中考数学专题特训第二十九讲:统计(含详细参考答案)
九下数学中考复习第29讲数据的分析PPT课件
6,7,9,8,9,这5个数据的中位数是 ( )
A.6
B.7
C.8
D.9
【解析】选C.把5个数据从小到大排列,处于中间位置的数是8,
故选C.
2.(2014·丽水中考)某地区5月3日至5月9日这7天的日气温最高 值统计图如图所示.从统计图看,该地区这7天日气温最高值的 众数与中位数分别是 ( )
A.23,25 B.24,23 C.23,23 D.23,24
时间(单位:小时) 4 3 2 1 0
人数
24211
则这10名学生周末利用网络进行学习的平均时间是
小时.
【解析】 x= 4 2 3 4 2 2 11 01 25 2.5.
10
10
答案:2.5
5.(2013·杭州中考)杭州市某4所高中近两年的最低录取分数 线如下表(单位:分),设4所高中2011年和2012年的平均最低
42,43,45,47,47,58,则这组数据的平均数是
()
A.44
B.45
C.46
D.47
【解析】选C. x= 1 (40+42+43+45+47+47+58)=46,故选
7
C.
2.(2014·天津中考)某公司欲招聘一名公关人员,对甲、乙、
丙、丁四位候选人进行了面试和笔试.他们的成绩如表所示:
候选人
甲
乙
丙
丁
测试成绩 面试
86
92
90
83
(百分制) 笔试
90
83
83
92
如果公司认为,作为公关人员面试的成绩应该比笔试的ห้องสมุดไป่ตู้绩更
重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,
中考数学一轮复习第8单元第29讲 统计课件(可编辑版、共54张)
2.补全有关统计图(表) (1)补全条形统计图:一般就是涉及求未知组的频数,方法如下: 未知组频数=样本容量-已知组频数之和=样本容量×该组所占样本的百 分比.(注:百分比一般可以从扇形图或频数分布表中得到) (2)补全扇形统计图:一般就是涉及求未知组的百分比或其所占圆心角的度 数,方法如下:
A.平均数是 8
B.众数是 8
C.中位数是 8
D.方差是 8
4.(2018·益阳)益阳市高新区某厂今年新招聘一批员工,他们中不同文化程
度的人数见下表:
文化程度 高中 大专 本科 硕士 博士
人数
9 17 20 9 5
关于这组文化程度的人数数据,以下说法正确的是( C )
A.众数是 20
B.中位数是 17
10.(2021·张家界)如图是张家界市某周每天最高气温的折线统计图,则这 7 天的最高气温的中位数是 26 ℃.
频数与频率(10 年 2 考) 11.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进 行分类统计,其中“古诗词类”的频数为 12 人,频率为 0.25,那么被调查 的学生人数为 48 .
统计图(表)的分析(必考) 例 (2021·益阳)为了促进全民健身活动的开展,某镇准备兴建一座休闲公园.为 了解群众的运动需求,对周边爱好运动的居民的运动偏好进行了随机调查(每人限 填一项),绘制成待完善的统计图表(综合类含舞蹈、太极拳等其他项目).
(1)本次被调查的居民人数是多少? [解答] 解:140÷35%=400(人). 答:本次被调查的居民人数是 400 人.
解: 扇形统计 图中第二 产业对 应的扇形 的圆心角 度数为1525500×360°= 158.4°.
2022中考数学第29讲统计精讲本ppt课件
1.(2021·盘锦)下列调查中,适宜采用抽样调查的是( C ) A.调查某班学生的身高情况 B.调查亚运会 100 m 游泳决赛运动员兴奋剂的使用情况 C.调查某批汽车的抗撞击能力 D.调查一架“歼 10”隐形战斗机各零部件的质量
2.(2021·张家界)某校有 4 000 名学生,随机抽取了 400 名学
第七章 统计与概率
第29讲 统计
考点攻略
考 点 一 数据的收集
2.抽样调查中的相关概念 (1)总体:考察对象的③__全__体_____. (2)个体:组成总体的每一个对象. (3)样本:从总体中抽取的④__一__部__分__个__体___. (4)样本容量:样本中包含个体的⑤__数__目_____. (5)简单随机抽样:能保证总体中每个个体有相同的机会被抽 到的抽样调查. 熟记:①抽样调查样本选取要具有代表性、广泛性. ②样本估计总体时,样本容量越大,估计越准确. ③样本容量没有单位.
