九年级数学上册第22章二次函数22.3.1实际问题与二次函数同步检测题含解析新版新人教版

合集下载

22.3 实际问题与二次函数 同步练习(附答案)

22.3 实际问题与二次函数  同步练习(附答案)

22.3 实际问题与二次函数第1课时二次函数与图形面积1.如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积为() A.60 m2B.63 m2C.64 m2D.66 m22.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=时,矩形场地的面积最大,最大值为.第1题图第2题图第3题图第4题图3.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B 点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q 分别从A,B同时出发,当△PBQ的面积最大时,运动时间t为s.4.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC =x,△AEF的面积为y,则y与x之间的函数关系式是.5.用长为20 cm的铁丝,折成一个矩形,设它的一边长为x cm,面积为y cm2.(1)求出y与x的函数关系式;(2)当边长x为多少时,矩形的面积最大?最大面积是多少?6.如图,要利用一面墙(长为30 m)建羊圈,用100 m长的围栏围成两个大小相同的矩形羊圈,每个羊圈留有一个1 m宽的门(留门部分不需要围栏),若宽用x(m)表示,总面积用y(m2)表示.(1)写出总面积y(m2)与宽x(m)的函数关系式;(2)当面积y=624时,求羊圈的宽x的值.7.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?8.用一段长为24 m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8 m,则这个养鸡场最大面积为 m2.9.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是cm2.10.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12 cm,点P是AB边上的一个动点,过点P作PE⊥BC于点E,PF⊥AC于点F,当PB=时,四边形PECF的面积最大,最大值为.11.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192 m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.12.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数解析式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.13.如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N =30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积为y cm 2.下列结论:①当0≤x ≤233时,y 与x 之间的函数关系式为y =32x 2;②当233<x ≤2时,y 与x 之间的函数关系式为y =2x -233;③当MN 经过AB 的中点时,y =32cm 2; ④存在x 的值,使y =12S 正方形ABCD (S 正方形ABCD 表示正方形ABCD 的面积).其中正确的是 (写出所有正确结论的序号).第2课时 二次函数与商品利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x 元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y(元)与售价x(元)之间的函数关系式为( )A .y =-10x 2-560x +7 350 B .y =-10x 2+560x -7 350 C .y =-10x 2+350x D .y =-10x 2+350x -7 3502.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为 元.3.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(要求写出x的取值范围);(2)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?4.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元5.某商场销售一批品牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1 200元,每件衬衫应降价多少元?(2)想要平均每天盈利最多,每件衬衫应降价多少元?6.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,则y 与x 的函数关系式为( )A .y =-10x 2+100x +2 000 B .y =10x 2+100x +2 000 C .y =-10x 2+200x D .y =-10x 2-100x +2 0007.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为 元.8.某工厂生产的某种产品按产量分为10个档次,第1档次(最低档次)的产品一天能生产95件产品,每件利润6元(第一档).每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(2)若生产第x 档次的产品一天的总利润为1 120元,求该产品的质量档次.9.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为W(元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.10.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6 480元的利润,每星期至少要销售该款童装多少件?第3课时实物抛物线1.河北省赵县的赵州桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2.当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为()A.-20 m B.10 m C.20 m D.-10 m2.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.3.有一个抛物线形的立交拱桥,这个拱桥的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心5 m处的M点垂直竖立一铁柱支撑拱顶,则这根铁柱的长为m.4.(绵阳中考)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加 m.5.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16 m ,AE =8 m ,抛物线的顶点C 到ED 的距离是11 m .试以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系,求题中抛物线的函数解析式.6.王大力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=-148x 2+2324x +2,则王大力同学投掷标枪的成绩是 m.7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系式是y =-112x 2+23x +53,铅球运行路线如图. (1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4 m.8.某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h =-5t 2+150t +10表示.经过 s ,火箭达到它的最高点.9.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式是y =ax 2+bx.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.10.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y =-15x 2+85x ,如图,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2 m.(1)请写出抛物线的开口方向、顶点坐标、对称轴; (2)请求出球飞行的最大水平距离;(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线?求出其解析式.11.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的平面直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB的水平距离为3 m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?22.3 实际问题与二次函数第1课时 二次函数与图形面积1.C2.20m ,800__m 2. 3.2.4.y =-12x 2+4x .5.解:(1)已知一边长为x cm ,则另一边长为(10-x )cm.则y =x (10-x ),化简,得y =-x 2+10x (0<x <10).(2)y =10x -x 2=-(x 2-10x )=-(x -5)2+25. ∴当x =5时,y 取最大值,为25.答:当边长x 为5 cm 时,矩形的面积最大,最大面积是25 cm 2. 6.解:(1)y =x (100-3x +2),即y =-3x 2+102x (24≤x ≤34).(2)由题意得-3x 2+102x =624,解得x 1=8(不合题意,舍去),x 2=26. 则羊圈的宽x =26.7.解:(1)S =-12x 2+30x.(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大面积为450 cm 2. 8.64 . 9.18.10.6cm ,3__cm 2.11.解:,得x (28-x )=192,解得x 1=12,x 2=16. ∴x =12或16.(2)S =x (28-x )=-(x -14)2+196.由题意知⎩⎪⎨⎪⎧x ≥6,28-x ≥15,解得6≤x ≤13.在6≤x ≤13范围内,S 随x 的增大而增大.∴当x =13时,S 最大=-(13-14)2+196=195.12.解:(1)y =x (16-x )=-x 2+16x (0<x<16).(2)当y =60时,-x 2+16x =60, 解得x 1=10,x 2=6.∴当x =10或6时,围成的养鸡场的面积为60平方米.(3)当y =70时,-x 2+16x =70,整理得 x 2-16x +70=0.∵Δ=256-280=-24<0, ∴此方程无实数根.∴不能围成面积为70平方米的养鸡场. 13.①②④.第2课时 二次函数与商品利润1.B3.(1)y=-20x+200(5≤x≤7);(2)解:根据题意得w=(x-5)(-20x+200)=-20x2+300x-1 000=-20(x-7.5)2+125,∵当x<7.5时,w随x的增大而增大,∴当x=7时,文具店每天的获利最大,最大利润是-20×(7-7.5)2+125=120(元).答:销售单价为7元时,才能使文具店每天的获利最大,最大利润是120元.4.A5.解:(1)设每件衬衫应降价x元,∵商场平均每天要盈利1 200元,∴(40-x)(20+2x)=1 200.整理,得2x2-60x+400=0.解得x1=20,x2=10.因为要扩大销售,在获利相同的情况下,降价越多,销售越快,故每件衬衫应降价20元.(2)设商场平均每天赢利w元.则 w=(20+2x)(40-x),=-2x2+60x+800,=-2(x-15)2+1 250.∴当x=15时,w取最大值,为1 250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1 250元.6.A7.55.8.解:(1)y=[6+2(x-1)]×[95-5(x-1)],整理,得y=-10x2+180x+400(1≤x≤10).(2)由-10x2+180x+400=1 120,化简,得x2-18x+72=0.解得x1=6,x2=12(不合题意,舍去).∴该产品为第6档次的产品.9.解:(1)k1=30,k2=20,b=6 000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30 000)=-0.01x2+10x+30 000=-0.01(x-500)2+32 500,∵-0.01<0,∴当x=500时,W取最大值为32 500元.当600≤x≤1 000时,W=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000,∵-0.01<0,∴当600≤x≤1 000时,W随x的增大而减小.∴当x=600时,W取最大值为32 400元.∵32 400<32 500,∴W的最大值为32 500元.(3)由题意,得1 000-x≥100,解得x≤900.又∵x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取最小值为27 900元.10.解:(1)y=300+30(60-x)=-30x+2 100.(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2 100)=-30x2+3 300x-84 000=-30(x-55)2+6 750.∵-30<0,∴当x=55时,W最大=6 750.答:当每件售价定为55元时,每星期的销售利润最大,最大利润是6 750元.(3)由题意,得-30(x -55)2+6 750=6 480,解得x 1=52,x 2=58.∵抛物线W =-30(x -55)2+6 750的开口向下,∴当52≤x ≤58时,每星期销售利润不低于6 480元.∵在y =-30x +2 100中,y 随x 的增大而减小,∴当x =58时,y 最小=-30×58+2 100=360.答:每星期至少要销售该款童装360件.第3课时 实物抛物线1. C2.y =-13x 2. 345解:如图所示.由题知抛物线的顶点坐标为(0,11),过点B (8,8),设抛物线的解析式为y =ax 2+11,将点B 的坐标(8,8)代入抛物线的解析式,得64a +11=8.解得a =-364, ∴抛物线的解析式为y =-364x 2+11. 6.48.7.解:(1)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去). ∴铅球推出的水平距离是10 m.(2)y =-112x 2+23x +53=-112(x 2-8x +16)+43+53=-112(x -4)2+3. 当x =4时,y 取最大值3.∴铅球行进高度不能达到4 m ,最高能达到3 m.8.15s .9.36.10.解:(1)y =-15x 2+85x =-15(x -4)2+165. ∴抛物线y =-15x 2+85x 开口向下,顶点坐标为(4,165),对称轴为直线x =4. (2)令y =0,得-15x 2+85x =0. 解得x 1=0,x 2=8.∴球飞行的最大水平距离是8 m.(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10 m. ∴抛物线的对称轴为直线x =5,顶点为(5,165).设此时对应的抛物线解析式为y =a (x -5)2+165. 又∵点(0,0)在此抛物线上,∴25a +165=0,a =-16125. ∴y =-16125(x -5)2+165, 即y =-16125x 2+3225x. 11.解:(1)由题意,得点B 的坐标为(0,4),点C 的坐标为(3,172), ∴⎩⎪⎨⎪⎧4=c ,172=-16×32+3b +c. 解得⎩⎪⎨⎪⎧b =2,c =4. ∴该抛物线的函数关系式为y =-16x 2+2x +4. ∵y =-16x 2+2x +4=-16(x -6)2+10, ∴拱顶D 到地面OA 的距离为10 m.(2)当x =6+4=10时,y =-16x 2+2x +4=-16×102+2×10+4=223>6, ∴这辆货车能安全通过.(3)当y =8时,-16x 2+2x +4=8,即x 2-12x +24=0,∴x 1=6+23,x 2=6-2 3. ∴两排灯的水平距离最小是6+23-(6-23)=43(m ).。

