2018年人教版高考数学一轮复习:09-2两直线的位置关系与距离公式(专题拔高特训-通用版)PPT课件

合集下载

高考数学一轮复习第七章第二讲两直线的位置关系课件

高考数学一轮复习第七章第二讲两直线的位置关系课件
③应用两平行线间的距离公式要把两直线方程中 x,y 的系数 分别化为相等.
【变式训练】 1.已知点 P(1,2),则当点 P 到直线 2ax+y-4=0 的距离最大 时,a=( )
A.1B.-41Biblioteka 1 C.4D. 5
解析:因为直线恒过定点 A(0,4),则当 PA 与直线垂直时, 点 P 到直线的距离达到最大值,此时过点 P,A 的直线的斜率为
将点A(-1,2)的坐标代入动直线(m2+2m+3)x+(1+m- m2)y+3m2+1=0中,
(m2+2m+3)·(-1)+(1+m-m2)·2+3m2+1=(3-1-2)m2 +(-2+2)m+2+1-3=0,
2.三个距离公式 (1)两点间的距离公式 两点 P1(x1,y1),P2(x2,y2)间的距离: |P1P2|= (x1-x2)2+(y1-y2)2. (2)点到直线的距离公式 点 A(x0,y0)到直线 l:Ax+By+C=0 的距离: d=|Ax0+A2B+y0B+2 C|.
(3)两条平行直线间的距离公式 l1:Ax+By+C=0,l2:Ax+By+C′=0(C≠C′),l1 与 l2 间的 距离:
|2k-k32++k1+2|=|-4k-k25++1k+2|,即|3k-1|=|-3k-3|,解得
k=-13.所以直线 l 的方程为 y-2=-13(x+1),即 x+3y-5=0. 当直线 l 的斜率不存在时,直线 l的方程x=-1,也符合题意.
答案:x+3y-5=0 或 x=-1
考点三 对称问题
-2=0互相垂直,∴(m-4)m+m(m+2)=0,∴2m2-2m=0,∴m
=0 或 m=1,∴“m=1”是“直线 l1:(m-4)x+my+1=0 与直 线 l2:mx+(m+2)y-2=0 互相垂直”的充分不必要条件.故选 A.

(新高考题型版)高三高考数学一轮复习第9章第2讲 两条直线的位置关系与距离公式课件(84张)

(新高考题型版)高三高考数学一轮复习第9章第2讲 两条直线的位置关系与距离公式课件(84张)

答案 1或0 3a-0
解析 l1的斜率k1=1--2=a.
当a≠0时,l2的斜率k2=
-2a--1 a-0

1-2a a
.因为l1⊥l2,所以k1k2=-
1-2a 1,即a· a =-1,解得a=1.
当a=0时,得P(0,-1),Q(0,0),这时直线l2为y轴,A(-2,0),
B(1,0),直线l1为x轴,显然l1⊥l2.
(1)已知两直线的斜率存在
①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等;
②两直线垂直⇔两直线的斜率之积为-1.
(2)已知两直线的斜率不存在
若两直线的斜率不存在,当两直线在x轴上的截距不相等时,两直线平行;否则两直 线重合.
(3)已知两直线的一般方程
设直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2- B2C1≠0或A2C1-A1C2≠0,l1⊥l2⇔A1A2+B1B2=0.该方法可避免对斜率是否存在进行讨 论.
1.点A(2,5)到直线l:x-2y+3=0的距离为( )
A.2 5
B.
5 5
C. 5
D.2 5 5
|2-10+3|
解析 点A(2,5)到直线l:x-2y+3=0的距离为d= 1+4 =
5 .故
选C.
解析 答案
2.过点(1,0)且与直线x-2y-2=0平行的直线方程是( )
A.x-2y-1=0
3.距离的最
大值为( )
A.1
B. 2
C. 3
D.2
解析 由y=k(x+1)可知直线过定点P(-1,0),设A(0,-1),当直线y
=k(x+1)与AP垂直时,点A到直线y=k(x+1)的距离最大,即为|AP|= 2.故

高考数学一轮复习 9.2 点与直线、两条直线的位置关系

高考数学一轮复习 9.2 点与直线、两条直线的位置关系

命题规律
本节考点在近五年高考中, 没有单独命过题,仅作为一道综 合性题目中的工具.在解析几何 的高考题中,主要涉及有两直线 交点坐标的求解、点到直线的距 离的求解及两直线间的平行或垂 直条件的应用.
知识梳理
-3-
知识梳理
双击自测
1.两直线的位置关系
平面内两条直线的位置关系包括平行、相交、重合三种情况.
双击自测
12345
2.已知直线 ax+3y-1=0 与直线 3x-3y+4=0 垂直,则 a 的值为(
A.3
B.-3
C.1
D.-1
-7-
)
由已知得 3a-9=0,得 a=3.
A
关闭 关闭
7 解析 答案
知识梳理
-8-
知识梳理
双击自测
12345
3.过点(1,0)且与直线 x-2y-2=0 平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0
因(1此,1)点 A'的坐标为(1,1).
关闭 关闭
10 解析 答案
知识梳理
双击自测
知识梳理
12345
-11-
自测点评 1.对于直线 l1 与直线 l2 相互平行(垂直)的条件一定要注
意其适用范围. 2.求解点到直线、两平行线间的距离时,注意直线方程要用一般式. 3.对称问题是解析几何中的常见问题,尤其要掌握好点关于线的轴对
9.2 点与直线、两条直线的 位置关系
考情概览
-2-
考纲要求
1.能根据两条直线的斜 率判定这两条直线平行 或垂直. 2.能用解方程组的方法 求两条相交直线的交点 坐标. 3.掌握两点间的距离公 式、点到直线的距离公 式,会求两条平行直线间 的距离.

两条直线的位置关系与距离公式-高考数学复习课件

两条直线的位置关系与距离公式-高考数学复习课件

x +4 y -7=0的直线的方程为 4 x -3 y +9=0
5

3
= −
2 + 3+1 = 0,
法一:由ቊ
解得൞
7
− 3 + 4 = 0,
= ,
9
故交点的坐标为
5
7
− ,
3
9
.
.

4
因为所求直线与直线3 x +4 y -7=0垂直,所以所求直线的斜率为 ,所
3
7
4
以所求直线的方程为 y - =
13
2
方法总结
距离问题的常见题型及解题策略
1. 求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般
用来判断三角形的形状等.
2. 解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若
已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨
论斜率是否存在.
3. 求两条平行线间的距离.要先将直线方程中 x , y 的对应项系数转化成
1

k 1·k 2=-
,当一条直线斜率为零,另一条直线斜率不存在时,两条直线
.




2. 两直线相交
直线 l 1: A 1 x + B 1 y + C 1=0和 l 2: A 2 x + B 2 y + C 2=0的公共点的坐标
1 +1 +1 = 0,
与方程组ቊ
的解一一对应.
2 +2 +2 = 0
6. (2024·广东广州模拟)已知点 P (4, a )到直线4 x -3 y -1=0的距离不大
于3,则 a 的取值范围为
点 P 到直线的距离为

高考数学一轮复习第9章第2节两直线的位置关系课件理2

高考数学一轮复习第9章第2节两直线的位置关系课件理2
复习课件
高考数学一轮复习第9章第2节两直线的位置关系课件理2
2021/4/17
高考数学一轮复习第9章第2节两直线的位置关系课件理2
0
第九章 解析几何
第二节 两直线的位置关系

课 前 ·基 础 巩 固 1


课 堂 ·考 点 突 破 2

3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
yxx000- - +2 yxx·-1=y0+-2 y1+,1=0,解得xy00= =yx- +11., 将(y-1,x+1)代入 2x0+y0-4=0 中,得 x+2y-5=0. [答案] x+2y-5=0
►名师点津 1.线关于点对称的求解方法 (1)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标, 再由两点式求出直线方程; (2)求出一个对称点,再利用两对称直线平行,由点斜式得到所求的直线方程. 2.线关于点对称的实质 “线关于点的对称”其实质就是“点关于点的对称”,只要在直线上取两个点,求 出其对称点的坐标即可,可统称为“中心对称”.
[答案] x+4y-4=0
►名师点津 点关于点对称的求解方法
若点 M(x1,y1)和点 N(x,y)关于点 P(a,b)对称,则由中点坐标公式得xy= =22ab- -xy11, ,进 而求解.
●命题角度二 点关于线的对称问题
【例 2】 (2019 届湖北孝感五校联考)已知直线 y=2x 是△ABC 中∠C 的平分线所
点,则|PQ|的最小值为( )
A.95
B.158
C.2190
D.259
解析:选 C 因为36=48≠-512,所以两直线平行. 由题意可知,|PQ|的最小值为这两条平行直线间的距离,即|-6224+-852|=2190,所以|PQ| 的最小值为2190.故选 C.