诊断自测
1.(2021·南通)以下调查中,适宜全面调查的是( A )
A.了解全班同学每周体育锻炼的时间 B.调查某批次汽车的抗撞击能力 C.调查春节联欢晚会的收视率 D.鞋厂检测生产的鞋底能承受的弯折次数
2.(2018·江西)某班组织了针对全班同学关于“你最喜欢的一
项体育活动”的问卷调查后,绘制出频数分布直方图,由图可
知,下列结论正确的是( C )
A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍 C.全班共有 50 名学生 D.最喜欢田径的人数占总人数的 10%
请你根据图表中的信息完成下列问题: (1)a=________,b=________; (2)补全频数分布直方图; (3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外 贸公司选购鸡腿提供参考建议;
2021年中考数学复习第29讲 统计(精讲课件)
A.4个 B.3个 C.2个 D.1个
重重点点题题型型
题组训练
(4)800×1+3+3+148+ +615+14+6 =320(人), 答:估计复学一个月后该校800名八年级学生数学成绩优秀
(80分及以上)的有320人.
重点题型
题题组组训训练练
1.(2019·江西)某校为了解七、八年级学生英语听力训练情 况(七、八年级学生人数相同),某周从这两个年级学生中分别随 机抽查了30名同学,调查了他们周一至周五的听力训练情况, 根据调查情况得到如下统计图表:
重重点点题题型型
题组训练
复学一个月后,根据第二次测试的数学成绩得到如下统计表:
成绩
30≤x<40 40≤x<50
50≤x< 60
60≤x 70≤x< 80≤x 90≤x≤ <70 80 <90 100
人数
1
3
3
8
15
m
6
根据以上图表信息,完成下列问题:
(1)m=________;
(2)请在图2中作出两次测试的数学成绩折线图,并对两次成 绩作出对比分析(用一句话概述);
解:(1)由题意得:a=51-26=25; (2)八年级平均训练时间按照从小到大的顺序排列为:18,25 ,27,30,30,∴八年级平均训练时间的中位数为:27; (3)参加训练的学生人数超过一半;训练时间比较合理;
重点题型
2013年中考数学专题复习第二十九讲:统计(含详细参考答案)
2013年中考数学专题复习第二十九讲统计【基础知识回顾】1、是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查:是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取当受条件限制】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
3、众数:在一组数据出现次数的数据,称为该组数据的众数【名师提醒:1、平均数:中位数和众数从不同的绝度描述了一组数据的(用法可补立)2、在一组数据中,平均数、中位数都是唯一的,而众数可能,求中位数时一定要先将原数据】三、数据的波动:1、极差:一组数据中与的差,叫做这组数据的极差2、方差:几个数据x1 ,x2 ,x3 …xn的平均数为x,则这组数据的方差s 2=3、标准差:方差的【名师提醒:极差、方差、标准差都是反应一组数据大小的,其值越大,说明这组数据波动】四、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角= 3600X2、频数分布直方圆中每个长方形的高时就有小长方形高的和为】【典型例题解析】考点二:平均数、众数、中位数例2(2012•武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.22,25 B.22,24 C.23,24 D.23,25考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:将图表中的数据按从小到大排列:20,22,22,22,23,24,25,26,27,27,30,其中数据22出现了三次,出现的次数最多,为众数;24处在第6位,为中位数.所以这组数据的众数是22,中位数是24.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这些概念掌握不清楚而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.对应训练A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,4考点:众数;中位数.分析:根据中位数的定义与众数的定义,结合图表信息解答.解答:解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.65,共有4人,所以,众数是1.65.因此,中位数与众数分别是1.70,1.65.故选C.点评:本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.考点三:极差、方差、标准差例 4 (2012•徐州)如图是某地未来7日最高气温走势图,这组数据的极差为℃.对应训练4.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28 B.3,29 C.2,27 D.3,28考点:极差;众数.专题:常规题型.分析:根据极差的定义,找出这组数的最大数与最小数,相减即可求出极差;根据众数的定义,找出这组数中出现次数最多的数即可.解答:解:这组数中,最大的数是30,最小的数是27,考点四:统计图表的综合运用例 6 (2012•镇江)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.点评:本题考查学生的读图能力以及频率、频数的计算.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.对应训练6.(2012•湛江)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A、B两种态度的人数即可得到C态度的人数;(3)用家长总数乘以持反对态度的百分比即可.解答:解:(1)调查家长总数为:50÷25%=200人;(2)持赞成态度的学生家长有200-50-120=30人,故统计图为:(3)持反对态度的家长有:80000×60%=48000人.点评:本题考查了用样本估计总体和扇形统计图的知识,解题的关键是从两种统计图中整理出有关信息.7.