人教版数学九年级上册第22章22.1---22.3同步练习题含答案

人教版数学九年级上册第22章22.1---22.3同步练习题含答案

【22.1二次函数的图像和性质】一.选择题1.把抛物线y=﹣2x2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣2)2+7B.y=﹣2(x﹣2)2+1C.y=﹣2(x+2)2+7D.y=﹣2(x+2)2+12.已知点(﹣3,y1),(﹣2,y2),(3,y3)在函数y=(x+1)2﹣2的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y1<y23.将二次函数y=2x2+3x﹣1化为y=(x+h)2+k的形式为()A.y=2(x+)2﹣B.y=2(x+)2﹣C.y=2(x+)2﹣D.y=2(x+)2﹣4.二次函数y=x2﹣4x+3的二次项系数、一次项系数和常数项分别是()A.1,4,3B.0,4,3C.1,﹣4,3D.0,﹣4,35.二次函数y=a(x﹣1)2+b(a≠0)的图象经过点(0,2),则a+b的值是()A.﹣3B.﹣1C.2D.36.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数);⑤3a+c>0.则其中正确的结论有()A.2个B.3个C.4个D.5个7.若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是()A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2|C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0D.若x1+x2=2(x1≠x2),则AB∥CD8.对于二次函数y=﹣(x+1)2﹣2的图象,下列说法正确的是()A.有最低点,坐标是(1,2)B.有最高点,坐标是(﹣1,﹣2)C.有最高点,坐标是(1,2)D.有最低点,坐标是(﹣1,﹣2)9.不论m取任何实数,抛物线y=a(x+m)2+m+1(a≠0)的顶点都()A.在y=x+1直线上B.在直线y=﹣x﹣1上C.在直线y=﹣x+1上D.不确定10.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小二.填空题11.如果二次函数的图象与已知二次函数y=x2﹣2x的图象关于y轴对称,那么这个二次函数的解析式是.12.将抛物线y=﹣3x2﹣1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为.13.二次函数y=﹣2(x﹣1)2﹣3的最大值是.14.当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.15.若点A(0,y1),B(﹣3,y2),C(1,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.三.解答题16.已知函数y=﹣2x2+8x﹣5.(1)当x时,y随x的增大而增大;(2)当x=时,y有最大值,最大值为;(3)求出该抛物线与直线y=x﹣5的交点坐标.17.已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.18.抛物线顶点坐标为(1,﹣4)且过(0,﹣3).(1)求抛物线的解析式;(2)当2≤x≤4时,求y的取值范围.19.如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、C(0,﹣3)两点.(1)求抛物线解析式和顶点坐标;(2)当0<x<3时,请直接写出y的取值范围.20.在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3m+2.(1)求抛物线的对称轴;(2)①过点P(0,2)作与x轴平行的直线,交抛物线于点M,N.求点M,N的坐标;②横、纵坐标都是整数的点叫做整点.如果抛物线和线段MN围成的封闭区域内(不包括边界)恰有3个整点,求m的取值范围.参考答案一.选择题1.解:由“左加右减”的原则可知,二次函数y=﹣2x2+4的图象向左平移2个单位得到y=﹣2(x+2)2+4,由“上加下减”的原则可知,将二次函数y=﹣2(x+2)2+4的图象向上平移3个单位可得到函数y=﹣2(x+2)2+4+3,即y=﹣2(x+2)2+7,故选:C.2.解:∵点(﹣3,y1),(﹣2,y2),(3,y3)在函数y=(x+1)2﹣2的图象上,∴y1=2,y2=﹣1,y3=14,∴y2<y1<y3,故选:B.3.解:y=2x2+3x﹣1=2(x2+x+)﹣1﹣=2(x+)2﹣,即y=2(x+)2﹣,故选:C.4.解:二次函数y=x2﹣4x+3的二次项系数是1,一次项系数是﹣4,常数项是3;故选:C.5.解:∵二次函数y=a(x﹣1)2+b(a≠0)的图象经过点(0,2),∴a+b=2.故选:C.6.解:∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,∴点A(3,0)关于直线x=1对称点为(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故①正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故③错误;∵当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确;∵b=﹣2a,a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故⑤错误;综上,正确的有①②④.故选:B.7.解:∵抛物线过点A(m,n),C(2﹣m,n)两点,∴抛物线的对称轴为x==1,若a>0且|x1﹣1|>|x2﹣1|,则y1>y2,故选项A错误,若a<0且y1<y2,则|1﹣x1|<|1﹣x2|,故选项B错误,若|x1﹣1|>|x2﹣1|且y1>y2,则a>0,故选项C错误,若x1+x2=2(x1≠x2),则AB∥CD,故选项D正确.故选:D.8.解:∵二次函数y=﹣(x+1)2﹣2,∴该函数的图象开口向下,对称轴是直线x=﹣1,顶点坐标为(﹣1,﹣2),有最高点,故选项B中的说法正确,选项A、C、D中的说法错误;故选:B.9.解:∵抛物线y=a(x+m)2+m+1(a≠0),∴顶点坐标是(﹣m,m+1),∴顶点在直线y=﹣x+1上.故选:C.10.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.二.填空题11.解:y=x2﹣2x的图象关于y轴对称的抛物线x互为相反数,y不变.得y=(﹣x)2﹣2(﹣x)=x2+2x.故答案为y=x2+2x.12.解:由“上加下减,左加右减”的原则可知,函数y=﹣3x2﹣1的图象向左平移2个单位再向下平移3个单位所得到的图象的函数关系式是:y=﹣3(x+2)2﹣4.故答案为:y=﹣3(x+2)2﹣4.13.解:y=﹣2(x﹣1)2﹣3,∵a=﹣2<0,∴当x=1时,y有最大值,最大值为﹣3.故答案为﹣3.14.解:∵二次函数y=x2﹣3x+m=(x﹣)2+m﹣,∴该函数开口向上,对称轴为x=,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣3,y2)关于直线x=﹣2的对称点是(﹣1,y2),∵﹣2<﹣1<0<1,∴y2<y1<y3,故答案为y2<y1<y3.三.解答题16.解:函数y=﹣2x2+8x﹣5=﹣2(x﹣2)2+3,(1)∵函数y=﹣2x2+8x﹣5=﹣2(x﹣2)2+3,∴开口向下,对称轴为直线x=2,∴当x<2时,y随x的增大而增大;故答案为<2;(2))∵函数y=﹣2x2+8x﹣5=﹣2(x﹣2)2+3,∴开口向下,函数有最大值,∴当x=2时,y取得最大值3,故答案为:2,3.(3)由消去y整理得2x2﹣7x=0,解得x=0或x=,∴该抛物线与直线y=x﹣5的交点坐标为(0,﹣5),(,﹣).17.解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)在y=x2﹣1中,令y=0可得0=x2﹣1.解得x=﹣1或1,令x=0可得y=﹣1,结合(1)中的顶点坐标及对称轴,可画出其图象如图所示:.18.解:(1)由抛物线顶点坐标为(1,﹣4)可设其解析式为y=a(x﹣1)2﹣4,将(0,﹣3)代入,得:a﹣4=﹣3,解得:a=1,则抛物线解析式为y=(x﹣1)2﹣4.(2)把x=2代入得y=﹣3;把x=4代入得y=5,∵1<2≤x≤4,∴当2≤x≤4时,﹣3≤y≤5.19.解:(1)将A(﹣1,0)和B(3,0)代入y=x2+bx+c得,解得,∴抛物线的解析式为y=x2﹣2x﹣3;∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)∵当x=0时,y=﹣3;当3=0时,y=x2﹣2x﹣3=9﹣6﹣3=0,∴当0<x<3时,y的取值范围为﹣4≤x<0.20.解:(1)∵抛物线y=mx2+2mx﹣3m+2.∴对称轴为直线x=﹣=﹣1;(2)①把y=2代入y=mx2+2mx﹣3m+2得mx2+2mx﹣3m+2=2,解得x=1或﹣3,∴M(﹣3,2);N(1,2);②当抛物线开口向上时,如图1,抛物线和线段MN围成的封闭区域内(不包括边界)恰有3个整点,则封闭区域内(不包括边界)的3个点为(﹣2,1),(﹣1,1),(0,1),将(﹣2,1)代入y=mx2+2mx﹣3m+2,得到m=,将(﹣1,0)代入y=mx2+2mx﹣3m+2,得到m=,结合图象可得<m≤.当抛物线开口向下时,如图2,则封闭区域内(不包括边界)的3个点为(﹣2,3),(﹣1,3),(0,3),将(0,3)代入y=mx2+2mx﹣3m+2,得到m=﹣,将(﹣1,4)代入y=mx2+2mx﹣3m+2,得到m=﹣,结合图象可得﹣≤m<﹣.综上,m的取值范围为.22.2二次函数与一元二次方程一.选择题1.若二次函数y=ax2+bx﹣1的最小值为﹣2,则方程|ax2+bx﹣1|=2的不相同实数根的个数是()A.2B.3C.4D.52.二次函数y=x2+2x+4与坐标轴有()个交点.A.0B.1C.2D.33.在平面直角坐标系中,已知a≠b,设函数y=(x﹣a)(x﹣b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图形与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣14.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.45.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0B.﹣4C.4D.26.已知一个直角三角形的两边长分别为a和5,第三边长是抛物线y=x2﹣10x+21与x轴交点间的距离,则a的值为()A.3B.C.3或D.不能确定7.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个8.若二次函数y=ax2﹣2ax+c的图象经过点A(0,﹣1),B(﹣2,y1),C(3,y2),D(,y3),且与x轴没有交点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y2>y19.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④10.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)二.填空题11.抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0)两点,则关于x的一元二次方程a(x﹣3)2+c=3b﹣bx的解是.12.若方程ax2﹣2ax+c=0(a≠0)有一个根为x=﹣1,那么抛物线y=ax2﹣2ax+c与x轴两交点间的距离为.13.若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,则整数m的值为.14.已知抛物线y=3x2+2x+c,当﹣1≤x≤1时,抛物线与x轴有且只有一个公共点,则c的取值范围.15.已知关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,则抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是.三.解答题16.已知二次函数的图象经过点(3,0),对称轴是直线x=﹣2,与y轴的交点(0,﹣3).(1)求抛物线与x轴的另一个交点坐标;(2)求抛物线的解析式.17.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0,(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(1,0),B(t,0)两点,求m的值.18.已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)画出该二次函数的图象;(2)连接AC、CD、BD,则四边形ABCD的面积为.19.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:(1)求抛物线的函数解析式并直接写出顶点M坐标;(2)连接AM,N是AM的中点,连接BN,求线段BN长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).20.已知抛物线y=x2﹣(4﹣k)x﹣3的对称轴是直线x=1,此抛物线与x轴交于A、B两点,与y轴交于点C.(Ⅰ)求△ABC的面积;(Ⅱ)若抛物线的顶点为P,求线段PC的长.参考答案1.解:由题意可知,二次函数y=ax2+bx﹣1的图象开口向上,经过定点(0,﹣1),最小值为﹣2,则二次函数y=ax2+bx﹣1 的大致图象如图1所示,函数y=|ax2+bx﹣1|的图象则是由二次函数y=ax2+bx﹣1位于x轴上方的图象不变,位于x轴下方的图象向上翻转得到的,如图2所示,由图2可知,方程|ax2+bx﹣1|=2 的不相同实数根的个数是3个,故选:B.2.解:∵二次函数y=x2+2x+4,∴当y=0时,0=x2+2x+4=(x+1)2+3,此时方程无解,当x=0时,y=4,∴二次函数y=x2+2x+4与坐标轴有1个交点,故选:B.3.解:当y=0时,(x﹣a)(x﹣b)=0,解得x1=a,x2=b,抛物线y=(x﹣a)(x﹣b)与x轴的交点为(a,0),(b,0),所以M=2,当y=0时,(ax+1)(bx+1)=0,当a≠0,b≠0,解得x1=﹣,x2=﹣,抛物线y=(ax+1)(bx+1)与x轴的交点为(﹣,0),(﹣,0),此时N=2,当a=0,b≠0,或b=0,a≠0时,函数y=(ax+1)(bx+1)为一次函数,则N=1,所以M=N,M=N+1.4.解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.5.解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.6.解:∵y=x2﹣10x+21=(x﹣3)(x﹣7),∴当y=0时,x1=3,x2=7,∵7﹣3=4,∴直角三角形的第三边长为4,当5为斜边时,a==3,当a为斜边时,a==,由上可得,a的值为3或,故选:C.7.解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.8.解:∵抛物线过A(0,﹣1),而抛物线与x轴没有交点,∴抛物线开口向下,即a<0,∵抛物线的对称轴为直线x=﹣=1,而B点到直线x=1的距离最大,D点到直线x=1的距离最小,∴y1<y2<y3.故选:D.9.解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.10.解:对于y=﹣3(x﹣1)2+1,M(1,1),N(0,﹣2),直线MN的解析式为y=3x﹣2,直线MN与x轴的交点坐标为(,0),此时S=×2×=;对于y=2(x﹣0.5)(x+1.5),则y=2(x+)2﹣2,M(﹣,﹣2),N(0,﹣),直线MN的解析式为y=x﹣,直线MN与x轴的交点坐标为(,0),此时S=×(﹣)×=;对于y=x2﹣x+1,则y=(x﹣2)2﹣,M(2,﹣),N(0,1),直线MN的解析式为y=﹣x+1,直线MN与x轴的交点坐标为(,0),此时S=×1×=;故选:D.二.填空题11.解:∵a(x﹣3)2+c=3b﹣bx,∴a(x﹣3)2+b(x﹣3)+c=0,∵抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0),∴x﹣3=﹣2或1,∴a(x﹣3)2+c=3b﹣bx的解是1或4,故答案为:x1=1,x2=4,12.解:抛物线的对称轴是直线x=﹣=1.∴方程ax2﹣2ax+c=0(a≠0)的另一根为x=3.则两交点间的距离为4.故答案是:4.13.解:当y=0时,x2﹣2mx+4m﹣8=0,∴x=m±;∵抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,∴为整数,∴m2﹣4m+8为整数的完全平方数,即(m﹣2)2+4为整数的完全平方数,∵m为整数,∴m﹣2=0,即m=2.故答案为2.14.解:抛物线为y=3x2+2x+c,与x轴有且只有一个公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c=0,有c=.①当c=时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);②当c<时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c;由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x=﹣,应有y1<0,且y2≥0即1+c<0,且5+c≥0.解得:﹣5≤c<﹣1.综合①,②得n的取值范围是:c=或﹣5<c≤﹣1,故答案为c=或﹣5≤c<﹣1.15.解:由得,m(x﹣h+3)2﹣k=0,∵关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,∴方程m(x﹣h+3)2﹣k=0中的根满足x3+3=2,x4+3=5,解得,x3=﹣1,x4=2,即抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是﹣1或2,故答案为:﹣1或2.三.解答题16.解:(1)∵抛物线与x轴的一个交点坐标为(3,0),对称轴是直线x=﹣2,∴抛物线与x轴的另一个交点坐标为(﹣7,0);(2)设抛物线解析式为y=a(x+7)(x﹣3),把(0,﹣3)代入得a(0+7)(0﹣3)=﹣3,解得a=,∴抛物线解析式为y=(x+7)(x﹣3),即y=x2+x﹣3.17.解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)将x=1代入一元二次方程x2﹣(m﹣3)x﹣m=0中得12﹣(m﹣3)﹣m=0,解得m=2.18.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,抛物线的顶点坐标为(1,﹣4),解方程x2﹣2x﹣3=0,解得x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3),如图,(2)连接OD,如图,四边形ABCD的面积=S△AOC +S△OCD+S△OBD=×1×3+×3×1+×3×4=9.故答案为9.19.解:(1)抛物线解析式为y=﹣(x+4)(x﹣2),即y=﹣x2﹣x+2,∵y=﹣(x+1)2+,∴抛物线的顶点坐标为(﹣1,);(2)∵N是AM的中点,∴N点的坐标为(﹣,),∴BN==.20.解:(Ⅰ)由抛物线对称轴是直线x=1得到:﹣=1,得k=2.∴抛物线的解析式为y=x2﹣2x﹣3.解方程x2﹣2x﹣3=0得:x1=3,x2=﹣1.∴AB=4.当x=0时,y=3,∴C(0,﹣3).所以△ABC的面积S==6.(Ⅱ)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以顶点P的坐标为P(1,﹣4).∴PC==.22.3【实际问题与二次函数】一.选择题1.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元2.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a3.抛物线y=﹣(x+1)2+3有()A.最大值3B.最小值3C.最大值﹣3D.最小值﹣34.把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为()A.y=320(x﹣1)B.y=320(1﹣x)C.y=160(1﹣x2)D.y=160(1﹣x)25.二次函数y=x2﹣4x+7的最小值为()A.2B.﹣2C.3D.﹣36.关于二次函数y=(x﹣1)2+2,则下列说法正确的是()A.当x=1时,y有最大值为2B.当x=1时,y有最小值为2C.当x=﹣1时,y有最大值为2。

九年级数学上册《第二十二章 实际问题与二次函数》同步练习题带答案(人教版)

九年级数学上册《第二十二章 实际问题与二次函数》同步练习题带答案(人教版)