高三数学第一轮复习:直线的方程、两条直线的位置关系人教版

高三数学第一轮复习:直线的方程、两条直线的位置关系人教版

高三数学第一轮复习:直线的方程、两条直线的位置关系人教版【本讲教育信息】一. 教学内容:直线的方程、两条直线的位置关系二. 教学重、难点:1. 理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2. 掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。

【典型例题】[例1] 已知点P 到两个定点M (0,1-),N (1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程。

解:设点P 的坐标为(x ,y )由题设有2=PNPM 即2222)1(2)1(y x y x +-=++∴ 01622=+-+x y x ① ∵ N 到PM 的距离为1,2=MN ∴ ︒=∠30PMN ∴ PM 的方程为:)1(33+±=x y ② ②代入①:0142=+-x x ∴ 32±=x∴ P (31,32++)或(31,32+--);)31,32(--+或)31,32(-- ∴ PN 的方程为1-=x y 或1+-=x y[例2] 已知ABC ∆的顶点A (3,4),B (6,0),C (2,5--),求A ∠的内角平分线AT 所在的直线方程。

解:方法一:∵ 直线AC 到AT 的角等于AT 到AB 的角又 ∵ 43)5(3)2(4=----=AC k ,346304-=--=AB k设AT 的斜率为34(-<k k 或)43>k ,则k k k k )34(13443143-+--=+-化简得074872=--k k ,解之,得7=k 或71-=k (舍去)∴ 直线AT 的方程为)3(74-=-x y 即所求的方程为0177=--y x方法二:设直线AT 上的动点P (x ,y )则P 点到AC 、AB 的距离相等∵ 43)5(3)2(4,346304=----=-=--=AC AB k k ∴ 直线AB 的方程为)3(344--=-x y ,即02434=-+y x直线AC 的方程为)3(434-=-x y即0743=+-y x 那么574352434+-=-+y x y x即0177=--y x 或0317=-+y x结合图形分析知0317=-+y x 是ABC ∆的角A 外角的平分线,故舍去。

两直线的位置关系及距离公式

两直线的位置关系及距离公式

06
总结回顾与拓展延伸
总结回顾本次课程重点内容
两直线平行与重合的判定
两直线垂直的判定
点到直线的距离公式
两平行线间的距离公式
通过比较两直线的斜率,可以 判断两直线是否平行或重合。 若两直线斜率相等且不重合, 则两直线平行;若两直线斜率 相等且重合,则两直线重合。
两直线垂直的充分必要条件是 它们的斜率互为负倒数。即, 若一直线的斜率为m,另一直线 的斜率为-1/m,则这两直线垂 直。
通过比较两直线的斜率,若斜率 相等且截距不等,则两直线平行。
相交关系
定义
两直线在同一平面内,且斜率不相等,则称两直线相 交。
性质
相交直线有且仅有一个交点,且相交形成的角的大小 与两直线的斜率有关。
判定方法
通过比较两直线的斜率,若斜率不相等,则两直线相 交。
重合关系
定义
两直线在同一平面内,且斜率和截距都相等,则称两直线重合。
THANKS
感谢观看
在同一平面内,两条直线的位 置关系有平行、相交和重合三 种。
直线的倾斜角是直线与x轴正方 向之间的夹角,取值范围是[0,π)。
直线的方程形式
一般式
Ax + By + C = 0(A、B不 同时为0)。
斜截式
y = kx + b(k是斜率,b是 截距)。
点斜式
两点式
y - y1 = k(x - x1)(k是斜率, (x1, y1)三个顶点分别为$A(1, 2)$,$B(-3, -2)$, $C(5, 6)$,求三角形ABC的面积。
解析
首先求出三角形ABC的三边所在直线的方程,然后利用点 到直线的距离公式求出三角形的高,最后利用底和高求出 三角形的面积。

高考数学一轮总复习课件:两直线的位置关系

高考数学一轮总复习课件:两直线的位置关系

例1 (1)(2021·江西八校联考)已知直线l1:kx+y+3=0, l2:x+ky+3=0,且l1∥l2,则k的值为__-__1____.
【思路】 根据两直线平行列关于k的方程,解出k的值,然后 代入两直线方程进行验证是否满足l1∥l2,即可得出实数k的值.
【解析】 ∵直线l1:kx+y+3=0,l2:x+ky+3=0,且l1 ∥l2,
答案 (1)× (2)× (3)√ (4)× (5)×
=0.若2.l1∥(课l2本,习则题a的改值编为)已_-_知_12_直__线__l,1:若axl1+⊥yl+2,5则=a0的,值l2:为x-2y+7 _____2___.
3.直线y=kx-k-2恒过定点__(_1,__-__2)_.
解析 y=kx-k-2=k(x-1)-2.当x=1,y=-2时恒成立, ∴直线恒过定点(1,-2).
【解析】 要使点P到直线x-y-4=0有最小距离, 只需点P为曲线与直线x-y-4=0平行的切线的切点, 即点P为曲线上斜率为1的切线的切点,设P(x0,y0),x0>0, y=x2-lnx,y′|x=x0=2x0-x10=1,解得x0=1或x0=-12(舍去), 点P(1,1)到直线x-y-4=0的距离为|1-12-4|=2 2, 所以曲线y=x2-lnx上任一点到直线x-y-4=0的距离的最小 值为2 2.
【思路】 结合图形,根据点到直线的距离公式求解.
【解析】 (1)过点P的直线l与原点的距离为2,而点P的坐 标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条 件,
此时l的斜率不存在,其方程为x=2. 若斜率存在,设l的方程为y+1=k(x-2), 即kx-y-2k-1=0. 由已知得|-k22k+-11|=2,解得k=34. 此时l的方程为3x-4y-10=0.

【赢在课堂】高考数学一轮复习 9.2两直线的位置关系及交点、距离配套训练 理 新人教A版

【赢在课堂】高考数学一轮复习 9.2两直线的位置关系及交点、距离配套训练 理 新人教A版

第2讲两直线的位置关系及交点、距离基础巩固1.已知直线l1:y=x,若直线l2⊥l1,则直线l2的倾斜角为( )A. B.kπ+(k∈Z)C. D.kπ+(k∈Z)【答案】C【解析】∵l1⊥l2,∴k2=-1.故倾斜角为.2.过点A(4,a)和B(5,b)的直线与直线y=x+m平行,则|AB|的值为( )A.6B.C.2D.不能确定【答案】B【解析】∵直线AB与直线y=x+m平行,∴=1,即b-a=1.∴|AB|=.3.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是( )A.1B.2C.D.4【答案】B【解析】∵,∴m=8,直线6x+my+14=0可化为3x+4y+7=0,两平行线之间的距离d==2.4.点(4,t)到直线4x-3y=1的距离不大于3,则t的取值范围是( )A.≤t≤B.0<t<10C.0≤t≤10D.t<0或t>10【答案】C【解析】由题意,得≤3,即|15-3t|≤15,∴0≤t≤10.5.直线x-2y+1=0关于直线y-x=1对称的直线方程是( ) A.2x-y+2=0 B.3x-y+3=0C.2x+y-2=0D.x-2y-1=0【答案】A【解析】设所求直线上任一点的坐标为(x,y),则它关于y-x=1对称的点为(y-1,x+1),且在直线x-2y+1=0上,∴y-1-2(x+1)+1=0,化简得2x-y+2=0.6.经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程是( )A.15x+5y+16=0B.5x+15y+16=0C.15x+5y+6=0D.5x+15y+6=0【答案】A【解析】由方程组设所求直线为l,∵直线l和直线3x+y-1=0平行,∴直线l的斜率k=-3.∴根据直线点斜式有y-=-3,即所求直线方程为15x+5y+16=0.7.(2013届·湖北武汉检测)点P是曲线y=x2-ln x上任意一点,则点P到直线y=x+2的最小距离为( )A. B. C.2D.2【答案】B【解析】当点P为直线y=x+2平移到与曲线y=x2-ln x相切的切点时,点P到直线y=x+2的距离最小.设点P(x0,y0),f(x)=x2-ln x,则f'(x0)=1.∵f'(x)=2x-,∴2x0-=1.又x0>0,∴x0=1.∴点P的坐标为(1,1),此时点P到直线y=x+2的距离为.8.过点M(-2,1)且与A(-1,2),B(3,0)两点距离相等的直线方程是( )A.x+2y=0B.y=1C.x+2y=0或y=1D.x=1【答案】C【解析】方法一:当斜率存在时,设直线方程为y-1=k(x+2),即kx-y+2k+1=0.由条件得,解得k=0或k=-.故所求的直线方程为y=1或x+2y=0.当直线斜率不存在时,不存在符合题意的直线.方法二:设所求直线为l,由平面几何知识知,l∥AB或l过AB中点.若l∥AB,因为k AB=-,所以直线l方程为x+2y=0.若l过AB的中点N(1,1),则直线l方程为y=1.∴所求直线方程为y=1或x+2y=0.9.与直线x-y-2=0平行,且它们的距离为2的直线方程是.【答案】 x-y+2=0或x-y-6=0【解析】设所求直线l:x-y+m=0,由=2,∴m=2或-6.10.(2012·山东临沂模拟)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是.【答案】[0,10]【解析】由题意得,点到直线的距离为.又≤3,即|15-3a|≤15,解之,得0≤a≤10,所以a∈[0,10].11.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是.【答案】2x+3y+8=0【解析】设(x0,y0)是直线2x+3y-6=0上任一点,其关于点(1,-1)的对称点的坐标是(x,y), 则2x0+3y0-6=0,(*)又由对称性知代入(*)式,得2(2-x)+3(-2-y)-6=0,即2x+3y+8=0.12.已知两直线l1:x+y sin θ-1=0和l2:2x sin θ+y+1=0,试求θ的值,使得:(1)l1∥l2;(2)l1⊥l2.【解】(1)方法一:当sin θ=0时,直线l1的斜率不存在,l2的斜率为零,l1显然不平行于l2.当sin θ≠0时,k1=-,k2=-2sin θ,欲使l1∥l2,只要-=-2sin θ,即sin θ=±,∴θ=kπ±,k∈Z,此时两直线截距不相等.∴当θ=kπ±,k∈Z时,l1∥l2.方法二:由A1B2-A2B1=0,即2sin2θ-1=0,得sin2θ=,∴sin θ=±.由B1C2-B2C1≠0,即1+sin θ≠0,即sin θ≠-1,得θ=kπ±,k∈Z,∴当θ=kπ±,k∈Z时,l1∥l2.(2)∵A1A2+B1B2=0是l1⊥l2的充要条件,∴2sin θ+sin θ=0,即sin θ=0.∴θ=kπ(k∈Z).∴当θ=kπ,k∈Z时,l1⊥l2.13.已知直线l:3x-y+3=0,求:(1)点P(4,5)关于直线l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程.【解】设P(x,y)关于直线l:3x-y+3=0的对称点为P'(x',y').∵k PP'·k l=-1,即×3=-1.①又PP'的中点在直线3x-y+3=0上,∴3×+3=0.②由①②得(1)把x=4,y=5代入③及④得x'=-2,y'=7,∴P(4,5)关于直线l的对称点P'的坐标为(-2,7).(2)用③④分别代换x-y-2=0中的x,y,得关于直线l对称的直线方程为-2=0,化简得7x+y+22=0.拓展延伸14.在直线l:3x-y-1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.【解】(1)如图所示,设点B关于l的对称点B'的坐标为(a,b),则k BB'·k l=-1,即·3=-1.∴a+3b-12=0.①又由于线段BB'的中点坐标为,且在直线l上,∴3×-1=0,即3a-b-6=0.②解①②得a=3,b=3,∴B'(3,3).于是AB'的方程为,即2x+y-9=0.解即l与AB'的交点坐标为P(2,5).∴点P(2,5)即为所求.(2)如图所示,设C关于l的对称点为C',求出C'的坐标为.∴AC'所在直线的方程为19x+17y-93=0,AC'和l的交点坐标为,故所求P点坐标为.。

