响应面试验设计与分析

合集下载

统计分析响应面SPSS

统计分析响应面SPSS

13.2
3
1.25
12
3
1.3
12.8
4
1.2
12.4
4
1
9.8
4
1.15
11.6
4
1.1
10.6
4
1
9.2
4
1.45
13.9
4
1.35
12.8
4
1.15
9.3
4
1.1
9.6
4
1.2
12.4
4
1.05
11.2
4
1.1
11
主体间效应的检验 因变量:y

III 型平方和
df
均方
F
Sig.
校正模型 截距
SST SSt SSe SST SSt SSx SSe dft nk 1 dft k 1, dfe nk k 1
总平方和=处理间平方和+B组间平方和+误差平方和
(yij y)2 (yi y)2 (yij yi)2
1.55 13.4
1.4
11.2
1.5
11.6
1.6
12.6
1.7
12.5
配方1
初生重 50日
x
龄重y
1.35 10.2
1.2
9.4
1.45 12.2
1.2
10.3
1.4
11.3
1.3
11.4
1.15 12.8
1.3
10.9
1.35 11.6
1.15
8.5
1.35 12.2
1.2
9.3
配方2
初生重 50日
.735
.446

box-behnken响应面法

box-behnken响应面法

box-behnken响应面法Box-Behnken响应面法是一种常用的响应面优化方法,它结合了中心组合设计和响应面分析的优点,在实验设计和优化中得到广泛应用。

下面我们将详细介绍Box-Behnken响应面法的原理和应用。

一、Box-Behnken 设计Box-Behnken设计是一种响应面实验设计方法,旨在用最少的实验次数,通过响应面分析找到最佳条件。

Box-Behnken设计由Box和Behnken于1960年提出,应用于多元响应表面优化设计,适用于多变量的响应函数模型。

Box-Behnken设计的特点是方便实现,易解释,可用于中等规模的设计,同时可以用于探究两个或三个因素的交互作用。

Box-Behnken设计通常使用正交设计来确定试验方案,设计中每个因素设3个水平,试验用到15个试验点,这是因为在15个点的设计下,Box-Behnken设备所有的变量之间可以实现二次模型。

在试验设计中,每个自变量有三个不同的水平,而因变量的响应由二次表面模型产生。

Box-Behnken响应面分析的原理是通过关注响应Surface上的关键点来确定最佳的参数配置。

通过测量响应Surface上的点,可以建立一个数学模型,以便为最佳操作条件提供数学解决方案。

在实践中,Box-Behnken响应面法广泛应用于化学、物理、工程等多个领域,主要应用于新产品开发、新工艺、新技术等领域。

Box-Behnken响应面法适用于形貌、结构等复杂的响应表面,还能够优化复杂的响应变量。

在制药业中,可以利用Box-Behnken响应面法设计和优化新的药品的制造过程。

在化学领域,Box-Behnken响应面法可以用于设计新的实验和优化新化学过程。

在食品和冶金工业等其他领域也有广泛的应用。

在实际应用中,Box-Behnken响应面法可以用于多种实验设计,包括中心组合设计、正交方阵等。

响应面分析帮助标识最适合的实验因素和最佳条件的组合,以及如何调整这些因素,以实现最大化响应变量。

响应面试验设计与分析

响应面试验设计与分析

响应面试验设计与分析响应面试验设计与分析是一种常用的实验设计方法,用于确定多个因素对其中一响应变量的影响程度和相互作用关系。

在工程、科学和医学等领域中,响应面试验设计与分析被广泛应用于优化工艺参数、确定最佳组合方案、优化配方等方面。

首先,确定试验因素和水平。

试验因素是指对响应变量有潜在影响的变量,水平是指试验因素的不同取值。

在确定试验因素和水平时,需要考虑相关信息,如前期试验结果、实际生产条件、实例经验等。

其次,确定试验设计。

常用的试验设计方法包括正交设计、Box-Behnken设计、中心组合设计等。

正交设计能够探索更多的因素和交互作用,但对样本量要求较高;Box-Behnken设计适用于三因素三水平的试验设计,样本量要求相对较低;中心组合设计是通过在试验设计中增加中心点来检查实验的误差,从而进行检验实验的可重复性和可靠性。

