抛物线及其标准方程导学案

合集下载

高中数学抛物线及其标准方程精品导学案

高中数学抛物线及其标准方程精品导学案

抛物线及其标准方程一、课前导学 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 2.抛物线的标准方程推导过程: 3.抛物线标准方程的几种形式预习自测1.方程[]22)1()3(2-++y x =|x -y +3|表示的曲线是( ) A .圆B .椭圆C .双曲线D .抛物线2.若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是 ( ) A .椭圆B .双曲线C .抛物线D .直线3.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ( ) A .椭圆B .双曲线C .双曲线的一支D .抛物线二、课堂导学例1.已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y 2=-6x ; (2)3x 2+5y =0;(3)y =4x 2; (4)y 2=a 2x (a ≠0). 练习1.抛物线方程为7x +4y 2=0,则焦点坐标为( ) A .⎝ ⎛⎭⎪⎫716,0 B .⎝ ⎛⎭⎪⎫-74,0 C .⎝ ⎛⎭⎪⎫-716,0D .⎝ ⎛⎭⎪⎫0,-74 练习2.抛物线y =-14x 2的准线方程是 ( )A .x =116B .x =1C .y =1D .y =2例2.分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0;(2)过点(3,-4); (3)焦点在直线x +3y +15=0上.例3..一种卫星接收天线的轴截面如图(课本59页图1),卫星波速呈近似平行状态射入轴截面为抛物线的接收天线,经放射聚集到焦点处。

已知接收天线的口径(直径)为4.8m ,深度为0.5m 。

试建立适当的坐标系,求抛物线的标准方程和焦点坐标。

三、课堂小结 1.抛物线的定义;2.抛物线的四种标准方程;3.注意抛物线的标准方程中的字母P 的几何意义四、课堂练习1.抛物线y 2=ax (a ≠0)的准线方程是 ( )(A )4a x =-;(B)x =4a ;(C)||4a x =- ;(D)x =||4a2.抛物线21x m y =(m ≠0)的焦点坐标是( )(A ) (0,4m )或(0,4m -);(B) (0,4m)(C) (0,m 41)或(0,m 41-);(D) (0,m41)3.根据下列条件写出抛物线的标准方程:(1)焦点是F (0,3),(2)焦点到准线的距离是2.4.求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)x 2+8y =0.5.点M 到点(0,8)的距离比它到直线y =-7的距离大1,求M 点的轨迹方程。

高中数学选修2-1 抛物线导学案加课后作业及参考答案

高中数学选修2-1   抛物线导学案加课后作业及参考答案

抛物线及其标准方程导学案【学习要求】1.掌握抛物线的定义及焦点、准线的概念.2.会求简单的抛物线的方程.【学法指导】通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用.【知识要点】1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F) 的点的轨迹叫做抛物线.点F叫做抛物线的,直线l叫做抛物线的2.抛物线标准方程的几种形式图形标准方程焦点坐标准线方程探究点一抛物线定义如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题1画出的曲线是什么形状?问题2|DA|是点D到直线EF的距离吗?为什么?问题3点D在移动过程中,满足什么条件?问题 4在抛物线定义中,条件“l不经过点F”去掉是否可以?例1方程[]22)1()3(2-++yx=|x-y+3|表示的曲线是()A.圆B.椭圆C.双曲线D.抛物线跟踪训练1(1)若动点P与定点F(1,1)和直线l:3x+y-4=0的距离相等,则动点P的轨迹是() A.椭圆B.双曲线C.抛物线D.直线(2)若动圆与圆(x-2)2+y2=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是()A.椭圆B.双曲线C.双曲线的一支D.抛物线探究点二抛物线的标准方程问题 1结合求曲线方程的步骤,怎样求抛物线的标准方程?问题2抛物线方程中p有何意义?标准方程有几种类型?问题3根据抛物线方程如何求焦点坐标、准线方程?例2已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y2=-6x;(2)3x2+5y=0;(3)y=4x2;(4)y2=a2x (a≠0).跟踪训练2(1)抛物线方程为7x+4y2=0,则焦点坐标为()A.⎝⎛⎭⎫716,0B.⎝⎛⎭⎫-74,0C.⎝⎛⎭⎫-716,0D.⎝⎛⎭⎫0,-74(2)抛物线y=-14x2的准线方程是()A.x=116B.x=1 C.y=1 D.y=2例3分别求满足下列条件的抛物线的标准方程.(1)准线方程为2y+4=0;(2)过点(3,-4);(3)焦点在直线x+3y+15=0上.跟踪训练3(1)经过点P(4,-2)的抛物线的标准方程为()A.y2=x或x2=y B.y2=x或x2=8yC.x2=-8y或y2=x D.x2=y或y2=-8x(2)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点F的距离为5,求m的值、抛物线方程及其准线方程.探究点三 抛物线定义的应用例4 已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12. (1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 跟踪训练4 (1)抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) A .1716B .1516C .78D .0(2)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A .172B .3C . 5D .92【当堂检测】1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为 ( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是 ( )A .a +p2B .a -p2C .a +pD .a -p3.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是 ( ) A .2B .3C .115D .37164.焦点在y 轴上,且过点A (1,-4)的抛物线的标准方程是__________【课堂小结】1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型,因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论.有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).【拓展提高】1.若点P 到点(4,0)F 的距离比它到直线50x +=的距离小1,则P 点的轨迹方程是( ) A .216y x =- B .232y x =- C .216y x = D .232y x =2.过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,如果621=+x x ,那么AB =( )A .10B .8C .6D .43.过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x4.抛物线x y 42=上的两点A 、B 到焦点的距离之和为10,则线段AB 中点到y 轴的距离为【课后作业】一、基础过关1.抛物线y 2=-8x 的焦点坐标是( )A .(2,0)B .(-2,0)C .(4,0)D .(-4,0)2.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为 ( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A .12B .1C .2D .44.与y 轴相切并和圆x 2+y 2-10x =0外切的动圆的圆心的轨迹为( )A .圆B .抛物线和一条射线C .椭圆D .抛物线 5.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为__________.6.抛物线x 2+12y =0的准线方程是__________.7.求经过A (-2,-4)的抛物线的标准方程及其对应的准线、焦点坐标. 二、能力提升8.定长为3的线段AB 的两个端点在抛物线y 2=2x 上移动,M 为AB 的中点,则M 点到y 轴的最短距离为 ( )A .12B .1C .32D .29.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.11.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且与y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,求抛物线的方程.12.喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5 m,且与OA所在的直线相距4 m,水流落在以O为圆心,半径为9 m的圆上,则管柱OA的长是多少?三、探究与拓展13.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过点Q(6,0),求抛物线的方程.抛物线的简单几何性质(一)导学案【学习要求】1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题.【学法指导】结合椭圆和双曲线的几何性质,类比抛物线的性质,通过对抛物线的标准方程的讨论,进一步理解用代数方法研究几何性质的优越性,感受坐标法和数形结合的基本思想.【知识要点】1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围对称轴x轴x轴y轴y轴顶点(0,0)离心率e=2直线过抛物线y2=2px(p>0)的焦点F,与抛物线交于A(x1,y1)、B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,故|AB|=3.直线与抛物线的位置关系直线y=kx+b与抛物线y2=2px(p>0)的交点个数决定于关于x的方程的解的个数.当k≠0时,若Δ>0,则直线与抛物线有个不同的公共点;当Δ=0时,直线与抛物线有个公共点;当Δ<0时,直线与抛物线公共点.当k=0时,直线与抛物线的轴,此时直线与抛物线有个公共点.【问题探究】探究点一抛物线的几何性质问题1类比椭圆、双曲线的几何性质,结合图象,说出抛物线y2=2px(p>0)的范围、对称性、顶点、离心率.怎样用方程验证?问题 2通过抛物线的几何性质,怎样探求抛物线的标准方程?例1若抛物线y2=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()A.⎝⎛⎭⎫14,±24B.⎝⎛⎭⎫18,±24C.⎝⎛⎭⎫14,24D.⎝⎛⎭⎫18,24跟踪训练1抛物线y2=2px (p>0)上一点M的纵坐标为-42,这点到准线的距离为6,则抛物线方程为________探究点二抛物线的焦点弦问题例2已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A、B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.跟踪训练2已知过抛物线y2=4x的焦点F的弦长为36,求弦所在的直线方程.探究点三直线与抛物线的位置关系问题结合直线与椭圆、直线与双曲线的位置关系,请你思考一下怎样讨论直线与抛物线的位置关系?例3已知抛物线的方程为y2=4x,直线l过定点P(-2,1),斜率为k,k为何值时,直线l与抛物线y2=4x:只有一个公共点;有两个公共点;没有公共点?跟踪训练3过点(-3,2)的直线与抛物线y2=4x只有一个公共点,求此直线方程.【当堂检测】1.设AB为过抛物线y2=2px (p>0)的焦点的弦,则|AB|的最小值为()A .p 2B .pC .2pD .无法确定2.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .⎣⎡⎦⎤-12,12B .[-2,2]C .[-1,1]D .[-4,4]3.抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为 ( )A .(1,2)B .(0,0)C .⎝⎛⎭⎫12,1D .(1,4)4.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=_______【课堂小结】1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.3.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线与抛物线联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.【拓展提高】1.若双曲线2221613x y p -=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .422.设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4OA AF •=-,则点A 的坐标为( )A .)22,2(±B .)2,1(±C .)2,1(D .)22,2(3.已知直线l :y =-x +1和抛物线C :x y 42=,设直线与抛物线的交点为B A 、,求AB 的长。

抛物线及其标准方程---导学案

抛物线及其标准方程---导学案

抛物线及其标准方程(导学案)学习目标:1、能利用抛物线的定义建立适当的坐标系确定抛物线的方程;2、会根据抛物线的标准方程求焦点坐标和准线方程;3、能根据条件运用待定系数法求抛物线的标准方程;学习过程:想一想:在我们以前的数学学习和生活中,哪些是与抛物线有关的?请举例:复习回顾:求曲线方程的五个步骤:问题情境:如图:点F是定点,直线L为不经过点F的定直线,H是直线上的任意一点,过点H作直线的垂线HM ,线段FH的垂直平分线m交HM于点M,拖动点H,得到点M的轨迹为红色曲线,(取不同的H点画画看得到的曲线是不是红色曲线?)你能发现点M满足的几何条件吗?一、抛物线的定义:我们把的点的轨迹叫做抛物线。

其中点F叫做抛物线的,直线L叫做抛物线的思考:如果点F在直线L上,那么到点F和直线L距离相等的点的轨迹是什么?(结合上图变换条件画一画)二、抛物线标准方程的确定1、思考:设抛物线的焦点F到准线L的距离为常数P(P>0),如何建立坐标系,使求出抛物线的方程更简单呢?方案一:以定直线L为y轴,过点F且垂直于直线L的直线为x轴,建立坐标系xoy,如图:则焦点F的坐标为,准线L的方程为设抛物线上任意一点M的坐标为()yx,,点M到准线L的距离为d,则MF d==由抛物线的定义得点M的坐标所满足的关系式为:化简得:方案二:以定点F为原点,过点F且垂直于直线L的直线为x轴,过点F且与直线L平行的直线为y轴,建立坐标系xoy,如图:则焦点F的坐标为,准线L的方程为设抛物线上任意一点M的坐标为()yx,,点M到准线L的距离为d,则MF d==由抛物线的定义得点M的坐标所满足的关系式为:化简得:方案三:以经过点F且垂直于直线L的直线为x轴,垂足为K,并使原点与线段KF的中点重合,建立坐标系xoy,如图:则焦点F的坐标为,准线L的方程为x,,点M到准线L的距离为d,则设抛物线上任意一点M的坐标为()yMF d==由抛物线的定义得点M的坐标所满足的关系式为:化简得: 思考:为什么这样建立坐标系,能使抛物线的方程更简单?2、抛物线的标准方程由曲线与方程的关系知,抛物线的标准方程为:它所表示的抛物线的焦点坐标在 ,焦点坐标为 ,准线方程为思考:P 的几何意义为:其它三种开口方向的抛物线你能类比着方案三求出它们的标准方程呢?小试身手:指出抛物线x y 82=的焦点坐标和准线方程三、 抛物线的其他标准方程:1、右图中的两条抛物线的图象关于 对称,由右边抛物线的标准方程为:()022>=p px y 得,的方程为 ,焦点F 的坐标为 ,准线L 的方程为2、右图中的两条抛物线的图象关于 对称,由右边抛物线的标准方程为:()022>=p px y 得,的方程为 ,焦点F 的坐标为 ,准线L 的方程为3、右图中的两条抛物线的图象关于 对称,由上边抛物线的标准方程为:()022>=p py x 得,的方程为 ,焦点F 的坐标为 ,准线L 的方程为4、填表:一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,如下表所示:图形 开口方向 标准方程 焦点坐标 准线方程5、思考:结合上述表格,你能发现四种标准方程有哪些相同点和不同点?相同点:不同点:合作探究:如何根据抛物线四种标准方程的形式,区分抛物线的对称轴和开口方向?四、典例分析:例1:(1)已知抛物线的标准方程是26y x ,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是F (0,2),求它的标准方程。