【高考数学】2018最新版本高考数学一轮复习:09-2两直线的位置关系与距离公式(专题拔高特训-通用版)

【高考数学】2018最新版本高考数学一轮复习:09-2两直线的位置关系与距离公式(专题拔高特训-通用版)

7.已知两条直线 l1:ax-by+4=0 和 l2:(a-1)x+y+b =0,求满足下列条件的 a、b 的值. (1)l1⊥l2,且 l1 过点(-3,-1); (2)l1∥l2,且坐标原点到这两条直线的距离相等.
[解析]
(1)由已知可得 l2 的斜率必存在,∴k2=1-a.
若 k2=0,则 1-a=0,a=1. ∵l1⊥l2,∴直线 l1 的斜率 k1 必不存在,即 b=0. 又∵l1 过(-3,-1), ∴-3a+b+4=0,即 b=3a-4(不合题意) ∴此种情况不存在,即 k2≠0. 若 k2≠0,即 k1,k2 都存在, a ∵k1=b,k2=1-a,l1⊥l2,
2 -1 3
[答案]
[解析]
当 a=0 时,l1:y=-3,l2:x-y-1=0,
显然 l1 不平行于 l2,当 a≠0 时,l1∥l2 的充要条件是
2 1 a-1 a -1 a= 2 ≠ 6 ,∴a=-1.
Байду номын сангаас
2 l1⊥l2 的充要条件是 a+2(a-1)=0,∴a= . 3 2 综上所述,l1∥l2 时,a=-1;l1⊥l2 时,a=3.
2.线段的中点坐标公式 若点 P1、P2 的坐标分别为(x1,y1),(x2,y2),且线段 P1P2 的 x=x1+x2 2 中点 M 的坐标为(x,y),则 y1 + y2 y= 2 中点坐标公式.
,此公式为线段 P1P2 的
3.直线 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0 的交点坐
第九章
第二节 两直线的位置关系与距离公式
高考目标
3
课堂典例讲练
课前自主预习
4
思想方法点拨

【走向高考】高考数学一轮总复习(目标导航+自主导学+典例讲解)9-2两直线的位置关系与距离公式课

【走向高考】高考数学一轮总复习(目标导航+自主导学+典例讲解)9-2两直线的位置关系与距离公式课
走向高考· 数学
北师大版 ·高考一轮总复习
路漫漫其修远兮 吾将上下而求索
第九章
平面解析几何
第九章
第二节 两直线的位置关系与距离公式
高考目标导航
3
课堂典例讲练
课前自主导学
4
课后强化作业
高考目标导航
考纲要求 1.能根据两直线的斜率判定这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标. 3.掌握点到直线的距离公式,会求两平行直线间的距离.
4.有关距离 (1)两点间的距离 平面上两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|= ______________. (2)点到直线的距离 平面上一点P(x0,y0)到一条直线l:Ax+By+C=0的距离 d=________.
(3)两平行线间的距离 已知l1,l2是平行线,求l1,l2间距离的方法; ①求一条直线上一点到另一条直线的距离; ②设l1:Ax+By+C1=0,l2:Ax+By+C2=0,则l1与l2 之间的距离d=________.
课堂典例讲练
两直线的平行与垂直
(1)已知两条直线y=ax-2和y=(a+2)x+1互相 垂直,则实数a=________. (2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平 行的( )
A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 [思路分析] (1)利用k1· k2=-1解题.(2)抓住ab=4能否
[答案] D
) 8 5 B. 5 3 5 D. 5
[解析] =5的距离.
根据题意知,|PQ|的最小值为点Q到直线x+2y
|1+2×1-5| 2 2 根据点到直线的距离公式,得 = = 5. 5 5 1+22

高考数学一轮复习专题训练—两直线的位置关系

高考数学一轮复习专题训练—两直线的位置关系

两直线的位置关系考纲要求1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x2+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( ) A.235 B .2310C .7D .72答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72. 3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·银川联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( ) A .-2 B .-4 C .-6 D .-8答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1,∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12. ∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝⎛⎭⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号. 故所求最小值是4.法二 设P ⎝⎛⎭⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +1,解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧aa -1-1×2=0,a a 2-1-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23.法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2020·宁波期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A .6x -4y -3=0 B .3x -2y -3=0 C .2x +3y -2=0D .2x +3y -1=0(2)已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 (1)A (2)1解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝⎛⎭⎫x -12,化为一般式,得6x -4y -3=0. (2)由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.考点二 两直线的交点与距离问题【例2】 (1)(2020·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝⎛⎭⎫-32,-1 B.⎝⎛⎭⎫-∞,-32∪(-1,+∞) C.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-13,12(2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.答案 (1)D (2)[0,10]解析 (1)联立⎩⎪⎨⎪⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k2+k(k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10,所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(2021·贵阳诊断)与直线2x +y -1=0的距离等于55的直线方程为( ) A .2x +y =0 B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)C (2)5x +3y -1=0解析 (1)设与直线2x +y -1=0的距离等于55的直线方程为2x +y +m =0(m ≠-1), ∴|-1-m |22+12=55,解得m =0或m =-2. ∴与直线2x +y -1=0的距离等于55的直线方程为2x +y =0或2x +y -2=0. (2)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.考点三 对称问题角度1 点关于点对称【例3】 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】 一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2, 即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3--22--2=54, ∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). 角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x -4y +5=0 B .3x -4y -5=0 C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程. 解 (1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,即A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧ a =613,b =3013,即M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】 已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0. 法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】 已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】 已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a =4, b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0. 法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0. 三、垂直直线系方程【例4】 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).A 级 基础巩固一、选择题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A. 2B .2- 2 C.2-1D .2+1答案 C解析 由题意得|a -2+3|1+1=1. 解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.2.(2021·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3 答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.3.已知直线l 过点(0,7),且与直线y =-4x +2平行,则直线l 的方程为( )A .y =-4x -7B .y =4x -7C .y =4x +7D .y =-4x +7 答案 D解析 过点(0,7)且与直线y =-4x +2平行的直线方程为y -7=-4x ,即直线l 的方程为y =-4x +7,故选D.4.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0垂直,则ab 的最小值为() A .1 B .2 C .2 2 D .2 3 答案 B解析 由已知两直线垂直可得(b 2+1)-ab 2=0,即ab 2=b 2+1,又b >0,所以ab =b +1b .由基本不等式得b +1b ≥2b ·1b =2,当且仅当b =1时等号成立,所以(ab )min =2.故选B.5.坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( )A.⎝⎛⎭⎫-45,85 B .⎝⎛⎭⎫-45,-85C.⎝⎛⎭⎫45,-85 D .⎝⎛⎭⎫45,85答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎨⎧ x 0=-45,y 0=85,即所求点的坐标是⎝⎛⎭⎫-45,85.6.(2020·上海浦东新区期末)直线x -2y +2=0关于直线x =1对称的直线方程是( )A .x +2y -4=0B .2x +y -1=0C .2x +y -3=0D .2x +y -4=0答案 A解析 设P (x ,y )为所求直线上的点,该点关于直线x =1的对称点为(2-x ,y ),且该对称点在直线x -2y +2=0上,代入可得x +2y -4=0.故选A.7.(2021·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2--11-3=-32, ∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.8.(2020·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6 B .a =-3,b =16 C .a =3,b =-16D .a =-13,b =-6 答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称,所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y =-3x +b 上, 所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13. 二、填空题 9.(2021·南昌联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0. 10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________.答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行, 将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 答案 25解析 因为k AB =5-11-4=-43,k DC =2--2-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S 四边形ABCD =|AB |·|AD |=1-42+5-12×0-42+-2-12=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52 答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3B .10C .14D .215 答案 B解析 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x +2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.故选B.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0, 此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0. 由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0. 综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|2+λ2+1-2λ2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,函数y =x 2-ln x 的导数y ′=2x -1x (x >0),令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为 2.。

