数值分析2-6(三次样条插值)
matlab三次样条插值例题解析
文章标题:深度解析Matlab三次样条插值1. 前言在数学和工程领域中,插值是一种常见的数值分析技术,它可以用来估计不连续数据点之间的值。
而三次样条插值作为一种常用的插值方法,在Matlab中有着广泛的应用。
本文将从简单到复杂,由浅入深地解析Matlab中的三次样条插值方法,以便读者更深入地理解这一技术。
2. 三次样条插值概述三次样条插值是一种利用分段三次多项式对数据点进行插值的方法。
在Matlab中,可以使用spline函数来进行三次样条插值。
该函数需要输入数据点的x和y坐标,然后可以根据需要进行插值操作。
3. 三次样条插值的基本原理在进行三次样条插值时,首先需要对数据点进行分段处理,然后在每个分段上构造出一个三次多项式函数。
这些多项式函数需要满足一定的插值条件,如在数据点处函数值相等、一阶导数相等等。
通过这些条件,可以得到一个关于数据点的插值函数。
4. Matlab中的三次样条插值实现在Matlab中,可以使用spline函数来进行三次样条插值。
通过传入数据点的x和y坐标,可以得到一个关于x的插值函数。
spline函数也支持在已知插值函数上进行插值点的求值,这为用户提供了极大的灵活性。
5. 三次样条插值的适用范围和局限性虽然三次样条插值在许多情况下都能够得到较好的插值效果,但也存在一些局限性。
在数据点分布不均匀或有较大噪音的情况下,三次样条插值可能会出现较大的误差。
在实际应用中,需要根据具体情况选择合适的插值方法。
6. 个人观点和总结通过对Matlab中三次样条插值的深度解析,我深刻地理解了这一插值方法的原理和实现方式。
在实际工程应用中,我会根据数据点的情况选择合适的插值方法,以确保得到准确且可靠的结果。
我也意识到插值方法的局限性,这为我在实际工作中的决策提供了重要的参考。
通过以上深度解析,相信读者已经对Matlab中的三次样条插值有了更加全面、深刻和灵活的理解。
在实际应用中,希望读者能够根据具体情况选择合适的插值方法,以提高工作效率和准确性。
三次样条插值的方法和思路
三次样条插值的方法和思路摘要:1.三次样条插值的基本概念2.三次样条插值的数学原理3.三次样条插值的实现步骤4.三次样条插值的优缺点5.三次样条插值在实际应用中的案例正文:在日常的科学研究和工程应用中,我们经常会遇到需要对一组数据进行插值的问题。
插值方法有很多,其中三次样条插值是一种常见且有效的方法。
本文将从基本概念、数学原理、实现步骤、优缺点以及实际应用案例等方面,全面介绍三次样条插值的方法和思路。
一、三次样条插值的基本概念三次样条插值(Cubic Spline Interpolation)是一种基于分段多项式的插值方法。
它通过在各个节点上构建一条三次多项式曲线,使得这条曲线在节点之间满足插值条件,从而达到拟合数据的目的。
二、三次样条插值的数学原理三次样条插值的数学原理可以分为两个部分:一是分段三次多项式的构建,二是插值条件的满足。
1.分段三次多项式的构建假设有一组数据点序列为(x0,y0),(x1,y1),(x2,y2),(x3,y3),我们可以将这些数据点连接起来,构建一条分段三次多项式曲线。
分段三次多项式在每个子区间上都是一个三次多项式,它们之间通过节点值进行连接。
2.插值条件的满足为了使分段三次多项式在节点之间满足插值条件,我们需要在每个子区间上满足以下四个条件:(1)端点条件:三次多项式在区间的端点上分别等于节点值;(2)二阶导数条件:三次多项式在区间内的二阶导数等于节点间的斜率;(3)三阶导数条件:三次多项式在区间内的三阶导数等于节点间的曲率;(4)内部点条件:三次多项式在区间内部满足插值函数的连续性。
通过求解这四个条件,我们可以得到分段三次多项式的系数,从而实现插值。
三、三次样条插值的实现步骤1.确定插值节点:根据数据点的位置,选取合适的节点;2.构建分段三次多项式:根据节点值和插值条件,求解分段三次多项式的系数;3.计算插值结果:将待插值点的横坐标代入分段三次多项式,得到插值结果。
数值计算方法( 三次样条插值)
u xj hj
分段三次Hermite插值算法
则 v A1 y j 1 A2 y j B1 f j1 B2 f j
算法: 1.输入x j , f j , f j (j 0,1,...,n); 2.计算插值 (1)输入插值点u; (2)对于j 1,2,...,n做 如果u x j 则计算A1 , A2 , B1 , B2 ; v A1 f j 1 A2 f j B1 f j1 B2 f j; 3.输出u , v。
三次样条插值
于是由Taylor展示有 s( x) s( xi ) s( xi )(x xi ) s( xi ) s( xi ) 2 ( x xi ) ( x xi )3 2! 3! M M Mi yi s( xi )(x x j ) i ( x xi ) 2 i 1 ( x xi )3 2! 3!( xi 1 xi )
2M 0 M 1 6 f [ x0 , x0 , x1 ]
三次样条插值
同理(2)式中令i n得 M n 1 2M n 6 f [ xn 1 , xn , xn ] 即有 2M 0 M 1 6 f [ x0 , x0 , x1 ] ) i M i 1 2M i i M i 1 6 f [ xi 1 , xi , xi 1 ] (i 1,2,...,n 1 M 2M 6 f [ x , x , x ] n n 1 n n n 1
三次样条插值
对于待定系数a j , b j , c j .d j j 1,2,...n,即4n个未知系数,
而插值条件为 n 2个,还缺两个,因此须 4 给出两个 条件称为边界条件,有 以下三类: 第一类 已知两端点的一阶导数 s( x0 ) f ( x0 ) m0 s( xn ) f ( xn ) mn
数值分析插值知识点总结
数值分析插值知识点总结一、插值的基本概念插值是指在已知数据点的基础上,通过某种数学方法求得两个已知数据点之间的未知数值。
插值方法的基本思想是在已知数据点之间找出一个合适的函数形式,使得该函数穿过已知数据点,并预测未知点的数值。
插值问题通常出现在实际工程、科学计算中,比如天气预报、经济数据的预测、地震勘探等领域。
插值可以帮助人们预测未知点的数值,从而更好地了解数据之间的关系。
二、插值的分类根据插值的基本原理,插值方法可以分为多种类型,常见的插值方法包括:拉格朗日插值、牛顿插值、分段插值、立方插值、样条插值等。
1. 拉格朗日插值拉格朗日插值是一种通过拉格朗日多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个n-1次的多项式P(x),使得P(xi)=yi。
2. 牛顿插值牛顿插值是利用牛顿插值多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个n-1次的多项式P(x),使得P(xi)=yi。
3. 分段插值分段插值是将插值区间分割成多个小区间,然后在每个小区间内采用简单的插值方法进行插值。
常见的分段插值方法包括线性插值和抛物线插值。