(2012•盐城)第三十届夏季奥林匹克运动会将于2012年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运会火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根度数与360°的比.【聚焦山东中考】1.(2012•滨州)以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.鞋厂检查生产的鞋底能承受的弯折次数C.学校招聘教师,对应聘人员面试A.130m B.135m C.6.5m D.260m考点:用样本估计总体;加权平均数.分析:先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.解答:解:20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.3×6+04×7+0.5×1)÷20=0.325(m3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),故选A.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.3.(2012•威海)某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下,-10,+5,0,+5,00,-5,0,+5,+10.则这10听罐头质量的平均数及众数为()A.454,454 B.455,454 C.454,459 D.455,0考点:众数;算术平均数.分析:首先求得-10,+5,0,+5,0,0,-5,0,+5,+10这10个数的平均数以及众数,然后分别加上454克,即可求解.10.(2012•烟台)某市园林处去年植树节在滨海路两侧栽了A,B,C三个品种的树苗.栽种的A,B,C三个品种树苗数量的扇形统计图如图(1),其中B种树苗数量对应的扇形圆心角为120°.今年植树节前管理员调查了这三个品种树苗的成活率情况,准备今年从三个品种中选成活率最高的品种再进行栽种.经调查得知:A品种的成活率为85%,三个品种的总成活率为89%,但三个品种树苗成活数量统计图尚不完整,如图(2).12.(2012•菏泽)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:(1)二等奖所占的比例是多少?(2)这次数学知识竞赛获得二等奖的人数是多少?(3)请将条形统计图补充完整;(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)用单位1减去其他各组的所占的百分比即可;(2)先求得总人数,然后乘以其所占的百分比即可;(3)小长方形的高等于该组的频数;(4)一等奖的人数除以总人数即可得到抽到一等奖的概率.解答:解:(1)由1-10%-24%-46%=20%,所以二等奖所占的比例为20%(2)参赛的总人数为:20÷10%=200人,这次数学知识竞赛获得二等奖的人数是:200×20%=40人;(3)整;(2)用总人数乘以视力在4.9以上(含4.9)的人数的频率,即可求出答案.解答:解:(1)这次调查的人数是:15÷0.05=300(人),所以a=300×0.25=75,b=60÷300=0.2,因为a=75,所以4.9~5.1的人数是75,如图:(2)根据题意得:5600×(0.25+0.2)=2520(人).答:该县初中毕业生视力正常的学生有2520人.点评:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【备考真题过关】一、选择题1.(2012•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、数量较大,普查的意义或价值不大时,应选择抽样调查;B、数量较大,具有破坏性的调查,应选择抽样调查;C、事关重大的调查往往选用普查;D、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(2012•衢州)下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式B.了解衢州市每天的流动人口数,采用抽查方式C.了解衢州市居民日平均用水量,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式考点:全面调查与抽样调查.分析:根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案.解答:解:A.日光灯管厂要检测一批灯管的使用寿命,应采用抽样调查方式,故此选项错误;B.了解衢州市每天的流动人口数,采用抽查方式;故此选项正确;C.了解衢州市居民日平均用水量,应采用抽样调查方式;故此选项错误;D.旅客上飞机前的安检,应采用全面调查方式;故此选项错误.故选:B.点评:此题主要考查了全面调查与抽样调查的特点,用到的知识点为:破坏性较强的,涉及人数较多的调查要采用抽样调查.3.(2012•南宁)下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③考点:全面调查与抽样调查.分析:本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.解答:解:①调查一批灯泡的使用寿命,适合抽样调查;②调查全班同学的身高,适合全面调查;③调查市场上某种食品的色素含量是否符合国家标准,适合抽样调查;④企业招聘,对应聘人员进行面试,适合全面调查;故选B.点评:本题主要考查了全面调查和抽样调查,在解题时选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是本题的关键.4.(2012•攀枝花)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩考点:总体、个体、样本、样本容量.分析:根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解答:解:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩,故选C.点评:此题主要考查了样本确定方法,根据样本定义得出答案是解决问题的关键.5.(2012•梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对考点:总体、个体、样本、样本容量.