2018版高考数学(人教A版理)一轮复习教师用书 第8章 第2节 两条直线的位置关系 Word版含解析

2018版高考数学(人教A版理)一轮复习教师用书 第8章 第2节 两条直线的位置关系 Word版含解析

第二节 两条直线的位置关系[考纲传真] 1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.距离P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离|P 1P 2| d =(x 2-x 1)2+(y 2-y 1)2点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B21.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( ) (4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)若点P ,Q 分别是两条平行线l 1,l 2上的任意一点,则P ,Q 两点的最小距离就是两条平行线的距离.( )[答案] (1)× (2)× (3)× (4)√ (5)√2.(教材改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A.2B.2- 2C.2-1D.2+1C [由题意得|a -2+3|2=1,即|a +1|=2,又a >0,∴a =2-1.]3.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. (2,-2) [直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2).]4.已知直线l 1:ax +(3-a )y +1=0,l 2:x -2y =0.若l 1⊥l 2,则实数a 的值为________.2 [由a a -3=-2,得a =2.]5.(2017·唐山调研)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为________.823[由l 1∥l 2,得a (a -2)=1×3,∴a =3或a =-1.但a =3时,l 1与l 2重合,舍去,∴a =-1,则l 1:x -y +6=0,l 2:x -y +23=0.故l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+(-1)2=823.]两条直线的平行与垂直(1)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a+1)y +4=0平行”的( )A .充分不必要条件 B.必要不充分条件 C .充要条件D.既不充分也不必要条件(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是( )A .平行 B.垂直C .重合D.相交但不垂直(1)A (2)B [(1)当a =1时,显然l 1∥l 2, 若l 1∥l 2,则a (a +1)-2×1=0, 所以a =1或a =-2.所以a =1是直线l 1与直线l 2平行的充分不必要条件. (2)在△ABC 中,由正弦定理a sin A =bsin B , 得b sin B ·sin Aa =1.又x sin A +ay +c =0的斜率k 1=-sin Aa , bx -y sin B +sin C =0的斜率k 2=bsin B ,因此k 1·k 2=b sin B ·⎝ ⎛⎭⎪⎫-sin A a =-1,两条直线垂直.] [规律方法] 1.判定直线间的位置关系,要注意直线方程中字母参数取值的影响,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论,可避免讨论.另外当A 2B 2C 2≠0时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,有时比较方便.[变式训练1] 已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10 B.-2 C.0D.8A [∵l 1∥l 2,∴k AB =4-mm +2=-2,解得m =-8.又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2,∴m +n =-10.]两直线的交点与距离问题线l 的方程为________.(2)过点P (3,0)作一直线l ,使它被两直线l 1:2x -y -2=0和l 2:x +y +3=0所截的线段AB 以P 为中点,求此直线l 的方程.【导学号:01772289】(1)x +3y -5=0或x =-1 [法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二:当AB ∥l 时,有k =k AB =-13,直线l 的方程为 y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4), ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.](2)设直线l 与l 1的交点为A (x 0,y 0),则直线l 与l 2的交点B (6-x 0,-y 0),2分由题意知⎩⎪⎨⎪⎧2x 0-y 0-2=0,6-x 0-y 0+3=0,解得⎩⎪⎨⎪⎧x 0=113,y 0=163,6分即A ⎝ ⎛⎭⎪⎫113,163,从而直线l 的斜率k =163-0113-3=8,10分直线l 的方程为y =8(x -3),即8x -y -24=0.12分[规律方法] 1.求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程;也可利用过交点的直线系方程,再求参数.2.利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.[变式训练2] 若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5,求直线l 的方程.[解] ①过点A (1,-1)与y 轴平行的直线为x =1. 解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5,即直线l 的方程为x =1.4分②设过点A (1,-1)且与y 轴不平行的直线为y +1=k (x -1), 解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1),得x =k +7k +2且y =4k -2k +2(k ≠-2,否则l 与l 1平行). 则B 点坐标为⎝ ⎛⎭⎪⎪⎫k +7k +2,4k -2k +2.8分 又A (1,-1),且|AB |=5,所以⎝ ⎛⎭⎪⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎪⎫4k -2k +2+12=52,解得k =-34.10分 因此y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.12分对称问题(1)平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是________.(2)光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),则BC 所在的直线方程是________.(1)y =2x -3 (2)10x -3y +8=0 [(1)法一:在直线l 上任取一点P ′(x ,y ),其关于点(1,1)的对称点P (2-x,2-y )必在直线y =2x +1上,∴2-y =2(2-x )+1,即2x -y -3=0. 因此,直线l 的方程为y =2x -3.法二:由题意,l 与直线y =2x +1平行,设l 的方程为2x -y +c =0(c ≠1),则点(1,1)到两平行线的距离相等,∴|2-1+c |22+1=|2-1+1|22+1,解得c =-3.因此所求直线l 的方程为y =2x -3.法三:在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点M (2,1),B 关于点(1,1)对称的点N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3. (2)作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C . 故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0.][迁移探究1] 在题(1)中“将结论”改为“求点A (1,1)关于直线y =2x +1的对称点”,则结果如何?[解] 设点A (1,1)关于直线y =2x +1的对称点为A ′(a ,b ),2分 则AA ′的中点为⎝ ⎛⎭⎪⎫1+a 2,1+b 2,4分 所以⎩⎪⎨⎪⎧1+b 2=2×1+a2+1,b -1a -1×2=-1,解得⎩⎪⎨⎪⎧a =-35,b =95,10分故点A (1,1)关于直线y =2x +1的对称点为⎝ ⎛⎭⎪⎫-35,95.12分[迁移探究2] 在题(1)中“关于点(1,1)对称”改为“关于直线x -y =0对称”,则结果如何?[解] 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于直线x -y =0的对称点为M (1,0),点B 关于直线x -y =0的对称点为N (3,1),6分∴根据两点式,得所求直线的方程为y -10-1=x -31-3,即x -2y -1=0.12分 [规律方法] 1.第(1)题求解的关键是利用中点坐标公式,将直线关于点的中心对称转化为点关于点的对称.2.解决轴对称问题,一般是转化为求对称点问题,关键是要抓住两点,一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段的中点在对称轴上.[变式训练3] (2017·广州模拟)直线x -2y +1=0关于直线x +y -2=0对称的直线方程是()A.x+2y-1=0 B.2x-y-1=0C.2x+y-3=0 D.x+2y-3=0B[由题意得直线x-2y+1=0与直线x+y-2=0的交点坐标为(1,1).在直线x-2y+1=0上取点A(-1,0),设A点关于直线x+y-2=0的对称点为B(m,n),则⎩⎪⎨⎪⎧n-0m+1×(-1)=-1,m-1 2+n2-2=0,解得⎩⎪⎨⎪⎧m=2,n=3.故所求直线的方程为y-13-1=x-12-1,即2x-y-1=0.][思想与方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1,l2,l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称,点与线的对称,利用坐标转移法.[易错与防范]1.判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.2.(1)求点到直线的距离时,应先化直线方程为一般式;(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.。

高三第一轮复习数学---两直线的位置关系

高三第一轮复习数学---两直线的位置关系

高三第一轮复习数学---两直线的位置关系一、 教学目标:1、掌握两条直线平行与垂直的判断条件,能根据直线的方程判断两条直线的位置关系;2、掌握两条直线所成角和点到直线的距离公式;掌握对称和三角形的高、中线、角平分线等知识的处理方法。

3、两条直线位置关系的讨论,常常转化为对表示它们的两个二元一次方程的讨论。

注意数形结合思想的应用。

二、教学重点:1、两直线平行和垂直的充要条件,根据直线方程判断两直线的位置关系。

2、到角与夹角的计算。

3、两直线的交点及过交点的直线系方程。

4、点到直线与两平行直线间的距离。

三、教学过程:(一)主要知识:1、直线与直线的位置关系:(1) 有斜率的两直线l 1:y=k 1x+b 1;l 2:y=k 2x+b 2;有:①l 1∥l 2⇔k 1=k 2且b 1≠b 2; ②l 1⊥l 2⇔k 1·k 2=-1;③l 1与l 2相交⇔ k 1≠k 2 ④l 1与l 2重合⇔k 1=k 2 且b 1=b 2。

(2) 一般式的直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0有:①l 1∥l 2⇔A 1B 2-A 2B 1=0;B 1C 2-B 2C 1≠0 ②l 1⊥l 2⇔A 1A 2+B 1B 2=0③l 1与l 2相交⇔ A 1B 2-A 2B 1≠0 ④l 1与l 2重合⇔ A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0。

2、到角与夹角:3、l 1到l 2的角:直线l 1绕交点依逆时针旋转到l 2所转的角θ∈),[π0有tan θ=21121k k k k ⋅+-(k 1·k 2≠-1)。

l 1与l 2的夹角θ,θ∈],[20π有tan θ=|21121k k k k ⋅+-|(k 1·k 2≠-1)。

4、 点与直线的位置关系: 若点P (x 0,y 0)在直线Ax+By+C=0上,则有Ax 0+By 0+C=0;若点P (x 0,y 0)不在直线Ax+By+C=0上,则有Ax 0+By 0+C ≠0,此时到直线的距离:2200BA CBy Ax d +++=。

两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(解析版)

两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(解析版)