第三步是进行试验。

根据确定的试验设计方法,制定实际的试验方案,包括试验样本数量、试验条件、试验次数等。

对于每一组试验,记录相关数据。

第四步是分析数据及建立预测模型。

通过对试验数据的统计分析,建立影响因素与响应变量之间的关系模型。

常用的分析方法包括方差分析、回归分析等。

在建立预测模型时,可以使用多元多项式回归、径向基函数网络等方法。

最后一步是优化响应变量。

通过分析建立的预测模型,确定最优条件以达到最佳响应变量。

这可以通过对响应曲面图进行优化,找到使响应变量最大或最小的取值。

响应面试验设计与分析的优点是能够更全面地考虑多个因素对响应变量的影响,并建立预测模型进行优化。

但也存在一些限制,如样本量有限、模型的假设条件等。

因此,在进行响应面试验设计与分析时,需要仔细选择试验因素、合理确定试验设计,并对结果进行验证和优化。

DesignExpert响应面分析实验设计案例分析和CCD设计详细教程

DesignExpert响应面分析实验设计案例分析和CCD设计详细教程
CCD工作原理
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
图12A及B对ACE抑制率影响的响应面
图13A与C对ACE抑制率影响的等高线
图14A及C对ACE抑制率影响的响应面
图15A与D对ACE抑制率影响的等高线
图16A及D对ACE抑制率影响的响应面
图17B与C对ACE抑制率影响的等高线
图18B及C对ACE抑制率影响的响应面
图19B与D对ACE抑制率影响的等高线
要了解CCD的原理,必须对半导体的基本知识有一些了解,可参见附录。
一.CCD的MOS结构及存贮电荷原理
CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2 上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
CCD的信号电荷读出方法有两种:输出二极管电流法和浮置栅MOS放大器电压法.
图5(a)是在线列阵未端衬底上扩散形成输出二极管,当二极管加反向偏置时,在PN结区产生耗尽层。当信号电荷通过输出栅OG转移到二极管耗尽区时,将作为二极管的少数载流子而形成反向电流输出。输出电流的大小与信息电荷大小成正比,并通过负载电阻RL变为信号电压U0输出.

响应面法实验

响应面法实验

试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件.显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图.建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图.模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程.在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面).应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.等等…………2注意事项对于构造高阶响应面,主要有以下两个问题:1,抽样数量将显著增加,此外,普通的实验设计也将更糟。

响应面试验设计

响应面试验设计
这种设计失去了旋转性。 但保留了序贯性,即前一次 在立方点上已经做过的试验 结果,在后续的CCF设计中 可以继续使用,可以在二阶 回归中采用。
中心点的个数选择
满足旋转性的前提下,如果适当选择Nc,则 可以使整个试验区域内的预测值都有一致均匀精 度(uniform precision)。见下表:
• 但有时认为,这样做的试验次数多,代价太 大, Nc其实取2以上也可以;如果中心点的 选取主要是为了估计试验误差, Nc取4以上 也够了。
Journal of Food Science
影响因子
(2006年数据)
10.452
6.352 3.799 2.358 2.327 1.535 1.387 1.375 1.209 1.084 0.99
2000年来CNKI数据库中以“主题=响应面设计”检索的文章数 量
SDOL中2003以来以“ITLE-ABSTR-KEY(response surface method)” 检索得到的文献数量
但由于把区组也作为一个因素来安排, 增加了分析的复杂程度。
旋转性(rotatable)
旋转设计具有在设计中心等距点上预测方差 恒定的性质,这改善了预测精度。
α的选取
在α的选取上可以有多种出发点,旋转性是
个很有意义的考虑。在k个因素的情况下,应 取
α=2k/4
当k=2, α=1.414;当k=3,α =1.682;
• 总之,当时间和资源条件都允许时,应尽可 能按推荐的Nc个数去安排试验,设计结果和 推测出的最佳点都比较可信。实在需要减少 试验次数时,中心点至少也要2-5次。
2.Box-Behnken试验设计源自将各试验点取在立方体棱的中点上
三因子布点示意图
特点