专题:计算题.分析:根据总体、个体、样本、样本容量的定义进行解答.解答:解:∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体.故选B.点评:本题考查了总体、个体、样本、样本容量的定义,是基础题.A.4小时B.4.5小时C.5小时D.5.5小时考点:中位数.分析:中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数是的平均数即为中位数.解答:解:由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.点评:本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.A.15.5 B.16 C.16.5 D.17考点:中位数.专题:常规题型.分析:根据中位数的定义,把13名同学按照年龄从小到大的顺序排列,找出第7名同学的年龄就是这个队队员年龄的中位数.解答:解:根据图表,第7名同学的年龄是16岁,所以,这个队队员年龄的中位数是16.故选B.点评:本题考查了中位数的定义,给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.8. (2012•肇庆)某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人9. (2012•张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()A.20000元B.12500元C.15500元D.17500元考点:扇形统计图.分析:因为某农户一年的总收入为50000元,利用扇形图可知该农户的经济作物收入占35%,所以该农户的经济作物收入的钱数为:总收入×经济作物收入所占的百分比,求出得数即为结果.解答:解:∵某农户一年的总收入为50000元,利用扇形图可知该农户的经济作物收入占35%,∴50000×35%=17500(元).故选:D.点评:本题考查了扇形统计图,扇形统计图表现部分占整体的百分比,根据总收入×经济作物收入所占的百分比可求出解是解题关键.10.(2012•襄阳)为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50% B.55% C.60% D.65%之间的人数有()A.12 B.48 C.72 D.96A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米考点:算术平均数;中位数;众数.分析:根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可.解答:解:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.点评:此题考查了算术平均数、中位数、众数,解答此题不是直接求平均数、中位数、众数,而是利用平均数、中位数、众数的概念进行综合分析,平均数受极值的影响较大,而中位数14.(2012•珠海)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为 2S 甲=8.5,2S 乙=2.5,2S 丙=10.1,2S 丁=7.4.二月份白菜价格最稳定的市场是( )A .甲B .乙C .丙D .丁 考点:方差.分析:据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案.解答:解:因为甲、乙、丙、丁四个市场的方差分别为2S 甲=8.5,2S 乙=2.5,2S 丙=10.1,2S 丁=7.4,乙的方差最小,所以二月份白菜价格最稳定的市场是乙. 故选B .点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 15.(2012•恩施州)希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%16.(2012•杭州)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万考点:条形统计图.分析:根据条形统计图可以看出每个区的人口数,根据每个区的人口数进行判断,可选出答案.解答:解:A、只有上城区人口数都低于40万,故此选项错误;B、萧山区、余杭区两个区的人口超过100万,故此选项错误;C、上城区与下城区的人口数之和低于江干区的人口数,故此选项错误;D、杭州市区的人口数已超过600万,故此选项正确;故选:D.点评:此题主要考查了条形统计图,关键是从图中获取正确信息,从条形统计图中很容易看出数据的大小,便于比较.17.(2012•徐州)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,16考点:众数;中位数.分析:根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.解答:解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是8,那么由中位数的定义可知,这组数据的中位数是8.故选D.点评:本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.点评:此题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19. (2012•温州)小林家今年1-5月份的用电量情况如图所示.由图可知,相邻两个月中,用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月考点:折线统计图.专题:图表型.分析:根据折线图的数据,分别求出相邻两个月的用电量的变化值,比较即可得解.解答:解:1月至2月,125-110=15千瓦时,2月至3月,125-95=30千瓦时,3月至4月,100-95=5千瓦时,4月至5月,100-90=10千瓦时,所以,相邻两个月中,用电量变化最大的是2月至3月.故选B.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的用电变化量是解题的关键.20. (2012•白银)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨考点:折线统计图;算术平均数.分析:从图中得到6天用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.解答:解:这6天的平均用水量:(8+12+10+15+6+9)÷6=10吨,故选:A.点评:此题主要考查了折线图的应用以及平均数求法,要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法是解题关键.二、填空题23.(2012•白银)某学校为了了解学生课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图所示的统计图.若该校共有1200名学生,则估计该校喜欢“踢毽子”的学生有人.。