4. 立方插值立方插值是一种通过构造三次多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个三次多项式P(x),使得P(xi)=yi。
5. 样条插值样条插值是一种通过构造分段三次多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个分段三次多项式P(x),使得P(xi)=yi。
三、插值的应用插值方法在实际工程中有着广泛的应用,常见的应用包括图像处理、声音处理、地图绘制、气象预测、经济预测等领域。
1. 图像处理在图像处理中,插值方法主要用于图像的放大、缩小以及图像的重构等操作。
三次样条插值计算算法
/* 三次样条插值计算算法*/#include "math.h "#include "stdio.h "#include "stdlib.h "/*N:已知节点数N+1R:欲求插值点数R+1x,y为给定函数f(x)的节点值{x(i)} (x(i) <x(i+1)) ,以及相应的函数值{f(i)} 0 <=i <=NP0=f(x0)的二阶导数;Pn=f(xn)的二阶导数u:存插值点{u(i)} 0 <=i <=R求得的结果s(ui)放入s[R+1] 0 <=i <=R返回0表示成功,1表示失败*/int SPL(int N,int R,double x[],double y[],double P0,double Pn,double u[],double s[]){/*声明局部变量*/double *h; /*存放步长:{hi} 0 <=i <=N-1 */double *a; /*存放系数矩阵{ai} 1 <=i <=N ;分量0没有利用*/ double *c; /*先存放系数矩阵{ci} 后存放{Bi} 0 <=i <=N-1 */double *g; /*先存放方程组右端项{gi} 后存放求解中间结果{yi} 0 <=i <=N */double *af; /*存放系数矩阵{a(f)i} 1 <=i <=N ;*/double *ba; /*存放中间结果0 <=i <=N-1*/double *m; /*存放方程组的解{m(i)} 0 <=i <=N ;*/int i,k;double p1,p2,p3,p4;/*分配空间*/if(!(h=(double*)malloc(N*sizeof(double)))) exit(1);if(!(a=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(c=(double*)malloc(N*sizeof(double)))) exit(1);if(!(g=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(af=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(ba=(double*)malloc((N)*sizeof(double)))) exit(1);if(!(m=(double*)malloc((N+1)*sizeof(double)))) exit(1);/*第一步:计算方程组的系数*/for(k=0;k <N;k++)h[k]=x[k+1]-x[k];for(k=1;k <N;k++)a[k]=h[k]/(h[k]+h[k-1]);for(k=1;k <N;k++)c[k]=1-a[k];for(k=1;k <N;k++)g[k]=3*(c[k]*(y[k+1]-y[k])/h[k]+a[k]*(y[k]-y[k-1])/h[k-1]); c[0]=a[N]=1;g[0]=3*(y[1]-y[0])/h[0]-P0*h[0]/2;g[N]=3*(y[N]-y[N-1])/h[N-1]+Pn*h[N-1]/2;/*第二步:用追赶法解方程组求{m(i)} */ba[0]=c[0]/2;g[0]=g[0]/2;for(i=1;i <N;i++){af[i]=2-a[i]*ba[i-1];g[i]=(g[i]-a[i]*g[i-1])/af[i];ba[i]=c[i]/af[i];}af[N]=2-a[N]*ba[N-1];g[N]=(g[N]-a[N]*g[N-1])/af[N];m[N]=g[N]; /*P110 公式:6.32*/ for(i=N-1;i> =0;i--)m[i]=g[i]-ba[i]*m[i+1];/*第三步:求值*/for(i=0;i <=R;i++){/*判断u(i)属于哪一个子区间,即确定k */if(u[i] <x[0] || u[i]> x[N]){/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 1;}k=0;while(u[i]> x[k+1])k++;//p1=(h[k]+2*(u[i]-x[k])*pow((u[i]-x[k+1]),2)*y[k])/pow(h[k],3); //p2=(h[k]-2*(u[i]-x[k+1])*pow((u[i]-x[k]),2)*y[k+1])/pow(h[k],3);p1=(h[k]+2*(u[i]-x[k]))*pow((u[i]-x[k+1]),2)*y[k]/pow(h[k],3);p2=(h[k]-2*(u[i]-x[k+1]))*pow((u[i]-x[k]),2)*y[k+1]/pow(h[k],3); p3=(u[i]-x[k])*pow((u[i]-x[k+1]),2)*m[k]/pow(h[k],2);p4=(u[i]-x[k+1])*pow((u[i]-x[k]),2)*m[k+1]/pow(h[k],2);s[i]=p1+p2+p3+p4;}/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 0;}void main(){int N,R;double *x,*y,*u,*s;double P0,Pn;int i;/*验证算法:*/N=7;R=6;/*分配空间*/if(!