抛物线及其标准方程 第一课时导学案

抛物线及其标准方程 第一课时导学案

2.4.1 抛物线及其标准方程(第一课时)一、【目标】——目标一旦确定,就要朝着它努力前进!1.经历从具体情境中抽象出抛物线模型的过程,掌握抛物线的定义、几何图形和标准方程2.会指出抛物线的焦点及准线方程求简单的抛物线方程.3.会利用抛物线的性质解决问题二、【探索实验】——生活中充满了数学,伟大的数学家华罗庚曾说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生活之谜,日月之繁,无处不用数学。

在足球比赛时,猛一脚,射门,足球沿着一条美丽的弧线,球进了,那将是激动人心的事。

翻开历史,看到引以为骄傲的赵州桥时,你一定会惊叹在当时条件下,怎会有这样的杰作。

夏天,仰望天空,看见一道美丽的彩虹,你一定会遐想翩翩;夜晚,当你看到伴随美妙音乐呈现出五彩斑澜的喷泉时,你一定有一种天上人间般的感觉。

当你看到运动员投篮正中篮心时你一定会讶与他的准确率。

这一切的一切,如果抽取出来,就是抛物线。

只要我们细心观察生活,会发现生活中有很多与抛物线有联系的事物,农田或草地灌溉器,甚至导弹轨迹也与抛物线有一定的联系。

按下列步骤作出图(1)在纸一侧固定直尺(2)将直角三角板的一条直角边紧贴直尺(3)取长等于另一直角边长的绳子(4)固定绳子一端在直尺外一点F(5)固定绳子另一端在三角板点A上(6)用笔将绳子拉紧,并使绳子紧贴三角板的直角边(7)上下移动三角板,用笔画出轨迹CACFF你所画出的轨迹是:笔尖到尺子的距离与到点F的距离的关系:三、【合作解疑】——努力,发挥你们的小宇宙吧!1、定义:平面内与一定点F和一条定直线l(l不经过点F)的距离________的点轨迹叫做,定点F叫做的焦点,直线l叫做的准线2、抛物线方程的推导:①建系——这一步很重要,直接影响所求方程的形式就你上面画出的曲线,建立适当的坐标系:以___________________为x轴,________________为y轴,建立直角坐标系①设点——求曲线方程,除了设点外,还应该把定义中出现定值设出来!①列方程——想一想在椭圆的定义中,有什么等量关系?这就是你要列的方程!等量关系__ ,点M 所满足的方程为:____________ 。

抛物线及其标准方程导学案

抛物线及其标准方程导学案

抛物线及其标准方程导学案自主预习·探新知情景引入你可曾留意枝头上的鸟儿展翅高飞的那一瞬间在天空留下的魅力弧线?你可曾看到流星划过天际残留的星痕?你可曾欣赏运动员跳高时纵身一跃所形成的完美曲线?你可曾游览被誉为“西湖十景”之一的“断桥残雪”?……那些就是一条条优美的抛物线.新知导学1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)距离__相等__的点的轨迹.(2)焦点:__定点F__叫做抛物线的焦点.(3)准线:__定直线l__叫做抛物线的准线.2.抛物线的标准方程图形标准方程焦点坐标准线方程__y2=2px(p>0)__(p2,0)x=-p2__y2=-2px(p>0)__(-p2,0)x=p2__x2=2py(p>0)__(0,p2)y=-p2__x2=-2py(p>0)__(0,-p2)y=p2预习自测1.已知抛物线y 2=mx 的焦点坐标为(2,0),则m 的值为( D ) A .12B .2C .4D .8[解析] 由题意得m >0,且m4=2,∴m =8,故选D .2.抛物线y =14x 2的准线方程为( C )A .x =-116B .x =-18C .y =-1D .y =2[解析] 抛物线y =14x 2化为标准方程为x 2=4y ,故准线方程为y =-1.3.(2020·福州市八县(市)协作校期末)y =2x 2的焦点坐标是( D ) A .(1,0) B .(14,0)C .(0,14)D .(0,18)[解析] ∵由题意知, p =14,p 2=18, ∴焦点坐标是(0,18).故选D .4.(2020·浙江宁波高二检测)抛物线x 2=-2py (p >0)的焦点是双曲线y 23-x 26=1的一个焦点,则该抛物线的方程是__x 2=-12y __.[解析] 双曲线的焦点坐标是(0,±3),根据题意,知抛物线的焦点坐标只能是(0,-3),即-p2=-3,p =6,故抛物线的方程是x 2=-12y . 5.求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4);(3)焦点在直线x +3y +15=0上.[解析] (1)准线方程为2y +4=0,即y =-2,故抛物线焦点在y 轴的正半轴上,设其方程为x 2=2py (p >0).又p2=2,所以2p =8,故抛物线的标准方程为x 2=8y .(2)∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4),即2p =163,2p 1=94. ∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(3)令x =0得y =-5;令y =0得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x .互动探究·攻重难互动探究解疑 命题方向❶求抛物线的焦点及准线典例1 设抛物线的方程为y =ax 2(a ≠0),求抛物线的焦点坐标与准线方程. [解析] 抛物线方程y =ax 2(a ≠0)化为标准形式:x 2=1a y ,当a >0时,则2p =1a ,解得p =12a ,p 2=14a ,∴焦点坐标是(0,14a ),准线方程是y =-14a .当a <0时,则2p =-1a ,p 2=-14a.∴焦点坐标是(0,14a ),准线方程是y =-14a ,综上,焦点坐标是(0,14a ),准线方程是y =-14a .『规律方法』 求抛物线的焦点及准线的步骤: (1)把解析式化为抛物线标准方程形式; (2)明确抛物线开口方向;(3)求出抛物线标准方程中参数p 的值;(4)写出抛物线的焦点坐标或准线方程. ┃┃跟踪练习1__■(1)抛物线C :y =-x 28的焦点坐标为__(0,-2)__;(2)抛物线x 2=-y 的准线方程为__y =14__.[解析] (1)抛物线C 的标准方程为x 2=-8y,2p =8,p =4, ∴p2=2,故抛物线C 的焦点坐标为(0,-2). (2)抛物线x 2=-y 中,2p =1,p =12,p 2=14,故抛物线的准线方程为y =14.命题方向❷抛物线的标准方程典例2 求满足下列条件的抛物线的标准方程. (1)焦点在直线3x +4y -12=0上; (2)焦点是(-2,0); (3)准线是y =-32;(4)焦点到准线的距离是2.[思路分析] 求解这类问题,应首先由已知条件设出标准方程,再根据已知条件求出参数p ,最后写出结论,根据已知条件,确定是四种形式中的哪一种是关键:(1)中直线与坐标轴有两个交点(4,0),(0,3),也就有两种情况,(2)开口向左,(3)开口向上,(4)有四种情况. [解析] (1)直线与坐标轴的交点为(4,0)和(0,3),故抛物线有两种情况: 焦点为(4,0)时,p2=4,∴p =8,∴方程为y 2=16x ;焦点为(0,3)时,p2=3,∴p =6,∴方程为x 2=12y .故所求方程为y 2=16x 或x 2=12y . (2)焦点为(-2,0),∴p2=2,∴p =4,∴方程为y 2=-8x .(3)准线为y =-32,∴p 2=32,∴p =3,开口向上,∴方程为x 2=6y .(4)由于p =2,开口方向不确定,故有四种情况, ∴方程为y 2=4x 或y 2=-4x 或x 2=4y 或x 2=-4y . 『规律方法』 求抛物线标准方程的方法: ①直接法:直接利用题中已知条件确定焦参数p .②待定系数法:先设出抛物线的方程,再根据题中条件,确定焦参数p . 当焦点位置不确定时,应分类讨论或设抛物线方程为y 2=mx 或x 2=my .已知焦点坐标或准线方程可确定抛物线标准方程的形式;已知抛物线过某点不能确定抛物线标准方程的形式,需根据四种抛物线的图象及开口方向确定. ┃┃跟踪练习2__■求满足下列条件的抛物线的标准方程: (1)过点(-3,2);(2)焦点在直线x -2y -4=0上.[解析] (1)当焦点在x 轴上时,设所求的抛物线方程为y 2=-2px ,由过点(-3,2)知,4=-2p (-3),得p =23,此时抛物线的标准方程为y 2=-43x ;当焦点在y 轴上时,同理可得,抛物线标准方程为x 2=92y ,故所求的抛物线方程为y 2=-43x 或x 2=92y .(2)令x =0得y =-2,令y =0得x =4,故抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,p 2=4,故p =8,此时抛物线方程为y 2=16x ,当焦点为(0,-2)时,p2=2,故p =4,此时抛物线方程为x 2=-8y ,从而所求的抛物线的标准方程为y 2=16x 或x 2=-8y . 命题方向❸抛物线定义的应用典例3 (1)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( B ) A .4 B .6 C .8D .12(2)过点A (1,0),且与直线l :x =-1相切的圆的圆心的轨迹是( D ) A .圆B .椭圆C.双曲线D.抛物线[思路分析](1)根据点P到y轴的距离求出它到抛物线准线的距离,利用抛物线定义转化为它到焦点的距离.(2)根据动圆过点A,且与直线l相切,可知圆心到点A的距离等于它到直线l的距离,由抛物线定义知动圆圆心的轨迹是抛物线.[解析](1)抛物线y2=8x的准线为x=-2,因为点P到y轴的距离是4,故点P到准线的距离是6,根据抛物线的定义知点P到该抛物线焦点的距离是6.(2)如图,设动圆的圆心为M,由题意,M到直线l的距离等于圆的半径|MA|,由抛物线的定义知,点M的轨迹是以A(1,0)为焦点,以直线l为准线的抛物线.『规律方法』利用抛物线的定义可以将抛物线上的点到焦点的距离转化为到准线的距离,这一相互转化关系会给解题带来方便.要注意灵活运用定义解题.┃┃跟踪练习3__■(1)已知抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=__3__;(2)(湖南浏阳一中醴陵一中2020年高二联考)已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为__2__.[解析](1)抛物线y2=4x的焦点为F(1,0),准线为x=-1.根据抛物线的定义,点M到准线的距离为4,则点M的横坐标为3.(2)由题意得x p=5-1=4⇒y p=±4,因此△PFO的面积为12×4×1=2.学科核心素养抛物线在实际问题中的应用典例4 如图是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降1 m 后,求水面的宽度.[思路分析]先建立平面直角坐标系,将A点代入抛物线方程求得p,得到抛物线方程,再把y=-3代入抛物线方程求得x0,进而得到答案.[解析]建立如图所示的平面直角坐标系,设抛物线方程为x2=-2py(p>0),则A(2,-2),将其坐标代入x2=-2py得p=1.∴x2=-2y.当水面下降1 m,得D(x0,-3)(x0>0),将其坐标代入x2=-2y得x20=6,∴x0=6,∴水面宽|CD|=2 6 m.『规律方法』抛物线的实际应用问题,关键是建立坐标系,将题目中的已知条件转化为抛物线上点的坐标,从而求得抛物线方程,再把待求问题转化为抛物线的几何量讨论.┃┃跟踪练习4__■如图(1)所示,花坛水池中央有一喷泉,水管O′P=1 m,水从喷头P喷出后呈抛物线状,先向上至最高点后落下,若最高点距水面2 m,P距抛物线的对称轴1 m,则水池的直径至少应设计多少米?(精确到1 m)图(1)[解析]如图(2)所示,建立平面直角坐标系.设抛物线方程为x2=-2py(p>0).图(2)依题意有P (-1,-1)在此抛物线上,代入得p =12.故得抛物线方程为x 2=-y .又B 在抛物线上,将B (x ,-2)代入抛物线方程得x =2,即|AB |=2,则|O ′B |=|O ′A |+|AB |=2+1,因此所求水池的直径为2(1+2) m ,约为5 m , 即水池的直径至少应设计为5 m. 易混易错警示 考虑问题要全面典例5 设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程. [错解] 准线方程为x =-m4,因为准线与直线x =1的距离为3,所以准线方程为x =-2,所以-m4=-2,所以m =8,故抛物线方程为y 2=8x .[错解分析] 题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线不同,错解考虑问题欠周到.[正解] 当m >0时,准线方程为x =-m 4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ;当m <0时,准线方程为x =-m 4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x .课堂达标·固基础1.(2020·安徽安庆市期末调研)抛物线x =4y 2的焦点坐标是( D ) A .(0,1) B .(0,-1) C .(-116,0)D .(116,0)[解析] 抛物线的方程为x =4y 2, 化为标准方程为y 2=14x ,所以焦点在x 轴上,且p =18,故其焦点坐标为(116,0).故选D .2.到定点F (1,-1)的距离与到定直线3x -2y -5=0的距离相等的点P 的轨迹是( D ) A .抛物线 B .椭圆 C .双曲线的一支D .直线[解析] 由于点F (1,-1)在直线3x -2y -5=0上,故可知动点P 的轨迹为过点F 且与直线3x -2y -5=0垂直的直线.3.若椭圆x 23+4y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p 为4.若抛物线y 2=2px (p ≠0)的焦点与双曲线x 22-y 22=1的右焦点重合,则实数p =__4__. 5.抛物线y 2=-2px (p >0)上有一点M 的横坐标为-9,它到焦点的距离为10,求此抛物线方程和M 点的坐标. [解析] 设焦点为F (-p2,0),M 点到准线的距离为d , 则d =|MF |=10, 即9+p2=10,所以p =2,所以抛物线方程为y 2=-4x . 将M (-9,y )代入抛物线的方程,得y =±6,所以M 点坐标为(-9,6)或(-9,-6).。

