图中, x, y 是负相关趋势的是()A42 3BC.D.2. 一组数据中的每一个数据都乘以 2,再减去80,得到一组新数据,若求得新的数据的平均数是1. 2,方差是4. 4,则原来数据的平均数和方差分别是(A. 40.6, 1.1B. 48.8, 4.4C. 81.2, 44.4D. 78.8, 75.63.某篮球队甲、乙两名运动员练习罚球,每人练习 个数的茎叶图如右图,则下面结论中错误的一个是(乙 I 3 4 K 9 0 11310组,每组罚球40个.命中A.甲的极差是29B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是 244 .某学院A, B, C 三个专业共有1200名学生,为了调查这些学生勤工俭学的情 况,拟采用分层抽样的方法抽取一个容量为 120的样本.已知该学院的 A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取的学生人数为()A. 30B. 40C. 50D. 605 .在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9.6、 9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( ) A. 9.4, 0.484B, 9.4, 0.016C, 9.5, 0.04D, 9.5, 0.0166 .两个变量之间的相关关系是一种( )A.确定性关系B.线性关系C.非确定性关系D,非线性关系7 .如果在一次实验中, 测得(x, y )的四组数值分别是 A (1, 3), B (2, 3.8), C (3, 5.2), D (4, 6),则y 与x 之间的回归直线方程是( )A. y=x+1.9 B, y = 1.04x+ 1.9 C. y =0.95x+ 1.04D, y = 1.05x — 0.98 .现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众, 报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师 120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样 9 .①简单随机抽样,②分层抽样,③系统抽样 C.①系统抽样,②简单随机抽样,③分层抽样 D.①分层抽样,②系统抽样,③简单随机抽样10 从存放号码分别为 1, 2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:D. 0.3710.某校对高一新生进行军训,高一(1)班学生54人,高一(2)班学生42人,现在要用分层抽样的方法,从两个班中抽出部分学生参加4>4方队进行军训成果展示,则(1)班,(2)班分别被抽取的人数是()A. 9人,7人B. 15人,1人C. 8人,8人D. 12人,4人11.右图是根据《山东统计年鉴2010》中的资料作成的2000年至2009年我省城镇居民百户家庭人口数的茎叶图. 图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为()29 115830 2631 0 247A. 304.6B. 303.6C. 302.6D. 301.612.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如表所示:A . S3 > S| > S2 B.S2 Asi AS JC. &AS2A s3D. S2A s3 As i二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知一个回归直线方程为y = 1.5x+ 45(为W {1,5,7,13,19}),则》=.14.若a1,a2 ,…,a?。