(x=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(y=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(u=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(s=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}x[0]=0.5;x[1]=0.7;x[2]=0.9;x[3]=1.1;x[4]=1.3;x[5]=1.5;x[6]=1.7;x[7]=1.9;y[0]=0.4794;y[1]=0.6442;y[2]=0.7833;y[3]=0.8912;y[4]=0.9636;y[5]=0.9975;y[6]=0.9917;y[7]=0.9 463;u[0]=0.6;u[1]=0.8;u[2]=1.0;u[3]=1.2;u[4]=1.4;u[5]=1.6;u[6]=1.8;P0=-0.4794;Pn=-0.9463;if(!SPL( N, R, x, y, P0, Pn, u, s)){/*打印结果*/printf( "\nx= ");for(i=0;i <=N;i++)printf( "%8.1f ",x[i]);printf( "\ny= ");for(i=0;i <=N;i++)printf( "%8.4f ",y[i]);printf( "\n\nu= ");for(i=0;i <=R;i++)printf( "%9.2f ",u[i]);printf( "\ns= ");for(i=0;i <=R;i++)printf( "%9.5f ",s[i]);printf( "\nsin= ");for(i=0;i <=R;i++)printf( "%9.5f ",sin(u[i]));}/*释放空间*/free(x);free(y);free(u);free(s);}/* 测试数据来自课本55页例5 《数值分析》清华大学出版社第四版*/ //输入327.7 4.128 4.329 4.130 3.013.0 -4.0//输出输出三次样条插值函数:1: [27.7 , 28]13.07*(x - 28)^3 + 0.22*(x - 27.7)^3+ 14.84*(28 - x) + 14.31*(x - 27.7)2: [28 , 29]0.066*(29 - x)^3 + 0.1383*(x - 28)^3+ 4.234*(29 - x) + 3.962*(x - 28)3: [29 , 30]0.1383*(30 - x)^3 - 1.519*(x - 29)^3+ 3.962*(30 - x) + 4.519*(x - 29)//三次样条插值函数#include<iostream>#include<iomanip>using namespace std;const int MAX = 50;float x[MAX], y[MAX], h[MAX];float c[MAX], a[MAX], fxym[MAX];float f(int x1, int x2, int x3){float a = (y[x3] - y[x2]) / (x[x3] - x[x2]);float b = (y[x2] - y[x1]) / (x[x2] - x[x1]);return (a - b)/(x[x3] - x[x1]);} //求差分void cal_m(int n){ //用追赶法求解出弯矩向量M……float B[MAX];B[0] = c[0] / 2;for(int i = 1; i < n; i++)B[i] = c[i] / (2 - a[i]*B[i-1]);fxym[0] = fxym[0] / 2;for(i = 1; i <= n; i++)fxym[i] = (fxym[i] - a[i]*fxym[i-1]) / (2 - a[i]*B[i-1]);for(i = n-1; i >= 0; i--)fxym[i] = fxym[i] - B[i]*fxym[i+1];}void printout(int n);int main(){int n,i; char ch;do{cout<<"Please put in the number of the dots:";cin>>n;for(i = 0; i <= n; i++){cout<<"Please put in X"<<i<<':';cin>>x[i]; //cout<<endl;cout<<"Please put in Y"<<i<<':';cin>>y[i]; //cout<<endl;}for(i = 0; i < n; i++) //求步长h[i] = x[i+1] - x[i];cout<<"Please 输入边界条件\n 1: 已知两端的一阶导数\n 2:两端的二阶导数已知\n 默认:自然边界条件\n";int t;float f0, f1;cin>>t;switch(t){case 1:cout<<"Please put in Y0\' Y"<<n<<"\'\n";cin>>f0>>f1;c[0] = 1; a[n] = 1;fxym[0] = 6*((y[1] - y[0]) / (x[1] - x[0]) - f0) / h[0];fxym[n] = 6*(f1 - (y[n] - y[n-1]) / (x[n] - x[n-1])) / h[n-1];break;case 2:cout<<"Please put in Y0\" Y"<<n<<"\"\n";cin>>f0>>f1;c[0] = a[n] = 0;fxym[0] = 2*f0; fxym[n] = 2*f1;break;default:cout<<"不可用\n";//待定};//switchfor(i = 1; i < n; i++)fxym[i] = 6 * f(i-1, i, i+1);for(i = 1; i < n; i++){a[i] = h[i-1] / (h[i] + h[i-1]);c[i] = 1 - a[i];}a[n] = h[n-1] / (h[n-1] + h[n]);cal_m(n);cout<<"\n输出三次样条插值函数:\n";printout(n);cout<<"Do you to have anther try ? y/n :";cin>>ch;}while(ch == 'y' || ch == 'Y');return 0;}void printout(int n){cout<<setprecision(6);for(int i = 0; i < n; i++){cout<<i+1<<": ["<<x[i]<<" , "<<x[i+1]<<"]\n"<<"\t";/*cout<<fxym[i]/(6*h[i])<<" * ("<<x[i+1]<<" - x)^3 + "<<<<" * (x - "<<x[i]<<")^3 + "<<(y[i] - fxym[i]*h[i]*h[i]/6)/h[i]<<" * ("<<x[i+1]<<" - x) + "<<(y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i]<<"(x - "<<x[i]<<")\n";cout<<endl;*/float t = fxym[i]/(6*h[i]);if(t > 0)cout<<t<<"*("<<x[i+1]<<" - x)^3";else cout<<-t<<"*(x - "<<x[i+1]<<")^3";t = fxym[i+1]/(6*h[i]);if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")^3";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")^3";cout<<"\n\t";t = (y[i] - fxym[i]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<"+ "<<t<<"*("<<x[i+1]<<" - x)";else cout<<"- "<<-t<<"*("<<x[i+1]<<" - x)";t = (y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")";cout<<endl<<endl;}cout<<endl;}。