抛物线及其标准方程导学案

抛物线及其标准方程导学案

§2.1抛物线及其标准方程导学案【教学目标】掌握抛物线的定义、标准方程、几何图形.【重点难点】▲重点:抛物线的几何图形▲难点:抛物线的定义、标准方程【学法指导】以自学为主,教师讲授为辅【知识链接】复习1:函数2261y x x=-+的图象是,它的顶点坐标是(),对称轴是.复习2:点M与两定点1(2,0)F-,2(2,0)F的距离之和它等于5,则点M的轨迹是什么图形?【学习过程】(预习教材P71~ P73,找出疑惑之处)实践探究:若一个动点(,)P x y到一个定点F和一条定直线l的距离相等,这个点的运动轨迹是怎么样的呢?知识点一:抛物线的定义平面内与一个定点F和一条定直线l(l F不过)的距离的点的集合叫做抛物线.定点F叫做抛物线的;定直线l叫做抛物线的.知识点二:抛物线的标准方程定点F到定直线l的距离为p(0p>).抛物线220y x =的焦点坐标是( ),准线方程是 ; 抛物抛物线212x y =-的焦点坐标是( ),准线方程是 . 抛物线0522=+x y 的焦点坐标是( ),准线方程是 . 抛物线082=+y x 的焦点坐标是( ),准线方程是 .※ 典型例题例1 (1)已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是(0,2)F -,求它的标准方程.变式:根据下列条件写出抛物线的标准方程:⑴焦点坐标是(0,4); ⑵准线方程是14x =-; ⑶焦点到准线的距离是2.例2 若抛物线的焦点在直线240x y --=上,求抛物线的标准方程.【课堂小结】1.抛物线的定义:2.抛物线的标准方程、几何图形.【课后作业】。

2023年最新的抛物线的定义及其标准方程教学设计案例5篇

2023年最新的抛物线的定义及其标准方程教学设计案例5篇

2023年最新的抛物线的定义及其标准方程教学设计案例5篇抛物线的定义及其标准方程教学设计案例5篇抛物线的定义及其标准方程教学设计案例(1)[文件] sxgjieja0004.doc[科目] 数学[年级] 高中[章节][关键词] 抛物线/标准方程[标题] 抛物线的定义及其标准方程[内容]抛物线的定义及其标准方程教学目标1.使学生理解抛物线的定义、标准方程及其推导过程,并能初步利用它们解决有关问题.2.通过教学,培养学生观察、联想、类比、猜测、归纳等合情推理的方法,提高学生抽象、概括、分析、综合的能力,既教猜想,又教证明.3.培养学生运用数形结合的数学思想理解有关问题.教学重点与难点抛物线标准方程的推导及有关应用既是教学重点,又是难点.教学过程师:请同学们回忆椭圆和双曲线的第二定义.生:与一个定点的距离和一条定直线的距离的比是常数e的点的轨道,当e <1时,是椭圆,当e>1时,是双曲线.(计算机演示动画——图2-45)(1)不防设定点F到定直线l的距离为p.(2)通过提问,让学生思考随着e的变化曲线的形状的变化规律.同时演示动画,让学生充分体会这种变化规律,为学生猜测e=1时曲线形状奠定基础.师:那么,当e=1时,轨迹的位置和形状是怎样的大胆地猜一猜!(可请学生直接画出自己想象中曲线的形状,并利用投影展示.)师:同学的猜测对不对呢请同学看屏幕.(图2-46)我们利用电脑精确地计算展示到定点F的距离和它到定直线距离的比为1的点的轨迹.师:你见过这种曲线吗(抛物线)这就是我们这节课主要的研究对象.(师板书课题——抛物线的定义及其标准方程)师:能否给抛物线下个定义生:与一个定点的距离和一条定直线的距离的比是1的点的轨迹叫抛物线.师:换句话说,就是与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.师:它的方程是什么样子呢我们可以预先做一个估计.如图2-47(1),椭圆的图形是关于x轴、y轴和原点对称的,其方程为:x2a2+y2b2=1.如图2-47(2),双曲线的图形是关于x轴、y轴和原点对称的,其方程为:x2a2-y2b2=1.在方程中都仅有x、y的二次项.当e=1时,图形变成了开口的一支,从而丧失了关于y轴和原点的对称性,那么方程将会发生怎样的变化生;在方程中,一定会失去x2项,而且会出现x的一次项,(否则方程变成y2=b2,它表示直线.)所以方程应为Ay2+Bx+C=0的形式.师:同学的猜测对不对呢可否从理论上给予说明生:建立直角坐标系.师:如何建立学生甲:取经过定点F且垂直于定直线l的直线为x轴,设x轴与l相交于点K,以线段KF的垂直平分线为y轴,设所求轨迹上一点坐标为M(x,y).师:点M满足什么条件生:到定点F的距离和到定直线l的距离的比是1.师:这些条件能否转化成点M的坐标所满足的条件生:由于|KF|=p,故点F的坐标为:(p/2,0),直线l的方程为:x=-p/2,由条件可得: =|x+p/2|.请同学化简上试,并通过投影展示演算过程,得:y2=2px.(1)师:显然符合预想的形式.这个方程就叫作抛物线的标准方程.在你以往的学习过程中,是否见到过类似这种形式的方程生:二次函数的表达式.师:若将x与y换个位置,它就是缺少一次项和常数项的二次函数,而曲线的形状也与抛物线完全一致.师:由于抛物线开口方向的不同,共有4种不同情况.(计算机演示——图2-49)师:请同学们写出其它3种情况下的标准方程、焦点坐标及准线方程,并说明理由.观察图形,分辩这些图有何相同点和不同点.生:共同点有:①原点在抛物线上.②对称轴为坐标轴.③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的四分之一.不同点:①抛物线的焦点在x轴上时,方程左端是y2,右端是2px;当抛物线的焦点在y轴上时,方程左端是x2,右端是2py.②开口方向与x轴(y轴)正半轴同向时,焦点在x轴(y轴)的正半轴上,方程右端取正号.开口方向与x轴(y轴)负半轴同向时,焦点在x轴(y轴)的负半轴上,方程右端取负号.师:作为应用,请同学们看下面的例题.(展示投影)例1 (1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.(1)解根据题意可得:2p=6,故p=3,所以焦点坐标为(32,0),准线方程为x=-32(2)分析要求抛物线的标准方程,需①确定焦点在y轴的负半轴上,②求出p值.解因为焦点在y轴的负半轴上,并且p/2=2,p=4,所以它的标准方程是:x2=-8y.例2 经过抛物线的焦点F,作一条直线垂直于x轴,和抛物线相交,两个交点的纵坐标为y1,y2.求y1·y2的值.(计算机演示图表——图2-49)师:首先弄清题意——条件有哪些求什么如何求生:已知y1, y2是交点的纵坐标,要求y1·y2,可将x=p/2代入方程求解. (师板书)解将x=p/2代入抛物线方程得交点的纵坐标分别为-p和p故y1·y2=-p2.师:还有其他办法吗可否根据抛物线的定义生:如图2-50,根据抛物线的定义,|AF|=|BF|=|AM|=p,故y1·y2=-p2.引申1:上例中若缺少“垂直于x轴”的条件,结果怎样(计算机演示动画——图2-51)师:由于缺少垂直的条件,上例中的方法均不适用了.怎样求交点坐标生:只需求直线方程与抛物线方程的公共解.师:如何建立直线方程生:利用点斜式.(请同学自行写出解题过程,并利用投影仪展示解题过程.)解设直线方程为:y=k(x-p/2).与抛物线方程联立,消去x可得:y2-2p/k-p2=0,故:y1·y2=-p2.引申2:以AB为直径的圆和准线具有怎样的位置关系(计算机演示动画——图2-52)学生乙:以AB为直径的圆和准线相切.师:能否给予证明这作为思考题,请同学们课下完成.师:请同学小结这节课的内容.(抛物线的定义:p的几何意义;标准方程的4种形式.)作业:课本第98页习题八:1,2.设计说明1.关于教学过程(1)由于抛物线的定义是本章的主要内容之一,因而将它作为教学目标之一.(2)MM教学方式在课堂教学中十分重视的一个方面就是合情推理方法的运用,逻辑思维能力的提高以及良好个性品质的培养.这对于提高学生的一般科学素养,形成和发展他们的数学品质,必将起着十分重要的作用,因而制定了目标2.(3)按照大纲的要求,在教学中培养学生运用数学思想方法解决有关问题,据此制定了目标3.2.关于教学重点为实现教学目标,把充分展现抛物线的定义及标准方程的探索、发现、推理的思维过程和知识形成的过程作为本节课的重点.3.关于教学方法按照MM教学方式“学习、教学、研究同步协调原则”和“二主方针”,运用问题性,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力、增长才干,采用启发式.4.关于教学手段利用计算机辅助教学,演示图形的动态变化过程,弥补传统教学手段(如投影片、模型等)的不足之处.(1)在新课引入部分,通过动画演示,使学生充分理解并且掌握3种圆锥曲线的统一定义,以及曲线形状变化与常数e的大小之间的关系.(2)在抛物线定义的引入部分,利用电脑精确测算“两个距离”,以及动点M 的任意选取,充分展示了满足条件的点的轨迹,避免了传统教学中此处的生硬与牵强.(3)在例2及引申中也采用动画演示,弥补了投影片无法实现的动态效果.5.关于教学过程(1)复习内容的确定,旨在通过联想,为运用类比方法探索抛物线的定义奠定基础.(2)通过引导学生观察椭圆、双曲线图形的变化规律,类比、联想、进而猜想出e=1时轨迹形状是抛物线,然后进行推理证明.即通过既教猜想、又教证明这一MM可控变量的操作,旨在揭示科学实验的规律,从而暴露知识的形成过程,体现科学发现的本质,培养学生合理推理能力、逻辑推理能力、科学的思维方式、实事求是的科学态度及勇于探索的精神等个性品质.(3)学以致用是教学的主要目标之一,在例题求解过程中,运用波利亚一般解题方法,培养学生合理的思考问题,清楚地表达思想和有条不紊的工作习惯.(4)让学生小结,充分发挥学生的主观能动性,提高学生分析、概括、综合、抽象能力.(北京市陈经纶中学黎宁)抛物线的定义及其标准方程教学设计案例(2)高二数学《抛物线的定义及其标准方程》教学设计设计: 曾庆华上杭二中点评: 范慧芝龙岩二中一、概述· 高二年数学选修1-1· 选修1-1第2章《圆锥曲线与方程》· 第3节《抛物线的定义与标准方程》·本节对拋物线定义的研究,与初中阶段二次函数的图象遥相呼应,体现了数学的和谐之美。