中考数学专题训练:统计(附参考答案)
中考数学专题训练:统计(附参考答案)1.以下调查中,最适合用全面调查的是( )A.调查柳江流域水质情况B.了解全国中学生的心理健康状况C.了解全班学生的身高情况D.调查春节联欢晚会收视率2.乡村医生李医生在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后7天,李医生每天定时为张奶奶测量血压,测得数据如下表:..A.收缩压的中位数为139B.舒张压的众数为88C.收缩压的平均数为142D.舒张压的方差为8873.小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形统计图1及条形统计图2(柱的高度从高到低排列).条形图不小心被撕了两块,图2中“( )”内应填的颜色是( )图1 图2A.蓝B.粉C.黄D.红4.“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如表:A.4.9和4.8 B.4.9和4.9C.4.8和4.8 D.4.8和4.95.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.76.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )图1 图2A.本次抽样调查的样本容量是5 000B.扇形统计图中的m为10%C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D.样本中选择公共交通出行的有2 400人7.长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差8.如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变9.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁10.在某次射击训练过程中,小明打靶10次的成绩(环)如表所示,则小明射击成绩的众数和方差分别为( )C.10和1 D.9和111.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数12.小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:A.13,15 B.14,15C.13,18 D.15,1513.某射击爱好者的10次射击成绩(单位:环)依次为:7,9,10,8,9,8,10,10,9,10,则下列结论正确的是( )A.众数是9 B.中位数是8.5C.平均数是9 D.方差是1.214.“俭以养德”是中华民族的优秀传统,某中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:关于这次调查,下列说法正确的是( ) A .总体为50名学生一周的零花钱数额 B .五组对应扇形的圆心角度数为36° C .在这次调查中,四组的频数为6D .若该校共有学生1 500人,则估计该校零花钱数额不超过20元的人数约为1 200人15.下列说法正确的是( )A .扇形统计图能够清楚地反映事物的变化趋势B .对某型号电子产品的使用寿命采用全面调查的方式C .有一种游戏的中奖概率是15,则做5次这样的游戏一定会有一次中奖D .甲、乙两组数据的平均数相等,它们的方差分别是s 甲2=0.2,s 乙2=0.03,则乙比甲稳定16.若一组数据x 1,x 2,x 3,…,x n 的方差为2,则数据x 1+3,x 2+3,x 3+3,…,x n +3的方差是( ) A .2 B .5 C .6D .1117.如表是小红参加一次“阳光体育”活动比赛的得分情况:评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为.18.为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分).已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)求(2)班学生中测试成绩为10分的人数;(2)请确定下表中a,b,c的值;(3)19.为激励青少年争做事业接班人,某市史馆组织了以“红心永系国”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A级为特等奖,B级为一等奖,C级为二等奖,D级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.根据相关信息,解答下列问题.(1)本次竞赛共有_______名选手获奖,扇形统计图中扇形C的圆心角度数是_________;(2)补全条形统计图;(3)若该史馆有一个入口,三个出口,请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.参考答案1.C 2.A 3.D 4.B 5.D 6.D 7.D 8.C 9.D 10.C11.D 12.D 13.C 14.B 15.D 16.A17.83分18.(1)(2)班学生中测试成绩为10分的有6人(2)a=8,b=9,c=8(3)(1)班成绩更均匀,理由略19.(1)200 108°(2)补全条形统计图略(3)13。
江西专版2022年中考数学第29讲统计精练本课件
2.(2021·丹东)若一组数据1,3,4,6,m 的平均数为4,则这组数据的中位数和众数 分别是( A ) A.4,6 B.4,4 C.3,6 D.3,4
(1)该校八年级共有________名学生,“优秀” 所占圆心角的度数为________°; (2)请将图①中的条形统计图补充完整; (3)已知该市共有15 000名学生参加了这次“禁 毒知识网络答题”活动,请以该校八年级学生 答题成绩统计情况估计该市大约有多少名学 生在这次答题中成绩不合格.