二次样条与三次样条的研究
二次样条与三次样条插值研究作者:季哲 指导老师:陈素根摘要 样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。
本文主要讨论在几种不同边值条件下二次样条插值与三次样条插值的求解方法和分析在某特殊边值条件下二次样条插值与三次样条插值的变分性质,并分别对两种插值的余项进行较精确地估算。
另外介绍二次B 样条函数于三次B 样条函数,并对二者的有关性质进行说明和证明。
最后给出三次样条插值在实际中的应有。
关键词 二次样条函数 三次样条函数 变分性质 余项1 引言自上世纪60年代以来,由于航空造船等工程设计的需要,人们发展了样条插值技术。
现在样条函数越来越流行,它不仅是现代函数逼近的一个活跃的分支,而且也是现代数值计算中一个十分重要的数学工具。
本文主要研究在几种某特殊边值条件下二次样条插值与三次样条插值求解方法;分析在某特殊边值条件下二次样条插值与三次样条插值的变分性质,并分别对两种插值的余项进行较精确地估算。
本文还主要介绍二次样条与三次样条的基本概念,常见的二、三次B 样条及Berzier 样条等。
最后研究二次样条与三次样条在数据插值中的应用,并举例说明。
2 二次样条与三次样条的计算方法2.1 二次样条的计算方法定义: 给定区间[ a,b ]一个分割△01,,...,n x a x x b ==,二次样条函数()S x 满足以下条件:1) ()S x 在每个区间1[,]i i x x -上是一个二次多项式;2) S (x )在所有节点满足i x (i=1,2,…,n-1)上具有一阶连续导数; 3)S (x )在所有节点满足S (i x )= i y (i=0,1,…,n)。
在每个小区间1[,]i i x x -上是一个二次多项式,有3个系数,因此要确定S(x)就要确定3n 个待定参数,而由S (i x )= i y (i=0,1,…,n),得到n+1个方程;由()()i i S x S x +=-(i=1,2,…,n-1)得到n-1个方程;由/S (i x -)=/S ( i x +)(i=1,2,…,n-1)得到n-1个方程,总共3n-1个方程,为了确定一个待定的样条插值函数,还需增加1个条件,这个条件通常是在区间[,]a b 的两端处给出,即边界条件,边界条件根据实际问题的需求来确定,其类型很多,常见的边界条件类型有:1) 给定初始断点的一阶导数值:/S (0x )= 0y 2) 给定终端点的一阶导数值:/S (n x )= n y 3) 给定初始端点的二阶导数值://S (0x )= 0y / 4) 给定终端点的二阶导数值: //S (n x )= n y /5)若插值函数为周期函数时,此时0y =n y ,给定:/S (0x )=/S (n x )下面针对上面5种情况分别讨论二次样条插值问题。
三次样条插值算法详解
三次样条插值算法要求数据点数量较多,且在某些情况下可能存在数值不稳定性,如数据 点过多或数据点分布不均等情况。此外,该算法对于离散数据点的拟合效果可能不如其他 插值方法。
对未来研究的展望
01
02
03
改进算法稳定性
针对数值不稳定性问题, 未来研究可以探索改进算 法的数值稳定性,提高算 法的鲁棒性。
3
数据转换
对数据进行必要的转换,如标准化、归一化等, 以适应算法需求。
构建插值函数
确定插值节点
根据数据点确定插值节点,确保插值函数在节点处连续且光滑。
构造插值多项式
根据节点和数据点,构造三次多项式作为插值函数。
确定边界条件
根据实际情况确定插值函数的边界条件,如周期性、对称性等。
求解插值函数
求解线性方程组
06
结论
三次样条插值算法总结
适用性
三次样条插值算法适用于各种连续、光滑、可微的分段函数插值问题,尤其在处理具有复 杂变化趋势的数据时表现出色。
优点
该算法能够保证插值函数在分段连接处连续且具有二阶导数,从而在插值过程中保持数据 的平滑性和连续性。此外,三次样条插值算法具有简单、易实现的特点,且计算效率较高 。
根据数据点的数量和分布,合理分段,确保 拟合的精度和连续性。
求解线性方程组
使用高效的方法求解线性方程组,如高斯消 元法或迭代法。
结果输出
输出拟合得到的插值函数,以及相关的误差 分析和图表。
03
三次样条插值算法步骤
数据准备
1 2
数据收集
收集需要插值的原始数据点,确保数据准确可靠。
数据清洗
对数据进行预处理,如去除异常值、缺失值处理 等。
数值分析中的(插值法)
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项
数值分析实验报告-插值、三次样条
实验报告:牛顿差值多项式&三次样条问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。
实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。
应用所编程序解决实际算例。
实验要求:1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。
实验原理:详见《数值分析 第5版》第二章相关内容。
实验内容:(1)牛顿插值多项式1.1 当n=10时:在Matlab 下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.^2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36* x^4+2.0202e-14*x^3-16.855*x^2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。
数值分析中常用的插值方法
数值分析中常用的插值方法在数值计算中,许多问题都可以用插值方法来近似求解,比如曲线拟合、函数逼近和图像重建等。
插值方法是指在已知数据点的情况下,通过一些数值计算技巧,在每个数据点处构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
在数据点之间计算函数值时,就可以使用这个多项式函数进行估算。
接下来,我们就来详细介绍一些常见的插值方法。
一、拉格朗日插值法拉格朗日插值法是一个经典的插值方法,它的思想是通过给定的数据点,构造一个经过这些点的多项式函数进行逼近。
具体来讲,拉格朗日插值法会首先构造一个基函数,该函数满足只在其对应的数据点处等于1,其余的数据点处等于0。
然后,根据基函数和数据点,构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
最终得到的多项式函数就是插值函数。