3.3.1 抛物线及其标准方程 导学案正文

3.3.1 抛物线及其标准方程  导学案正文

3.3抛物线3.3.1抛物线及其标准方程【学习目标】1.会识别抛物线的定义和相关概念,知道二次函数的图象符合抛物线的定义,能初步应用抛物线定义解决一些简单问题.2.能根据抛物线的几何特征选择适当的平面直角坐标系,根据抛物线定义的代数表达类比导出抛物线的标准方程.3.能识别焦点在不同坐标轴上的抛物线的四种标准方程,能说出标准方程中一次项系数的意义.4.能初步应用抛物线定义和标准方程解决一些关联问题.◆知识点一抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离的点的轨迹叫作抛物线.点F叫作抛物线的,直线l叫作抛物线的.【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线的焦点到准线的距离是p(p>0).( )(2)抛物线上一点到焦点的距离与到准线的距离的比值为1.( )(3)抛物线的焦点可以在准线上.( )(4)平面内与定点F和一条定直线l距离相等的点的轨迹是抛物线.( )◆知识点二抛物线的标准方程标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形焦点坐标准线方程p的几何意义焦点到准线的距离【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线的方程都是二次函数.( )(2)抛物线的原点到准线的距离是p(p>0).( )(3)抛物线的开口方向由方程中的一次项确定.( )(4)方程y=ax2(a≠0)是抛物线的标准方程.( )◆探究点一抛物线的定义及应用例1 (1)一动圆过点A(1,0)且与直线:x=-1相切,则该动圆圆心的轨迹为( )A.抛物线B.椭圆C.直线D.圆(2)抛物线x2=4y上的点P到焦点的距离是10,则点P的坐标为.变式 (1)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=5x0,则x0=( )4A.1B.2C.4D.8(2)已知P为抛物线y2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1,l2的距离之和的最小值为( )A.2√2B.4+1C.√2D.3√22[素养小结]利用抛物线的定义可以解决以下两类问题:(1)点的轨迹问题:利用抛物线的定义求解点的轨迹方程,关键是找到满足动点到定点的距离等于到定直线的距离且定点不在定直线上的条件.(2)抛物线的焦半径问题:利用抛物线的定义,对抛物线上的点到焦点的距离与到准线的距离相互转化,解决与抛物线有关的最大(小)值问题,解题时要注意平面几何知识的应用,如两点之间线段最短、三角形中三边间的不等关系、点与直线上点的连线垂线段最短等.拓展 (1)已知点P是抛物线y2=-4x上的一个动点,则点P到点M(0,2)的距离与到该抛物线准线的距离之和的最小值为 ( )A.3B.√172C.√5D.92(2)已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,点A(3,2),则|PA|+|PF|的最小值为,取得最小值时点P的坐标为.◆探究点二求抛物线的标准方程例2分别求满足下列条件的抛物线的标准方程.(1)焦点到准线的距离是4;(2)焦点在y轴上,且经过点(-1,-3);(3)抛物线的焦点是双曲线16x2-9y2=144的左顶点.变式 (1)焦点在直线2x+5y-10=0上的抛物线的标准方程为( )A.y2=10x或x2=4yB.y2=-10x或x2=-4yC.y2=20x或x2=8yD.y2=-20x或x2=-8y(2)已知抛物线C:y2=2px(p>0)的焦点为F,C上一点M(x0,x0)(x0≠0)满足|MF|=5,则抛物线C的方程为.[素养小结](1)求抛物线的标准方程要注意确定焦点在哪条坐标轴上,进而求方程的有关参数.(2)求抛物线的标准方程的方法:①直接法,建立恰当的坐标系,利用抛物线的定义列出动点满足的条件,列出对应方程,化简方程;②直接根据定义求p,然后写出标准方程;③利用待定系数法设标准方程,找有关的方程(组)求系数.◆探究点三抛物线的实际应用问题例3如图,某河道上有一抛物线形拱桥,在正常水位时,拱圈最高点距水面9 m,拱圈内水面宽30 m,一条船在水面以上部分高7 m,船顶部宽6 m.(1)试建立适当的平面直角坐标系,求拱桥所在的抛物线的标准方程.(2)近日水位暴涨了2.46 m,为此,必须加重船载,降低船身,才能安全通过桥洞,则船身至少应降低多少(精确到0.1 m)?变式青花瓷盖碗是中国传统茶文化的器物载体,具有“温润”“淡远”“清新”的特征.如图,已知碗体和碗盖内部的轴截面均近似为抛物线的一部分,碗盖深为3 cm,碗盖口直径为8 cm,碗体口直径为10 cm,碗体深6.25 cm,则盖上碗盖后,碗盖内部的最高点到碗底的垂直距离为(碗和碗盖的厚度忽略不计)( )A.5 cmB.6 cmC.7 cmD.8.25 cm[素养小结]求解抛物线实际应用题的五个步骤(1)建系:建立适当的坐标系.(2)假设:设出合适的抛物线的标准方程.(3)计算:通过计算求出抛物线的标准方程.(4)求解:求出所要求出的量.(5)还原:还原到实际问题中,从而解决实际问题.。

抛物线及其标准方程导学案

抛物线及其标准方程导学案

2017级人教版数学选修2-1 编号:1 编制时间: 2018/10/11 编制人:2.4.1 抛物线及其标准方程学习目标 1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导. 3.明确抛物线标准方程中p 的几何意义,并能解决简单的求抛物线标准方程问题.知识点一 抛物线的定义思考1 平面内,到两定点距离相等的点的轨迹是什么?思考2 平面内,到两个确定平行直线l 1,l 2距离相等的点的轨迹是什么?思考3 到定点的距离与到定直线的距离相等的点的轨迹是什么?梳理 (1)平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)定义的实质可归纳为“一动三定”:一个动点,设为M ;一个定点F (抛物线的焦点);一条定直线(抛物线的准线);一个定值(即点M 到点F 的距离与它到定直线l 的距离之比等于1∶1).知识点二 抛物线的标准方程 思考 抛物线的标准方程有何特点?梳理 由于抛物线焦点位置不同,方程也就不同,故抛物线的标准方程有以下几种形式: y 2=2px (p >0),y 2=-2px (p >0),x 2=2py (p >0),x 2=-2py (p >0).现将这四种抛物线对应的图形、标准方程、焦点坐标及准线方程列表如下:类型一 抛物线的定义及理解例1 (1)动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( )(2)已知点P (x ,y )在以原点为圆心的单位圆x 2+y 2=1上运动,则点Q (x +y ,xy )的轨迹所在的曲线是________.(在圆、抛物线、椭圆、双曲线中选择一个作答)跟踪训练1 平面上动点P 到定点F (1,0)的距离比点P 到y 轴的距离大1,求动点P 的轨迹方程.类型二 抛物线标准方程及求解命题角度1 抛物线的焦点坐标或准线方程的求解例2 抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C.1D.3跟踪训练2(1)若抛物线y2=2px的焦点坐标为(1,0),则p=_____;准线方程为_____.命题角度2求解抛物线的标准方程例3根据下列条件分别求抛物线的标准方程.(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;(2)抛物线的焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.跟踪训练3已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.类型三抛物线在实际生活中的应用例4河上有一抛物线形拱桥,当水面距拱桥顶5 m时,水面宽为8 m,一小船宽4 m、高2 m,载货后船露出水面上的部分高0.75 m,问:水面上涨到与抛物线拱桥拱顶相距多少米时,小船开始不能通航?跟踪训练4喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5 m,且与OA所在的直线相距4 m,水流落在以O为圆心,半径为9 m的圆上,则管柱OA的长是多少?1.抛物线y =14x 2的准线方程是( )A.y =-1B.y =-2C.x =-1D.x =-22.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为4,则m 的值为( )3.若抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________.4.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________.5.已知M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点N (2,3),则|MN |+|MF |的最小值为________.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F (m 4,0),准线方程为x =-m 4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F (0,m 4),准线方程为y =-m4.2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF |=x 0+p2.3.对于抛物线上的点,利用定义可以把其到焦点的距离转化为到准线的距离,也可以把其到准线的距离转化为到焦点的距离,因此可以解决有关距离的最值问题.。