(经典)高中数学必修三单元测试题附答案解析

(经典)高中数学必修三单元测试题附答案解析

(数学3必修)第二章:统计 [基础训练A 组] 一、选择题1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A . c b a >>B .a c b >>C .b a c >>D .a b c >>2.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫作总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A .3.5 B .3- C .3 D .5.0- 4. 要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的( )A . 平均数B . 方差C . 众数D . 频率分布5.要从已编号(160)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 6.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号 1 2 3 4 5 6 7 8 频数 10 13 x 14 15 13 12 9第三组的频数和频率分别是 ( )A .14和0.14B .0.14和14C .141和0.14 D . 31和141二、填空题1.为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 ;① 2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年必修三第二章训练卷统计(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知x ,y 是两个变量,下列四个散点图中,x ,y 是负相关趋势的是( )A.B.C. D.2.一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( ) A.40.6,1.1B.48.8,4.4C.81.2,44.4D.78.8,75.63.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是()A.甲的极差是29B.乙的众数是21C.甲罚球命中率比乙高 D .甲的中位数是244.某学院A ,B ,C 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取的学生人数为( ) A.30B.40C.50D.605.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9.6、9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.0166.两个变量之间的相关关系是一种( ) A.确定性关系 B.线性关系 C.非确定性关系D.非线性关系7.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( ) A.y =x +1.9B.y =1.04x +1.9C.y =0.95x +1.04D.y =1.05x -0.98.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样9.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:此卷只装订不密封班级姓名 准考证号 考场号 座位号A.0.53B.0.5C.0.47D.0.3710.某校对高一新生进行军训,高一(1)班学生54人,高一(2)班学生42人,现在要用分层抽样的方法,从两个班中抽出部分学生参加4×4方队进行军训成果展示,则(1)班,(2)班分别被抽取的人数是( ) A.9人,7人 B.15人,1人 C.8人,8人D.12人,4人11.右图是根据《山东统计年鉴2010》中的资料作成的2000年至2009年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为( )A.304.6B.303.6C.302.6D.301.612.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如表所示:1s 、2s 、3s ,则有( )A.312s s s >>B.213s s s >>C.123s s s >>D.231s s s >>i 14.若1a ,2a ,…,20a 这20个数据的平均数为x ,方差为0.21,则1a ,2a ,…,20a ,x 这21个数据的方差为________.15.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据:(1)(2)求出y 对x 的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?18.(12分)炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的一列数据如下表所示:(1)(2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?19.(12分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图. (1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.20.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)(2)若二者线性相关,求回归直线方程.21.(12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表1表异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1:A 类工人生产能力的频率分布直方图图2:B 类工人生产能力的频率分布直方图②分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:(1)y (2)如果y 与x 具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?2018-2019学年必修三第二章训练卷统计(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】由图可知C 选项中的散点图描述了y 随着x 的增加而减小的变化趋势, 故选C. 2.【答案】A 3.【答案】D【解析】甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙, 即C 成立;甲的中位数应该是22+242=23.故选D.4.【答案】B【解析】由题知C 专业有学生1200-380-420=400(名),那么C 专业应抽取的学生数为120×4001 200=40名.故选B.5.【答案】D【解析】去掉一个最高分9.9后再去掉一个最低分8.4,剩余的分值为9.4、9.4、9.6、9.4、9.7.求平均值9.49.49.69.49.759.5++++=,代入方差运算公式可知方差为0.016.故选D. 6.【答案】C 7.【答案】B 8.【答案】A【解析】①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差距较大,宜用分层抽样,故选A. 9.【答案】A 【解析】1100(13+5+6+18+11)=0.53.故选A. 10.【答案】A【解析】高一(1)班与(2)班共有学生96人,现抽出16名学生参加方队展示,所以抽取(1)班人数为1696×54=9(人),抽取(2)班人数为1696×42=7(人). 故选A. 11.【答案】B 12.【答案】B 【解析】∵()()222221211n x x x s x n=+++-,∴221222255758595108.573.51(72.25 1.)20254s ⨯⨯⨯⨯-=+++===-,∴1s =.同理2s,3s ∴213s s s >>,故选B. 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】58.5【解析】回归直线方程为y =1.5x +45经过点(x ,y ),由x =9,知y =58.5. 14.【答案】0.2 15.【答案】0.030,3【解析】因5个矩形面积之和为1,即(0.005+0.010+0.020+a +0.035)×10=1, ∴0.070×10+10a =1,∴a =0.030.由于三组内学生数的频率分别为:0.3,0.2,0.1, 所以三组内学生的人数分别为30,20,10.因此从[140,150]内选取的人数为1060×18=3. 16.【答案】2三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)见解析;(2)y =735x -2;(3)129.4万元. 【解析】(1)作出的散点图如图所示(2)观察散点图可知各点大致分布在一条直线附近,列出下表:易得x =52,y =692,所以b =()1422215694418473225543042i i i ii x y x y xx==-⋅-⨯⨯==⎛⎫--⨯ ⎪⎝⎭∑∑, a =y -b x =692-735×52=-2.故y 对x 的回归直线方程为y =735x -2. (3)当x =9时,y =735×9-2=129.4. 故当广告费为9万元时,销售收入约为129.4万元.18.【答案】(1)见解析;(2)y =1.267x -30.47;(3)172.25分钟.【解析】(1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示:从图中可以看出,各点散布在一条直线附近,即它们线性相关. (2)列出下表,并用科学计算器进行计算: x =159.8,y =172,21265448i i x =∑=,21312350i i y =∑=,1287640i ii x y =∑=.设所求的回归直线方程为y =b x +a ,110i b ==∑b x ≈-30.47.即当钢水含碳量为160时,应冶炼约172.25分钟. 19.【答案】(1)见解析;(2)见解析.【解析】(1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,2s 甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,2s 乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由2s 甲>2s 乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.20.【答案】(1)相关;(2)y =0.8136x +0.0043.【解析】(1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. (2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74, y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,102133.72i i x =∑=,10127.51i ii x y =∑=,()101102210.81361010i i i ii x y x yb xx==-⋅≈=-∑∑a =1.42-1.74×0.8136≈0.0043,∴回归方程为y =0.8136x +0.0043.21.【答案】(1)25,75;(2)①见解析,B 类工人,②123,133.8和131.1. 【解析】(1)A 类工人中和B 类工人中分别抽查25名和75名. (2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. 频率分布直方图如下:图1:A 类工人生产能力的频率分布直方图图2:B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小. ②A x =425×105+825×115+525×125+525×135+325×145=123,B x =675×115+1575×125+3675×135+1875×145=133.8,x =25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.22.【答案】(1)有;(2)y =0.668x +54.96;(3)189分钟. 【解析】(1)作出如下散点图:由图可知,y 与x 具有线性相关关系. (2)列出下表x =55,y =91.7,2138500i i x =∑=,2187777i i y =∑=,155950i ii x y =∑=设所求的回归直线方程为y ^=b ^x +a ^,则有()101102221105595010.605591.73850010?516850i ii i i x y x yb x x==-⋅-⨯⨯=-≈=-∑∑a =y -b x =91.7-0.668×55=54.96,因此,所求的回归直线方程为y =0.668x +54.96.(3)这个回归直线方程的意义是当x 每增加1时,y 的值约增加0.668,而54.96是y 不随x 变化而变化的部分,因此,当x =200时,y 的估计值为 y =0.668×200+54.96=188.56≈189,因此,加工200个零件所用的时间约为189分钟.。

相关文档
最新文档