解:(1)八年级学生人数为 200÷40%=500(名),
(2)按照从小到大的顺序排列为:18,25,27,30,
30,∴八年级平均训练时间的中位数为:27;
(3)参加训练的学生人数超过一半;训练时间比较合理;
(4)抽查的七、八年级共 60 名学生中,周一至周五训
练人数的平均数为15 (35+44+51+60+60)=50,∴
该校七、八年级共 480 名学生中周一至周五平均每
“优秀”所占圆心角的度数为
150 360°×500
=108°;
(2) 一 般 的 人 数 为 500 - (150 + 200 + 50) =
100(名),补全图形略
(3)估计该市在这次答题中成绩不合格的学生
人数约为
15
50 000×500
=1 500(名).
10.(2019·江西)某校为了解七、八年级学生英 语听力训练情况(七、八年级学生人数相同), 某周从这两个年级学生中分别随机抽查了30 名同学,调查了他们周一至周五的听力训练 情况,根据调查情况得到如下统计图表:
中考数学复习之统计(含答案)
中考数学复习之统计(含答案)1.下列调查中,调查方式选择最合理的是()A. 调查“许昌白沙水库”的水质情况,采用抽样调查B. 调查一批飞机零件的合格情况,采用抽样调查C. 检验一批进口罐装饮料的防腐剂含量,采用全面调查D. 企业招聘人员,对应聘人员进行面试,采用抽样调查2.在“生命安全” 主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握的情况,小丽制定了如下调查方案,你认为最合理的是()A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名中学生进行调查3.为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A. 400B. 被抽取的400名考生C. 被抽取的400名考生的中考数学成绩D. 内江市2018年中考数学成绩4.某校有35名同学参加眉山市的三苏文化知识竞赛.预赛分数各不相同,取前18名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A. 众数B. 中位数C. 平均数D. 方差5.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15;s甲2=s丁2=3.6,s乙2=s丙2=6.3,则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁6.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时、8.小时,则这三位同学该天的平均睡眠时间是()A. 8.0小时B. 8.2小时C. 8.4小时D. 8.8小时7.凉山州某校举行“禁毒防艾”知识竞赛,该校八年级(1)班答题情况如图所示,则该班正确答题数所组成的一组数据的众数和中位数分别是()A.14、15B.14、20C.20、15D.20、168. 2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误..的是()2018年1~4月新能源乘用车月销量统计图A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1~4月新能源乘用车销量逐月增加9.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A. 平均数变小,方差变小B. 平均数变小,方差变大C. 平均数变大,方差变小D. 平均数变大,方差变大10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):3538424440474545则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、4312.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()A.16,15B.16,14C.15,15D.14,1513.某班50名学生在2018年适应性考试中,数学成绩在100~110分这个分数段的频率为0.2,则该班在这个分数段的学生为___________人.14.某水果店销售11元、18元、24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是___________元.15.今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了期中检测评价,检测结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表(图①)和统计图(图②).图①图②请根据图①、图②提供的信息,解答下列问题:(1)本次随机抽取的样本容量为___________;(2)a=___________,b=___________;(3)请在图②中补全条形统计图;(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到“A(优秀)”等级的学生人数为___________人.16.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计图表依据以上统计信息,解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.17.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有________名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.18.某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试,将这些学生的测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:(1)本次参加校园安全知识测试的学生有多少人?(2)计算B级所在扇形圆心角的度数,并补全折线统计图;(3)若该校有学生1000名,请根据测试结果,估计该校达到及格和及格以上的学生共有多少人?19.植树节期间,某校360名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵.根据各类型对应的人数绘制了扇形统计图(如图①)和尚未完成的条形统计图(如图②),请解答下列问题:(1)将条形统计图补充完整;(2)这20名学生每人植树量的众数为______棵,中位数为________棵;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是x=x1+x2+…+x nn;第二步:在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;第三步:x=3+4+5+64=4.5(棵).①小宇的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵.参考答案:1-5 ADCBD 6-10 CADAD 11-12 BA 13. 10 14. 15.315. 解:(1)100;(2)30,0.31;(3) 补全条形统计图如图:(4)240.16. 解:(1)30,19%;(2)B (或70<x ≤80);(3)本次全部测试成绩的平均数为 (2581+5543+5100+2796)200=80.1(分),∴ 本次全部测试成绩的平均数是80.1分. 17. 解:(1)100;(2)补全条形统计图和扇形统计图如图所示;(3)1500×38%=570(人),答:该校学生一个月阅读2本课外书的人数约为570人. 18. 解:(1)4÷10%=40(人).答:本次参加校园安全知识测试的学生有40人;(2)B 级所在扇形圆心角的度数为:360°×1440=126°,补全折线统计图如图所示:(3)1000×(1-240)=950(人).答:该校达到的及格和及格以上的学生约为950人. 19. 解:(1)补全条形统计图如图:植树人数条形统计图(2)4,4; (3)①第二步;②x =3×4+4×8+5×6+6×220=4.3(棵).360×4.3=1548(棵).答:估计这360名学生共植树1548棵.。
中考数学复习专题19统计