CCD响应面实验案例分析

CCD响应面实验案例分析
此模型解析了 99.63%的变异。
实验数据分析——方差分析
11
此模型中 因子的主 效应和交 互作用的 显著性 失拟不显著
实验数据分析
12
实验数据分析——响应面分析
13
(a)显示AB25染料浓度和盐度对 P. indicus shell生物质的染料去除 效率的同时影响。随着AB25染料浓度 从90增加到120mg/L,盐度从10增加 到30g/L,AB25染料去除效率增加, 然后保持大致恒定。
实验数据分析——响应面分析
15
AB25染料的去除效率随着虾壳生物量的增加而略有增加,染料去除 达到最佳吸附点后,染料吸附缓慢下降。
实验数据分析——响应面分析
16
显示接触时间对生物吸附剂在染料溶液中对AB25染料去除效率的影 响。随着反应时间的增加,去除效率降低。这些结果表明AB25染料的生 物吸附对时间是有依赖性的。经短时间反应后,大量染料被吸附到生物 质表面上,其中在实验的前25分钟内为吸附速率较快,此后,吸附速率 下降,吸附约在40分钟内达到平衡。
利用虾壳生物质优化酸性蓝25染料的
中心复合设计
Central composite design optimization of Acid Blue 25 dye biosorption using shrimp shell biomass
实验背景
5
除了水生环境中的其他有毒无 机物和有机溶解固体外,合成 染料被认为是最具危害性的水 污染物之一,含有合成染料分 子的废水很难处理。
当pH降低时,生物吸 附效率增加,并且在 pH=2时获得66.67% 的最大染料去除效率。
中心复合试验
使用P.indicus shell生物量的实际值的中心复合基

响应面试验设计及design-expert实现

响应面试验设计及design-expert实现

响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
在响应分析中,观察值y可以表述为:
y f(x1,x2,,xl )
其中 f(x1,x2,,xl )是自变量x1,x2,,xl的函数,是误差项。
在响应面分析中,首先要得到回归方程,然后通过对自变 量 x1,x2,,xl 的合理取值,求得使 yˆ f(x1,x2,,xl )最优 的值,这就是响应面设计试验的目的。
响应面试验设计与分析
立方体
立方点,也称立方体点、角点,即2水平对 应的“-1”和“+1”点。各点坐标皆为+1或-1 。在k个因素的情况下,共有2k个立方点
响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
轴向点(axial point)
轴向点,又称始点、星号点,分布在轴向
第一部分
响应面试验设计与分析
响应面方法分类方 法分类
➢中心复合试验设计
(Central Composite Design,CCD);
➢Box-Behnken试验设计。
响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
一般步骤
1. 确定因素及水平,注意水平数为2,因素数一般 不超过4个,因素均为计量值数据;
响应面试验设计与分析及Design-Expert软件实现
第一部分
响应面试验设计与分析
适用范围
➢确信或怀疑因素对指标存在非线性影响; ➢因素个数2-7个,一般不超过4个; ➢所有因素均为计量值数据; ➢试验区域已接近最优区域; ➢基于2水平的全因子正交试验。

中心组合设计响应面法

中心组合设计响应面法

中心组合设计响应面法中心组合设计响应面法是一种用于优化工艺参数的实验设计方法,其基本思想是在实验过程中设置若干中心点,通过对中心点附近的实验数据进行回归分析,建立影响因素与响应变量的数学模型,进而进行工艺参数优化。

本文将详细介绍中心组合设计响应面法的原理、应用和优势。

中心组合设计响应面法的原理是在正交设计的基础上,将设计空间划分为中心点和边界点两部分。

中心组合设计的核心是在实验中设置一组实验点,包括中心点和边界点,使得实验数据能够充分覆盖整个设计空间。

通过对实验数据进行分析,可以建立工艺参数与响应变量的数学模型,从而找出最优工艺参数组合。

首先,需要确定实验参数的范围和步长。

范围的选择应该能够包括全部可能的取值,步长要足够小,确保能够捕捉到参数变化对响应变量的影响。

然后,根据正交设计的原理,确定实验的方案及实验点数量。

中心组合设计通过对实验点数据进行回归分析,可以建立工艺参数与响应变量的数学模型。

一般来说,常用的回归分析方法有多项式回归和响应面分析法。

对于多项式回归,可以通过拟合实验数据来建立工艺参数与响应变量之间的关系。

而响应面分析法则是通过拟合实验数据得到一个高度可预测的二次多项式模型,以此来优化工艺参数组合。

通过分析数学模型,可以找出最优的工艺参数组合。

这种方法可以有效地减少实验次数,节省时间和资源,提高实验效率。

此外,中心组合设计还可以考虑多个因素之间的交互作用,从而更全面地优化工艺参数。

中心组合设计响应面法在很多领域中都得到了广泛应用。

例如,在制药工艺中,可以通过响应面法来优化反应条件,提高产率和纯度;在化学工艺中,可以利用中心组合设计来优化反应参数,提高反应产率和选择性;在制造工艺中,可以通过中心组合设计来优化工艺参数,提高产品质量和生产效率。