高中数学《抛物线及其标准方程》导学案

高中数学《抛物线及其标准方程》导学案

2.4.1抛物线及其标准方程1.抛物线的定义□01平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.□02点F叫做抛物线的焦点,□03直线l叫做抛物线的准线.2.抛物线的标准方程1.判一判(正确的打“√”,错误的打“×”)(1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距离.()(2)抛物线的焦点位置由一次项及一次项系数的正负决定.()(3)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线.()答案(1)√(2)√(3)×2.做一做(请把正确的答案写在横线上)(1)抛物线y2=4x的焦点坐标为________________;准线方程为__________________.(2)若抛物线的方程为x=2ay2(a>0),则焦点到准线的距离p=________.(3)焦点坐标为(0,2)的抛物线的标准方程为___________________________.(4)(教材改编P67T3(2))抛物线y2=4x上的点P到焦点的距离是5,则P点坐标是________.答案(1)(1,0)x=-1(2)14a(3)x2=8y(4)(4,±4)解析(4)设P点的坐标为(x0,y0),由题意得x0+1=5,x0=4,∴y20=16,y0=±4,∴P点坐标为(4,±4).探究1抛物线的标准方程例1求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上.[解] (1)设抛物线方程为y2=-2px或x2=2py(p>0),则将点(-3,2)代入方程得2p=43或2p=92,∴所求的抛物线方程为y2=-43x或x2=92y.(2)当焦点在y轴上时,令x=0,由方程x-2y-4=0得y=-2,∴抛物线的焦点为F(0,-2),设抛物线方程为x2=-2py(p>0),则由p2=2得2p=8,∴所求抛物线方程为x2=-8y;当焦点在x轴上时,同理得y2=16x.[条件探究] 如果把例1(1)中的“点(-3,2)”改为“点(1,2)”如何解答?解解法一:点(1,2)在第一象限,要分两种情形:当抛物线的焦点在x轴上时,设抛物线的方程为y2=2px(p>0),则22=2p·1,解得p=2,抛物线方程为y2=4x;当抛物线的焦点在y轴上时,设抛物线的方程为x2=2py(p>0),则12=2p·2,解得p=14,抛物线方程为x2=12y.解法二:设所求抛物线的标准方程为y2=mx(m≠0)或x2=ny(n≠0),将点(1,2)代入,得m=4,n=12.故所求的方程为y2=4x或x2=12y.拓展提升求抛物线标准方程的两种方法(1)当焦点位置确定时,可利用待定系数法,设出抛物线的标准方程,由已知条件建立关于参数p的方程,求出p的值,进而写出抛物线的标准方程.(2)当焦点位置不确定时,可设抛物线的方程为y2=mx(m≠0)或x2=ny(n≠0),利用已知条件求出m,n的值,进而写出抛物线的标准方程.【跟踪训练1】根据下列条件,求抛物线的标准方程:(1)焦点到准线的距离是4;(2)准线方程为y=2 3.解(1)p=4,抛物线的标准方程有四种形式:y2=8x,y2=-8x,x2=8y,x2=-8y.(2)因为抛物线的准线交y轴于正半轴,且p2=23,则p=43,所以所求抛物线的标准方程为x2=-83y.探究2抛物线的定义及其应用例2(1)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.34B.1 C.54 D.74(2)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=54x0,则x 0=( )A .1B .2C .4D .8(3)已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时的P 点坐标.[解析] (1)∵y 2=x 的准线方程为l :x =-14,由题意得|AF |,|BF |分别为A ,B 到准线l 的距离d 1,d 2(如图所示).则线段AB 的中点到准线的距离d =d 1+d 22=32, ∴线段AB 的中点到y 轴的距离为d =32-14=54.故选C.(2)由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1,故选A.(3)如图,作PN ⊥l 于N (l 为准线),作AB ⊥l 于B ,则|P A |+|PF |=|P A |+|PN |≥|AB |,当且仅当P 为AB 与抛物线的交点时,取等号.∴(|P A |+|PF |)min =|AB | =3+12=72.此时y P =2,代入抛物线方程得x P =2, ∴P 点坐标为(2,2).[答案] (1)C (2)A (3)见解析[结论探究] 如果例2(3)的问题改为“求点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和的最小值”,如何解答?解 由抛物线的定义可知,抛物线上的点到准线的距离等于其到焦点的距离.由图可知,当点P ,A (0,2),和抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0三点共线时所求距离之和最小.所以最小距离d =⎝ ⎛⎭⎪⎫0-122+(2-0)2=172. 拓展提升抛物线的定义及应用抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故二者可相互转化,这也是利用抛物线的定义解决最值问题及其他问题的实质.【跟踪训练2】 已知P 为抛物线y 2=4x 上一个动点,直线l 1:x =-1,l 2:x +y +3=0,则P 到直线l 1,l 2的距离之和的最小值为( )A .2 2B .4 C. 2 D.322+1 答案 A解析 将P 点到直线l 1:x =-1的距离转化为P 到焦点F (1,0)的距离,过点F 作直线l 2的垂线,交抛物线于点P ,此即为所求最小值点,∴P 到两直线的距离之和的最小值为|1+0+3|12+12=22,故选A.探究3 与抛物线有关的轨迹问题例3 已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 与圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.[解] 解法一:设点P 的坐标为(x ,y ),动圆P 的半径为r ,由条件知|AP |=r +1,即(x +2)2+y 2=|x -1|+1,化简,整理得y 2=-8x .解法二:如图,设动圆P 的半径为r ,作PK 垂直直线x =1,垂足为K ,PQ 垂直直线x =2,垂足为Q ,则|KQ |=1,所以|PQ |=r +1,又|AP |=r +1,所以|AP |=|PQ |,故点P 到圆心A (-2,0)的距离和到定直线x =2的距离相等,所以点P 的轨迹为抛物线,A (-2,0)为焦点,直线x =2为准线.∴p2=2,∴p =4,∴点P 的轨迹方程为y 2=-8x .拓展提升利用定义求轨迹的方法抛物线的轨迹问题,既可以用轨迹法直接求解,也可以先将条件转化,再利用抛物线的定义求解.后者的关键是找到满足动点到定点的距离等于到定直线的距离的条件,有时需要依据已知条件进行转化才能得到满足抛物线定义的条件.【跟踪训练3】 平面上动点P 到定点F (1,0)的距离比点P 到y 轴的距离大1,求动点P 的轨迹方程.解 解法一:设P 点的坐标为(x ,y ),则有(x -1)2+y 2=|x |+1.两边平方并化简得y 2=2x +2|x |.所以y 2=⎩⎨⎧4x ,x ≥0,0,x <0,即点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0).解法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y =0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x =-1的距离相等,故点P 的轨迹是以F 为焦点,x =-1为准线的抛物线,方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0). 探究4 抛物线方程的实际应用例4 “中山桥”是位于兰州市中心,横跨黄河之上的一座百年老桥,如图1,桥上有五个拱形桥架紧密相连,每个桥架的内部有一个水平横梁和八个与横梁垂直的立柱,气势宏伟,素有“天下黄河第一桥”之称.如图2,一个拱形桥架可以近似看作是由等腰梯形ABD 8D 1和其上方的抛物线D 1OD 8(部分)组成,建立如图所示的平面直角坐标系,已知AB =44 m ,∠A =45°,AC 1=4 m ,C 1C 2=5 m ,立柱C 2D 2=5.55 m.(1)求立柱C 1D 1及横梁D 1D 8的长;(2)求抛物线D 1OD 8的方程和桥梁的拱高OH . [解] (1)由题意知,∠A =45°,AC 1=4 m , 则C 1D 1=4 m.因为ABD 8D 1是等腰梯形,由对称性知, AH =HB =12AB =12×44=22 m , AC 1=C 8B =4 m ,C 1H =12C 1C 8=12(AB -AC 1-C 8B )=12×(44-4-4)=12×36=18 m. 所以D 1D 8=C 1C 8=36 m.(2)由(1)知点D 1的横坐标为-18, 则D 2的横坐标为-(18-5)=-13, 设D 1,D 2点的纵坐标分别为y 1,y 2, 由图形知|y 1-y 2|=|5.55-4|=1.55.设抛物线的方程为x 2=-2py (p >0),将点D 1,D 2代入,得⎩⎪⎨⎪⎧(-18)2=-2py 1,(-13)2=-2py 2,两式相减得2p (y 2-y 1)=182-132=155, 解得2p =100,故抛物线方程为x 2=-100y .因此,当x =-18时,y =-1100x 2=-1100×324=-3.24 m ,故|y 1|=3.24 m , 所以桥梁的拱高OH =3.24+4=7.24 m.拓展提升求解抛物线实际应用题的五个步骤(1)建系:建立适当的坐标系.(2)假设:设出合适的抛物线的标准方程. (3)计算:通过计算求出抛物线的标准方程. (4)求解:求出所要求出的量.(5)还原:还原到实际问题中,从而解决实际问题.【跟踪训练4】 喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解 如图所示,建立直角坐标系,设B 点坐标为(0,0),设水流所形成的抛物线的方程为x2=-2py(p>0),因为点C(5,-5)在抛物线上,所以25=-2p·(-5),因此2p=5,所以抛物线的方程为x2=-5y,因为点A(-4,y0)在抛物线上,,所以16=-5y0,即y0=-165所以OA的长为5-16=1.8 m.5所以管柱OA的长为1.8 m.探究5与抛物线有关的最值问题例5已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|P A|的值最小.[解] ∵(-2)2<8×4,∴点A(-2,4)在抛物线x2=8y的内部.如图,设抛物线的准线为l,过点P作PQ⊥l于点Q,过点A作AB⊥l于点B.由抛物线的定义可知,|PF|+|P A|=|PQ|+|P A|≥|AQ|≥|AB|,当且仅当P,Q,A三点共线时,|PF|+|PA|取得最小值,即为|AB|.∵A(-2,4),∴不妨设|PF|+|P A|的值最小时,点P的坐标为(-2,y0),代入x2=8y,得y0=12.故使|PF |+|P A |的值最小的抛物线上的点P 的坐标为⎝ ⎛⎭⎪⎫-2,12.拓展提升解关于抛物线的最值、定值问题时,首先要注意抛物线上的点到焦点的距离与点到准线的距离的转化,其次是注意平面几何知识的应用,例如:两点之间线段最短、三角形中三边之间的不等关系、点与直线上点的连线中垂线段最短等.【跟踪训练5】 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点的距离之和取得最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1 B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)答案 A解析 点Q (2,-1)在抛物线内部,如图所示.由抛物线的定义知,抛物线上的点P 到点F 的距离等于点P 到准线x =-1的距离,过Q 点作x =-1的垂线,与抛物线交于点K ,则K 为所求,当y =-1时,x =14,∴点P 的坐标为⎝ ⎛⎭⎪⎫14,-1.1.根椐抛物线的方程求其焦点坐标和准线方程时,首先要看抛物线方程是否为标准形式,如果不是,要先化为标准形式;然后判断抛物线的对称轴和开口方向,再利用p 的几何意义,求出焦点坐标和准线方程.2.抛物线标准方程的求法(1)定义法:建立恰当坐标系,利用抛物线的定义列出动点满足的条件,列出方程,进行化简,根据定义求出p ,最后写出标准方程.(2)待定系数法:由于标准方程有四种形式,因而在求方程时应首先确定焦点在哪一个半轴上,进而确定方程的形式,然后再利用已知条件确定p 的值.1.抛物线x 2=8y 的焦点坐标是( )A .(0,2)B .(0,-2)C .(4,0)D .(-4,0) 答案 A解析 由抛物线的方程为x 2=8y 知,抛物线的焦点在y 轴正半轴上,所以2p =8,p2=2,所以焦点坐标为(0,2).故选A.2.若动点P 到定点F (1,1)的距离与它到定直线l :3x +y -4=0的距离相等,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线 答案 D解析 解法一:设动点P 的坐标为(x ,y ),由题意得,(x -1)2+(y -1)2=|3x +y -4|10, 整理得x -3y +2=0,∴动点P 的轨迹为直线.故选D.解法二:∵点F (1,1)在直线3x +y -4=0上,∴动点P 的轨迹为过点F 且垂直于直线l :3x +y -4=0的直线.3.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.116 B.1516 C .1 D.1716 答案 B解析 抛物线y =4x 2的标准方程为x 2=y 4,其准线方程为y =-116,由抛物线的定义知y M -⎝ ⎛⎭⎪⎫-116=1,所以y M =1516.4.若抛物线y =ax 2的准线方程是y =2,则a 的值是________. 答案 -18解析 把抛物线方程y =ax 2化为标准方程为x 2=1a y ,所以-14a =2,a =-18. 5.设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程. 解 当m >0时,准线方程为x =-m4, 由已知条件知1-⎝ ⎛⎭⎪⎫-m 4=3,所以m =8.此时抛物线的方程为y 2=8x ; 当m <0时,准线方程为x =-m4, 由已知条件知-m4-1=3,所以m =-16,此时抛物线的方程为y 2=-16x . 所以所求抛物线的方程为y 2=8x 或y 2=-16x .A 级:基础巩固练一、选择题1.若抛物线y 2=8x 上一点P 到其焦点的距离为10,则点P 的坐标为( ) A .(8,8) B .(8,-8) C .(8,±8) D .(-8,±8)答案 C解析 设P (x P ,y P ),因为点P 到焦点的距离等于它到准线x =-2的距离,所以x P =8,y P =±8.故选C.2.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12 答案 C解析 因为点A 在抛物线的准线上,所以-p2=-2,所以该抛物线的焦点为F (2,0),所以k AF =3-0-2-2=-34.3.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M到该抛物线准线的距离为()A.1 B.32C.2 D.52答案D解析∵点P(2,22)在抛物线上,∴(22)2=2m,∴m=4.又P到抛物线准线的距离为2-(-1)=3,F到准线距离为2,∴M到抛物线准线的距离为d=3+22=52.4.已知F是抛物线y=116x2的焦点,P是该抛物线上的动点,则线段PF的中点E的轨迹方程是()A.x2=8y-16 B.x2=2y-1 16C.x2=y-12D.x2=2y-2答案A解析抛物线方程可化为x2=16y,焦点F(0,4),设线段PF的中点E的坐标为(x,y),P(x0,y0),则x0=2x,y0=2y-4,代入抛物线方程,得(2x)2=16(2y-4),即x2=8y-16.故选A.5. 下图,南北方向的公路L,A地在公路正东2 km 处,B地在A北偏东60°方向2 3 km 处,河流沿岸曲线PQ上任意一点到公路L和到A地距离相等,现要在曲线PQ上某处建一座码头,向A,B两地运货物,经测算,从M到A,B 修建公路的费用都为a万元/km,那么,修建这两条公路的总费用最低是()A.(2+3)a万元B.(23+1)a万元C.5a万元D.6a万元答案C解析依题意知曲线PQ是以A为焦点、L为准线的抛物线,根据抛物线的定义知:欲求从M到A,B修建公路的费用最低,只需求出B到直线L的距离即可.∵B地在A地北偏东60°方向2 3 km 处,∴B到点A的水平距离为3 km,∴B到直线L的距离为3+2=5(km),那么,修建这两条公路的总费用最低为5a万元.故选C.6.已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值为()A.522 B.522+1C.522-2 D.522-1答案D解析设抛物线的焦点为F,过P作P A与准线垂直,垂足为A,作PB与l 垂直,垂足为B,则d1+d2=|P A|+|PB|-1=|PF|+|PB|-1,显然当P,F,B三点共线(即P点在由F向l作垂线的垂线段上)时,d1+d2取得最小值,最小值为522-1.二、填空题7.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为________.答案2解析∵y2=2px的准线方程为x=-p2,由题意得,p2+3=4,∴p=2.8.在平面直角坐标系xOy中,点B与点A(-1,0)关于原点O对称.点P(x0,y0)在抛物线y2=4x上,且直线AP与BP的斜率之积等于2,则x0=________.答案1+2解析∵点B与点A(-1,0)关于原点O对称,∴B(1,0),根据题意,得y20x20-1=2,又y20=4x0,∴2x0=x20-1,即x20-2x0-1=0,解得x0=2±82=1±2,舍去负值,得x0=1+ 2.9.抛物线y2=2px (p>0)的焦点为F,过焦点F倾斜角为30°的直线交抛物线于A ,B 两点,点A ,B 在抛物线准线上的射影分别是A ′,B ′,若四边形AA ′B ′B 的面积为48,则抛物线的方程为________.答案 y 2=23x解析 因为抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,所以直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -p 2,代入y 2=2px (p >0),整理得,x 2-7px +p 24=0.设A (x 1,y 1),B (x 2,y 2),则由根与系数之间的关系得,x 1+x 2=7p ,x 1x 2=p 24,y 1-y 2=33(x 1-x 2),又四边形AA ′B ′B 是梯形,其面积为48,所以12(x 1+x 2+p )|y 1-y 2|=48,即12(x 1+x 2+p )·⎪⎪⎪⎪⎪⎪33(x 1-x 2)=36(x 1+x 2+p )·(x 1+x 2)2-4x 1x 2=48,解得p 2=3,p =3或p =-3(舍去),故抛物线的方程为y 2=23x .三、解答题10.已知抛物线的焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线的标准方程和准线方程.解 设所求的抛物线方程为x 2=-2py (p >0),则焦点为F ⎝ ⎛⎭⎪⎫0,-p 2. ∵M (m ,-3)在抛物线上,且|MF |=5,∴⎩⎨⎧m 2=6p , m 2+⎝ ⎛⎭⎪⎫-3+p 22=5,解得⎩⎪⎨⎪⎧p =4,m =±2 6.∴m =±26,抛物线的方程为x 2=-8y ,准线方程为y =2.B 级:能力提升练1.已知圆C 的方程x 2+y 2-10x =0,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.解 设P 点坐标为(x ,y ),动圆的半径为R , ∵动圆P 与y 轴相切,∴R =|x |.∵动圆与定圆C :(x -5)2+y 2=25外切, ∴|PC |=R +5. ∴|PC |=|x |+5.当点P在y轴右侧,即x>0时,|PC|=x+5,故点P的轨迹是以(5,0)为焦点的抛物线,则圆心P的轨迹方程为y2=20x(x>0);当点P在y轴左侧,即x<0时,|PC|=-x+5,此时点P的轨迹是x轴的负半轴,即方程y=0(x<0).故点P的轨迹方程为y2=20x(x>0)或y=0(x<0).2.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过点Q(6,0),求抛物线的方程.解设抛物线的方程为y2=2px(p>0),则其准线为x=-p2.设A(x1,y1),B(x2,y2),∵|AF|+|BF|=8,∴x1+p2+x2+p2=8,即x1+x2=8-p.∵Q(6,0)在线段AB的中垂线上,∴|QA|=|QB|,即(6-x1)2+(-y1)2=(6-x2)2+(-y2)2.又y21=2px1,y22=2px2,∴(x1-x2)(x1+x2-12+2p)=0.∵AB与x轴不垂直,∴x1≠x2.故x1+x2-12+2p=8-p-12+2p=0,即p=4.从而抛物线的方程为y2=8x.。