九年级数学上册《第二十二章实际问题与二次函数》同步练习题带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A.y=20x÷2 B.y=x(20﹣x)C.y=x(20﹣x)÷2 D.y=x(10﹣x)2.某产品进货单价为90元,按100元一件出售时能售出500件.若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A.5000元B.8000元C.9000元D.10000元3.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为()元.A.60 B.65 C.70 D.754.用48米木料制作成一个如图所示的“目”形长方形大窗框(横档EF,GH也用木料).其中AB∥EF∥GH ∥CD,要使窗框ABCD的面积最大,则AB的长为()A.6米B.8米C.12米D.4√3米5.如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )A.16 m2B.12 m2C.18 m2D.以上都不对6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P以每秒一个单位的速度沿着B﹣C﹣A运动,⊙P 始终与AB相切,设点P运动的时间为t,⊙P的面积为y,则y与t之间的函数关系图象大致是()A.B.C.D.7.如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是()A.y=x+1 B.y=x﹣1 C.y=x2﹣x+1 D.y=x2﹣x﹣18.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽4m.水面下降1m,水面宽度为()A.2 m B.2 m C. m D. m9.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距离喷水头8米时,达到最大高度1.8米,水流喷射的最远水平距离OC是()A.16米B.18米C.20米D.24米二、填空题10.小立存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是,若年利率为6%,两年到期的本利共元.11.济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.12.滕州市政府大楼前广场有一喷水池,喷出水的路径是一条抛物线,如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空号总划出的曲线是抛物线y=﹣x2+6x(单位:米)的一部分,则水喷出的最大高度是米.13.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为20cm,如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出来的射程s(单位:cm)与h的关系式为s²=4h(20﹣h),则射程s最大值是cm.(射程是指水流落地点离小孔的水平距离)三、解答题14.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出15件.设每件商品降价x元后,每星期售出商品的总销售额为y元,请列出y与x的关系式,试求当商品售价为多少元时,该商品每星期的总销售额最高,最高为多少元?15.廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)16.在美化校园的活动中,某兴趣小组用总长为28米的围栏材料,一面靠墙,围成一个矩形花园,墙长8米,设AB的长为x米,矩形花园的面积为S平方米,当x为多少时,S取得最大值,最大值是多少?17.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天赢利1200元,且让顾客得到实惠,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.18.某文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据巿场行情,现决定涨价销售,调查反映,每涨价1元,每月要少卖出2件,设每件商品涨价x元,每个月的销量为y件. (1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?19.今年的猪肉价格一直以来一路飙升,市民们一致声称:吃不起!近日,王老师通过相关部门了解到2019年1月到10月湖州各大超市的猪肉的月平均售价,并绘制了如图所示的函数图象,其中1月份到5月份的猪肉售价y与月份x之间的关系符合线段AB,5月份到10月份的猪肉售价y与月份x之间的关系符合抛物线BC.已知点A(1,16),点B(5,17),点C(10,42),且点B是抛物线的顶点.(1)求线段AB和抛物线BC的解析式;(2)已知1月份到5月份猪肉的平均进价为13元/斤,5月份到10月份猪肉的平均进价z与月份x之间的关系为z=3x−2(x为正整数),若设每销售一斤猪肉获得的利润为w,试求1月到10月w至少是多少元?1.C2.C3.C4.A5.C6.B7.C8.A9.C10.y=500+1000x%;56011.3612.913.2014.解:由题意可得: y =(60−x)(300+15x)=−15x 2+600x +18000 , 配方可得: y =−15(x −20)2+24000 因为-15<0, 所以当x=20时,y 有最大值,最大值是24000元. 答: y 与x 的关系式是 y =−15x 2+600x +18000 ,当x=20时,y 有最大值,最大值是24000元.15.解:如图,以 AB 所在直线为 x 轴、线段 AB 的中垂线为 y 轴建立直角坐标系由题意知,A(−20,0),B(20,0),C(0,10).设过点A , B , C 的抛物线方程为: y=a(x+20)(x −20)(a<0).把点 C(0,10) 的坐标代入,得10=a(0+20)(0−20)解得: a=− 140则该抛物线的解析式为: y=− 140 (x+20)(x −20)=− 140 x 2+10把 y=8 代入 , 得 − 140 x 2+10=8∴x 1=4 √5 ,x 2=−4 √5所以两盏警示灯之间的水平距离为: EF=|x 1−x 2|=|4 √5 −(−4 √5 )|=8 √5 (m).16.解: S =x(28−2x)= −2x 2+28x =−2(x −7)2+98 . ∵ −2<0∴ 当 x =10 时,S 有最大值,最大值 =8017.(1)解: 设每天利润为 w 元,每件衬衫降价 x 元根据题意得 w =(40−x)(20+2x)=−2x 2+60x +800当 w =1200 时 −2x 2+60x +800=1200解之得 x 1=10,x 2=20 根据题意要尽快减少库存,所以应降价20元。

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。

(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(1)

(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题(本大题共15小题,共45分)1.用60m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长L的变化而变化,要使矩形的面积最大,L的长度应为()A.63B.15 C.20 D.1032.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120∘.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()2A.182B.1832C.2432D.45323.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A.=(+3)2B.=2+6+6C.=2+6D.=24.为了节省材料,某工厂利用岸堤MN(岸堤足够长)为一边,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域(如图),若BC=(x+20)米,则下列4个结论:AB=(10-1.5x)米;BC=2CF;AE=2BE;长方形ABCD的最大面积为300平方米.其中正确结论的序号是()A. ① ②B. ① ③C. ② ③D. ③ ④5.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-22+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元6.某商店销售某种商品所获得的利润y(元)与所卖的件数x(件)之间的关系是y=-2+1000x-200000,则当0<x⩽450时,销售该商品所获得的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150B.160C.170D.1808.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价()A.3.6元B.5元C.10元D.12元9.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天的销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示,最大利润是()A.180元B.220元C.190元D.200元10.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为y=-142,当涵洞水面宽AB为16m时,涵洞顶点O至水面的距离为()A.−6 B.12 C.16 D.24 11.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为=−1252,当水面离桥拱顶的高度DO是4时,这时水面宽度AB为()A.−20B.10C.20D.−1012.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数解析式为()A.=266752B.=−266752 C.=1313502 D.=−131350213.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(−80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC ⊥x 轴.若OA =10米,则桥面离水面的高度AC 为()A.16940米 B.174米 C.16740米 D.154米14.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是()15.A.2 B.3 C.4 D.5 16.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米二、填空题(本大题共3小题,共9分)17.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.18.19.已知一个直角三角形两直角边的和为20cm,则这个直角三角形的最大面积为2.20.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价金额x(元)之间满足函数关系式y=-22+60x+800,则获利最多为元.三、解答题(本大题共10小题,共66分)21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设中间隔墙长为x(m),总占地面积为y(2).(墙的厚度忽略不计)22.(1)求y关于x的函数解析式和自变量的取值范围.(2)请给出一种设计方案,使两间饲养室的占地总面积最大,并求出这个最大面积.23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)设计费能达到24000元吗?为什么?(3)当x是多少时,设计费最多?最多是多少元?24.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向终点C运动,它们其中一点到达终点后就都停止运动.25.(1)几秒后,点P,D的距离是点P,Q的距离的2倍.(2)几秒后,△DPQ的面积达到最小,最小面积为多少?26.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件.已知这种商品的零售价在一定范围内每降低1元,其日销售量就增加1件,为了促销决定对其降价x元销售,则每件的利润为____________元,每日的销售量为____________件,每日的利润y=____________(写出自变量的取值范围),所以当每件降价____________元时,每日获得的利润最大,为____________元.27.28.29.30.31.32.33.34.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降低1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式.(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,则该休闲裤的销售单价应定为____________元.35.某商场销售一款成本为40元的可控温杯,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-x+120.36.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本);37.(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?38.39.40.41.42.43.44.45.在乡村振兴政策的帮扶下,某农户欲通过电商平台销售自家农产品,已知这种产品的成本价为10元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)之间大致有如下关系:w=-4x+80.设这种产品每天的销售利润为y(元).(1)当销售价定为多少时,每天销售的利润最大?最大利润是多少?(2)如果物价部门规定这种产品的销售价不得高于20元/千克,该农户要想每天获得84元的销售利润,销售价应定为多少?46.如图,有一座抛物线型拱桥,桥下面在正常水位时AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.47.(1)在如图所示的平面直角坐标系中,求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?48.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图2+bx+c表示,且抛物线上的点中所示的平面直角坐标系,抛物线可以用y=-16m.C到墙面OB的水平距离为3m,到地面OA的距离为17249.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离.(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?50.如图,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图所示方式建立平面直角坐标系.51.52.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.2.C3.C4.D5.B6.B7.A8.B9.D10.C11.C12.B13.B14.B15.A16.15017.5018.125019.解:(1)y=x(50-3x)=-32+50x,(0<x<503).(2)y=-32+50x=-3(−253)2+6253,当x=253时,max=6253,253m,平行于墙的围墙长度为25m,6253m2.20.解:(1)∵矩形的一边长为x米,周长为16米,∴另一边长为(8-x)米.∴S=x(8-x)=-2+8x(0<x<8).理由:当设计费为24000元时,广告牌的面积为24000÷2000=12(平方米),即-2+8x=12,解得x=2或x=6.∵x=2和x=6在0<x<8范围内,∴设计费能达到24000元.(3)∵S=-2+8x=-(−4)2+16,0<x<8,∴当x=4时,最大=16.则16×2000=32000(元).∴当x=4时,设计费最多,最多是32000元.21.解:(1)3秒后,点P,D的距离是点P,Q的距离的2倍.(2)4秒后△DPQ的面积最小,最小面积为242.22.解:(30-x),(20+x),-2+10x+600(0≤x≤30,且x为整数),5,625.23.解:(1)由题意,得y=100+5(80-x)=-5x+500.(2)由题意,得w=y(x-40)=(-5x+500)(x-40)=-52+700x-20000=-5(−70)2+4500.∵a=-5<0,∴当x=70时,w有最大值,最大=4500.(3)60.24.解:(1)根据题意得S=y(x-40)=(-x+120)(x-40)=-x2+160x-4800;(2)∵S=-x2+160x-4800=-(x-80)2+1600,∴当x=80时,S取得最大值,最大值为1600,答:当销售单价定为80元时,该公司每天获取的利润最大,最大利润是1600元.25.解:(1)根据题意可得y=w(x-10)=(x-10)(-4x+80)=-42+120x-800=-4(−15)2+100,∴当x=15时,y有最大值,为100.故当销售价定为15元/千克时,每天最大销售利润为100元.(2)当y=84时,可得84=-42+120x-800,整理,得2-30x+221=0,解得1=13,2=17.经检验,符合题意.故当销售价定为13元/千克或17元/千克时,该农户每天可获得销售利润84元.26.解:(1)设所求抛物线的解析式为y=2(a≠0).由CD=10m,可设D(5,b).∵AB=20m,水位上升3m就达到警戒线CD,∴B(10,b-3).把点D,B的坐标分别代入y=2,得25=,100=−3,解得=−125,=−1.∴y=-1252.(2)∵b=-1,∴拱桥顶O到CD的距离为1m.∴10.2=5(小时).∴再持续5小时到达拱桥顶.27.解:(1)由题意,得点B的坐标为(0,4),点C的坐标为(3,172),∴,=−16×32+3+.解得=2,=4.∴该抛物线的函数关系式为y=-162+2x+4.∵y=-162+2x+4=-16(−6)2+10,∴拱顶D到地面OA的距离为10m.(2)当x=6+4=10时,y=-162+2x+4=-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y=8时,-162+2x+4=8,即2-12x+24=0,∴1=6+23,2=6-23.∴两排灯的水平距离最小是6+23-(6-23)=43(m).28.解:(1)由题意得:A(-4,0),C(0,4),设抛物线的解析式为y=2+k(a≠0),则16+=0,=4,解得=−14=4,∴抛物线对应的函数关系式为y=-142+4.(2)2+0.42=2.2,当x=2.2时,y=-14×2.22+4=2.79,2.79-0.5=2.29(m).答:该货车能够安全通过的最大高度为2.29m.。

第22章二次函数22.3实际问题与二次函数第一节同步练习2020-2021学年人教版九年级数学上册

第22章二次函数22.3实际问题与二次函数第一节同步练习2020-2021学年人教版九年级数学上册

2020-2021学年数学人教版九年级上册第二十二章二次函数第一节22.3实际问题与二次函数同步练习一、单选题1.已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,。

有下列结论:①当x1>x2+2时,S1>S2;②当x1<2−x2时,S1<S2;③当|x1−2|>|x2−2|>1时,S1>S2;④当|x1−2|>|x2+2|>1时,S1<S2。

其中正确结论的个数是A. 1B. 2C. 3D. 42.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,每人的单价就降低10元,若这个旅行社要获得最大营业额,此时旅行团人数为()人A. 56B. 55C. 54D. 533.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A. 20B. 1508C. 1550D. 15584.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=−110x2+35x+85,由此可知小宇此次实心球训练的成绩为()A. 85米 B. 8米 C. 10米 D. 2米5.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A. 100(1+x)2=364;B. 100+100(1+x)+100(1+x)2=364;C. 100(1+2x)=364;D. 100+100(1+x)+100(1+2x)=364.6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A. ①②B. ②③C. ①③④D. ①②③7.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系8.某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A. 1mB. 32m C. 138m D. 2m9.某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月平均增长率.设该公司11,12两个月营业额的月平均增长率为x,则可列方程为()A. 2500(1+x)2=3600B. 3600(1+x)2=2500C. 2500(1+2x)=3600D. 2500(1+x2)=360010.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成-一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开。

人教版 九年级上册数学 22.3 实际问题与二次函数(含答案)

人教版 九年级上册数学 22.3 实际问题与二次函数(含答案)