中心组合设计响应面法的优势主要体现在以下几个方面。

首先,可以有效减少实验次数,节省时间和资源。

传统的试错法需要大量的试验,而中心组合设计可以通过建立数学模型来预测实验结果,从而减少试验次数。

DesignExpert响应面分析实验的设计案例分析

DesignExpert响应面分析实验的设计案例分析

学校食品科学研究中实验设计的案例分析—响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。

与参考文献SAS软件处理的结果中比较差异很小。

关键字:Design-Expert 响应面分析1.比较分析表一响应面试验设计因素水平-1 0 1超声波处理时间X1(min) 20 30 40超声波功率X2(W) 132 176 220超声波水浴温度X3(℃) 50 55 60酶解时间X4(h) 1 2 32.Design-Expert响应面分析分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。

优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。

利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

2.1 数据的输入图 1 2.2 Box-Behnken响应面试验设计与结果图 22.3 选择模型图 3 2.4 方差分析图 4在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。

由图4知其自变量一次项A,B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。

失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。

本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。

图 5由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。

响应面试验设计

响应面试验设计
这种设计失去了序贯性,前一次在立方点 上已经做过的试验结果,在后续的CCI设 计中不能继续使用。
对于α 值选取的另一个出发点也是有意义的, 就是取α =1,这意味着将轴向点设在立方体的表面 上,同时不改变原来立方体点的设置,这样的设计 称为中心复合表面设计 (central composite facecentered design,CCF)。
2001年 11
2000年 11
0
100 200 300
555 668
533 411
400 500 600 700 文章数量
787 800 900
2000年来CNKI数据库中以“主题=响应面设计”检索的文章数 量
20132012年 2011年 2010年 2009年 2008年 2007年 2006年 2005年 2004年 2003年
• 概述
– SAS系统全称为Statistical Analysis System。
– SAS系统最早由美国北卡罗来纳州立大学的两位生 物统计学研究生编制,并于1976年成立了SAS软件 研究所,正式推出SAS软件。
– SAS现在的最新版本为9.1版,根据不同的安装方式, 所占硬盘空间大约为1-2G。

– SAS中文论坛

SAS系统概述
• SAS系统简介 • 界面操作
SAS系统简介
• 概况
– SAS是美国SAS软件研究所研制的一套大型集成应用软件系 统,具有完备的数据存取、数据管理、数据分析和数据展 现功能。
0
1479 1162 969 791 720 687 608 562 486 457 402
200
400
600
800
1000

高老师讲座实验设计与优化-响应面分析

高老师讲座实验设计与优化-响应面分析
高云涛制作
第一部分 影响因素的筛选
每个因子取高、低两个水平(-1和+1),通常, 低水平为原始条件,高水平约取低水平的1.25~1.5 倍左右,一般不超过2倍。 但对某些因子,高低水平的差值不能过大,以防 掩盖了其它因子的重要性,应依据实验条件而定。 当缺乏可参考的数据时,对需结果进行研判,对 负显著和不显著的因素需考虑是否是因为设计不合 理造成,负显著则需减小水平值,不显著可能的原 因是取值过低或取值在B段。
高云涛制作
第二部分 响应面分析
Box-Behnken设计(BBD)和均匀外壳设计, •Box和Behnken设计(1960)将一水平因析设计与平 衡的和不平衡的不完全区组设计结合在一起发展了 一类二水平的_阶设计。 • BBD设计的优点是每个因素只有三水平,所以因 素少。k=3的BBD设计是十分经济的,因此当k>5时, 推荐一般不再采用BBD设计。 •均匀外壳设计??
高云涛制作
第二部分 响应面分析
星点 设计
建模:因素 与响应值多 元回归分析 模型统方 差分析可 视化 优化
星点设计:因素水平表 星点设计 实验 回归与方差分析 优化
高云涛制作
第二部分 响应面分析
案例 星点设计-效应面法优选灯盏花乙素超声提取
•实验设计--星点设计 因素水平表 通常实验表是以代码的 形式编排的,实验时再转 化为实际操作值,一取值 为 0,±l,±α……。0: 零水平(中央点) ;上 下水平:±l ;上下星号 臂 ±α 。 α=1.414 , 或 1.732,2.00
高云涛制作
第二部分 响应面优化
•响应法(Response Surface Methodology,RSM)结 合了特定数学与统计方法之集合所衍生出的方法论, 其目的在协助研究人员对科学系统或工业制程中最 佳产品设计、制程改善、系统最佳化等问题提供一 套分析、求解程序,尤其是当系统特性受大量非线 性变量影响,解决多变量问题的一种可视化统计方 法。