抛物线定义及其标准方程导学案

抛物线定义及其标准方程导学案

§2.4.1抛物线及其标准方程导学案一、教学目标:掌握抛物线的定义、标准方程、几何图形.复习1:函数2261y x x =-+ 的图象是 ,它的顶点坐标是( ),对称轴是 .复习2:点M 与定点(2,0)F 的距离和它到定直线8x =的距离的比是1:2,则点M 的轨迹是什么图形?二、学习过程探究1:若一个动点(,)p x y 到一个定点F 和一条定直线l 的距离相等,这个点的运动轨迹是怎么样的呢?知识点一:抛物线的定义平面内与一个定点F 和一条定直线l 的距离 的点的轨迹叫做抛物线.点F 叫做抛物线的 ;直线l 叫做抛物线的 . 知识点二:抛物线的标准方程定点F 到定直线l 的距离为p (0p >).建立适当的坐标系,得到抛物线的四种标准形式: 图形 标准方程 焦点坐标 准线方程22y px = ,02p ⎛⎫ ⎪⎝⎭ 2p x =-算一算:抛物线220y x =的焦点坐标是( ),准线方程是 ;抛物抛物线212x y =-的焦点坐标是( ),准线方程是.抛物线0522=+x y 的焦点坐标是( ),准线方程是 . 抛物线082=+y x 的焦点坐标是( ),准线方程是 .三、典型例题例1 (1)已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是(0,2)F -,求它的标准方程.变式:根据下列条件写出抛物线的标准方程: ⑴焦点坐标是(0,4);⑵准线方程是14x =-;例2 一种卫星接收天线的轴截面如图所示,卫星波束呈近 ⑶焦点到准线的距离是2.似平行状态的射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径为4.8m ,深度为0.5m ,试建立适当的坐标系,求抛物线的标准方程和焦点坐标.例3.求满足下列条件的抛物线的标准方程: (1) 焦点坐标是(5,0 )F -;(2) 焦点在直线240x y --=上.例4 .抛物线22y px = (0)p >上一点M 到焦点距离是a ()2pa >,则点M 到准线的距离是 ,点M 的横坐标是 .四、当堂检测1.对抛物线24y x =,下列描述正确的是( ). A .开口向上,焦点为(0,1) B .开口向上,焦点为1(0,)16C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)162.抛物线280x y +=的准线方程式是( ).A .2x =B .2x =-C .2y =D .2y =- 3.抛物线210y x =的焦点到准线的距离是( ).A. 52B. 5C. 152D. 104.准线方程为2=x 的抛物线的标准方程是( ) A 、x y 42-= B x y 82-= C x y 42= D x y 82=5.抛物线212y x =上与焦点的距离等于9的点的坐标是 .6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 .五、 课后作业1、抛物线126x 2222=+=y px y 的焦点与椭圆的右焦点重合,则p 的值为( ) A -2 B 2 C -4 D 42、若直线01=+-y ax 经过抛物线x y 42=的焦点,则实数a=3、设抛物线。

高中数学《抛物线及其标准方程》(导学案)

高中数学《抛物线及其标准方程》(导学案)

第二章 圆锥曲线与方程 2.3.1抛物线及其标准方程一、学习目标1.掌握抛物线的定义及焦点、准线的概念. 2.会求简单的抛物线的方程. 【重点、难点】1.抛物线的定义及其标准方程的求法.(重点)2.抛物线定义及方程的应用.(难点) 二、学习过程 【复习旧知】在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(自己画出函数图像)【导入新课】 1.抛物线的定义探究1观察抛物线的作图过程,探究抛物线的定义:抛物线的定义: 2.抛物线的标准方程要求抛物线的方程,必须先建立直角坐标系.探究2 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程. 推导过程:我们把方程22(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ⎛⎫⎪⎝⎭,准线方程是2p x =-。

在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程:【典型例题】【例1】分别求满足下列条件的抛物线的标准方程:(1)焦点为(-2,0);(2)准线为y=-1;(3)过点A(2,3);【例2】如图,已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求此时P点坐标.【例3】 (12分)一辆卡车高3 m,宽1.6 m,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m,求使卡车通过的a的最小整数值.【变式拓展】1.根据下列条件写出抛物线的标准方程:(1)经过点(-3,-1);(2)焦点为直线3x-4y-12=0与坐标轴的交点.2.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ).A.172B .2C. 5D.923.某河上有一座抛物线形的拱桥,当水面距拱顶5米时,水面宽8米,一木船宽4米,高2米,载货的木船露在水面上的部分为0.75米,当水面上涨到与拱顶相距多少时,木船开始不能通航?三、总结反思1.抛物线定义的理解(1)抛物线定义的实质可归结为“一动三定”,一个动点,设为M ;一个定点F 即抛物线的焦点;一条定直线l 即抛物线的准线;一个定值即点M 与点F 的距离和它到直线l 的距离之比等于1.(2)在抛物线的定义中,定点F 不能在直线l 上,否则,动点M 的轨迹就不是抛物线,而是过点F 垂直于直线l 的一条直线.如到点F (1,0)与到直线l :x +y -1=0的距离相等的点的轨迹方程为x -y -1=0,轨迹为过点F 且与直线l 垂直的一条直线.2.抛物线标准方程的特点四种抛物线及其标准方程的共同特点是:(1)原点在抛物线上;(2)对称轴为坐标轴;(3)p 为大于0的常数,其几何意义表示焦点到准线的距离;(4)准线与对称轴垂直,垂足与焦点关于原点对称;(5)焦点、准线到原点的距离都等于2p 4=p2.抛物线的焦点坐标、准线方程以及开口方向取决于抛物线的标准方程形式,规律是: 焦点决定于一次项,开口决定于正负号,即标准方程中,如果含的是x 的一次项,则焦点就在x 轴上,并且焦点的横坐标为p 2(或-p2),相应的准线是x =-p 2(或x =p2),如果含的是y 的一次项,有类似的结论.四、随堂检测1.对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为(0,116)C .开口向右,焦点为(1,0)D .开口向右,焦点为(0,116)2.焦点在直线x =1上的抛物线的标准方程是( ) A .y 2=2x B .x 2=4y C .y 2=-4x D .y 2=4x3.若抛物线y 2=ax 的焦点与椭圆x 26+y 22=1的左焦点重合,则a 的值为( )A .-4B .2C .-8D .44.抛物线y 2=x 上一点P 到焦点的距离是2,则点P 坐标为( )5.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=2y -1B .x 2=2y -116C .x 2=y -12D .x 2=2y -2。

抛物线及其标准方程导学案

抛物线及其标准方程导学案

抛物线及其标准方程(一)学习目标:1、掌握抛物线的定义2、掌握抛物线的四种标准方程形式及其对应的焦点和准线。

3、能根据已知条件求抛物线的标准方程,并会由标准方程求相应准线方程,焦点坐标。

4、提高分析、概括等方面能力,渗透数形结合和分类讨论等数学思想。

一、自主学习:阅读教材p64-65 回答下列问题:1、和椭圆和双曲线的研究过程一样,教材先给出抛物线的定义:平面内与一个定点F 和一条定直线l (_______)的___________的轨迹叫抛物线.点F 叫抛物线的___,直线l 叫做抛物线的_______.2、根据定义推导出了焦点在x 轴上的抛物线的标准方程:________, 这里标准的含义是_________,其中p 的几何意义是_____________。

3、抛物线px y 22=(p >0)上一点M到焦点的距离是⎪⎭⎫ ⎝⎛>2p a a ,则点M到准线的距离是___,点M的横坐标是______自学中未解决的问题:二、问题探究(先独立思考,再小组交流)1、在建立椭圆、双曲线的标准方程时,选择不同的坐标系可以得到不同形式的标准方程,那么抛物线的标准方程有哪些不同的形式?探究之后填写下表:图 形 标准方程 焦点坐标 准线方程px y 22=(p >0))0,2(p 2p x -=2、说明二次函数()02≠=a ax y 的图象为什么是抛物线,并指出它的焦点坐标和准线方程。

探究结果:三、例题分析1、(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程。

(2)已知抛物线的焦点是F(0,-2),求它的标准方程。

2.根据已知条件分别写出抛物线标准方程。

(1)经过点(-3,2)。

(2)焦点在直线x-2y-4=0上。

四、课堂练习(课本P63练习第3、4题)五、课时小结(1)理解掌握抛物线的定义,四种标准方程及参数p的几何意义(2)熟练抛物线标准方程与其焦点坐标及准线方程之间关系。

(3)进一步掌握坐标法求方程的思想方法。

§241抛物线及其标准方程导学案(定稿)

§241抛物线及其标准方程导学案(定稿)