专题39两条直线的位置关系9题型分类1.两条直线的位置关系直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 3:A 1x +B 1y +C 1=0,l 4:A 2x +B 2y +C 2=0(其中l 1与l 3是同一条直线,l 2与l 4是同一条直线)的位置关系如下表:位置关系l 1,l 2满足的条件l 3,l 4满足的条件平行k 1=k 2且b 1≠b 2A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0垂直k 1·k 2=-1A 1A 2+B 1B 2=0相交k 1≠k 2A 1B 2-A 2B 1≠02.三种距离公式(1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2).②结论:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2.(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(一)判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.,根据两直线平行和垂直时,其斜率间的关系得出方程组,解之可求得点(二)利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.∴PB l 的倾斜角为π6,PA l 的倾斜角为∴直线l 的倾斜角的取值范围是故选:D作B 关于直线:3l x y --则直线AB '和直线l 的交点即为设D 为l 上异于P 的一点,则故DA DB DA DB -=-故||||||PA PB -最大,即此时设(,)B a b ',则432b a a b -⎧=⎪⎪⎨⎪⨯-⎪⎩作C 关于直线:3l x y --则直线AC '和直线l 的交点即为设E 为l 上异于P 的一点,则故EC EA EC EC +=+故||||+PA PC 最小,即此时设(,)C m n ',则43332n m m -⎧=⎪⎪-⎨+⎪⨯⎪⎩故直线AC '方程为19x +即即1126(,)77P ;5-4.(2024高三下·江西2430x y -+=上一动点,则A .5B 【答案】B【分析】求点()0,2A -关于直线论两点之间线段最短可求5-5.(2024高二下·上海浦东新且1PQ l ⊥,点()3,3A --,【答案】310322+【分析】作出图象,易知l 然后在l 上,直线1l ,2l 之间找点由此求解.【详解】易知12l l //,作出图象如下,过直线:3l y x =-,过P 作直线//PC QB ,与直线l 交于点C ,易知四边形PCBQ 为平行四边形,故PC QB =,且B 到直线2l 的距离等于C 到1l 的距离,设(,3)C t t -,则3230122t t +-++-=,解得32t =或12t =-(舍),所以33,22C ⎛⎫- ⎪⎝⎭,而AP PQ QB AP PQ PC ++=++,且2(1)332222PQ --===(定值),故只需求出||||AP PC +的最小值即可,显然223331033222AP PC AC ⎛⎫⎛⎫+≥=--+-+= ⎪ ⎪⎝⎭⎝⎭,故AP PQ QB ++的最小值为310322+.故答案为:310322+.5-6.(2024高三下·河南·阶段练习)已知函数()()()ln 11f x a x a =++∈R 的图象恒过定点A ,圆22:4O x y +=上的两点()11,P x y ,()22,Q x y 满足()PA AQ λλ=∈R,则11222727x y x y +++++的最小值为()A .25B .75+C .155-D .3025-【答案】C 【分析】设直线l 为270x y ++=.取圆O 的弦PQ 的中点为E ,求出其轨迹方程,求出E 到直线l 距离的最小值.过P 、E 、Q 分别作直线l 的垂线,垂足分别为M 、R 、N ,将11222727x y x y +++++转化为25ER ,即可求其最小值.【详解】由题可知A 为(0,1),且P 、A 、Q 三点共线,设弦PQ 的中点为E (x ,y ),连接OE ,则OE ⊥PQ ,即OE ⊥AE ,∴0OE AE ⋅=,由此可得E 的轨迹方程为2+−122=14,【点睛】本题需充分利用数形结合思想进行简答,直线的距离公式联系在一起,数形结合求解最值5-7.(2024高三下·上海宝山·开学考试)如图,平面上两点2MN=,且使PM MN++【答案】99, 44骣÷ç÷ç÷ç桫【点睛】本小题主要考查两点间距离公式的应用,考查对称性,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题(三)对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.求直线l关于直线0l对称的直线'lCA.35B.【答案】C【分析】求点A关于y轴的对称点6-3.(2024高二上·四川遂宁A .(1,4)-C .(3,4)--【答案】C 【分析】因点A 与点B 关于直线对称,则【详解】设(),A x y ,因点A 垂直,则212022112x y y x ++⎧++=⎪⎧⎪⇒⎨⎨-⎩⎪=⎪-⎩即点A 坐标为(3,4)--.则直线的对称点为(四)一、单选题1.(2024高二上·浙江·期中)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()AB.2C1D1+【答案】C【分析】根据点到直线得距离公式即可得出答案.1=.解得1a =-1a =-0a >,1a ∴=-故选:C.2.(2024高二上·黑龙江哈尔滨·期末)已知两条直线1:3460l x y -+=,2:3440l x y --=,则这两条直线之间的距离为()A .2B .3C .5D .10【答案】A【分析】由两平行线距离公式求解即可.【详解】这两条直线之间的距离为2d ==.故选:A3.(2024高二·全国·课后作业)求直线x +2y -1=0关于直线x +2y +1=0对称的直线方程()A .x +2y -3=0B .x +2y +3=0C .x +2y -2=0D .x +2y +2=0【答案】B【分析】结合两平行线间的距离公式求得正确选项.【详解】设对称直线方程为20x yc ++=,=,解得3c =或1c =-(舍去).所以所求直线方程为230x y ++=.故选:B4.(2024高二·全国·课后作业)直线0ax by c ++=关于直线0x y -=对称的直线为()A .0ax by c -+=B .0bx ay c -+=C .0bx ay c ++=D .0bx ay c +-=【答案】C【分析】根据两直线关于对称直线对称的概念即可求解【详解】解:设所求直线上的任意一点为(,)M x y 则M 关于直线0x y -=对称点为(,)N y x 点N 在直线0ax by c ++=上∴(,)N y x 满足直线方程,即0ay bx c ++=∴直线0ax by c ++=关于直线0x y -=对称的直线为0bx ay c ++=故选:C5.(2024·浙江温州·三模)已知直线12:0,:10l x y l ax by +=++=,若12l l ⊥,则a b +=()A .1-B .0C .1D .2【答案】B【分析】根据给定的条件,利用两直线的垂直关系列式计算作答.【详解】因为直线12:0,:10l x y l ax by +=++=,且12l l ⊥,则110a b ⋅+⋅=,所以0a b +=.故选:B6.(2024·安徽蚌埠·三模)已知直线1l :210ax y ++=,2l :()30a x y a --+=,则条件“1a =”是“12l l ⊥”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不必要也不充分条件【答案】B 【分析】根据两直线垂直的性质,可得()312a a ⎛⎫-⨯-=- ⎪⎝⎭,求出a 的值,即可判断.【详解】若12l l ⊥,则()312a a ⎛⎫-⨯-=- ⎪⎝⎭,解得1a =或2a =.故1a =是12l l ⊥的充分不必要条件.故选:B7.(2024高二上·全国·课后作业)直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为()A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫ ⎪⎝⎭【答案】C【分析】由两直线垂直可得2a =-,联立解方程组可得交点坐标.【详解】易知直线220x y ++=的斜率为2-,由两直线垂直条件得直线420ax y +-=的斜率142a -=,解得2a =-;联立2202420x y x y ++=⎧⎨-+-=⎩,解得10x y =-⎧⎨=⎩;即交点为()1,0-故选:C.8.(2024高二下·四川广元·期中)若直线2mx ny +=过点()2,2A ,其中m ,n 是正实数,则12m n+的最小值是()A .3B .3+C .92D .5【答案】B 【分析】由点A 在直线上可知1m n +=【详解】因为直线2mx ny +=过点(2,2)A ,所以222m n +=,由m 和n 都是正实数,所以1m n +=,0m >,0n >.所以()12122123n m m n m n m n m n⎛⎫+=++=+++≥+ ⎪⎝⎭当2n m m n =时取等号,即1m =,2n =-所以12m n+的最小值是3+故选:B .9.(2024高二上·全国·课后作业)若直线230x y --=与420x y a -+=,则a 的值为()A .4B 6C .4或16-D .8或16-【答案】C【分析】将直线230x y --=化为4260x y --=,再根据两平行直线的距离公式列出方程,求解即可.【详解】将直线230x y --=化为4260x y --=,则直线230x y --=与直线420x y a -+=之间的距离d ==,即|6|10a +=,解得4a =或16a =-,所以a 的值为4a =或16a =-.故选:C10.(2024高二上·全国·课后作业)抛物线214y x =的焦点关于直线10x y --=的对称点的坐标是()A .(2,1)-B .(1,1)-C .11,44⎛⎫- ⎪⎝⎭D .11,1616⎛⎫- ⎪⎝⎭【答案】A【分析】求出抛物线214y x =焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',列出关于,m n 的方程组求解即可.【详解】抛物线214y x =即24x y =,其焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',则1110011022n m m n -⎧⨯=-⎪⎪-⎨++⎪--=⎪⎩,解得21m n =⎧⎨=-⎩,则(2,1)F '-,故选:A .11.(2024·四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A.B.C.D.【答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()124πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.12.(2024·全国)点(0,﹣1)到直线()1y k x =+距离的最大值为()A .1B CD .2【答案】B【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.13.(2024·北京东城·二模)已知三条直线1:220l x y -+=,2:20l x -=,3:0+=l x ky 将平面分为六个部分,则满足条件的k 的值共有()A .1个B .2个C .3个D .无数个【答案】C【分析】考虑三条直线交于一点或3l 与1l 或2l 平行时,满足条件,求出答案.【详解】当三条直线交于一点时,可将平面分为六个部分,联立1:220l x y -+=与2:20l x -=,解得22x y =⎧⎨=⎩,则将22x y =⎧⎨=⎩代入3:0+=l x ky 中,220k +=,解得1k =-,当3:0+=l x ky 与1:220l x y -+=平行时,满足要求,此时2k =-,当3:0+=l x ky 与2:20l x -=平行时,满足要求,此时0k =,综上,满足条件的k 的值共有3个.故选:C14.(2024高二上·辽宁沈阳·阶段练习)两直线方程为1:3260l x y --=,22:0x y l --=,则1l 关于2l 对称的直线方程为()A .3240x y --=B .2360x y +-=C .2340x y --=D .3260x y --=【答案】C【分析】根据题意,设所求直线上任一点M (x ,y )且M 关于直线22:0x y l --=的对称点1(M x ',1)y ,利用轴对称的性质列出方程组解出用x 、y 表示1x 、1y 的式子,再由点M '在直线3260x y --=上代入,化简即得所求对称直线方程;【详解】设所求直线上任一点(,)M x y ,M 关于直线20x y --=的对称点1(M x ',1)y ,则111112022y y x x x x y y -⎧=-⎪-⎪⎨++⎪--=⎪⎩,解出112(*)2x y y x =+⎧⎨=-⎩ 点M '在直线3260x y --=上,∴将(*)式代入,得3(2)2(2)60y x +---=,化简得2340x y --=,即为1l 关于2l 对称的直线方程.故选:C15.(2024高一下·海南·期末)设,,a b c 分别是ABC V 中,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ⋅++=与sin sin 0bx B y C -⋅+=的位置关系是()A .平行B .重合C .垂直D .相交但不垂直【答案】C【分析】根据直线方程确定斜率,利用三角形边角关系及直线垂直的判定判断两直线的位置关系即可.【详解】由题设,sin 0A x ay c ⋅++=的斜率为sin Aa-,sin sin 0bx B y C -⋅+=的斜率为sin b B ,又sin sin b aB A =,则1sin sin b BA a ⋅=--,即两直线垂直.