响应面分析

响应面分析

响应面分析响应面实验考察的范围比较窄,如果不先确定存在最大响应值的区域的话,很有可能在响应面实验时无法得到最值。

在B&B上有一篇文章就通过具体的实例证明了这一点:笫一次响应面没有得到最值,经过分析发现考察区域本身不存在最值点。

经过进一步搜索后确定了一个存在最值的区域,再进行响应面实验就成功了。

最陡爬坡法就是一个经典的搜索考察区域、逼近最值空间的方法。

最陡爬坡法在运用中存在两个问题,一是爬坡的方向,二是爬坡的步长。

前者根据效应的正负就可以确定:如果某个因素是正效应,那么爬坡时就增加因素的水平;反之,即减少因素水平。

而对应爬坡步长,则要稍微复杂些。

以下是自己对软件使用的一些想法,挺凌乱的,怕日后忘了,先写下来:应用design expert应注意的问题:在析因实验设讣中,如果至少有一个是数量因子,则在分析中得到的fit summary是不可黑的,不能应用其中suggest的方程(线性/二次/三次等,一般来说suggest都是一次方程),如何选择方程要尽量考虑以下儿点:1.尽量考虑较高次的方程2.满足所选方程不会aliased(在方差分析里看)3.model要显著(在方差分析里看)ck of fit要不显著(在方差分析里看)。

5.诊断项里的残差要近似符合正态分布。

特别是第四条,如果发现lack of fit显著了,那么很可能是漏掉了某项交互作用,对于A B两因素的二次方程而言,如果出现lack of fit,考虑下是否漏掉A2B AB2 A2B2 等.只有当试验中有重复的点时,才能讣算拟合不足。

对于响应面设计而言:山于一般的响应面设讣就那儿种,如2因素,得到的方程就绝对不会含有A2B AB2 A2B2这些项,这是因为响应面设计•的实验点数太少,这些项就如同A3 B3 一样会被aliased的。

总之两句话:对于响应面设计,在f(x)里的model比较简单,都是二次的,一般默认的那儿个A, B , AB, A2 ,B2就OK 了。

(整理)响应面优化实验方案设计

(整理)响应面优化实验方案设计

食品科学研究中实验设计的案例分析——响应面法优化超声辅助提取车前草中的熊果酸班级:学号:姓名:摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 7.0软件演示原文中响应面曲线优化法的操作步骤。

验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。

关键词:响应面优化法数据处理 Design-Expert 7.0 车前草前言:响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。

响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。

进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。

响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。

响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。

因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。

响应面优化法实验流程

响应面优化法实验流程

响应面优化法实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!响应面优化法实验流程。

1. 试验设计。

确定自变量和因变量。

选择合适的试验设计,如中央复合设计或Box-Behnken设计。

响应面试验解析

响应面试验解析

响应面优化法的不足

响应面优化的前提是:设计的实验点应包括最 佳的实验条件,如果实验点的选取不当,使用 响应面优化法是不能得到很好的优化结果的。 因而,在使用响应面优化法之前,应当确立合 理的实验的各因素与水平。
三、建立回归模型
Central Composite Design(CCD)或Box-Behnken Design 响应面优化分析
实验目的:改进国标GB5009.5-2010《食品安全国家标准:食品 中蛋白质的测定》,第一种方法:凯氏定氮法中蛋白质的含量测 定方法 实验方法:用工业液体NaOH代替GB5009.5-2010中规定的固体 NaOH,对食品中蛋白质含量进行测定,并对测定结果进行对比分 析。 实验结果:实验结果显示,用工业液体NaOH代替固体NaOH,对食 品中蛋白质含量进行测定,两种方法平均值绝对差值占算术平均 值的0.12%,代替方法引入的不确定度仅占测量值的1%,远低于 GB5009.5-2010精密度10%的要求。 资料类型:定性变量[无序变量(多项分类)] 试验指标:化学实验结果、不确定度评定结果为定量指标 试验因素:环境因素、NaOH溶液浓度(2因素) 因素水平:①环境:两个实验室(2水平A1、A2) ②浓度:40%NaOH溶液,42.3%液碱(2水平B1、B2) 试验处理:A1B1、A1B2、A2B1、A2B2四个处理,每个处理重复4次 统计量:①平均值:每个处理重复四次后蛋白质含量算数平均数 (4个) ②极差:4个
A: MgSO4*7H2O B:接种量 C:五倍子添 加量 剔除
>0.05不显著 失拟项指实验数据与模型不相符情况
6
Your date here Your footer here
五、响应面分析各因素最佳水平
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档