人教版 九年级数学 22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 的总长为12 m ,则该梯形储料场ABCD 的最大面积是( )A .18 m 2B .18 3 m 2C .24 3 m 2D.45 32 m 22. 有一根长60 cm 的铁丝,用它围成一个矩形,则矩形的面积S (cm 2)与它的一边长x (cm)之间的函数解析式为( ) A .S =60xB .S =x (60-x )C .S =x (30-x )D .S =30x3. 如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm ,点P 从点A出发,沿AB 方向以2 cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 24. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为( )A .800平方米B .750平方米C .600平方米D .2400平方米5. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m6. 如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 27. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -18. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m9. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同10. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.15二、填空题(本大题共8道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.13. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.14. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.15. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.16. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.18. 如图,小明的父亲在相距2 m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5 m,绳子自然下垂呈抛物线状,身高1 m的小明距较近的那棵树0.5 m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.三、解答题(本大题共4道小题)19. 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?20. 如图,排球运动员王亮站在点O处练习发球,将球从点O正上方2 m的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y =a(x-6)2+h.已知球网与点O的水平距离为9 m,高度为2.43 m,球场的边界距点O的水平距离为18 m.(1)当h=2.6时,①求y关于x的函数解析式(不要求写出自变量x的取值范围);②球能否越过球网?球会不会出界?请说明理由;③若排球运动员张明站在另外半场的点M(m,0),且张明原地起跳接球的最大高度为2.4 m.若张明因接球的高度不够而失球,求m的取值范围.(2)若球一定能越过球网,又不出边界,求h的取值范围.21. 某公司对一种新型产品的产销情况进行了营销调查,发现年产量为x(吨)时,所需的成本y(万元)与(x2+60x+800)成正比例,投入市场后当年能全部售出且发现每吨的售价p(单位:万元)由基础价与浮动价两部分组成,其中基础价是固定不变的,浮动价与x成正比例,比例系数为-120.在营销中发现年产量为20吨时,所需的成本是240万元,并且年销售利润W(万元)的最大值为55万元.(注:年利润=年销售额-成本)(1)求y(万元)与x(吨)之间满足的函数解析式(不必写出自变量的取值范围);(2)求年销售利润W(万元)与年产量x(吨)之间满足的函数解析式(不必写出自变量的取值范围);(3)当年销售利润最大时,每吨的售价是多少万元?22. 如图,用一块长为50 cm,宽为30 cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角各截去一个相同的小正方形,设小正方形的边长为x cm.(1)盒子底面的长AB=________ cm,宽BC=________ cm.(用含x的代数式表示)(2)若做成的盒子的底面积为300 cm2,求该盒子的容积.(3)该盒子的侧面积S(cm2)是否存在最大值?若存在,求出此时x的值及S的最大值;若不存在,说明理由.人教版 九年级数学 22.3 实际问题与二次函数-答案一、选择题(本大题共10道小题)1. 【答案】C [解析] 如图,过点C 作CE ⊥AB 于点E , 则四边形ADCE 为矩形,∠DCE =∠CEB =90°, 则∠BCE =∠BCD -∠DCE =30°. 设CD =AE =x m ,则BC =(12-x)m.在Rt △CBE 中,∵∠CEB =90°,∠BCE =30°, ∴BE =12BC =(6-12x)m , ∴AD =CE =BC 2-BE 2=(6 3-32x)m ,AB =AE +BE =x +6-12x =(12x +6)m ,∴梯形ABCD 的面积=12(CD +AB)·CE =12(x +12x +6)·(6 3-32x) =-3 38x 2+3 3x +18 3 =-3 38(x -4)2+24 3.∴当x =4时,S 最大=24 3.即CD 的长为4 m 时,梯形储料场ABCD 的面积最大为24 3 m 2.故选C.2. 【答案】C3. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,则S =AB ·AC 2-AP ·AQ 2=8×62-2t ×t 2=-t 2+24. ∵点P 从点A 出发,沿AB 方向以2 m/s 的速度向点B 运动,同时点Q 从点A出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,8÷2=4,6÷1=6, ∴0<t ≤4,∴当t =4时,S 取得最小值,最小值为-42+24=8(cm 2).4. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米, 则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】D[解析] 把y =0代入y =-112x 2+23x +53,得-112x 2+23x +53=0,解得x 1=10,x 2=-2.又∵x >0,∴x =10. 故选D.6. 【答案】C[解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm , ∴S四边形PABQ =S △ABC -S △CPQ=12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.7. 【答案】A [解析] A ,B 两点的坐标分别为(4,0),(0,1),把(4,0),(0,1)分别代入y=-14x 2+bx +c ,求出b ,c 的值即可.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.9. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.10. 【答案】C[解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM和△CFN 都是等腰直角三角形,∴MF =22EF =(40 2-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200, 故当x =20时,包装盒的侧面积最大.二、填空题(本大题共8道小题)11. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y =-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.12. 【答案】25 [解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25. ∵20≤x≤30,∴当x =25时,二次函数有最大值25.13. 【答案】225214. 【答案】y =-19(x +6)2+415. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.16. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.17. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-1 36,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD+OE=24+24=48(m).18. 【答案】0.5[解析] 以抛物线的对称轴为纵轴,向上为正,以对称轴与地面的交点为坐标原点建立平面直角坐标系,则抛物线的解析式可设为y=ax2+h.由于抛物线经过点(1,2.5)和(-0.5,1),于是求得a=2,h=0.5.三、解答题(本大题共4道小题)19. 【答案】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x≤120).(3分)(2)设果园多种x棵橙子树时,可使橙子的总产量为w,(4分)则w=(600-5x)(100+x)=-5x2+100x+60000=-5(x-10)2+60500.(7分)答:果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.(8分) 20. 【答案】解:(1)①把x=0,y=2及h=2.6代入y=a(x-6)2+h,得2=a(0-6)2+2.6,∴a=-1 60,∴y=-160(x-6)2+2.6.②球能越过球网,球会出界.理由如下:由①知y=-160(x-6)2+2.6,当x=9时,y=-160×(9-6)2+2.6=2.45>2.43,∴球能越过球网.当x=18时,y=-160×(18-6)2+2.6=0.2>0,∴球会出界.③若运动员张明原地起跳到最大高度时刚好接到球,此时-160(m-6)2+2.6=2.4,解得m1=6+2 3,m2=6-2 3.∵张明接球高度不够,∴6-2 3<m<6+2 3.∵张明在另外半场,∴m的取值范围为9<m<6+2 3.(2)将x=0,y=2代入y=a(x-6)2+h,得a=2-h 36.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43;①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②,得h≥8 3.21. 【答案】解:(1)设y=k(x2+60x+800)(k≠0),由题意,得240=k(202+60×20+800),解得k=1 10,∴y=110x2+6x+80.(2)设基础价为a,则p=a-120x,∴W=px-y=(a-120x)x-(110x2+6x+80)=-320[x-13×10(a-6)]2+13×5(a-6)2-80.∵W的最大值为55,∴13×5(a -6)2-80=55,解得a 1=15,a 2=-3(舍去),∴W =-320[x -13×10×(15-6)]2+13×5×(15-6)2-80=-320(x -30)2+55.(3)∵W =-320(x -30)2+55,∴当x =30时,年销售利润最大,∴p =a -120x =15-120×30=13.5,∴当年销售利润最大时,每吨的售价是13.5万元.22. 【答案】解:(1)(50-2x) (30-2x)(2)依题意,得(50-2x)(30-2x)=300,整理,得x 2-40x +300=0,解得x 1=10,x 2=30(不符合题意,舍去).当x =10时,盒子的容积=300×10=3000(cm 3).(3)存在.盒子的侧面积S =2x(50-2x)+2x(30-2x)=100x -4x 2+60x -4x 2=-8x 2+160x =-8(x 2-20x)=-8[(x -10)2-100]=-8(x -10)2+800, ∴当x =10时,S 有最大值,最大值为800.。