故选:C16.(2024高三下·江西·开学考试)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120°时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等且均为120°.根据以上性质,.则(,)F x y =的最小值为()A .4B.2+C.3+D.4+【答案】B【分析】根据题意作出图形,证明出三角形ABC 为等腰直角三角形,作出辅助线,找到费马点,求出最小值.【详解】由题意得:(,)F x y 的几何意义为点E 到点()(),1,1,0,2A B C 的距离之和的最小值,因为AB =CB =4AC ==,所以222AB CB AC +=,故三角形ABC 为等腰直角三角形,,取AC 的中点D ,连接BD ,与AO 交于点E ,连接CE ,故122BD AC ==,AE CE =,因为3CO AO =,所以30CAO ∠=︒,故120AEC ∠=︒,则120BEC AEB ∠=∠=︒,故点E 到三角形三个顶点距离之和最小,即(,)F x y 取得最小值,因为122AD CD AC ===,所以cos 303AD AE ==︒,同理得:3CE =,3DE =,2BE BD DE =-=-,故(,)F x y 的最小值为22333AE CE BE ++=++-=+故选:B17.(2024·贵州毕节·模拟预测)直线()()1:11l x a y a a R ++=-∈,直线21:2l y x =-,下列说法正确的是()A .R a ∃∈,使得12l l ∥B .R a ∃∈,使得12l l ⊥C .R a ∀∈,1l 与2l 都相交D .R a ∃∈,使得原点到1l 的距离为3【答案】B 【分析】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之再验证即可判断;对B ,要使12l l ⊥,121k k ×=-,1112a -=-+,解之再验证即可判断;对C ,当1a =时,1l 与2l 重合,即可判断;对D ,根据点到直线距离列方程即可判断.【详解】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之得1a =,此时1l 与2l 重合,选项A 错误;对B ,要使12l l ⊥,121k k ×=-,11112a ⎛⎫⎛⎫-⋅-=- ⎪ ⎪+⎝⎭⎝⎭,解之得32a =-,所以B 正确;对C ,()1:11l x a y a ++=-过定点()2,1-,该定点在2l 上,但是当1a =时,1l 与2l 重合,所以C 错误;对D ,3d ==,化简得2820170a a -+=,此方程0∆<,a 无实数解,所以D错误.故选:B.18.(2024·全国)如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么()A .1,63a b ==B .1,63a b ==-C .3,2a b ==-D .3,6a b ==【答案】A【分析】由题意在2y ax =+上任取一点(0,2),其关于直线y x =的对称点在3y x b =-上,代入可求出b ,然后在3y x b =-上任取一点,其关于直线y x =的对称点在2y ax =+上,代入可求出a .【详解】在2y ax =+上取一点(0,2),则由题意可得其关于直线y x =的对称点(2,0)在3y x b =-上,所以06b =-,得6b =,在36y x =-上取一点(0,6)-,则其关于直线y x =的对称点(6,0)-在2y ax =+上,所以062a =-+,得13a =,综上1,63a b ==,故选:A19.(2024高一·全国·课后作业)已知ΔA 的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为A .()19,62--B .()19,62-C .()19,62-D .()19,62【答案】A【分析】由垂心的定义可知AH BC ⊥,BH AC ⊥;根据垂直时斜率乘积为1-可知4AH k =,5AC k =,利用两点连线斜率公式可构造出方程组求得结果.【详解】H 为ΔA 的垂心AH BC ∴⊥,BH AC⊥又311624BC k -==---,211325BH k -==---∴直线,AH AC 斜率存在且4AH k =,5AC k =设(),A x y ,则243356AH AC y k x y k x -⎧==⎪⎪+⎨-⎪==⎪+⎩,解得:1962x y =-⎧⎨=-⎩()19,62A ∴--本题正确选项:A【点睛】本题考查根据直线与直线垂直的位置关系求解参数的问题;关键是能够利用垂心的性质得到直线与直线的垂直关系.20.(2024高三·全国·课后作业)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .B .C .D .【答案】A【解析】先求出点M 所在直线的方程为l :x +y +m =0,再求出m 的值和原点到直线l 的距离即得解.【详解】依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,所以|m +7|=|m +5|,所以m =-6,即l :x +y -6=0.根据点到直线的距离公式得M=.故选:A.【点睛】本题主要考查平行线间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平.21.(2024高二上·湖北·阶段练习)在等腰直角三角形ABC 中,3AB AC ==,点P 是边AB 上异于A B 、的一点,光线从点P 出发,经BC CA 、反射后又回到点P ,如图,若光线QR 经过ABC V 的重心,则AP =()A .32B .34C .1D .2【答案】C【分析】根据题意,建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,2RP四点共线可得直线的方程,由于过ABC V 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值,即可得答案.【详解】根据题意,建立如图所示的坐标系,可得(3,0)B ,(0,3)C ,故直线BC 的方程为3x y +=,又由(0,0)A ,(3,0)B ,(0,3)C ,则ABC V 的重心为(1,1),设(,0)P a ,其中0<<3a ,点P 关于直线BC 的对称点1(,)P x y ,则有03220(1)1a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=-⎪-⎩,解得33x y a =⎧⎨=-⎩,即1(3,3)P a -,易得P 关于y 轴的对称点2(,0)P a -,由光的反射原理可知1P ,Q ,R ,2P 四点共成直线QR 的斜率33ak a-=+,故直线QR 的方程为3()3ay x a a-=++,由于直线QR 过ABC V 的重心(1,1),代入化简可得20a a -=,解得:1a =或0(a =舍),即(1,0)P ,故1AP =,故选:C .22.(2024高一上·湖南长沙·开学考试)如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A .53,22E ⎛⎫- ⎪⎝⎭,(0,2)F B .(2,2)E -,(0,2)F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .(2,2)E -,20,3F ⎛⎫⎪⎝⎭【答案】C【分析】作C 关于y 轴的对称点G ,作C 关于4y x =+的对称点D ,连接DG 交y 轴于F ,交AB 于E ,有++=++=EC FC EF ED FG EF DG ,即此时CEF △周长最小,求出D 点坐标,可得直线DG 方程,与4y x =+联立求出E 点坐标,令0x =可得F 点坐标.【详解】作(2,0)C -关于y 轴的对称点(2,0)G ,作(2,0)C -关于4y x =+的对称点(,)D a b ,连接DG 交y 轴于F ,交AB 于E ,所以,==FG FC EC ED ,此时CEF △周长最小,即++=++=EC FC EF ED FG EF DG ,由(2,0)C -,直线AB 方程为4y x =+,所以122422ba b a ⎧=-⎪⎪+⎨-⎪=+⎪⎩,解得42a b =-⎧⎨=⎩,所以(4,2)D -,可得直线DG 方程为022042--=---y x ,即1233y x =-+,由41233y x y x =+⎧⎪⎨=-+⎪⎩,解得5232x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以53,22E ⎛⎫- ⎪⎝⎭,令0x =可23y =,所以20,3F ⎛⎫⎪⎝⎭.故选:C.23.(2024高二上·广东深圳·期中)过定点A 的动直线0x ky +=和过定点B 的动直线210kx y k --+=交于点M ,则MA MB +的最大值是()A.B .3CD【答案】C【分析】求出A ,B 的坐标,并判断两直线垂直,推出点M 在以AB为直径的圆上,求得||AB =,即225MA MB +=,结合基本不等式即可求得答案.【详解】由题意知0x ky +=过定点(0,0)A ,动直线210kx y k --+=即(2)10k x y --+=过定点(2,1)B ,对于直线0x ky +=和动直线210kx y k --+=满足1(1)0k k ⨯+⨯-=,故两直线垂直,因此点M 在以AB为直径的圆上,||AB ==则225MA MB +=,所以22222()22()10MA MB MA MB MA MB MA MB +++=+≤=,当且仅当MA MB ==故MA MB +,故选:C24.(2024高二下·陕西西安·期末)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()AB C .5D .10【答案】C【分析】先求出两条直线经过的定点,然后根据两条直线的位置关系可判断它们垂直,从而PA PB ⊥,在利用勾股定理和基本不等式求解.【详解】显然0x my +=过定点(0,0)A 30mx y m --+=可化成(1)3y m x =-+,则经过定点()1,3B ,根据两条直线垂直的一般式方程的条件,1(1)0m m ⨯+⨯-=,于是直线0x my +=和直线30mx y m --+=垂直,又P 为两条直线的交点,则PA PB ⊥,又AB =222102PA PB AB PA PB +==≥⋅,则5PA PB ⋅≤,当PA PB ==PA PB ⋅的最大值是5.故选:C25.(河北省张家口市2023-2024学年高二上学期期末数学试题)已知0x y +=,则)AB .CD .【答案】C【分析】设点(,)P x y 为直线0x y +=上的动点,题意可转化成求(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和的最小值,求出1(1)M ,关于直线0x y +=的对称点)1(1M '--,,故PM PN PM PN M N''+=+≥=,即可求出答案【详解】设点(,)P x y 为直线0x y +=上的动点,可看作(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和,设点()()1,12,0M N ,,则点()1,1M '--为点1(1)M ,关于直线0x y +=的对称点,故PM PM '=,且M N ==',所以P M PN =+PM PN M N ''=+≥=,当且仅当,,P M N '三点共线时,取等号,.故选:C26.(2024·贵州·模拟预测)已知,x y +∈R ,满足22x y +=,则x 的最小值为()A .45B .85C .1D 【答案】B【分析】先求出点O 关于线段22x y +=的对称点C C PO P ==.根据几何意义,结合图象,即可得出取最小值时,点P 的位置,进而得出答案.【详解】如图,过点O 作点O 关于线段22x y +=的对称点C ,则PO PC =.设()00,C x y ,则有()0000212222y x x y ⎧⨯-=-⎪⎪⎨⎪⨯+=⎪⎩,解得008545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以84,55C ⎛⎫⎪⎝⎭.设(),P x y,则PO =C PO P ==,又,x y +∈R ,所以点P 到y 轴的距离为x ,所以,x 可视为线段22x y +=上的点(),P x y 到y 轴的距离和到84,55C ⎛⎫⎪⎝⎭的距离之和.过P 作PD x ⊥轴,过点C 作CH x ⊥轴,显然有PD PC CH +≥,当且仅当,,C P H 三点共线时,和有最小值.则CH 即为最小值,CH 与线段AB 的交点1P ,即为最小值时P 的位置.因为85CH =,所以x 的最小值为85.故选:B .27.(2024·上海静安·二模)设直线1:220l x y --=与2l 关于直线:240l x y --=对称,则直线2l 的方程是()A .112220x y +-=B .11220x y ++=C .5110x y +-=D .10220x y +-=【答案】A【分析】根据三条直线交于一点,再利用点关于直线的对称点公式,求直线2l 上一点,即可求解.【详解】联立220240x y x y --=⎧⎨--=⎩,得20x y =⎧⎨=⎩,取直线1:220l x y --=上一点()0,1-,设点()0,1-关于直线:240l x y --=的对称点为(),a b ,则112124022b a a b +⎧=-⎪⎪⎨-⎪⨯--=⎪⎩,解得:1211,55a b ==-,直线2l 的斜率112k =-,所以直线2l 的方程为()1122y x =--,整理为:112220x y +-=.故选:A28.(2024高三·北京·+的最小值所属区间为()A .[10,11]B .(11,12]C .(12,13]D .前三个答案都不对【答案】C【分析】利用代数式的几何意义可求最小值.【详解】如图,设(,0),(0,),(9,2),(3,3)P x Q y A B --.