§2.4.1抛物线及其标准方程导学案【学习目标】掌握抛物线的定义、标准方程、几何图形.【重点难点】▲重点:抛物线的定义及其标准方程▲难点:抛物线的标准方程的推导【学法指导】以自学为主,教师讲授为辅【知识链接】预习教材文P 56~ P 59找出疑惑之处【学习过程】探究1:生活中的抛物线——————动画导入【自主探究】探究2:如图,点F 是定点,l 是不经过点F 的定直线。

H 是l 上任意一点,过点H 作M H ⊥l ,线段FH 的垂直平分线m 交MH 与M 。

拖动点H ,观察点M 的轨迹。

————几何画板画图问题1:动点M 的轨迹是什么曲线?问题2:形成该曲线的条件有哪些?问题3:如何定义抛物线的定义?知识点一:抛物线的定义平面内与一个定点F 和一条定直线l 的距离 的点的轨迹叫做抛物线.点F 叫做抛物线的 ;直线l 叫做抛物线的 .知识点二:抛物线的标准方程的推导问题4:求曲线方程的步骤有哪些?问题5:如何选择坐标系建立的抛物线的方程更简便?写出抛物线的标准方程的推导过程。

归纳:焦点在x轴正半轴的抛物线时1、标准方程为:_________________________2、焦点坐标为:_________________________3、准线方程为:_________________________4、开口方向为:_________________________【小组合作】探究3:抛物线的标准方程还有哪些不同的形式?定点F到定直线l的距离为p(0p>).建立适当的坐标系,得到抛物线的四种标准形式:图形标准方程焦点位置焦点坐标准线方程22y px=,02p⎛⎫⎪⎝⎭2px=-问题6:标准方程中P的几何意义怎么理解?问题7:如何判断焦点位置与开口方向?小试牛刀:(口答)1、抛物线220y x=的焦点坐标是(),准线方程是;2、抛物线212x y=-的焦点坐标是(),准线方程是.3、抛物线0522=+xy的焦点坐标是(),准线方程是.4、抛物线082=-yx的焦点坐标是(),准线方程是.小结:___________________________※典型例题例1、已知抛物线的焦点是(0,2)F-,求它的标准方程.小结:_______________________________________________________________________________变式1: (1)焦点是)0,2(-F,求它的标准方程(2)已知准线方程为2=x,求它的标准方程变式2:根据下列条件写出抛物线的标准方程:⑴经过点P(-2,-4)的抛物线方程。

抛物线及其标准方程导学案

抛物线及其标准方程导学案

2.3.1 抛物线及其标准方程一、【学习目标】1.理解抛物线的定义,掌握抛物线标准方程的推导;2.掌握抛物线标准方程的四种形式,会求抛物线的焦点坐标及准线方程; 3.能利用定义解决简单的应用问题. 二、【复习引入】 1.椭圆的第二定义:2. 双曲线的第二定义:3.问题:到定点距离与到定直线距离之比是定值e 的点的轨迹,当0<e<1时是( ),当e>1时是( ).此时自然想到,当e=1时轨迹是什么?若一动点到定点F 的距离与到一条定直线l 的距离之比是一个常数1=e 时,那么这个点的轨迹是什么曲线? 三、【新知探究】 1. 抛物线定义:2.推导抛物线的标准方程:说明:1.方程形式与图形之间的关系: 2.p 的几何意义: 四、【例题精讲】例1:(1)已知抛物线标准方程是x y 62=,求它的焦点坐标和准线方程. (2)已知抛物线的焦点坐标是)2,0(-F ,求它的标准方程.例2: 已知抛物线的标准方程是(1)x y 122=(2)212x y =求它的焦点坐标和准线方程.例3:求满足下列条件的抛物线的标准方程: (1)焦点坐标是)0,5(-F (2)经过点)3,2(-A五、【随堂练习】1.求下列抛物线的焦点坐标和准线方程(1)x y 82=(2)y x 42=(3)0322=+x y (4)261x y -= 2.根据下列条件写出抛物线的标准方程(1)焦点是)0,2(-F (2)准线方程是31=y (3)焦点到准线的距离是4,焦点在y 轴上 (4)经过点)2,6(-A3.抛物线y x 42=上的点P 到焦点的距离是10,求P 点坐标4.P67 1、2、35.P72 习题2.4 A 组1、22.3.2 抛物线的简单几何性质(一)一、【学习目标】1.巩固抛物线定义和标准方程;2.掌握抛物线简单几何性质,会利用性质求方程. 二、【新知探究】 抛物线的几何性质:例1 :已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形.例2 :探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点坐标. 四、【随堂练习】 1.P72 12.P73 习题A 组 42.3.2 抛物线的简单几何性质(二)一、【学习目标】1.掌握与弦中点相关的性质; 2.掌握与OB OA ⊥相关的性质. 二、【新知探究】1.抛物线的焦半径(定义)及其应用: 定义:焦半径公式:2.抛物线的焦点弦: (1)弦长公式:①=AB ________________________ ②=AB ________________________ (2)通径:(px 2 =∆AOB S(4px 2 n BF m AF ==||,||,p n m 211=+(5)=21x x=21y y(1)=21x x =21y y 三、【例题精讲】例1:过抛物线px y 22=的焦点F 任作一条直线m ,交这抛物线于B A ,两点, 求证:以AB 为直径的圆和这抛物线的准线相切.例2:过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( )A .10B .8C .6D .4 例3:过抛物线()02>=a axy 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF的长分别是p 、q ,则qp 11+=( ) A .a 2 B .a 21 C .a 4 D .a4 例4:直线2-=x y 与抛物线x y 22=相交于B A ,两点,求证:⊥.四、【随堂练习】1.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( )A .3B .4C .5D .6 2.P73 3、52.3.3 专题:直线与抛物线的位置关系一、【知识要点】1.如何确定直线和抛物线的位置关系? ________⇔直线与抛物线有两个公共点________⇔直线与抛物线有且只有一个公共点 ________⇔直线与抛物线没有公共点2.弦长公式:=AB ________________________3.点差法:4.⇔⊥OB OA ________________________ 二、【典型例题】例1:已知抛物线的方程为x y 42=,直线l 过定点),(12-P ,斜率为k .k 为何值时,直线l 与抛物线只有一个公共点;有两个公共点;没有公共点.例2:过点)0,2(M 作斜率为1的直线l ,交抛物线x y 42=于B A ,两点,求||AB .例3:过抛物线x y 42=焦点F 的直线l 与它交于A 、B 两点,则弦AB 的中点的轨迹方程是 _____________.例4:直线2+=x y 与抛物线相交于A 、B 两点,求证:OB OA ⊥. 三、【巩固练习】1. 垂直于x 轴的直线交抛物线x y 42=于B A ,两点,且34||=AB ,求直线AB 的方程.2.顶点在坐标原点,焦点在x 轴上的抛物线被直线12+=x y 截得的弦长为15,求抛物线的方程.3.以双曲线 191622=-y x 的右准线为准线,以坐标原点O 为顶点的抛物线截双曲线的左准线得弦AB ,求△AB O 的面积.4.定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 中点M 到y 轴距离的最小值,并求出此时AB 中点M 的坐标.5.在抛物线x y 42=上求一点P ,使得P 到直线3+=x y 的距离最短.6.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上.(1)分别求A 、B 两点的横坐标之积,纵坐标之积;(2)直线AB 是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由; (3)求O 点在线段AB 上的射影M 的轨迹方程.7.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上,原点在直线AB 上的射影为()1,2D ,求抛物线的方程.8.已知抛物线()022>=p px y 与直线1+-=x y 相交于A 、B 两点,以弦长AB 为直径的圆恰好过原点,求此抛物线的方程.9.已知直线b x y +=与抛物线px y 22=()0>p 相交于A 、B 两点,若OB OA ⊥,(O 为坐标原点)且52=∆AOB S ,求抛物线的方程.10.(1)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 求这个正三角形的边长.(2)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 上,求正三角形外接圆的方程.11.已知ABC ∆的三个顶点是圆0922=-+x y x 与抛物线()022>=p px y 的交点,且ABC ∆的垂心恰好是抛物线的焦点,求抛物线的方程.12.顶点在原点,焦点在y 轴上,且过点(4,2)P 的抛物线方程是( )A. y x 82=B. y x 42=C. y x 22= D. y x 212=13.抛物线x y 82=上一点P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A. (2,4) B.(2,±4) C.(1,22) D.(1,±22)14.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长等于8,则抛物线方程为 __________.15.抛物线x y 62=,以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的方程是________________.3.1.1 变化率问题一、【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。

3.3.1 抛物线及其标准方程 导学案答案

3.3.1 抛物线及其标准方程  导学案答案

3.3 抛物线3.3.1 抛物线及其标准方程【课前预习】知识点一相等 焦点 准线诊断分析(1)√ (2)√ (3)× (4)× [解析] (3)抛物线的焦点不可能在准线上.(4)只有当点F 不在直线l 上时,满足条件的点的轨迹才是抛物线.知识点二(p 2,0) (-p 2,0) (0,p 2) (0,-p 2) x=-p 2x=p 2 y=-p 2 y=p 2 诊断分析(1)× (2)× (3)√ (4)× [解析] (1)抛物线的方程不都是二次函数,如开口向右的抛物线的标准方程为y 2=2px (p>0),对任意一个x (x ≠0),y 的值不唯一,所以不是二次函数.(2)原点到准线的距离是p 2(p>0).(3)若一次项是含x 的项,则当一次项系数大于0时,抛物线的开口向右,当一次项系数小于0时,抛物线的开口向左;若一次项是含y 的项,则当一次项系数大于0时,抛物线的开口向上,当一次项系数小于0时,抛物线的开口向下.(4)方程y=ax 2(a ≠0)表示的抛物线的标准方程是x 2=1a y (a ≠0). 【课中探究】探究点一例1 (1)A (2)(6,9)或(-6,9) [解析] (1)设动圆圆心的坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x=-1的距离相等,根据抛物线的定义知,动圆圆心的轨迹为抛物线.故选A .(2)设点P (x 0,y 0),易知抛物线x 2=4y 的焦点坐标为(0,1),准线方程为y=-1,由抛物线的定义得y 0+1=10,∴y 0=9,代入抛物线的方程,得x 0=±6,故点P 的坐标为(6,9)或(-6,9).变式 (1)A (2)A [解析] (1)由题意知,抛物线的准线方程为x=-14.因为|AF|=54x 0,所以根据抛物线的定义可得|AF|=x 0+14=54x 0,解得x 0=1.故选A .(2)将P 点到直线l 1:x=-1的距离转化为P 到焦点F (1,0)的距离,过点F 作直线l 2的垂线,交抛物线于点P ,此即为取得最小值时的点P ,∴P 到两条直线的距离之和的最小值为√12+12=2√2.故选A .拓展 (1)C (2)72 (2,2) [解析] (1)设抛物线的焦点为F ,则F (-1,0),连接PF ,PM ,FM ,作PN 垂直于准线交准线于点N ,由抛物线的定义得|PN|=|PF|,所以|PN|+|PM|=|PF|+|PM|,易知当P ,F ,M 三点共线且P 在线段FM 上时,|PN|+|PM|取得最小值,所以(|PN|+|PM|)min =|FM|=√(-1)2+(-2)2=√5,故选C .(2)分别过点P ,A 作PN ,AB 垂直于抛物线的准线交准线于点N ,B ,则|PA|+|PF|=|PA|+|PN|≥|AB|,当且仅当P 为AB 与抛物线的交点时取等号,∴(|PA|+|PF|)min =|AB|=3+12=72,此时y P =2,代入抛物线的方程得x P =2,故取得最小值时点P 的坐标为(2,2).探究点二例2 解:(1)由题意可知p=4,故抛物线的标准方程为y 2=8x 或y 2=-8x 或x 2=8y 或x 2=-8y.(2)设抛物线的标准方程为x 2=-2py (p>0),将点(-1,-3)的坐标代入,得1=6p ,所以2p=13,所以抛物线的标准方程为x 2=-13y.(3)双曲线的标准方程为x 29-y 216=1,其左顶点的坐标为(-3,0),设抛物线的标准方程为y 2=-2px (p>0),则-p 2=-3,所以2p=12,所以抛物线的标准方程为y 2=-12x.变式 (1)C (2)y 2=4x [解析] (1)直线2x+5y-10=0与坐标轴的交点为(5,0)和(0,2),所以抛物线的焦点为(5,0)或(0,2).当焦点为(5,0)时,抛物线的标准方程为y 2=20x ;当焦点为(0,2)时,抛物线的标准方程为x 2=8y.故选C .(2)依题意得 x 02=2px 0,因为x 0≠0,所以x 0=2p.又|MF|=x 0+p 2=5,解得p=2,所以抛物线C 的方程为y 2=4x. 探究点三例3 解:(1)设抛物线形拱桥与水面的两个交点分别为A ,B ,以AB 的垂直平分线为y 轴,拱圈最高点为坐标原点O ,建立平面直角坐标系,如图,则A (-15,-9),B (15,-9).设拱桥所在的抛物线的标准方程为x 2=-2py (p>0),将点A (-15,-9)的坐标代入抛物线的方程得2p=25,故拱桥所在的抛物线的标准方程是x 2=-25y.(2)因为x 2=-25y ,所以当x=3时,y=-0.36,故当水位暴涨2.46 m 后,船身至少应降低7+2.46-(9-0.36)=0.82(m),又精确到0.1 m,所以船身至少应降低0.9 m .变式C[解析] 如图所示,以碗体的最低点为原点建立平面直角坐标系,设碗体内部的轴截面所在抛物线的方程为x2=2py(p>0),将(5,6.25)代入,得52=2p×6.25,解得p=2,则x2=4y.设盖上碗盖后,碗盖内部最高点到碗底的垂直距离为h cm,则两抛物线在第一象限的交点为(4,h-3),将(4,h-3)代入x2=4y,得42=4(h-3),解得h=7.故选C.。