优点:简单易懂,使用较为广泛。
缺点:多项式次数较高时造成的误差会较大,且在数据点密集的区域可以出现龙格现象,使得插值函数在某些区间内呈现大幅度振荡。
二、牛顿插值法牛顿插值法是一种递推式的插值方法,它通过利用已知的数据点和前面已经计算出来的差商,得到一个逐步逼近的插值函数。
具体来讲,牛顿插值法会先将已知的数据点连成一条曲线,然后逐个向这条曲线添加新的数据点,每次添加一个新的数据点后,将差商计算出来并加入到之前的差商序列中,最终得到一个多项式函数,它在每个数据点处都能通过数据点。
牛顿插值法的优缺点与拉格朗日插值法相似,但是由于牛顿插值法是递推式的,可以方便的添加新的数据点,因此在数据点多变的情况下,牛顿插值法具有很大的优势。
三、分段插值法分段插值法是一种将插值区间划分为多个子区间的插值方法,在每个子区间内使用插值方法进行插值,然后将所有子区间内的插值函数拼接起来,得到最终的插值函数。
分段插值法主要分为两种:线性分段插值和三次样条插值。
1.线性分段插值线性分段插值的思路很简单,即在每个数据点处构造两条直线,在数据点之间的区间内使用一条直线作为插值函数。
数值分析三次样条插值函数
数值分析三次样条插值函数【问题】对函数f x =ex, x∈[0,1]构造等距节点的三次样条插值函数,对以下两种类型的样条函数1. 三次自然样条2. 满足S′ 0 =1,S′ 1 =e的样条并计算如下误差:max{ f x1 −S x1 ,i=1,…,N} i−i−i这里xi−1为每个小区间的中点。
对N=10,20,40比较以上两组节点的结果。
讨论你的结果。
【三次样条插值】在每一个区间[t1,t2],…,[tn−1,tn]上,S都是不同的三次多项式,我们把在[ti−1,ti]上表示S的多项式记为Si,从而,S0 x x∈[t0,t1]∈[t1,t2] S x = S1 x x…Sn−1 x x∈[tn−1,tn]通过在节点处函数值、一阶导数和二阶导数的连续性可以得到:Si−1 ti = yi= Si ti 1≤i≤ n−1Si−1′ ti = Si′ tix→ti+limS′′ x =zi=limS′′(x) x→ti−再给定z0和zn 的值就构成了4n个条件,而三次样条插值函数共4n个系数,故可以通过这4n个条件求解三次样条函数的系数,从而求得该三次样条插值函数。
特别的,当z0=zn=0 时称为自然三次样条。
文本预览:一、自然三次样条插值【自然三次样条插值算法】1.由上面的分析可知,求解三次样条函数实际上就是求解一个矩阵:u 1h 1h1u2h2h2u3…v1 z1 v2 z2 z3=v3 … z…hn−2 n−2 vn−2 z vn−1 un−1 n−1ih3…hn−3un−2hn−26…其中hi=ti+1−ti,ui=2(hi+hi−1),ui=h(yi+1−yi),vi=bi−bi−1 所以自然三层次样条插值的算法就是在得到端点的函数值,一次导数值和二次导数值,然后根据上述求解矩阵得到v,代入自然三次样条的表达式即可。
2.根据题目中所给出的误差估计,计算在区间中点处的最大误差。
【实验】通过Mathematica编写程序得到如下结果:N=101. 计算得到zi的值为:由此可以得到各个区间的自然三次样条插值函数。
三次样条插值c++代码实现及注释
一、引言在计算机编程和数据处理领域,插值是一种常见的数值分析方法,用于在已知数据点之间估算未知点的数值。
而三次样条插值是插值方法中的一种重要技术,它可以在使用较少插值节点的情况下,实现更为平滑和精确的插值结果。
本文将着重探讨三次样条插值的原理和C++代码实现,并给出详细的注释和解释。
二、三次样条插值的原理三次样条插值是一种分段插值方法,它将整个插值区间分割为若干个小区间,每个小区间内采用三次多项式进行插值。
这样做的好处是可以在每个小区间内实现更为细致和精确的插值,从而提高插值的准确性和平滑性。
而三次样条插值的核心在于确定每个小区间内的三次多项式的系数,一般采用自然边界条件进行求解。
在具体实现中,我们需要先对给定的插值节点进行排序,并求解出每个小区间内的三次多项式系数。
最终将这些系数整合起来,就可以得到整个插值区间的三次样条插值函数。
三、C++代码实现及注释接下来,我们将给出使用C++语言实现三次样条插值的代码,并对每个关键步骤进行详细注释和解释。
```cpp// include necessary libraries#include <iostream>#include <vector>using namespace std;// define the function for cubic spline interpolationvector<double> cubicSplineInterpolation(vector<double> x, vector<double> y) {// initialize necessary variables and containersint n = x.size();vector<double> h(n-1), alpha(n), l(n), mu(n), z(n), c(n), b(n), d(n);vector<double> interpolatedValues;// step 1: calculate the differences between x valuesfor (int i = 0; i < n-1; i++) {h[i] = x[i+1] - x[i];}// step 2: calculate alpha valuesfor (int i = 1; i < n-1; i++) {alpha[i] = (3/h[i]) * (y[i+1] - y[i]) - (3/h[i-1]) * (y[i] - y[i-1]); }// step 3: calculate l, mu, and z valuesl[0] = 1;mu[0] = 0;z[0] = 0;for (int i = 1; i < n-1; i++) {l[i] = 2*(x[i+1] - x[i-1]) - h[i-1]*mu[i-1];mu[i] = h[i]/l[i];z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i];}l[n-1] = 1;z[n-1] = 0;c[n-1] = 0;// step 4: calculate coefficients for the cubic polynomials for (int j = n-2; j >= 0; j--) {c[j] = z[j] - mu[j]*c[j+1];b[j] = (y[j+1] - y[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3;d[j] = (c[j+1] - c[j])/(3*h[j]);}// step 5: interpolate values using the cubic polynomials for (int i = 0; i < n-1; i++) {double xi = x[i];while (xi < x[i+1]) {double dx = xi - x[i];double interpolatedValue = y[i] + b[i]*dx + c[i]*dx*dx + d[i]*dx*dx*dx;interpolatedValues.push_back(interpolatedValue);xi += 0.1; // adjust the step size for finer interpolation }}return interpolatedValues;}// main function for testing the cubic spline interpolation int main() {vector<double> x = {1, 2, 3, 4, 5};vector<double> y = {3, 6, 8, 10, 15};vector<double> interpolatedValues = cubicSplineInterpolation(x, y);for (int i = 0; i < interpolatedValues.size(); i++) {cout << "Interpolated value " << i << " : " << interpolatedValues[i] << endl;}return 0;}```四、总结与展望通过本文的学习,我们了解了三次样条插值的原理和C++代码实现。
计算方法大作业——三次样条插值
计算方法上机报告
此完成所有数据的输入。继续按 Enter 键会出现提示“选择封闭方程组的边界条件: 第 一类边界条件输入 1,第二类边界条件输入 2,第三类边界条件输入 3。 ”根据已知情况 选择相应的边界条件,若为自然三次样条插值,则选 1,并将插值区间两端点的二阶导 数值设置为 0。输入完成之后按 Enter 开始求解,程序运行结束后命令窗口会显示要求 的三次样条插值函数,同时会出现该插值函数以及插值节点的图像,便于直接观察。 2.3 算例及计算结果 (1) 《数值分析》课本第 137 页的例题 4.6.1,已知函数 y=f(x)的数值如下表,求它 的自然三次样条插值函数。 xi yi -3 7 -1 11 0 26 3 56 4 29
(2) 给定函数 f ( x)
3 x 1 1 x 0 0 x3 3 x 4
1 (1 x 1) 。取等距节点,构造牛顿插值多项式 N5(x) 1 25x 2 和 N10(x)及三次样条插值函数 S10(x)。分别将三种插值多项式与 f(x)的曲线画在同一个
N10 x
22757 10 5444 8 20216 6 17147 4 3725 2 x x x x x 1 103 11 53 139 221
将牛顿插值多项式 N5(x)和 N10(x)及三次样条插值函数 S10(x)分别与 f(x)的曲线画在 同一个坐标系上进行比较,如图 12。可以看出三次样条函数与原函数符合的非常好, 对于低次的牛顿插值多项式,与原函数的大致趋势相同,而高次的牛顿插值多项式由 于龙格现象的出现,与原函数之间相差比较大。
S ( xi ) S ( xi ), ( xi ) S ( xi ), S S ( x ) S ( x ), i i i 1, 2, , n 1
数值分析-插值法
数值分析-插值法我们能得到⼀个函数f在区间[a,b]上某些点的值或者这些点上的⾼阶导数我们就能通过插值法去得到⼀个函数g,g与f是⾮常相近的⼀般来说g分为三类,⼀类是n次多项式 a n*x n +a n-1*x n-1 + .......+a0,⼀类是三⾓多项式,最后⼀类是分段n次多项式多项式插值这个可以说是最简单的插值了对于a n*x n +a n-1*x n-1 + .......+a0,我们有n+1个未知数,我只需要知道n+1个点的函数值就可以解出这n+1个未知数将解出的值带⼊即可优点:简单粗暴缺点:要解n+1个⽅程,时间复杂度较⾼,n不好确定,若n过⼤,容易过拟合,若n过⼩,容易⽋拟合拉格朗⽇插值先说⼀阶多项式我们有两点式f(x) = y k*(x k+1 - x) / (x k-x k+1) + y k+1*(x-x k) / (x k+1 - x k)此两点式可以看做∂ * y k + (1-∂) * y k+1那么⾃然的在x=x k的时候 ∂=0 在x=x k+1的时候∂=1这⾥的∂其实是与x相关的⼀阶多项式再说⼆阶多项式对于⼀个⼆次函数,我们有三个点(x k-1,y k-1) ,(x k,y k) ,(x k+1,y k+1)我们有l k-1,l k,l k+1f(x) = l k-1*y k-1 + l k*y k + l k+1*y k+1其中l是与x相关的⼆次多项式我们可以把l当作基函数这样的话就有x = x k-1 时l k-1 = 1, l k=0, l k+1 = 0x = x k时 l k-1 = 0, l k=1, l k+1 = 0x = x k+1时l k-1 = 0, l k=0, l k+1 = 1那么这个插值基函数是很好求的因为每个插值函数都有两个零点对于l k-1来说有零点x k,x k+1那么lk-1就可以表⽰为l k-1 = A*(x-x k)*(x-x k+1)因为x=xk-1时l k-1 = 1所以A = 1 / ((x k-1 - x k)* (x k-1 - x k+1) )那么同理l k和l k+1也能求出来了那我们得到⼆阶的拉格朗⽇插值多项式现在将⼆阶推⼴到n阶得到n接的拉格朗⽇插值多项式余项:R n(x) = f(x) - L n(x) R n(x)表⽰n次拉格朗⽇多项式的插值余项R n(x) = f n+1(e)/(n+1)! * w n+1(x) e属于[a,b]且依赖与x w n+1(x) = (x-x0)(x-x1).......(x-x n)优点:算法较为简单缺点:⽆法处理动态增加节点的情况⽜顿插值还是先从⼀阶到⼆阶进⾏说明我先得到了⼀阶差值多项式P1(x),P1(x) 满⾜过点(x1, f(x1)), (x2,f(x2))假设现在有第三个点(x3,f(x3))我们要通过这个点去得到⼆阶差值多项式P2(x) 使得P2(x)过这三个点可以设P2(x) = P1(x) + a2*(x-x0)*(x-x1)通过第三个点解出a2就⾏了推⼴到多阶那么可以得到P n(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + a3(x-x0)(x-x1)(x-x2) + ......求这个插值多项式的值可以通过递推⼀步⼀步的求这样就实现了动态增删可以看到计算a k需要计算(k-1)2次,那么⽜顿插值法就是⼀个快速的计算⽅法均差⼀阶均差 f[x0, x k] = ( f(x k) - f(x0) ) / (x k - x0)⼆阶均差 f[x0, x1, x2] = (f[x0, x2] -f[x0, x1] ) / (x2 - x1)可以看到⼀阶均差就是简单的求斜率⼆阶均差就是对⼀阶均差求斜率那么k阶均差就是f[x0, x1,,,,,,x k] = (f[x0,,,,,x k-2, x k] -f[x0, ,,,,,,,x k-2,x k-1] ) / (x k - x k-1)f[x0, x1,,,,,,x k] = f n(ε) / n!