根据题意,设题中代数式为M,则||||||||13M AP PQ QB AB =++≥==,等号当P ,Q 分别为直线AB 与x 轴,y 轴交点时取得.因此所求最小值为13.故选:C.29.(2024·北京)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4【答案】C【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.二、多选题30.(2024高二下·江苏南京·期末)已知动点,A B 分别在直线1:3460l x y -+=与2:34100l x y -+=上移动,则线段AB 的中点P 到坐标原点O 的距离可能为()A B .75C D 【答案】CD【分析】根据直线平行可得P 在直线:3480l x y -+=上运动,即可根据点到直线的距离公式即可求解.【详解】解: 动点,A B 分别在直线13460l x y -+=:与234100l x y -+=:上移动,又线段AB 的中点为P ,21//l l ,P ∴在直线:3480l x y -+=上运动,O ∴到直线l 的距离85d ==.P ∴到坐标原点O 的距离大于等于85.故选:CD .31.(24-25高二上·全国·单元测试)已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是()A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交【答案】AD【分析】根据两直线平行求出a 的值,可判断A 选项;利用平行线间的距离公式可判断B 选项;根据两直线垂直求出a 的值,可判断C 选项;根据两直线相交求出a 的范围,可判断D 选项.【详解】两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,它们不重合,若12//l l ,则438a =⨯,得6a =,检验符合,故A 选项正确;若12//l l ,由A 选项可知,2l :68110x y +-=,直线1l 的方程可化为68240x y ++=,72=,故B 选项不正确;若12l l ⊥,则3480a +⨯=,得323a =-,故C 选项不正确;由A 选项知,当6a =时,12//l l ,所以若6a ≠,则直线1l ,2l 一定相交,故D 选项正确.故选:AD.32.(24-25高二上·全国·课后作业)已知直线l10y -+=,则下列结论正确的是()A .直线l的一个法向量为)B .若直线m:10x +=,则l m ⊥C.点)到直线l 的距离是2D.过()2与直线l40y --=【答案】CD【分析】对于A :根据直线方向向量与斜率之间的关系分析判断;对于B :根据直线垂直分析判断;对于C :根据点到直线的距离公式运算求解;对于D :根据直线平行分析求解.【详解】对于A ,因为直线l10y -+=的斜率k =11=≠-,可知)不为直线l 的一个法向量,故A 错误;对于B ,因为直线m:10x +=的斜率3k '=,且11kk '=≠-,所以直线l 与直线m 不垂直,故B 对于C,点)到直线l 的距离2d =,故C 正确;对于D ,过()2与直线l平行的直线方程是2y x -=-40y --=,故D 正确.故选:CD.33.(2024高二下·江西南昌·阶段练习)已知曲线e 2xy =和直线:240l x y --=,则()A .曲线上与直线l 平行的切线的切点为e 1,2⎛⎫⎪⎝⎭B .曲线上与直线l 平行的切线的切点为10,2⎛⎫⎪⎝⎭C .曲线上的点到直线l D.曲线上的点到直线l 的最短距离为(3e 5+【答案】BC【分析】根据导数得出切线斜率求切点判断A,B,再结合点到直线距离求出最短距离判断C,D.【详解】设与直线122y x =-平行的直线和e 2xy =相切,则斜率为12k =.因为e 2x y =,所以e 2x y '=,令e 122x k ==,可得切点为10,2⎛⎫ ⎪⎝⎭,故A 错误,B 正确;则点10,2⎛⎫ ⎪⎝⎭到直线240x y --=的距离就是曲线e 2xy =上的点到直线240x y --=的最短距离,C 正确,D 错误.故选:BC.34.(福建省莆田第三中学,励志学校2023-2024学年高二上学期期中联考数学试卷)以下四个命题叙述正确的是()A .直线210x y -+=在x 轴上的截距是1B .直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C .设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D .直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2【答案】BC【分析】求出直线的横截距判断k 判断B ;求出点到直线的距离判断C ;验证判断D.【详解】对于A ,直线210x y -+=在x 轴上的截距是12-,A 错误;对于B ,由238010x y x y ++=⎧⎨--=⎩解得12x y =-⎧⎨=-⎩,即(1,2)P --,则120k --=,解得12k =-,B 正确;对于C,依题意,min OM =C 正确;对于D ,当2a =时,直线12:2310,:2310L x y L x y ++=++=重合,D 错误.故选:BC三、填空题35.(2024高二·全国·课后作业)已知(),6A a ,()2,B b -,点()2,3P 是线段AB 的中点,则a b +=.【答案】6【分析】利用中点坐标公式可求得,a b ,由此可得结果.【详解】由中点坐标公式知:222a -=,632b +=,解得:6a =,0b =,6a b ∴+=.故答案为:6.36.(2024高二·江苏·假期作业)已知点(),4M x -与点()2,3N 间的距离为x =.【答案】9或5-【分析】根据两点间的距离公式列方程求解即可.【详解】由MN =得MN ==即24450x x --=,解得9x =或5-.故答案为:9或5-.37.(2024高三上·河北廊坊·阶段练习)与直线:2310l x y -+=关于点()4,5对称的直线的方程为.【答案】23130x y -+=【分析】根据直线关于点对称方程的特点可设直线方程,在利用点到两条直线的距离相等即可求解直线方程.【详解】解:直线:2310l x y -+=关于点()4,5对称的直线的方程可设为230x y m -+=,其中1m ≠又()4,5点到直线:2310l x y -+=与到直线230x y m -+=的距离相等76m -=,所以13m =或1m =(舍).故所求直线方程为:23130x y -+=.故答案为:23130x y -+=.38.(2024高一·全国·课后作业)已知直线l 与直线1:1l y =及直线2:70l x y +-=分别交于点P ,Q .若PQ 的中点为点()1,1M -,则直线l 的斜率为.【答案】23-【分析】由点,P Q 关于点M 对称,运算可得解.【详解】解:设(),1P a ,则()2,3Q a --.由点Q 在直线2l 上,得2370a -+-=,2a =-.故()2,1P -.所以直线l 的斜率为()1121k --=--,所以23k =-故答案为23-【点睛】本题考查了点关于点对称问题,属基础题.39.(2024高二上·辽宁大连·阶段练习)设点A 在x 轴上,点B 在y 轴上,AB 的中点是1(2)P -,,则AB 等于【答案】【解析】根据点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,利用中点坐标公式得到A ,B 的坐标,再利用两点间的距离公式求解.【详解】因为点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,所以(40),(02),,-A B ,所以=AB 故答案为:【点睛】本题主要考查两点间的距离公式和中点坐标公式的应用,属于基础题.40.(2024高三上·黑龙江哈尔滨·期中)点()0,1-到直线()2y k x =+的距离的最大值是.【分析】直线()2y k x =+恒过点()2,0A -,根据几何关系可得,点()0,1B -到直线()1y k x =+的距离的最大值为||AB .【详解】因为直线()2y k x =+恒过点()2,0A -,记()0,1B -,直线()2y k x =+为直线l ,则当AB l ⊥时,此时点()0,1B -到直线()1y k x =+的距离最大,∴点()0,1-到直线()1y k x =+距离的最大值为:AB =.41.(2024高二上·江苏南通·期中)已知点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标为()2,1-,则线段AB 的长度为.【答案】25【分析】利用直角三角形的几何性质得出2AB OM =,利用两点间的距离公式可求得结果.【详解】在平面直角坐标系中,AO BO ⊥,则ABO 为直角三角形,且AB 为斜边,故()22222125AB OM ==+-=.故答案为:542.(2024高二·全国·课堂例题)已知点()2,1A ,()3,4B ,()2,1C --,则ABC V 的面积为.【答案】5【分析】利用两点间距离公式求出一边长,再根据两点式求出该边所在直线的方程,利用点到直线的距离公式求高,进而求得三角形面积.【详解】设AB 边上的高为h ,则h 就是点C 到AB 所在直线的距离.易知()()22324110AB -+-.由两点式可得AB 边所在直线的方程为124132y x --=--,即350x y --=.点()2,1C --到直线350x y --=的距离()()()2232151031h ⨯----==+-所以ABC V 的面积为111010522ABC S AB h =⨯⨯=⨯△.故答案为:543.(2024·云南保山·一模)已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是.【答案】5⎡+⎣【分析】根据题意,将直线变形为()()2420m x y n y ---=,分析可得该直线恒过点()4,2,设()4,2Q ,进而分析可得点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,据此分析可得答案.【详解】根据题意,直线()2420mx m n y n -++=,即()()2420m x y n y ---=,则有2402x y y -=⎧⎨=⎩,解可得42x y =⎧⎨=⎩,则直线l 恒过点()4,2.设()4,2Q ,又由MP 与直线垂直,且M 为垂足,则点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,所以55OM -≤+;即OM 的取值范围是5⎡+⎣;故答案为5⎡+⎣.【点睛】此类问题为“隐形圆问题”,常规的处理办法是找出动点所在的轨迹(通常为圆),常见的“隐形圆”有:(1)如果,A B 为定点,且动点M 满足()1MA MB λλ=≠,则动点M 的轨迹为圆;(2)如果ΔA 中,BC 为定长,A 为定值,则动点A 的轨迹为一段圆弧.特别地,当2A π=,则A 的轨迹为圆(除去,B C );(3)如果,A B 为定点,且动点M 满足22MA MB λ+=(λ为正常数),则动点M 的轨迹为圆;44.(2024高二上·全国·课后作业)已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,则a =.【答案】92-【分析】利用平面内两点间的距离公式可得出关于a 的等式,解之即可.【详解】已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,92a =-.故答案为:92-.45.(2024高二上·安徽六安·期中)已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为.【答案】210x y +-=【分析】根据两直线1110a x b y +-=和2210a x b y +-=的交点列方程,对比后求得直线12Q Q 的方程.【详解】依题意两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,所以112212210,210,a b a b Q Q +-=+-=,在直线210x y +-=上,所以过111(,),Q a b 222(,)Q a b 两点所在直线方程为210x y +-=.故答案为:210x y +-=46.(2024高三上·上海青浦·阶段练习)在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为.【答案】8【分析】由已知可知两直线12l l ⊥,取P 在12,l l 的右侧时,分别过P 作两直线的垂线,结合几何性质确定P 点轨迹,即可求得22a b +的最大值,其他位置同理可得.【详解】若动点(),P a b 到两直线1:l y x =和2:2l y x =-+12,l l 交点为()121,1,,T l l 的斜率分别为1,1-,则12l l ⊥,P 在12,l l 的右侧时,过P 分别向12,l l 引垂线,垂足分别为Q R 、,那么PQ PR +过P 作y 轴的平行线,与12,l l 交点为C B 、如图,则,PQ TR PR RB ==,所以TR RB +其它位置同理,那么点P 轨迹为正方形ABCD ,当P 在()2,2C 时,PO 取得最大值222||a b PO +=取得最大值8.故答案为:8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a=2 由③④联立解得 b=-2
2 a= 或 3 . b=2
C1 | 为 d= |C2- 2 2. A +B
基 础 自 测
1.过点(1,0)且与直线 x-2y-2=0 平行的直线方程是( A.x-2y-1=0 C.2x+y-2=0 B.x-2y+1=0 D.x+2y-1=0 )
[答案]
A
[解析]
该题考查直线方程的求法(点斜式).
1 1 所求直线斜率为2,过点(1,0)由点斜式 y=2(x-1),即 x -2y-1=0.
A1x+B1y+C1=0 标就是 A2x+B2y+C2=0