最新人教版九年级数学上册第22章同步测试题及答案

最新人教版九年级数学上册第22章同步测试题及答案

最新人教版九年级数学上册第22章同步测试题及答案第二十二章二次函数22.1二次函数的图象和性质一、选择题1. 二次函数的图象一定不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限.2. 抛物线的顶点坐标是A. ,B. ,C. ,D. ,3. 已知抛物线,是常数且,下列选项中可能是它大致图象的是A. B.C. D.4. 下列函数中,y的值随着x逐渐增大而减小的是A. B. C. D.5. 将抛物线向下平移2个单位后,所得抛物线解析式为A. B. C. D.6. 如果抛物线经过点,和,,那么对称轴是直线A. B. C. D.7. 函数是二次函数时,则a的值是A. 1B.C.D. 08. 将抛物线先向左平移1个单位,再向上平移4个单位后,与抛物线重合,现有一直线与抛物线相交,当时,利用图象写出此时x的取值范围是A. B. C. D.9. 将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为A. B. C. D.10. 小明将图中两水平线与的其中一条当成x轴,且向右为正方向;两铅垂线与的其中一条当成y 轴,且向上为正方向,并且在此平面直角坐标系上画出二次函数的图象,则关于他选择x 轴与y轴的叙述正确的是A. 为x轴,为y轴B. 为x轴,为y轴C. 为x轴,为y轴D. 为x轴,为y轴二、解答题11. 已知:抛物线经过,、,两点,顶点为A.求:抛物线的表达式;顶点A的坐标.12. 已知抛物线.求这个抛物线的对称轴和顶点坐标;将这个抛物线平移,使顶点移到点,的位置,写出所得新抛物线的表达式和平移的过程.13. 在平面直角坐标系xOy中如图,已知抛物线,经过点,、,.求此抛物线顶点C的坐标;联结AC交y轴于点D,联结BD、BC,过点C作,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.14. 如图,在平面直角坐标系中,抛物线与y轴交于点,,与x轴交于点,,点B坐标为,.求二次函数解析式及顶点坐标;过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点点P在AC上方,作PD平行于y 轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.答案一、选择题1. 【答案】A【解析】∵二次函数y=ax2-2x-3(a<0)的对称轴为直线x,∴其顶点坐标在第二或第三象限.∵当x=0时,y=-3,∴抛物线一定经过第四象限,∴此函数的图像一定不经过第一象限.故选A.2. 【答案】C【解析】根据抛物线的顶点式:y=a(x-h)2+k,(a≠0),则抛物线的顶点坐标为(h,k)可得:抛物线y=-(x+1)2+3的顶点坐标为(-1,3),所以C选项的结论正确.故选C.【点睛】抛物线的顶点式:y=a(x-h)2+k,(a≠0),则抛物线的顶点坐标为(h,k).3. 【答案】B【解析】∵抛物线y=ax2+3x+(a-2),a是常数且a<0,∴图象开口向下,a-2<0,∴图象与y轴交于负半轴,∵a<0,b=3,∴抛物线对称轴在y轴右侧.故选B.4. 【答案】D【解析】A选项:函数y=2x的图象是y随着x增大而增大,故本选项错误;B选项:函数函数y=x2的对称轴为x=0,当x≤0时y随着x增大而减小,故本选项错误;C选项:函数,当x<0或x>0时,y 随着x增大而增大,故本选项错误;D选项:函数,当x>0时,y随着x增大而减小,故本选项错误;故选D.5. 【答案】D【解析】抛物线y=(x+2)2的顶点坐标为(-2,0),向下平移2个单位后的顶点坐标是(-2,-2),所以,平移后得到的抛物线解析式为y=(x+2)2-2.故选D.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变换确定出函数解析式是此类题目常用的方法,一定要熟练掌握并灵活运用,平移规律“左加右减,上加下减”.6. 【答案】B【解析】∵抛物线y=ax2+bx+c与x轴两交点的坐标为(-1,0)和(3,0),而抛物线y=ax2+bx+c与x轴两交点是对称点,∴抛物线的对称轴为直线x=1.故选B.【点睛】本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.7. 【答案】B【解析】依题意,得a2+1=2且a-1≠0,解得a=-1.故选B.8. 【答案】C【解析】y1=x2-2x-3=(x-1)2-4,则它的顶点坐标为(1,-4),所以抛物线y1=x2-2x-3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组==得==或 ,所以当-1≤x≤3.故选C.9.【答案】D【解析】因为y=x2-4x-4=(x-2)2-8,所以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(-1,-3),所以平移后的抛物线的函数表达式为y=(x+1)2-3.故选D.10. 【答案】D【解析】y=-x2-2x+1=-(x+1)2+2,故抛物线的对称轴为:直线x=-1,顶点坐标为:(-1,2),则关于他选择x轴与y轴的叙述正确的是:l2为x轴,l4为y轴.故选D.【点睛】此题主要考查了二次函数的图象,正确求出二次函数的对称轴与顶点坐标是解题关键.二、解答题11. 【答案】(1)(2),【解析】(1)直接把B(3,0)、C(0,3)代入y=-x2+bx+c得到关于b、c的方程组,解方程组求出b、c,可确定抛物线的解析式;(2)把(1)的解析式进行配方可得到顶点式,然后写出顶点坐标即可.解:把,、,代入,解得.故抛物线的解析式为;(2)=,所以顶点A的坐标为,.12.【答案】(1) 对称轴是直线,顶点坐标为,;(2) 平移过程为:向右平移3个单位,向下平移3个单位【解析】(1)将抛物线整理成顶点式形式,然后解答即可;(2)根据向右平移横坐标加,向下平移纵坐标减解答.解:,,,所以,对称轴是直线,顶点坐标为,;新顶点,,,,,平移过程为:向右平移3个单位,向下平移3个单位.13. 【答案】(1), (2).【解析】(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.(2)本题介绍三种解法:方法一:分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH 和△HPG∽△CPB,列比例式可得HG的长;方法二:如图2,过点H作HM⊥CG于M,先根据勾股定理的逆定理证明∠BCD=90°,利用面积法求CH的长,再证明△OBD∽△MCH,列比例式可得CM的长,从而可得结论;方法三:直线AC:y=-x-1,求CH和BD的解析式,联立方程组可得H的坐标,由勾股定理可得GH的长.解:把,、,代入抛物线解析式,得:,解得:,抛物线的解析式为:,顶点,方法一:设BD与CG相交于点P,设直线AC的解析式为:把,和,代入得:解得:则直线AC:,,,同理可得直线BD:,,,∽,∽,,,;方法二:如图2,过点H作于M,,,,,,,,,∽,,,,,由勾股定理得:,方法三:直线AC:,,,直线BD:,,,直线CH:,联立解析式:,解得:,,.14. 【答案】(1), (2),【解析】(1)用待定系数法求抛物线解析式,并利用配方法求顶点坐标;(2)先求出直线AB解析式,设出点P坐标(x,-x2+4x+5),建立函数关系式S四边形APCD=-2x2+10x,根据二次函数求出极值;可得P的坐标.解:把点,,点B坐标为,代入抛物线中,得:,解得:,抛物线的解析式为:,顶点坐标为,;设直线AB的解析式为:,,,,,,解得:,直线AB的解析式为:,设,,则,,,点C在抛物线上,且纵坐标为5,,,,,四边形,有最大值,当时,S有最大值为,此时,【点睛】本题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.22.2二次函数与一元二次方程一、选择题1. 下列命题:若,则;若,则一元二次方程有两个不相等的实数根;若,则一元二次方程有两个不相等的实数根;若,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是A. 只有B. 只有C. 只有D. 只有2. 二次函数的图象如图所示,若一元二次方程有实数根,则m的取值范围是A. B. C. D.3. 已知二次函数的图象上部分点的横坐标x与纵坐标y的对应值如下表:A. 开口向上B. 与x轴的另一个交点是,C. 与y轴交于负半轴D. 在直线的左侧部分是下降的4. 在平面直角坐标系xOy中,开口向下的抛物线的一部分图象如图所示,它与x轴交于,,与y轴交于点B,,则a的取值范围是A. B. C. D.5. 二次函数的图象如图所示,那么一元二次方程,为常数且的两根之和为A. 1B. 2C. -1D. -26. 已知二次函数,当自变量x取m时对应的值大于0,当自变量x分别取、时对应的函数值为、,则、必须满足A. 、B. 、C. 、D. 、7. 如图,教师在小黑板上出示一道题,小华答:过点,;小彬答:过点,;小明答:;小颖答:抛物线被x轴截得的线段长为你认为四人的回答中,正确的有A. 1个B. 2个C. 3个D. 4个8. 已知函数,其中、为常数,且,若方程的两个根为、,且,则、、、的大小关系为A. B.C. D.9. 抛物线的顶点为,,与x轴的一个交点A在点,和,之间,其部分图象如图,其中错误的结论为A. 方程的根为B.C. D.10. 已知抛物线的对称轴为,若关于x的一元二次方程在的范围内有解,则c的取值范围是A. B. C. D.二、解答题11. 抛物线经过点,、,两点.(1)求抛物线顶点D的坐标;(2)抛物线与x轴的另一交点为A,求的面积.12. 在平面直角坐标系xOy中(如图),已知抛物线,经过点,、,.(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.13. 已知抛物线的对称轴是直线,(1)求证:;(2)若关于x的方程,有一个根为4,求方程的另一个根.14. 抛物线与y轴交于点,.(1)求抛物线的解析式;(2)求抛物线与坐标轴的交点坐标;(3)①当x取什么值时,?当x取什么值时,y的值随x的增大而减小?15. 如图,在平面直角坐标系中,点A是抛物线与x轴正半轴的交点,点B在抛物线上,其横坐标为2,直线AB与y轴交于点点M、P在线段AC上不含端点,点Q在抛物线上,且MQ平行于x 轴,PQ平行于y轴设点P横坐标为m.(1)求直线AB所对应的函数表达式.(2)用含m的代数式表示线段PQ的长.(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.答案一、选择题1.【答案】B【解析】①b2-4ac=(-a-c)2-4ac=(a-c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2-4ac=4a2+9c2+12ac-4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2-4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.2.【答案】A【解析】由图可知:y≥-3,即ax2+bx≥-3,∵ax2+bx+m=0,∴ax2+bx=-m,∴-m≥-3,∴m≤3.故选A. 3. 【答案】B【解析】A、由表格知,抛物线的顶点坐标是(1,4).故设抛物线解析式为y=a(x-1)2+4.将(-1,0)代入,得a(-1-1)2+4=0,解得a=-1.∵a=-1<0,∴抛物线的开口方向向下,故本选项错误;B、抛物线与x轴的一个交点为(-1,0),对称轴是x=1,则抛物线与x轴的另一个交点是(3,0),故本选项正确;C、由表格知,抛物线与y轴的交点坐标是(0,3),即与y轴交于正半轴,故本选项错误;D、抛物线开口方向向下,对称轴为x=1,则在直线x=1的左侧部分是上升的,故本选项错误;故选B.点睛:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.4. 【答案】B【解析】根据图象得:a<0,b<0,∵抛物线与x轴交于A(1,0),与y轴交于点B (0,3),∴==,∴a+b=-3,∵b<0,∴-3<a<0,故选B.5. 【答案】D【解析】∵抛物线与x轴的两交点坐标为(-3,0),(1,0),∴一元二次方程ax2+bx+c=0的两根分别为x1=-3,x2=1,∴-3+1=-,即=2,∴一元二次方程ax2+bx+c-m=0的两根之和=-=-2.故选D.6. 【答案】B【解析】令y=−x2+x−=0,解得:x=,∵当自变量x取m时对应的值大于0,∴<m<,∵点(m+1,0)与(m-1,0)之间的距离为2,大于二次函数与x轴两交点之间的距离,∴m-1的最大值在左边交点之左,m+1的最小值在右边交点之右.∴点(m+1,0)与(m-1,0)均在交点之外,∴y1<0、y2<0.故选B.7. 【答案】C【解析】∵抛物线过(1,0),对称轴是x=2,∴==,解得a=1,b=-4,∴y=x2-4x+3,当x=3时,y=0,小华正确;当x=4时,y=3,小彬也正确,小明也正确;∵抛物线被x轴截得的线段长为2,已知过点(1,0),∴另一点为(-1,0)或(3,0),∴对称轴为y轴或x=2,此时答案不唯一,∴小颖错误.故选C.8. 【答案】C【解析】函数y=(x-x1)(x-x2)的图象与x轴的交点的横坐标分别是x1、x2;函数y=(x-x1)(x-x2)-2的图象是由函数y=(x-x1)(x-x2)的图象向下平移2个单位得到的,则方程(x-x1)(x-x2)-2=0[或方程(x-x1)(x-x2)=2]的两根x3、x4即为函数y=(x-x1)(x-x2)-2的图象与x轴的交点的横坐标,它们的大致图象如图所示,根据图象知,x3<x1<x2<x4.故选C.9. 【答案】A【解析】∵x=-1时,y≠0,∴方程ax2+bx+c=0的根为-1这种说法不正确,∴结论A不正确;∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2-4ac>0,∴结论B正确;∵x=-,∴b=2a,∴顶点的纵坐标是=2,∴a=c-2,∴结论C正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=-1,与x 轴的一个交点A在点(-3,0)和(-2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论D正确;∴不正确的结论为:A.故选A.点睛:二次函数的图象与系数的关系:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).10. 【答案】D【解析】由抛物线y=x2+bx+c的对称轴为x=1,∴−=1,−=1,解得:b=-2,∴x2-bx-c=x2+2x-c,令y1=x2+2x-c,可求其对称轴为:x=-1,根据题意,当x=2时,y1>0,x2+2x-c>0,且当x=-1时,y1≤0,x2+2x-c≤0,或当x=-3时,y>0,9-6-c>0,且当x=-1时,y1≤0,x2+2x-c≤0,解得:-1≤c<8,或-1≤c <3,综上所述,-1≤c<8.故选D.二、解答题11. 【答案】(1)D(1,4);(2)6.【解析】(1)利用待定系数法代入求出a,c的值,进而利用配方法求出D点坐标即可;(2)首先求出图象与x轴的交点坐标,进而求出△ABC的面积.解:(1)由题意,得==,解得==,则y=-x2+2x+3=-(x-1)2+4,则D(1,4);(2)由题意,得-x2+2x+3=0,解得x1=-1,x2=3;则A(-1,0),又∵B(3,0)、C(0,3),∴S△ABC=×4×3=6.12. 【答案】(1)C(2,-3);(2).【解析】(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.(2)分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH和△HPG∽△CPB,列比例式可得HG的长解:(1)把A(-1,0)、B(5,0)代入抛物线解析式,得:==,解得:==,∴抛物线的解析式为:y=x2−x−= (x−2)2−3,∴顶点C(2,-3)(2)设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(-1,0)和C(2,-3)代入得:==,解得:==则直线AC:y=-x-1,∴D(0,-1),同理可得直线BD:y=x-1,∴P(2,−)∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴=,∴△HPG∽△CPB,∴=,∴=,∴HG=.13. 【答案】(1)见解析;(2)方程的另一个根为x=-2.【解析】(1)根据抛物线的对称轴为x=-=1可得;(2)根据抛物线的对称性得到抛物线与x轴的另一个交点可得答案.解:(1)∵抛物线的对称轴为直线x=1,∴-=1,∴2a+b=0;(2)∵关于x的方程ax2+bx-8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(-2,0),∴方程的另一个根为x=-2.14.【答案】(1);(2)x轴:,、,;Y轴:,(3)见解析. 【解析】(1)将点(0,3)代入抛物线的解析式中,即可求得m的值;(2)可以令y=0,可得出一个关于x的一元二次方程,方程的解就是抛物线与x轴交点的横坐标;(3)根据(2)中抛物线与x轴的交点以及抛物线的开口方向即可求得x的取值范围.解:(1)将点(0,3)代入抛物线y=-x2+(m-1)x+m,m=3,∴抛物线的解析式y=-x2+2x+3;(2)令y=0,-x2+2x+3=0,解得x1=3,x2=-1;x轴:A(3,0)、B(-1,0);y轴:C(0,3)(3)抛物线开口向下,对称轴x=1;所以)①当-1<x<3时,y>0;②当x≥1时,y的值随x的增大而减小.15. 【答案】(1)直线AB的解析式为;(2)见解析;(3)m的值为或.【解析】(1)先利用二次函数解析式求出A点和B点坐标,然后利用待定系数法求直线AB的解析式;(2)设P(m,-m+8),则Q(m,-m2+4m),讨论:当0<m≤2时,PQ=m2-5m+8;当2<m<8时,PQ=-m2+5m-8;(3)先表示出M(m2-4m+8,-m2+4m),讨论:当0<m≤2,QM=m2-5m+8,利用矩形周长列方程得到(m2-5m+8+m2-5m+8)=9,然后解方程求出满足条件m的值;当2<m<8,QM=-m2+5m-8,利用矩形周长列方程得到2(-m2+5m-8-m2+5m-8)=9,然后解方程求出满足条件m的值.解:(1)当y=0时,-x2+4x=0,解得x1=0,x2=8,则A(8,0);当x=2时,y=-x2+4x=6,则B(2,6),设直线AB所对应的函数表达式为y=kx+b,将A(8,0),B(2,6)代入可得==,解得==,所以直线AB的解析式为y=-x+8;(2)设P(m,-m+8),则Q(m,-m2+4m),当0<m≤2时,PQ=-m+8-(-m2+4m)=m2-5m+8;当2<m<8时,PQ=-m2+4m-(-m+8)=-m2+5m-8;(3)∵MQ∥x轴,∴M点的纵坐标为-m2+4m,∴M点的横坐标为m2-4m+8,即M(m2-4m+8,-m2+4m),当0<m≤2,QM=m2-4m+8-m=m2-5m+8,∵2(PQ+QM)=9,∴2(m2-5m+8+m2-5m+8)=9,整理得2m2-20m+23=0,解得m1=,m2=(舍去);当2<m<8,QM=m-(m2-4m+8)=-m2+5m-8,∵2(PQ+QM)=9,∴2(-m2+5m-8-m2+5m-8)=9,整理得2m2-20m+41=0,解得m1=,m2=(舍去);综上所述,m的值为或.22.3实际问题与二次函数一、课堂学习检测1. 矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2. 如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3. 如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O 点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)二、综合、运用、诊断4. 如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5. 某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6. 某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?三、拓展、探究、思考8. 已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A 在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.答案一、课堂学习检测1. 【答案】y=-x2+3x(0<x<3),图见解析.【解析】(1)根据矩形周长=2×(长+宽),可由周长为6m和宽为xm把矩形表示出来.再由矩形面积=矩形的长×矩形的宽就可列出函数关系式;(2)根据“矩形的宽大于0,而小于矩形周长的一半”可求出x的取值范围,并由此可画出函数的图像.解:由题意可得:y=(3-x)x=-x2+3x,故此函数是二次函数,自变量取值范围为:0<x<3,其图象如图所示:.2.【答案】5小时.【解析】首先在图中建立合适的坐标系(这里选择AB所在的直线为x轴,AB的垂直平分线为y轴,也可另外建立),然后根据题目中的已知条件可得A,B,C,D四点的坐标,设出解析式,代入相应点的坐标建立方程(组),解方程(组)求得待定系数的值得到解析式,由解析式可得到顶点E的坐标,再结合题中条件可解得答案.解:如上图,以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,则由已知得A(4,0),D(2,3),设抛物线解析式为:,把A、D坐标代入解析式可得:,解得:,∴抛物线解析式为:,∴顶点E的坐标为(0,4),设CD与y轴的交点为点F,∴EF=4-3=1(m),∵1÷0.2=5(小时),∴水过警戒水位后5小时淹到桥拱顶.3. 【答案】(1);(2)17米.【解析】(1)依题意代入x的值可得抛物线的表达式.(2)先求出OC的长,根据图示可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得2=-(x-6)2解得x的值即可知道CD、BD.解:(1)如图,设足球开始飞出到第一次落地时,抛物线的表达式为y=a(x-h)2+k,∵h=6,k=4,∴y=a(x-6)2+4,由已知:当x=0时y=1,即1=36a+4,∴a=-,∴表达式为y=-(x-6)2+4=-x2+x+1;(2)令y=0,-(x-6)2+4=0,∴(x-6)2=48,解得:x1=+6≈13,x2=-+6<0(舍去),∴OC≈13,如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴2=-(x-6)2+4,解得:x1=6-,x2=6+,∴CD=|x1-x2|=≈10,∴BD=13-6+10=17(米).二、综合、运用、诊断4. 【答案】(1)AB长为5米;(2)围成长为10米,宽为米的矩形ABCD花圃时,其最大面积为【解析】(1)由题意可知围成该花圃需要用到篱笆的宽有三条,而长只有一条,设宽AB的长为xm,则长BC为(24-3x)m,再设长方形面积为y,由矩形面积公式可得:y关于x的函数关系式,由y=45解得对应的x的值,可得答案;(2)把(1)中所得解析式配方化为顶点式,然后结合自变量的取值范围可求得y 的最大值,把最大值与45比较可得结论,并进一步可由自变量的取值范围和解析式求得最大面积;解:(1)设花圃的宽AB=x米,知BC应为(24-3x)米,故面积y与x的关系式为y=x(24-3x)=-3x2+24x.当y=45时,-3x2+24x=45,解出x1=3,x2=5.当x2=3时,BC=24-3×3>10,不合题意,舍去;当x2=5时,BC=24-3×5=9,符合题意.故AB长为5米.(2)能围成面积比45m2更大的矩形花圃.由(1)知,y=-3x2+24x=-3(x-4)2+48,∵,∴,由抛物线y=-3(x-4)2+48知,在对称轴x=4的右侧,y随x的增大而减小,∴当时,y=-3(x-4)2+48有最大值,且最大值为此时,BC =10m,即围成长为10米,宽为米的矩形ABCD花圃时,其最大面积为点睛:象本题这种实际问题中涉及到二次函数最值的问题,我们要在自变量取值范围内根据函数的增减性来确定其最值是在自变量取何值时取得的,再根据函数解析式来进行计算求得相应的最值,而不能直接用顶点的纵坐标代替最值.5. 【答案】(1)y=-3x2+252x-4860;(2)当x=42时,最大利润为432元.【解析】(1)根据:每天销售利润y(元)=单件商品利润每天销售量、单件商品利润=商品售价-商品进价,结合题中条件可得y与x间的函数关系式;再根据单件商品利润不低于0,销售量不低于0可求得自变量的取值范围;(2)把(1)中所得函数解析式配方化为顶点式,结合自变量的取值范围和函数的增减性可求得答案;解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件的销售利润为y=m(x-30),又∵m=162-3x,∴y=(x-30)(162-3x),即y=-3x2+252x-4860,∵x-30≥0,∴x≥30.又∵m≥0,∴162-3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=-3x2+252x-4860(30≤x≤54).(2)由(1)得y=-3x2+252x-4860=-3(x-42)2+432,又∵30≤x≤54,∴可得售价定为42元时获得的利润最大,最大销售利润是432元.6. 【答案】(1)y=-4x2+64x+30720;(2)增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.【解析】(1)生产总量=每台机器生产的产品数×机器数;(2)根据函数性质求最值.解:(1)由题意得y=(80+x)(384-4x)=-4x2+64x+30720;(2)∵y=-4x2+64x+30720=-4(x-8)2+30976,∴当x=8时,y有最大值,为30976,即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.【点睛】本题考查了二次函数的应用,解题的关键是弄清题意,根据题意列出函数关系式.7. 【答案】(1);(2)截止到10月末,公司累积利润可达到30万元;(3)第8个月公司获利润5.5万元.【解析】(1)由图可知:函数图象经过了点(1,-1.5)、点(2,-2)和点(5,2.5),设解析式为,代入三点的坐标,列出方程组,就可求得、、的值,从而得的解析式;(2)把代入(1)中所求得的解析式,解出的值,并结合实际意义可得答案;(3)把,分别代入(1)中所得的解析式,求出对应的的值,用可得8月份的利润;解:(1)设s与t的函数关系式为s=at2+bt+c,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得∴解得,∴(2)把s=30代入解得t1=10,t2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t=7代入得7月末的累积利润为s7=10.5(万元).把t=8代入得8月末的累积利润为s8=16(万元).∴s8-s7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.三、拓展、探究、思考8. 【答案】(1)y=x2-2x-3;(2)AD⊥BC,理由见解析;(3)存在,M1(1,-2),N1(4,-3).或M2(0,-3),N2(3,-4).【解析】(1)由题中条件:二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA,可得点C(0,-3)、点A(-1,0)、点B(3,0),把A、B两点的坐标代入解析式可求得a、b的值,就可得到解析式了;(2)把(1)中所求解析式配方化为顶点式,得到对称轴方程,就可得到D的坐标,再由A、B、C、D四点的坐标列方程组可求得直线AD和直线BC的解析式,计算两解析式中“k”的值的乘积是否为“-1”就可判断两直线是否垂直了;(3)如图,由(2)中所得AD、BC的解析式可列方程组解得P的坐标,由射线BC和射线AD互相垂直,垂足为点P,可知△APC和△PMN 都是直角三角形;然后分以下两种情况讨论:①当PN=PA,M与C重合时,△APC与△PMN全等;②当PM=PA,N与D重合时,△APC与△PMN全等,并求出相应的点M、N的坐标.解:(1)∵二次函数y=ax2+bx-3(a>0)与y轴交于点C,∴点C的坐标为(0,-3),∴OC=3,又∵OC=OB=3OA,∴OB=3,OA=1,又∵二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,∴点A、B的坐标分别为(-1,0)、(3,0),把A、B的坐标代入解析式y=ax2+bx-3(a>0)得:,解得:,∴二次函数解析式为:;(2)由可知,该抛物线的对称轴为直线;,。