均差的性质k阶均差可表⽰为f(x0),f(x1), f(x2),,,,,,,,, f(x k)的线性组合⽜顿插值中的a就是均差,可以从⼀阶开始推,然后使⽤数学归纳法证明那么⽜顿插值多项式就是:在计算f[x0,x1,,,,,,,,,,x n]时,⼀般使⽤均差表均差表的计算⽅式为a[i,j] = ( a[i-1][j] - a[i-1][j-1] ) / (末尾的x - 最开始的x)误差:误差为最后⼀阶的均差 * w(x)优点:可动态增删节点缺点:⽆法处理要求导数相同的情况埃尔⽶特插值法实验报告⼀个点,多个导数:⽜顿插值中的均差在xi->x0时其实分别是i阶导数,这样就是我们熟悉的泰勒多项式此时的插值函数就是泰勒多项式两个点,⼀个导数我们有三个条件,也就是说我们能求出三次插值多项式这时我们先写出过这两个点的⽜顿插值多项式在这个多项式的基础上我们再加上⼀个三次项搞定,可以观察到,这三个项数其实可以算是正交的,因为当x=x1或者x=x2时最后⼀项是0满⾜条件的两个点,两个导数这也是题⽬所要求的情况因为有两个导数,所以⽜顿插值法⽆法解决,这⾥只能使⽤基函数⽅法设插值函数为H(x), 点与导数分别为(x1,y1,m1),(x2,y2,m2)H(x)满⾜:H(x1) =y1, H(x2) = y2, H(x1)’ = m1,H(x2)=m2H(x) = a1*x1 + a2*x2 + b1*m1 + b2*m2其中 a1, a2, b1, b2均为三层插值多项式X=x1时 a1(x1) = 1,a2(x1) = 0, b1(x1) = 0,b2(x1) = 0,a1’(x1) = 1,a2’(x1) = 0X=x2时 a1(x2) = 0,a2(x2) = 1, b1(x2) = 0,b2(x2) = 0,a1’(x2) = 1,a2’(x2) = 0X=x1时 b1’(x1) = 1,b2’(x1) = 0X=x2时b1’(x1) = 0,b2’(x1) = 1然后⽤了⼀个很巧妙的⽅法设基函数,解出来值和就是这样⼦的R3(x) = 1/4! * (x-x k)2(x-x k+1)2*f4(ε)两个点,两个导数2直接使⽤泰勒多项式,并把将余项改为未知数,使⽤多余的⼀个条件去求余项的值例如:求次数⼩于等于3的多项式P(x),使满⾜条件P(x0)=f(x0),P'(x0)=f'(x0),P"(x0)=f"(x0),P(x1)=f(x1)。
数值分析常用的插值方法
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
数值分析实验报告-插值、三次样条
实验报告:牛顿差值多项式&三次样条... . (1)问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数f (x)---作多项式插25 x 2值及三次样条插值对每个n值,分别画出插值函数矽(x)的图形。
实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。
应用所编程序解决实际算例。
实验要求:1.认真分析问题,深刻理解相关理论知识并能熟练应用;2.编写相关程序并进行实验;3.调试程序,得到最终结果;4.分析解释实验结果;5.按照要求完成实验报告。
实验原理:详见《数值分析第5版》第二章相关容。
实验容:(1)牛顿插值多项式1.1 当 n=10 时:在Matlab下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.八2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i) = (f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25火x八2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x )=-220.94*x A10+494.91*x A8-9.5065e-14*x A7-381.43*x A6-8.504e-14*x A5+123.36*x A4+2.0202e-14*x A3-16.855*x A2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。
样条插值
样条插值在数值分析这个数学分支中,样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。
由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。
目录• 1 定义• 2 样条插值• 3 线性样条插值• 4 二次样条插值• 5 三次样条插值o 5.1 三次样条的最小性o 5.2 使用自然三次样条的插值• 6 示例o 6.1 线性样条插值o 6.2 二次样条插值•7 参见定义假设有n+1 个不同的节点x i以及n+1 个节点值y i,我们要找到一个n阶样条函数其中每个S i(x) 都是一个k阶的多项式。
样条插值使用多项式插值,对给定数据集进行插值的n阶多项式就被给定数据点所唯一地定义出来。
但是,对同样的数据进行插值的n阶样条并不是唯一的,为了构建一个唯一的样条插值式它还必须满足另外n-1 个自由度。
线性样条插值线性样条插值是最简单的样条插值。
数据点使用直线进行连接,结果样条是一个多边形。
从代数的角度来看,每个S i都是一个如下的线性函数。
样条在每个数据点都必须连续,即我们很容易得到所以以上论述成立。
二次样条插值二次样条插值可以构建为通过选择z0,然后用递推关系就可以得到系数:三次样条插值对于n+1 个给定点的数据集 {x i} ,我们可以用n段三次多项式在数据点之间构建一个三次样条。
如果表示对函数f进行插值的样条函数,那么需要:•插值特性,S(x i)=f(x i)•样条相互连接,S i-1(x i) = S i(x i), i=1,...,n-1•两次连续可导,S'i-1(x i) = S'i(x i) 以及S''i-1(x i) = S''i(x i), i=1,...,n-1.由于每个三次多项式需要四个条件才能确定曲线形状,所以对于组成S的n个三次多项式来说,这就意味着需要 4n个条件才能确定这些多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S (
x)
6x
2xj h2j
4x
j1
m
j
6x
4xj h2j
2x
j1
m
j1
6( x j
x j1 h3j
2x) (
y j1
yj)
于是
S( x j
0)
4 hj
m
j
2 hj
m
j1
6 h2j
(
y
j1
yj)
同理可得S(x)在区间[xj-1 , xj]上的二阶导数:
( j 1,...n 1)
写成矩阵形式为
2 1 0 ... 2 2 2 ...
0
...
3
...
2 ...
... ...