(新课程)高中数学《2.4.1抛物线及其标准方程》导学案 新人教A版选修21

(新课程)高中数学《2.4.1抛物线及其标准方程》导学案 新人教A版选修21

学习目标掌握抛物线的定义、标准方程、几何图形.学习过程一、课前准备(预习教材理P64~ P67,文P56~ P59找出疑惑之处)复习1:函数2261y x x=-+的图象是,它的顶点坐标是(),对称轴是.复习2:点M与定点(2,0)F的距离和它到定直线8x=的距离的比是1:2,则点M的轨迹是什么图形?二、新课导学※学习探究探究1:若一个动点(,)p x y到一个定点F和一条定直线l的距离相等,这个点的运动轨迹是怎么样的呢?新知1:抛物线平面内与一个定点F和一条定直线l的距离的点的轨迹叫做抛物线.点F叫做抛物线的;直线l叫做抛物线的.新知2:抛物线的标准方程定点F到定直线l的距离为p(0p>).建立适当的坐标系,得到抛物线的四种标准形式:图形标准方程焦点坐标准线方程22y px=,02p⎛⎫⎪⎝⎭2px=-抛物线220y x=的焦点坐标是(),准线方程是;抛物线212x y=-的焦点坐标是(),准线方程是.※典型例题例1 (1)已知抛物线的标准方程是26y x=,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是(0,2)F-,求它的标准方程.变式:根据下列条件写出抛物线的标准方程:⑴焦点坐标是(0,4);⑵准线方程是14x=-;⑶焦点到准线的距离是2.12008年下学期◆高二 月 日 班级: 姓名: 第二章 圆锥曲线与方程2例2 一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态的射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径为4.8m ,深度为0.5m ,试建立适当的坐标系,求抛物线的标准方程和焦点坐标.※ 动手试试练1.求满足下列条件的抛物线的标准方程: (1) 焦点坐标是(5,0 )F -;(2) 焦点在直线240x y --=上.练2 .抛物线22y px = (0)p >上一点M 到焦点距离是a ()2pa >,则点M 到准线的距离是 ,点M的横坐标是 .三、总结提升 ※ 学习小结1.抛物线的定义;2.抛物线的标准方程、几何图形. ※ 知识拓展 焦半径公式:设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若00(,)M x y 在抛物线22y px =上,则02pMF x =+学习评价( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.对抛物线24y x =,下列描述正确的是( ). A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)162.抛物线280x y +=的准线方程式是( ). A .2x = B .2x =- C .2y = D .2y =- 3.抛物线210y x =的焦点到准线的距离是( ).A. 52B. 5C. 152D. 104.抛物线212y x =上与焦点的距离等于9的点的坐标是 . 5.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 . 课后作业M (0,8)F 7y =-的距离大1,求M 点的轨迹方程.2.抛物线22y px = (0)p >上一点M 到焦点F 的距离2MF p =,求点M 的坐标.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1 抛物线及其标准方程一、【学习目标】1.理解抛物线的定义,掌握抛物线标准方程的推导;2.掌握抛物线标准方程的四种形式,会求抛物线的焦点坐标及准线方程; 3.能利用定义解决简单的应用问题. 二、【复习引入】 1.椭圆的第二定义:2. 双曲线的第二定义:3.问题:到定点距离与到定直线距离之比是定值e 的点的轨迹,当0<e<1时是( ),当e>1时是( ).此时自然想到,当e=1时轨迹是什么?若一动点到定点F 的距离与到一条定直线l 的距离之比是一个常数1=e 时,那么这个点的轨迹是什么曲线? 三、【新知探究】 1. 抛物线定义:2.推导抛物线的标准方程:说明:1.方程形式与图形之间的关系: 2.p 的几何意义: 四、【例题精讲】例1:(1)已知抛物线标准方程是x y 62=,求它的焦点坐标和准线方程. (2)已知抛物线的焦点坐标是)2,0(-F ,求它的标准方程.例2: 已知抛物线的标准方程是(1)x y 122=(2)212x y =求它的焦点坐标和准线方程.例3:求满足下列条件的抛物线的标准方程: (1)焦点坐标是)0,5(-F (2)经过点)3,2(-A五、【随堂练习】1.求下列抛物线的焦点坐标和准线方程(1)x y 82=(2)y x 42=(3)0322=+x y (4)261x y -= 2.根据下列条件写出抛物线的标准方程(1)焦点是)0,2(-F (2)准线方程是31=y (3)焦点到准线的距离是4,焦点在y 轴上 (4)经过点)2,6(-A3.抛物线y x 42=上的点P 到焦点的距离是10,求P 点坐标4.P67 1、2、35.P72 习题2.4 A 组1、22.3.2 抛物线的简单几何性质(一)一、【学习目标】1.巩固抛物线定义和标准方程;2.掌握抛物线简单几何性质,会利用性质求方程. 二、【新知探究】 抛物线的几何性质:三、【例题精讲】例1 :已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形.例2 :探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点坐标. 四、【随堂练习】 1.P72 12.P73 习题A 组 42.3.2抛物线的简单几何性质(二)一、【学习目标】1.掌握与弦中点相关的性质;2.掌握与⊥相关的性质.二、【新知探究】1.抛物线的焦半径(定义)及其应用:定义:焦半径公式:2.抛物线的焦点弦:(1)弦长公式:①=AB________________________②=AB________________________(2)通径:(px2=∆AOBS(4px2nBFmAF==||,||,pnm211=+(5)=21xx=21yy(1)=21xx=21yy(3)AOB S ∆的最小值 三、【例题精讲】例1:过抛物线px y 22=的焦点F 任作一条直线m ,交这抛物线于B A ,两点, 求证:以AB 为直径的圆和这抛物线的准线相切.例2:过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( )A .10B .8C .6D .4例3:过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp 11+=( ) A .a 2 B .a 21 C .a 4 D .a4 例4:直线2-=x y 与抛物线x y 22=相交于B A ,两点,求证:⊥.四、【随堂练习】1.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( )A .3B .4C .5D .6 2.P73 3、52.3.3 专题:直线与抛物线的位置关系一、【知识要点】1.如何确定直线和抛物线的位置关系? ________⇔直线与抛物线有两个公共点________⇔直线与抛物线有且只有一个公共点 ________⇔直线与抛物线没有公共点2.弦长公式:=AB ________________________3.点差法:4.⇔⊥ ________________________二、【典型例题】例1:已知抛物线的方程为x y 42=,直线l 过定点),(12-P ,斜率为k .k 为何值时,直线l 与抛物线只有一个公共点;有两个公共点;没有公共点.例2:过点)0,2(M 作斜率为1的直线l ,交抛物线x y 42=于B A ,两点,求||AB .例3:过抛物线x y 42=焦点F 的直线l 与它交于A 、B 两点,则弦AB 的中点的轨迹方程是 _____________.例4:直线2+=x y 与抛物线相交于A 、B 两点,求证:⊥. 三、【巩固练习】1. 垂直于x 轴的直线交抛物线x y 42=于B A ,两点,且34||=AB ,求直线AB 的方程. 2.顶点在坐标原点,焦点在x 轴上的抛物线被直线12+=x y 截得的弦长为15,求抛物线的方程.3.以双曲线191622=-y x 的右准线为准线,以坐标原点O 为顶点的抛物线截双曲线的左准线得弦AB ,求△AB O 的面积.4.定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 中点M 到y 轴距离的最小值,并求出此时AB 中点M 的坐标.5.在抛物线x y 42=上求一点P ,使得P 到直线3+=x y 的距离最短.6.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上. (1)分别求A 、B 两点的横坐标之积,纵坐标之积;(2)直线AB 是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由; (3)求O 点在线段AB 上的射影M 的轨迹方程.7.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上,原点在直线AB 上的射影为()1,2D ,求抛物线的方程.8.已知抛物线()022>=p px y 与直线1+-=x y 相交于A 、B 两点,以弦长AB 为直径的圆恰好过原点,求此抛物线的方程.9.已知直线b x y +=与抛物线px y 22=()0>p 相交于A 、B 两点,若OB OA ⊥,(O 为坐标原点)且52=∆AOB S ,求抛物线的方程.10.(1)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 求这个正三角形的边长.(2)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 上,求正三角形外接圆的方程.11.已知ABC ∆的三个顶点是圆0922=-+x y x 与抛物线()022>=p px y 的交点,且ABC ∆的垂心恰好是抛物线的焦点,求抛物线的方程.12.顶点在原点,焦点在y 轴上,且过点(4,2)P 的抛物线方程是( )A. y x 82=B. y x 42=C. y x 22=D. y x 212=13.抛物线x y 82=上一点P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A. (2,4) B.(2,±4) C.(1,22) D.(1,±22)14.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长等于8,则抛物线方程为 __________.15.抛物线x y 62=,以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的方程是 ________________.3.1.1 变化率问题一、【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。

二、【新知探究】 平均变化率概念:思考:观察函数f (x )的图象直线AB 三、例1:已知质点按照规律t t s 422+=(距离单位:m ,时间单位:s )运动,求: (1)质点开始运动后3秒内的平均速度; (2)质点在2秒到3秒内的平均速度。

例2:求函数322+-=x x y 在区间⎥⎦⎤⎢⎣⎡2,1223和⎥⎦⎤⎢⎣⎡1225,2的平均变化率。

变式1:求函数2x y =在区间[]x x x ∆+00,(或[]00,x x x ∆+)的平均变化率,并探索表达式的值(平均变化率)与函数图象之间的关系。

变式2:过曲线()3x x f y ==上两点)1,1(P 和()y x Q ∆+∆+1,1作曲线的割线,求出当1.0=∆x 时割线的斜率。

四、【课后巩固】1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为 ( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 2.一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A .-4B .-8C .6D .-63.将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A .R R ∆π8 B .()248R R R ∆+∆ππC .()244R R R ∆+∆ππ D .()24R ∆π4.在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为 ( )A .21+∆+∆x x B .21-∆-∆xx C .2+∆x D .xx ∆-∆+125.在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是 ( )A .在10≤≤t 这段时间里,平均速度是s m /6.1B .在49650≤≤t 这段时间里,平均速度是s m /0 C .运动员在⎥⎦⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢D .运动员在[]2,1内的平均速度比在[]3,2的平均速度小6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大? 10.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:孤度)由函数()23.04t t t -=ϕ(单位:秒)给出(1)求t =2秒时,P 点转过的角度(2)求在t t ∆+≤≤22时间段内P 点转过的平均角速度,其中①1=∆t ,②1.0=∆t ③01.0=∆t3.1.2 导数的概念一、【学习目标】1.了解瞬时速度,瞬时变化率(导数)的定义。

相关文档
最新文档