【中考数学】人教版九年级数学上册第22章223《实际问题与二次函数》同步练习2带答案.doc

【中考数学】人教版九年级数学上册第22章223《实际问题与二次函数》同步练习2带答案.doc

人教版九年级数学上册第22章22. 3《实际问题与二次函数》同步练习1带答案知识点:利用二次函数解决抛物线的问题,如隧道、大桥和拱门等,要恰当地建立平面直角坐标系,从而确定抛物线的解析式,然后利用抛物线的性质解决实际问题。

_、选择1.图(1)是一个横断面为抛物线形状的拱桥,当水面在1时,拱顶(拱桥洞的最高点)离水而2叫水而宽4m・如图(2)建立平面直角坐标系,则抛物线的关系式是( )A. y=-2x2B. y=2x2C、y = —— x2 D、y = —x2' 2 22、有长24n)的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为xm,面积是sm2,贝ij s与x的关系式是( )A> s = -3x2 +24x B、s = -2x2 +24兀C、s = -3x2-24x D、s = -2x2 +24x3、如图,铅球的出手点C距地面1米.,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,•则铅球运行路线的解析式为( )3 3 1 1A、h =一- rB、/? = -—r2 +r c、h =一一尸+f + l D、h =一一r2 + 2r +1 16 16 834、在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的而积是yci『,设金色纸边的宽度为xcm2, 那么y关于x 的函数是( )A、y= (60+2x) (40+2x)B、y= (60+x) (40+x)C、y= (60+2x) (40+x)D、y= (60+x) (40+2x)5、如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为( ) , 25 225 2 4 2 4 2A、y=x B A y ~ x C、.y = x Dx y ~”Y-4 4 25 256、国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为( ).A、y=36 ( 1-x) B、y=36 ( 1+x ) C> y = 18(l + x)2D、y = 18(l-x)27、如图,正方形ABCD的边长为1, E、F分别是边BC和CD ±的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE丄EF.设BE二x, DF二y,则y是x的函数,函数关系式是( )值二 ______________4、 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形的面积之和的最小值是 _____________ 5、 如图,一小孩将一只皮球从A 处抛出去,它经过的路线是某个二次函数图像的一部分,如果他的出手处A 距地面0A 为lm,球路的最高点为B (8,9),则这个二次函数的表达式 为 ,小孩将球抛出约 ______ 米。

专题22.3.1 实际问题与二次函数(几何图形最值)(练习)(解析版)

专题22.3.1 实际问题与二次函数(几何图形最值)(练习)(解析版)

第二十二章二次函数22.3.1 实际问题与二次函数(几何图形最值)精选练习答案一、单选题(共10小题)1.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=-0.5x2+5x B.y=-x2+10x C.y=0.5x2+5x D.y=x2+10x【答案】A【分析】一条直角边为x,则另一条直角边为10-x,再利用三角形面积公式即可列式.【详解】解:由题意得,y=12x(10−x)=−0.5x2+5x,故选择A.【点睛】本题考查了运用三角形面积公式列二次函数表达式.2.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193 B.194 C.195 D.196【答案】C【分析】根据长方形的面积公式可得S关于m的函数解析式,由树与墙CD,AD的距离分别是15m和6m 求出m的取值范围,再结合二次函数的性质可得答案.【详解】∵AB=m米,∴BC=(28-m)米.则S=AB•BC=m(28-m)=-m2+28m.基础篇即S=-m2+28m(0<m<28).由题意可知,{m≥628−x≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S最大值=195,即花园面积的最大值为195m2.故选C.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S与m的函数关系式是解题关键.3.(2017·甘肃中考真题)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程:(32−2x)(20−x)=570,故选:A.4.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A.s=﹣3x2+24x B.s=﹣2x2﹣24xC.s=﹣3x2﹣24x D.s=﹣2x2+24x【答案】A【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.【详解】解:如图所示:AB为x m,则BC为(24﹣3x)m,所以S=(24﹣3x)x=﹣3x2+24x.故选:A.【点睛】考查了根据实际问题列二次函数关系式的知识,解题的关键是能够用自变量x表示出矩形的长与宽.5.(2018·全国初三课时练习)如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为()A.10米B.15米C.20米D.25米【答案】A【解析】设矩形ABCD的边AB为x米,则宽为40-2x,S=(40-2x)x= -2x2+40x.要使矩形ABCD面积最大,则即x的长为10m.故选A.6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A .45B .83C .4D .56【答案】B【解析】设窗户的宽是x ,根据题意得S =()832x x- =2348(04)233x x ⎛⎫--+<< ⎪⎝⎭ ∴当窗户宽是43m 时,面积最大是83m²,故选B. 点睛:根据窗户框的形状可设宽为x ,其高就是8-3x 2,所以窗户面积S =()832x x -,再求出二次函数解析式—顶点式即可求出最大面积。

九年级数学: 22.3实际问题与二次函数 最大利润问题练习题含答案

九年级数学: 22.3实际问题与二次函数  最大利润问题练习题含答案

人教版数学九级上册第二十二章二次函数 22.3 实际问题与二次函数最大利润问题专题练习题1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )A.150元 B.160元 C.170元 D.180元2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A.50元 B.80元 C.90元 D.100元3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月 D.1月、11月、12月4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元.6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41.每年最多可投入100万元的销售投资,则5年所获利润的最大值是.7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x 辆车时,每辆车的日租金收入为 元;(用含x 的代数式表示)(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?10.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为W 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿情况,得到以下信息:①当日所获利润不低于5000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?11.某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19). (1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数解析式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)答案:1---3 ACC4. (30-x) (20+x) -x 2+10x +600 5 6255. 600 24006. 205万元7. 解:设每天的销售利润为y 元,销售单价为x 元,则y =(x -50)=-5(x -80)2+4500,∵a =-5<0,50≤x ≤100,∴当x =80时,y 最大值=45008. 解:(1)y =-0.5x +160(120≤x ≤180)(2)设销售利润为W 元,则W =(x -80)(-0.5x +160)=-12(x -200)2+7200,∵a =-12<0, ∴当x<200时,y 随x 的增大而增大,∴当x =180时,W 最大=-12(180-200)2+7200=7000, 则当销售单价为180元时,销售利润最大,最大利润是7000元9. (1) 1500-50x(2)由题意可知,租赁公司的日收益为y =x(1500-50x)-6250=-50(x -15)2+5000,∵-15<0,当x =15时,租赁公司日收益最大,最大是5000元(3)由题意得-50(x -15)2+5000>0,解得5<x<25,∵x ≤20,∴5<x ≤20,即当每日租出至少6辆时,租赁公司的日收益才能盈利10. 解:(1)根据题意得y =50-x(0≤x ≤50,且x 为整数)(2)W =(120+10x -20)(50-x)=-10x 2+400x +5000=-10(x -20)2+9000,∵a =-10<0,∴当x =20时,W 最大值=9000,则当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元(3)由题意得⎩⎪⎨⎪⎧-10(x -20)2+9000≥5000,20(-x +50)≤600,解得20≤x≤40, ∵房间数y =50-x ,又∵-1<0,∴当x =40时,y 的值最小,这天宾馆入住的游客人数最少,最少人数为2y =2(-x +50)=20(人)11. 解:(1)设李红第x 天生产的粽子数量为260只,根据题意得20x +60=260,解得x =10,则李红第10天生产的粽子数量为260只(2)根据图象得当0≤x≤9时,p =2;当9<x≤19时,可求解析式为p =110x +1110, ①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时w 的最大值为320;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时w 的最大值为480;③当9<x≤19时,w=·(20x+60)=-2x2+52x+174=-2(x-13)2+512,x=13时w 的最大值为512.综上所述,第13天的利润最大,最大利润是512元。

人教版九年级数学上册第22章同步测试题含答案

人教版九年级数学上册第22章同步测试题含答案

人教版九年级数学上册第22章同步测试题含答案22.1.2二次函数y=ax2的图象和性质基础导练1.关于函数23x y = 的性质的叙述,错误的是( )A .对称轴是y 轴B .顶点是原点C .当0>x 时,y 随x 的增大而增大D .y 有最大值2.在同一坐标系中,抛物线22221,,x y x y x y =-==的共同点是( ) A .开口向上,对称轴是y 轴,顶点是原点B .对称轴是y 轴,顶点是原点C .开口向下,对称轴是y 轴,顶点是原点D .有最小值为03.在同一平面直角坐标系中,同一水平线上开口最大的抛物线是( )A.2x y -=B.231x y -=C.233x y -=D.22x y -= 能力提升4.下列函数中,具有过原点,且当0>x 时,y 随x 增大而减小,这两个特征的有( ) ①)0(2>-=a ax y ;②)1()1(2<-=a x a y ;③)0(22≠+-=a a x y ; ④)0(23≠-=a a x y A .1个 B .2个 C .3个 D .4个5.二次函数223x y -=,当x 1>x 2>0时,试比较1y 和2y 的大小:1y 2y (填“>”,“<”或“=”)6.二次函数12-=m mx y 在其图象对称轴的左则,y 随x 的增大而增大,=m . 参考答案1.D2.B3.B4.B5.<6.22.1.3二次函数y=a(x-h)2+k 的图象和性质(第1课时)基础导练1.抛物线122+=x y 的顶点坐标是( )A.(0,1)B. (0,-1)C. (1,0)D. (-1,0)2.抛物线)0(2≠+=a b ax y 与x 轴有两个交点,且开口向下,则b a ,的取值范围分别是( )A.0,0>>b aB.0,0<>b aC.0,0<<b aD.0,0><b a3.将抛物线322-=x y 平移后得到抛物线22x y =,平移的方法可以是( )A.向下平移3个单位长度B.向上平移3个单位长度C.向下平移2个单位长度D.向下平移2个单位长度 能力提升4.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A.32+=x yB.32-=x yC.2)3(+=x yD.2)3(-=x y5.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B.312y y y >>C.213y y y >>D.123y y y >>6.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大?参考答案1.A2.D3.B4.D5.B22.1.3二次函数y=a(x-h)2+k 的图象和性质(第2课时)基础导练1.抛物线21)1(22+--=x y 的顶点坐标为( ) A.(-1,21) B.(1,21) C.(-1,—21) D.(1,—21) 2.对于2)3(22+-=x y 的图象,下列叙述正确的是( )A.顶点坐标为(-3,2)B.对称轴是直线3-=yC.当3≥x 时,y 随x 的增大而增大D.当3≥x 时,y 随x 的增大而减小3.将抛物线2x y =向右平移一个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为( )A.3)1(2++=x yB.3)1(2+-=x yC.3)1(2-+=x yD.3)1(2--=x y能力提升4.设A (-1,1y )、B (1,2y )、C (3,3y )是抛物线k x y +--=2)21(21上的三个点,则1y 、2y 、3y 的大小关系是( )A.1y <2y <3yB.2y <1y <3yC.3y <1y <2yD.2y <3y <1y5.若二次函数.当≤l 时,随的增大而减小,则的取值范围是( )的增大而增大随时,当代入上式把是函数取最大值当x y x x y a a x a y h x 2)2(333)21()3,1()2(22.2222<--=∴-=∴-=---=∴=∴= 2()1y x m =--x y x m 6.解:A .=lB .>lC .≥lD .≤l6.二次函数n m x a y ++=2)(的图象如图所示,则一次函数n mx y +=的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.在直角坐标系中,二次函数图象的顶点为A (1、-4),且经过点B (3,0).(1)求该二次函数的解析式;(2)当33<<-x 时,函数值y 的增减情况;(3)将抛物线怎样平移才能使它的顶点为原点.参考答案1.B2.C3.B4.C5.C6.C22.1.4二次函数y=ax2+bx+c 的图象和性质基础导练1.抛物线742++-=x x y 的顶点坐标为( )A.(-2,3)B.(2,11)C.(-2,7)D.(2,-3)2.若抛物线c x x y +-=22与y 轴交于点(0,-3),则下列说法不正确的是( )A.抛物线开口方向向上B.抛物线的对称轴是直线1=xC.当1=x 时,y 的最大值为-4D.抛物线与x 轴的交点为(-1,0),(3,0)m m m m 顶点为原点个单位即可实现抛物线个单位,再向上平移向左平移)将抛物线(的增大而增大随时,的增大而减小,当随时,当开口向上抛物线对称轴为直线解得),(二次函数图象过点又设二次函数的解析式为),(二次函数的图象顶点为)、解:(414)1(33113,1)2()41(104)13(03B 4)1(41A 142222--=<≤<<-∴=--=∴==--∴--=∴-x y x y x x y x x x y a a x a y 7.)3.要得到二次函数222-+-=x x y 的图象,需将2x y -=的图象( )A.向左平移2个单位,再向下平移2个单位B.向右平移2个单位,再向上平移2个单位C.向左平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位能力提升4.抛物线c bx x y ++=2的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为( )A.2,2==c bB.0,2==c bC.1,2-=-=c bD.2,3=-=c b5.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为x =.下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+6.已知抛物线c bx ax y ++=2的对称轴为2=x ,且经过点(1,4)和(5,0),试求该抛物线的表达式.参考答案1.B2.C3.D4.B5.D6.解:由已知得:12-2,24,2550.-b a a b c a b c ⎧=⎪⎪++=⎨⎪++=⎪⎩解得:1,22,5.2a b c ⎧=-⎪⎪=⎨⎪⎪=⎩ 所以该抛物线的表达式为2152.22y x x =-++22.2二次函数与一元二次方程基础导练1.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为 (只写一个),此类函数都有______值(填“最大”“最小”).2.若抛物线y =x 2-(2k +1)x +k 2+2,与x 轴有两个交点,则整数k 的最小值是______.3.等腰梯形的周长为60 cm ,底角为60°,当梯形腰x =______时,梯形面积最大,等于______.能力提升4.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是( )①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称; ③函数的图象最高点的纵坐标是a b ac 442-;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根.A.0个B.1个C.2个D.3个5.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是( )A.k >-47;B.k ≥-47且k ≠0;C.k ≥-47;D.k >-47且k ≠0 6.利用二次函数的图象求下列一元二次方程的根.(1)4x 2-8x +1=0; (2)x 2-2x -5=0;(3)2x 2-6x +3=0; (4)x 2-x -1=0.参考答案1.y =-x 2+x -1 最大2. 23. 15 cm4.B5.B6.解:(1)x 1≈1.9,x 2≈0.1;(2)x 1≈3.4,x 2≈-1.4;(3)x 1≈2.4,x 2≈0.6;(4)x 1≈1.6,x 2≈-0 .622.3实际问题与二次函数基础导练1.如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )A.424 m B.6 m C.15 m D.25 m 2.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )A.1B.3C.4D.63.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5能力提升4.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?5.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?参考答案1.D2.B3.C4.解:(1)y =-2x 2+180x -2800.(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元.5.解:(1)依题意得鸡场面积y =.350312x x +- ∵y =-31x 2+350x =31-(x 2-50x ) =-31(x -25)2+3625, ∴当x =25时,y 最大=3625, 即鸡场的长度为25 m 时,其面积最大为3625m 2. (2)如中间有n 道隔墙,则隔墙长为502x n -+m.∴y =502x n -+·x =-12n +x 2+502n +x=-12n +(x 2-50x )=-12n +(x -25)2+6252n +,当x =25时,y 最大=6252n +,即鸡场的长度为25 m 时,鸡场面积为6252n + m 2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m.。