0 0 0 ... 0 0 0 ...
g1 1 f 0
g2
g3
gn2
xj
x0
x1
x2
… xn
f(xj)
f0
f1
f2
…
fn
f ( x j ) m j m0 m1 m( x) H~3(x)
共n-1个等式
x1处: H3( x1 ) H3( x1 ) x2处: H3(x2 ) H~3(x2 )
得到与m0,m1,m2有关的等式 得到与m1,m2,m3有关的等式
求解过程具体如下:
1.条件 设在[a,b]上给出插值条件:
xj
x0
x1
x2
… xn
f(xj)
f0
f1
f2
… fn
f ( x j ) m j m0 m1 m2
mn
求三次样条插值函数 S(x)
设法求出
2.求解 mj 的思路
由内部节点上的二阶导数连续求出
考虑S(x)在[xj , xj+1]上的表达式
s( x)
(x
x j1 )2[hj hj3
2( x
xj
)]
yj
(x
x j )2[hj 2( x j1 hj3
xj
)]
y j1
(x
x
j1 )2 ( x h2j
x
j
) m
j
(x
x
j
)2( x h2j
x
j1 ) m
j1
hj=xj+1-xj
对S(x)求二阶导数得:
思路: (1)首先要补条件:每个区间上构造三次多项式需要 四个条件,但现在最多有三个,故要补充条件,形成四个;
(2)补什么条件:这里选一阶导数较合适;
(3)如何补?若随意给,则只能保证构造出的插值函数的 函数值和一阶导数值连续,但不一定能保证二阶导数值连 续,故只能选那组使二阶导数连续的一阶导数值。
共n-1个等式
x1处: H3 ( x1 ) H3 ( x1 ) x2处: H3(x2 ) H~3 (x2 )
得到与M0,M1,M2有关的等式 得到与M1,M2,M3有关的等式
求解方法之二:三弯矩方程
1.条件 设在[a,b]上给出插值条件:
xj
x0
x1
x2
… xn
f(xj)
f0
gn1 n1 f n
0 0 0 ...
n2
0
0 0 0 ... 2
n1
0 m1
0
m2
0 ...
m3
n
2
m
n
2
2 mn1
四、求解方法之二:三弯矩方程
1.条件 设在[a,b]上给出插值条件:
f1
f2
… fn
f ( x j ) M j M0
Mn
求三次样条插值函数 S(x)
2.求解S(x)的思路及求解
1)首先确定S(x)与二阶导数值的关系
2)求出中间节点上的一阶导数值
1)首先确定S(x)与二阶导数值的关系 由于S(x)在区间[xj ,xj+1]上是三次多项式, 故S〃(x)在[xj ,xj+1]上是线性函数,可表示为
(2)要求学生下去总结,写出两种构造方法的思路。
作业:
1.写出构造三次样条插值函数 的两种方法的思路。
h j 1 6
M
j1
h j 1 3
M
j
y j y j1 h j 1
利用 S( x j 0) S( x j 0)可得
j M j1 2M j j M j1 d j , ( j 1,...,n 1)
注意: (1)教材只重点介绍了三弯矩方程,上课时带领学生看 书比较!
k(
k 1 (
x) x)
( (
x x
xk
)(
x xk
xk1 xk1
)2
xk
1
)(
x xk xk1 xk
)2
一、 三次样条的产生和背景
1.问题的产生 实际中有许多计算问题对插值函数的 光滑性有较高的要求,例如飞机机翼 外形、发动机进、排气口都要求有连 续的二阶导数。
第二章 插值法 §6 三次样条插值
一、三次样条的产生和背景 二、三次样条函数的定义 三、三转角方程 四、三弯矩方程
预备知识
Hermite插值: 已知:4个条件
xi
xk xk+1
yi = f(xi) yk yk+1
yi f ( xi ) yk yk 1
求:一个次数不超过3的多项式H3(x)
(3)如何补?若随意给,则只能保证所构造出的函数的函数
值和相邻两段在公共点的二阶导数的极限值连续,但不能保
证一阶导数连续,故只能选那组使一阶导数连续的二阶导数
值。 xj
x0
x1
x2
… xn
f(xj)
f0
f1
f2
… fn
f ( x j ) M j M 0
M1
M2
Mn
H3(x)
H3 ( x) H~3(x)
显然我们前面介绍的方法 已不能解决这个问题。
2.样条的概念(Spline)
样条是工程设计中使用的一种绘图工具, 它是富有弹性的细木条或细金属条。绘 图员利用它把一些已知的点连接成一条 光滑曲线称为样条曲线,样条曲线在连 接点处有连续的曲率(即连续的二阶导 数),它实际上是分段三次曲线拼接而 成,在连接点上要求二阶导数连续。
二、 三次样条函数的定义
1.三次样条的定义
若函数S(x)∈C2[a,b],且在每个小区间 [xj,xj+1]上是三次多项式,其中
a =x0<x1 <… <xn=b 是 给 定 节 点 , 则 称 S(x) 是 节 点 x0 , x1, … ,xn上的三次样条函数。
即: a.S(x)∈C2[a,b] b.S(x)在[xj,xj+1]上是三次多项式
S( x0 0) S( xn 0)
周期样条
S( x0 0) S( xn 0)
三、 求解方法之一:三转角方程
1.条件 设在[a,b]上给出插值条件:
xj
x0
x1
x2
… xn
f(xj)
f0
f1
f2
… fn
f ( x j ) m j m0
mn
求三次样条插值函数 S(x)
2.三次样条插值函数的定义
三次样条函数 +
S(xi) = yi
3.求解三次样条插值函数的已知条件数和 未知条件数
未知参数个数
4n
已知条件个数
插值条件:
n+1
S(x)∈C2[a,b] :3(n-1)
共 计:
4n-2
缺少条件,通常在插值区间的端点给出,称 为边界条件。
4.常用的三种边界条件
1°已知两端的一阶导数值,即:
S( x)
6x
2 x j1 h 2j 1
4xj
m
j 1
6x
4 x j1 h 2j 1
2xj
mj
6( x j1
xj h 3j 1
2x) (yj
y j1 )
于是S( x j
0)
2 h j 1
m
j1
4m h j 1
j
6 h2j1
(
yj
y j1 )
xj
x0
x1
x2
… xn
f(xj)
f0
f1
f2
… fn
f ( x j ) M j M0
Mn
求三次样条插值函数 S(x)
思路: (1)首先要补条件:每个区间上构造三次多项式需要 四个条件,但现在最多有三个,故要补充条件,形成四个;
(2)补什么条件:或函数值,或一阶导数值,或二阶导数值。 这里选二阶导数较合适;
x)2
M
j1
(x
x 2hj
j
)2
y j1 hj
yj
M
j1 6
M
j
hj
( j 0,1,,n 1)
由此可得
S( x j
0)