4.点 A(x1,y1)、B(x2,y2)间的距离: |AB|=
x2-x12+y2-y12
5.点 P(x0,y0)到直线 l:Ax+By+C=0 的距离: d= |Ax0+By0+C|. A2+B2 6.两平行线间距离: 两平行直线 l1:Ax+By+C1=0 与 l2:Ax+By+C2=0 间的距离
第九章
第二节 两直线的位置关系与距离公式
高考目标
3
课堂典例讲练
课前自主预习
4
思想方法点拨
5
课后强化作业
高考目标
考纲解读 1.能根据两直线的斜率判定这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标. 3. 掌握点到直线的距离公式, 会求两平行直线间的距离.
考向预测 1.平面内两直线的两种特殊位置关系平行、垂直的概念 及性质是近几年高考的热点. 2.对两直线位置关系的判断、两直线的交点坐标、距离 公式的考查主要是以选择、 填空题形式出现, 解决距离问题要 注意转化思想的应用.
2.直线 l 过点(-1,2)且与直线 2x-3y+4=0 垂直,则 l 的方程是( ) B.3x+2y+7=0 D.2x-3y+8=0
A.3x+2y-1=0 C.2x-3y+5=0
[答案] A
[解析] 系.
本题考查直线方程的点斜式,以及两条的垂直关
∵直线 l 与直线 2x-3y+4=0 垂直, 3 ∴直线 l 的斜率 k=- , 2 又∵直线 l 过点(-1,2), 3 ∴其方程为 y-2=- (x+1), 2 即 3x+2y-1=0.
7.已知两条直线 l1:ax-by+4=0 和 l2:(a-1)x+y+b =0,求满足下列条件的 a、b 的值. (1)l1⊥l2,且 l1 过点(-3,-1); (2)l1∥l2,且坐标原点到这两条直线的距离相等.
[解析]
(1)由已知可得 l2 的斜率必存在,∴k2=1-a.
若 k2=0,则 1-a=0,a=1. ∵l1⊥l2,∴直线 l1 的斜率 k1 必不存在,即 b=0. 又∵l1 过(-3,-1), ∴-3a+b+4=0,即 b=3a-4(不合题意) ∴此种情况不存在,即 k2≠0. 若 k2≠0,即 k1,k2 都存在, a ∵k1=b,k2=1-a,l1⊥l2,
[答案] (-12,0)或(8,0)
[解析]
|3a-4×0+6| 设 P(a,0),则有 2 2 =6, 3 +-4
解得 a=-12 或 a=8. ∴P 点坐标为(-12,0)或(8,0).
6.若直线 l1:ax+2y+6=0 与直线 l2:x+(a-1)y+a2- 1=0,则 l1∥l2 时,a=______,l1⊥l2 时,a=______.
3.直线 y=2x+10,y=x+1,y=ax-2 交于一点,则 a 的值为( 1 A.3 2 C.3
[答案] C
) 4 B.3 5 D.3
[解析]
直线 y=2x+10 与 y=x+1 的交点坐标为(-9,
2 -8),代入 y=ax-2,得-8=a· (-9)-2,a=3.
4.点 A(1,3)关于直线 y=kx+b 对称的点是 B(-2,1),则 直线 y=kx+b 在 x 轴上的截距是( 3 A.-2 6 C.- 5
2 -1 3
[答案]
[解析]
当 a=0 时,l1:y=-3,l2:x-y-1=0,
显然 l1 不平行于 l2,当 a≠0 时,l1∥l2 的充要条件是
2 1 a-1 a -1 a= 2 ≠ 6 ,∴a=-1.
2 l1⊥l2 的充要条件是 a+2(a-1)=0,∴a= . 3 2 综上所述,l1∥l2 时,a=-1;l1⊥l2 时,a=3.
课前自主预习
知识梳理 1.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线 l1,l2,其斜率分别为 k1,k2,则有 l1∥l2⇔ k1=k2 与 l2 平行 . .特别地,当直线 l1、l2 的斜率都不存在时,l1
(2)两条直线垂直 如果两条直线 l1,l2 斜率存在,设为 k2,k2,则 l1⊥l2⇔k1· k2 =-1,当一条直线斜率为零,另一条直线斜率不存在时,两直线 垂直.
a ∴k1· k2=-1,即 (1-a)=-1① b 又∵l1 过点(-3,-1),∴-3a+b+4=0② 由∵l2 的斜率存在,l1∥l2, ∴直线 l1 的斜率存在,∴k1=k2. a 即b=1-a③ 又∵坐标原点到这两条直线的距离相等,l1∥l2. ∴l1,l2 在 y 轴上的截距互为相反数. 4 即b=b④
2.线段的中点坐标公式 若点 P1、P2 的坐标分别为(x1,y1),(x2,y2),且线段 P1P2 的 x=x1+x2 2 中点 M 的坐标为(x,y),则 y1 + y2 y= 2 中点坐标公式.
,此公式为线段 P1P2 的
3.直线 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0 的交点坐
[答案] D
)
5 B.4 5 D. 6
[解析]
3-1· k=-1 1+2 由题意知 1 2=k· -2+b

3 5 解得 k=-2,b=4, 3 5 ∴直线方程为 y=- x+ , 2 4 5 2 5 其在 x 轴上的截距为-4×(-3)=6.
5.点 P 为 x 轴上一点,P 点到直线 3x-4y+6=0 的距离 为 6,则 P 点坐标为________.
相关文档
最新文档