人教版数学九年级上册第22章22.2---22.3基础检测 带答案

人教版数学九年级上册第22章22.2---22.3基础检测 带答案

22.2二次函数与一元二次方程一.选择题1.若二次函数y=ax2+bx﹣1的最小值为﹣2,则方程|ax2+bx﹣1|=2的不相同实数根的个数是()A.2B.3C.4D.52.二次函数y=x2+2x+4与坐标轴有()个交点.A.0B.1C.2D.33.在平面直角坐标系中,已知a≠b,设函数y=(x﹣a)(x﹣b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图形与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣14.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.45.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0B.﹣4C.4D.26.已知一个直角三角形的两边长分别为a和5,第三边长是抛物线y=x2﹣10x+21与x轴交点间的距离,则a的值为()A.3B.C.3或D.不能确定7.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个8.若二次函数y=ax2﹣2ax+c的图象经过点A(0,﹣1),B(﹣2,y1),C(3,y2),D(,y3),且与x轴没有交点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y2>y19.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④10.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)二.填空题11.抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0)两点,则关于x的一元二次方程a(x﹣3)2+c=3b﹣bx的解是.12.若方程ax2﹣2ax+c=0(a≠0)有一个根为x=﹣1,那么抛物线y=ax2﹣2ax+c与x轴两交点间的距离为.13.若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,则整数m的值为.14.已知抛物线y=3x2+2x+c,当﹣1≤x≤1时,抛物线与x轴有且只有一个公共点,则c的取值范围.15.已知关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,则抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是.三.解答题16.已知二次函数的图象经过点(3,0),对称轴是直线x=﹣2,与y轴的交点(0,﹣3).(1)求抛物线与x轴的另一个交点坐标;(2)求抛物线的解析式.17.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0,(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(1,0),B(t,0)两点,求m的值.18.已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)画出该二次函数的图象;(2)连接AC、CD、BD,则四边形ABCD的面积为.19.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:(1)求抛物线的函数解析式并直接写出顶点M坐标;(2)连接AM,N是AM的中点,连接BN,求线段BN长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).20.已知抛物线y=x2﹣(4﹣k)x﹣3的对称轴是直线x=1,此抛物线与x轴交于A、B两点,与y轴交于点C.(Ⅰ)求△ABC的面积;(Ⅱ)若抛物线的顶点为P,求线段PC的长.参考答案一.选择题1.解:由题意可知,二次函数y=ax2+bx﹣1的图象开口向上,经过定点(0,﹣1),最小值为﹣2,则二次函数y=ax2+bx﹣1 的大致图象如图1所示,函数y=|ax2+bx﹣1|的图象则是由二次函数y=ax2+bx﹣1位于x轴上方的图象不变,位于x轴下方的图象向上翻转得到的,如图2所示,由图2可知,方程|ax2+bx﹣1|=2 的不相同实数根的个数是3个,故选:B.2.解:∵二次函数y=x2+2x+4,∴当y=0时,0=x2+2x+4=(x+1)2+3,此时方程无解,当x=0时,y=4,∴二次函数y=x2+2x+4与坐标轴有1个交点,故选:B.3.解:当y=0时,(x﹣a)(x﹣b)=0,解得x1=a,x2=b,抛物线y=(x﹣a)(x﹣b)与x轴的交点为(a,0),(b,0),所以M=2,当y=0时,(ax+1)(bx+1)=0,当a≠0,b≠0,解得x1=﹣,x2=﹣,抛物线y=(ax+1)(bx+1)与x轴的交点为(﹣,0),(﹣,0),此时N=2,当a=0,b≠0,或b=0,a≠0时,函数y=(ax+1)(bx+1)为一次函数,则N=1,所以M=N,M=N+1.故选:C.4.解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.5.解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.6.解:∵y=x2﹣10x+21=(x﹣3)(x﹣7),∴当y=0时,x1=3,x2=7,∵7﹣3=4,∴直角三角形的第三边长为4,当5为斜边时,a==3,当a为斜边时,a==,由上可得,a的值为3或,故选:C.7.解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.8.解:∵抛物线过A(0,﹣1),而抛物线与x轴没有交点,∴抛物线开口向下,即a<0,∵抛物线的对称轴为直线x=﹣=1,而B点到直线x=1的距离最大,D点到直线x=1的距离最小,∴y1<y2<y3.故选:D.9.解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.10.解:对于y=﹣3(x﹣1)2+1,M(1,1),N(0,﹣2),直线MN的解析式为y=3x﹣2,直线MN 与x轴的交点坐标为(,0),此时S=×2×=;对于y=2(x﹣0.5)(x+1.5),则y=2(x+)2﹣2,M(﹣,﹣2),N(0,﹣),直线MN的解析式为y=x﹣,直线MN与x轴的交点坐标为(,0),此时S=×(﹣)×=;对于y=x2﹣x+1,则y=(x﹣2)2﹣,M(2,﹣),N(0,1),直线MN的解析式为y=﹣x+1,直线MN与x轴的交点坐标为(,0),此时S=×1×=;故选:D.二.填空题11.解:∵a(x﹣3)2+c=3b﹣bx,∴a(x﹣3)2+b(x﹣3)+c=0,∵抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0),∴x﹣3=﹣2或1,∴a(x﹣3)2+c=3b﹣bx的解是1或4,故答案为:x1=1,x2=4,12.解:抛物线的对称轴是直线x=﹣=1.∴方程ax2﹣2ax+c=0(a≠0)的另一根为x=3.则两交点间的距离为4.故答案是:4.13.解:当y=0时,x2﹣2mx+4m﹣8=0,∴x=m±;∵抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,∴为整数,∴m2﹣4m+8为整数的完全平方数,即(m﹣2)2+4为整数的完全平方数,∵m为整数,∴m﹣2=0,即m=2.故答案为2.14.解:抛物线为y=3x2+2x+c,与x轴有且只有一个公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c=0,有c=.①当c=时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);②当c<时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c;由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x=﹣,应有y1<0,且y2≥0即1+c<0,且5+c≥0.解得:﹣5≤c<﹣1.综合①,②得n的取值范围是:c=或﹣5<c≤﹣1,故答案为c=或﹣5≤c<﹣1.15.解:由得,m(x﹣h+3)2﹣k=0,∵关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,∴方程m(x﹣h+3)2﹣k=0中的根满足x3+3=2,x4+3=5,解得,x3=﹣1,x4=2,即抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是﹣1或2,故答案为:﹣1或2.三.解答题16.解:(1)∵抛物线与x轴的一个交点坐标为(3,0),对称轴是直线x=﹣2,∴抛物线与x轴的另一个交点坐标为(﹣7,0);(2)设抛物线解析式为y=a(x+7)(x﹣3),把(0,﹣3)代入得a(0+7)(0﹣3)=﹣3,解得a=,∴抛物线解析式为y=(x+7)(x﹣3),即y=x2+x﹣3.17.解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)将x=1代入一元二次方程x2﹣(m﹣3)x﹣m=0中得12﹣(m﹣3)﹣m=0,解得m=2.18.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,抛物线的顶点坐标为(1,﹣4),解方程x2﹣2x﹣3=0,解得x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3),如图,(2)连接OD,如图,四边形ABCD的面积=S△AOC +S△OCD+S△OBD=×1×3+×3×1+×3×4=9.故答案为9.19.解:(1)抛物线解析式为y=﹣(x+4)(x﹣2),即y=﹣x2﹣x+2,∵y=﹣(x+1)2+,∴抛物线的顶点坐标为(﹣1,);(2)∵N是AM的中点,∴N点的坐标为(﹣,),∴BN==.20.解:(Ⅰ)由抛物线对称轴是直线x=1得到:﹣=1,得k=2.∴抛物线的解析式为y=x2﹣2x﹣3.解方程x2﹣2x﹣3=0得:x1=3,x2=﹣1.∴AB=4.当x=0时,y=3,∴C(0,﹣3).所以△ABC的面积S==6.(Ⅱ)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以顶点P的坐标为P(1,﹣4).∴PC==.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是( )A.4 cm2B.8 cm2C.16 cm2D.32 cm22.某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.50 m B.100 mC.160 m D.200 m3.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是( )A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C.600平方米D.2400平方米5. 如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1 cm/s的速度向点C运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP面积的最小值是()A.8 cm2B.16 cm2C.24 cm2D.32 cm26.中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到A B的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A.y=26675x2B.y=-26675x2C.y=131350x2D.y=-131350x27.如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形PABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28.在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图(示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数)的增大而增大,a的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17.如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C 到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18.某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20.如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图②,当饲养室的长x为多少时,占地面积y最大?(2)如图③,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.21.有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=13 5°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版九年级数学22.3 实际问题与二次函数同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm 2.2.【答案】C [解析] 以2m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B [解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米,则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A [解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,则S =AB·AC 2-AP·AQ 2=8×62-2t×t2=-t 2+24.∵点P 从点A 出发,沿AB 方向以2 m/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,8÷2=4,6÷1=6,∴0<t ≤4,∴当t =4时,S 取得最小值,最小值为-42+24=8(cm 2).6.【答案】B [解析]设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.7. 【答案】C[解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB2-BC2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm , ∴S 四边形PABQ =S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.8.【答案】 A [解析] A ,B 两点的坐标分别为(4,0),(0,1),把(4,0),(0,1)分别代入y =-14x 2+bx +c ,求出b ,c 的值即可.9. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误. 将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.10. 【答案】C [解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM 和△CFN 都是等腰直角三角形,∴MF =22EF =(402-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200,故当x =20时,包装盒的侧面积最大.二、填空题(本大题共7道小题)11.【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长xm ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y =-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.12. 【答案】225213.【答案】75 [解析] 设与墙垂直的一边的长为xm ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x2+30x,∴当x=-302×(-3)=5时,S最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m2.14. 【答案】0<a≤5 【解析】设未来30天每天获得的利润为y,y=(110-40-t)(20+4t)-(20+4t)a化简,得y=-4t 2+(260-4a)t+1400-20a,每天缴纳电商平台推广费用后的利润随天数t(t为整数)的增大而增大,则-(260-4a)2×(-4)≥30,解得a≤5,又∵a>0,∴a的取值范围是0<a≤5.15. 【答案】y=-19(x+6)2+416. 【答案】 1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.17. 【答案】48 [解析] 建立如图所示的平面直角坐标系,设AB与y轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-1 36,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD+OE=24+24=48(m).三、解答题(本大题共4道小题)18. 【答案】解:(1)由题意可得每件衬衫的盈利为420-300-x=(120-x)元.(2)每天可售出的衬衫件数为20+x10×1=(0.1x+20)件.(3)由题意可得(0.1x+20)(120-x)=1920,解得x1=-120(舍去),x2=40.答:每件衬衫应降价40元.(4)这次降价活动中,1920元不是最高日盈利.设日盈利为w元,则w=(0.1x+20)(120-x)=-0.1(x+40)2+2560,∴当x>-40时,w随x的增大而减小.∵x≥0,∴当x=0时,w取得最大值,此时w=2400,即最高日盈利值是2400元.19. 【答案】解:(1)如图所示:设裁掉的正方形的边长为x dm. 由题意可得(10-2x )(6-2x )=12,即x 2-8x +12=0,解得x 1=2,x 2=6(舍去).答:当裁掉的正方形的边长为2 dm 时,长方体底面面积为12 dm 2. (2)∵长方体的底面长不大于底面宽的五倍, ∴10-2x ≤5(6-2x ),解得x ≤2.5, ∴0<x ≤2.5.设总费用为w 元,由题意可知w =0.5×2x (16-4x )+2(10-2x )(6-2x )=4x 2-48x +120=4(x -6)2-24. ∵此函数图象的对称轴为直线x =6,图象开口向上, ∴当0<x ≤2.5时,w 随x 的增大而减小, ∴当x =2.5时,w 有最小值,最小值为25.答:当裁掉的正方形边长为2.5 dm 时,总费用最低,最低为25元.20. 【答案】解:(1)∵y =x·50-x 2=-12(x -25)2+6252, ∴当x =25时,占地面积y 最大,即当饲养室的长x 为25 m 时,占地面积y 最大. (2)∵y =x·50-(x -2)2=-12(x -26)2+338,∴当x=26时,占地面积y最大,即当饲养室的长x为26 m时,占地面积y最大.∵26-25=1≠2,∴小敏的说法不正确.21. 【答案】解:(1)①若所截矩形材料的一条边是BC,如图①所示:过点C作CF⊥AE于点F,则S1=AB·BC=6×5=30;②若所截矩形材料的一条边是AE,如图②所示:过点E作EF∥AB交CD于点F,过点F作FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∴AE=FG=6,HG=BC=5,BG=CH,∠BCH=90°.∵∠BCD=135°,∴∠FCH=45°,。

最新人教版九年级数学第22章二次函数测试题有答案解析

最新人教版九年级数学第22章二次函数测试题有答案解析

人教版九年级数学上册第22章二次函数测试题带答案解析一、选择题(本大题共7小题,每小题5分,共35分)1.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)2.抛物线y=﹣x2+4x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=4 D.x=﹣43.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+24.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<05.如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.6.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y37.二次函数与y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2 B.k<2且k≠0 C.k≤2 D.k≤2且k≠0二、填空题(本大题共6小题,每小题5分,共30分).8.抛物线y=2(x﹣3)2+3的顶点在象限.9.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=.10.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.11.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.12.已知二次函数y=﹣x2+ax﹣4的图象最高点在x轴上,则该函数关系式为.13.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t﹣gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面m.三、简答题14.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.15.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).16.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.人教版九年级数学上册单元测试:第22章二次函数参考答案与试题解析一、选择题(本大题共7小题,每小题5分,共35分)1.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1) B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=3(x+3)2+1,根据顶点式的坐标特点可知,顶点坐标为(﹣3,1),故选C.【点评】考查二次函数的性质及将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.抛物线y=﹣x2+4x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=4 D.x=﹣4【考点】二次函数的性质.【分析】先根据抛物线的解析式得出a、b的值,再根据二次函数的对称轴方程即可得出结论.【解答】解:∵抛物线的解析式为y=﹣x2+4x﹣4,∴a=﹣1,b=4,∴其对称轴是直线x=﹣=﹣=2.故选B.【点评】本题考查的是二次函数的性质,即二次函数y=ax2+bx+c(a≠0)的对称轴直线x=﹣.3.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【考点】二次函数图象与几何变换.【分析】根据图象向下平移减,向右平移减,可得答案.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.【点评】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.4.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口向上知a>0,与y轴的交点为在y轴的正半轴上得到c>0,而对称轴为x=﹣<0即得到b>0,所以得到ab>0,C>0,所以即可得到正确的选择项.【解答】解:∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∵对称轴为x=﹣<0,∴a、b同号,即b>0,∴ab>0,c>0,∴A正确.故选A.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键.5.如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【解答】解:∵y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴抛物线开口方向向下,∵抛物线对称轴为直线x=﹣<0,∴对称轴在y轴的左边,纵观各选项,只有C选项符合.故选C.【点评】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a、b的正负情况是解题的关键.6.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3【考点】二次函数图象上点的坐标特征.【专题】压轴题.【分析】因为抛物线的对称轴为直线x=﹣1,且﹣1<x1<x2,当x>﹣1时,由图象知,y随x的增大而减小,根据图象的单调性可判断y2<y1;结合x3<﹣1,即可判断y2<y1<y3.【解答】解:对称轴为直线x=﹣1,且﹣1<x1<x2,当x>﹣1时,y2<y1,又因为x3<﹣1,由一次函数的图象可知,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.故选D.【点评】本题考查了一次函数、二次函数概念图象及性质,需要灵活掌握.7.二次函数与y=kx﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2 B.k<2且k≠0 C.k≤2 D.k≤2且k≠0【考点】抛物线与x轴的交点.【分析】直接利用△=b2﹣4ac≥0,进而求出k的取值范围.【解答】解:∵二次函数与y=kx2﹣8x+8的图象与x轴有交点,∴△=b2﹣4ac=64﹣32k≥0,k≠0,解得:k≤2且k≠0.故选:D.【点评】此题主要考查了抛物线与x轴的交点,正确得出△的符号是解题关键.二、填空题(本大题共6小题,每小题5分,共30分).8.抛物线y=2(x﹣3)2+3的顶点在第一象限.【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点坐标的特点,直接写出顶点坐标,再判断顶点位置.【解答】解:由y=2(x﹣3)2+3得:抛物线的顶点坐标为(3,3),∴抛物线y=2(x﹣3)2+3的顶点第一象限,故答案为:第一.【点评】本题考查了二次函数的性质,能够写出二次函数的顶点坐标是解答本题的关键,难度不大.9.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=(x﹣1)2+2.【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2故本题答案为:y=(x﹣1)2+2.【点评】,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).10.已知二次函数y=x+bx+3的对称轴为x=2,则b=﹣4.【考点】二次函数的性质.【分析】可直接由对称轴公式﹣=2,求得b的值.【解答】解:∵对称轴为x=2,∴﹣=2,∴b=﹣4.【点评】本题难度不大,只要掌握了对称轴公式即可解出.主要考查二次函数解析式中系数与对称轴的关系.11.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x ﹣2)2﹣1.【考点】待定系数法求二次函数解析式.【专题】压轴题;开放型.【分析】已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.【点评】此题是开放题,考查了学生的综合应用能力,解题时要注意别漏条件.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.12.已知二次函数y=﹣x2+ax﹣4的图象最高点在x轴上,则该函数关系式为y=﹣x2+4x﹣4或y=﹣x2﹣4x﹣4.【考点】二次函数的最值.【分析】由条件可知二次函数的顶点在x轴上,即二次函数图象与x轴只有一个交点,令y=0得到关于x 的一元二次方程其判别式为0,可求得a,可得到函数关系式.【解答】解:∵二次函数y=﹣x2+ax﹣4的图象最高点在x轴上,∴二次函数图象与x轴只有一个交点,令y=0可得﹣x2+ax﹣4=0,则该一元二次方程有两个相等的实数根,∴△=0,即a2﹣16=0,解得a=±4,∴二次函数关系式为y=﹣x2+4x﹣4或y=﹣x2﹣4x﹣4,故答案为:y=﹣x2+4x﹣4或y=﹣x2﹣4x﹣4.【点评】本题主要考查二次函数的最值,掌握二次函数的顶点在x轴上则二次函数与x轴的交点只有一个是解题的关键.13.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t﹣gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面7m.【考点】二次函数的应用.【专题】压轴题.【分析】把g=10,v0=10代入s=v0t﹣gt2求出解析式,并找出s的最大值,另外不要忘记抛球时本身就距离地面2米.【解答】解:把g=10,v0=10代入s=v0t﹣gt2得:s=﹣5t2+10t=﹣5(t﹣1)2+5,它是开口向下的一条抛物线,所以最大值为5,此时离地面5+2=7m.【点评】考点:二次函数的性质,求最大值.三、简答题14.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,(2)根据抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即可得出答案.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).【点评】此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.15.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).【考点】二次函数的应用.【分析】根据题意列出二次函数关系式,然后利用二次函数的性质求最大值.【解答】解:已知抽屉底面宽为x cm,则底面长为180÷2﹣x=(90﹣x)cm.∵90﹣x≥x,∴0<x≤45,由题意得:y=x(90﹣x)×20=﹣20(x2﹣90x)=﹣20(x﹣45)2+40500∵0<x≤45,﹣20<0,∴当x=45时,y有最大值,最大值为40500.答:当抽屉底面宽为45cm时,抽屉的体积最大,最大体积为40500cm3.【点评】本题考查利用二次函数解决实际问题.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.16.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.【解答】解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)作ME⊥y轴于点E,﹣S△MCE﹣S△OBC=(2+5)×9﹣×4×2﹣×5×5=15.可得S△MCB=S梯形MEOB【点评】本题考查了二次函数解析式的确定以及图形面积的求法.不规则图形的面积通常转化为规则图形的面积的和差.。

人教版九年级上册数学22 3实际问题与二次函数 同步练习(含答案)

人教版九年级上册数学22 3实际问题与二次函数 同步练习(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步练习一、单选题1.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,若第二个月的增长率是x ,第三个月的增长率是第二个月的两倍,那么y 与x 的函数关系是 ( ) A .()()112y a x x =++ B .()21y a x =+ C .()221y a x =+ D .22y x a =+2.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 3.抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个 4.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( ) A .10s B .20s C .30s D .40s 5.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 6.如图,若被击打的小球飞行高度h (单位:)m 与飞行时间t (单位:)s 具有函数关系为2205h t t =-,则小球从飞出到落地的所用时间为( )A.3s B.4s C.5s D.6s7.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.若水面再下降1.5m,水面宽度为()m.8.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()二、填空题面宽为12m,这时水面离桥拱顶端的高度是____________________.10.半径是2的圆,如果半径增加x 时,增加的面积s 与x 之间的关系表达式为__________. 11.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为______.(不要求写出自变量x 的取值范围)12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.足球被从地面上踢起,它距地面的高度h (m )可用公式h =-4.9t 2+19.6t 来表示,其中t (s )表示足球被踢出后经过的时间,则球在______s 后落地.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是______m .15.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为___________元.16.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.三、解答题17.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?18.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?19.国庆假期期间,某酒店有20个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,酒店需对每个房间每天支出20元的各种费用,设每间房间定价x 元()100x ≥.(1)每天有游客居住的房间数为__________(用含x 的代数式表示);(2)当每间房价为多少元时,酒店当天的利润为1800元?(3)当每间房价定为多少元时,酒店的利润m (元)最大,最大利润是多少?20.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知12OA =米,4OB =米,抛物线顶点D 到地面OA 的垂直距离为10米,以OA 所在直线为x 轴,以OB 所在直线为y 轴建立直角坐标系,(1)求抛物线的解析式;(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5米,才能安全B通行,问这辆特殊货车能否安全通过隧道?参考答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3.1 实际问题与二次函数
一、夯实基础
1.用一根长为40 c m的绳子围成一个面积为a cm2的长方形,那么a的值不可能为( )
A.20
B.40
C.100
D.120
2.用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )
A. m2
B. m2
C. m2
D.4 m2
3.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )
4.如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=______ m时,矩形场地的面积最大,最大值为______.
5.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为______s.
6.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是______cm2.
二、能力提升
7.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为
20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)
8.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12 c m,点P是AB边上的一个动点,过点P作PE ⊥BC于点E,PF⊥AC于点F,当PB=6 cm时,四边形PECF的面积最大,最大值为______
9.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.
(1)若花园的面积为192 m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
10.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少?
三、课外拓展
11.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.
(1)求y 关于x 的函数关系式;
(2)当x 为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.
12.如图,正方形ABCD 的边长为2 cm ,△PMN 是一块直角三角板(∠N=30°),PM >2 cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM=x cm ,三角板与正方形重叠部分的面积为y cm 2.
下列结论:
② 当0≤x
≤233时,y 与x 之间的函数关系式为y=132x 2
; ②当233<x ≤2时,y 与x 之间的函数关系式为y =2x-2
33
; ③当MN 经过AB 的中点时,2);
④存在x的值,使y=1
S正方形ABCD(S正方形ABCD表示正方形ABCD的面积).
2
其中正确的是______(写出所有正确结论的序号).
四、中考链接
1.(2015•温州第15题5分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.
2.(2015,广西柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?
答案
1.D
2.C
3.B
4.20 ,800 m2.
5.2s.
6. cm 2.
7.根据题意,得y=20x(1802
-x).
整理,得y=-20x 2+1 800x=-20(x 2-90x+2 025)+40 500=-20(x-45)2+40 500. ∵-20<0,
∴当x=45时,函数有最大值,y 最大值=40 500.
即当底面的宽为45 cm 时,抽屉的体积最大,最大为40 500 cm 3.
8.9 cm 2.
9.(1)由题意得x(28-x)=192,解得x 1=12,x 2=16.
∴x=12或16.
(2)S=x(28-x)=-(x-14)2+196.
由题意知x ≥6,28-x ≥15,解得6≤x ≤13.
在6≤x ≤13范围内,S 随x 的增大而增大.
∴当x=13时,S 最大=-(13-14)2+196=195(m 2).
答:花园面积S 的最大值为195 m 2.
10.(1)21
302S x x
=+; (2)∵S=-12x 2+30x=-12(x-30)2+450,且a=-12
<0,
∴当x=30时,S 有最大值,最大值为450.
即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2. 11(1)y=x(16-x)=-x 2+16x(0<x<16).
(2)当y=60时,-x 2+16x=60,解得x 1=10,x 2=6.
∴当x=10或6时,围成的养鸡场的面积为60平方米.
(3)当y=70时,-x 2+16x=70,整理得x 2-16x+70=0.
∵Δ=256-280=-24<0,∴此方程无实数根.
∴不能围成面积为70平方米的养鸡场.
12.①②④
中考链接:
1.解:设垂直于墙的材料长为x米,
则平行于墙的材料长为27+3﹣3x=30﹣3x,
则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,
故饲养室的最大面积为75平方米,
故答案为:75.
2.解:(1)∵在矩形OABC中,OA=3,OC=2,
∴B(3,2),
∵F为AB的中点,
∴F(3,1),
∵点F在反比例函数y=(k>0)的图象上,
∴k=3,
∴该函数的解析式为y=(x>0);
(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),
=k﹣k2
=﹣(k2﹣6k+9﹣9)
=﹣(k﹣3)2+3 4
当k=3时,S有最大值.
S最大值=3
4
.。

相关文档
最新文档