专题19 统计一、单选题1.(2021·山东聊城市)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( )A .样本为40名学生B .众数是11节C .中位数是6节D .平均数是5.6节 【答案】D【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可.【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确.故选择:D .【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键. 2.(2021·湖北随州市)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是( )A .测得的最高体温为37.1℃B .前3次测得的体温在下降C .这组数据的众数是36.8D .这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1℃,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.3.(2021·湖南常德市)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①【答案】D【分析】根据数据的收集、整理、制作拆线统计图及根据统计图分析结果的步骤可得答案.【详解】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故选:D.【点睛】本题考查拆线统计图、频数分布表,解答本题的关键是明确制作频数分布表和拆线统计图的制作步骤4.(2021·四川广安市)下列说法正确的是()A.为了了解全国中学生的心理健康情况,选择全面调查B.在一组数据7,6,5,6,6,4,8中,众数和中位数都是6a ”是必然事件C.“若a是实数,则0D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定【答案】B【分析】根据抽样调查及普查,众数和中位数,随机事件,方差的意义分别判断即可.【详解】解:A 、为了了解全国中学生的心理健康情况,人数较多,应采用抽样调查的方式,故错误; B 、在一组数据7,6,5,6,6,4,8中,众数和中位数都是6,故正确;C 、0a ≥,则“若a 是实数,则0a >”是随机事件,故错误;D 、若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则甲组数据比乙组数据稳定,故错误;故选B .【点睛】此题主要考查了抽样调查及普查,众数和中位数,随机事件,方差的意义,解答本题的关键是熟练掌握各个知识点.5.(2021·云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍 B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍 C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多 【答案】C【分析】分别计算单独生产各型号帐篷的天数,可判断A ,B ,C ,再根据条形统计图的数据判断D 即可. 【详解】解:A 、单独生产B 型帐篷的天数是2000030%1500⨯=4天,单独生产C 型帐篷的天数是2000015%3000⨯=1天,4÷1=4,故错误;B 、单独生产A 型帐篷天数为2000045%4500⨯=2天,4÷2=2≠1.5,故错误;C、单独生产D型帐篷的天数为2000010%1000=2天,2=2,故正确;D、4500>3000>1500>1000,∴每天单独生产A型帐篷的数量最多,故错误;故选C.【点睛】本题考查了条形统计图和扇形统计图综合,解题的关键是读懂题意,明确单独生产某一种帐篷的天数的计算方法.6.(2021·山东泰安市)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.7.(2021·广西玉林市)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=,解得:7x =;故选B . 【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.8.(2021·四川广元市)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键. 9.(2021·江苏宿迁市)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5C .4D .4.5【答案】C【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4, 4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序. 10.(2021·山西)每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是( )A .27点,21点B .21点,27点C .21点,21点D .24点,21点 【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30, 根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点, 根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C . 【点睛】本题考查中位数与众数,掌握中位数与众数定义是解题关键.11.(2021·山东菏泽市)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( ) A .中位数是10.5 B .平均数是10.3C .众数是10D .方差是0.81【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12; 位于最中间的两个数是10,10,它们的平均数是10, 所以该组数据中位数是10,故A 选项不正确; 该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确; 该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.12.(2021·湖南长沙市)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C.【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖北十堰市)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,15【答案】D【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.14.(2021·四川眉山市)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( ) A .80,90 B .90,90C .86,90D .90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数. 【详解】解:将这组数据按照从小到大排列:80,86,90,90,94; 位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B .【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·江苏苏州市)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kg B .4.8kgC .4.6kgD .4.5kg【答案】C【分析】根据平均数的定义求解即可. 【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.74.65kg =.故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.16.(2021·浙江台州市)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21s D .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∵顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s<s2,x和x1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.17.(2021·浙江嘉兴市)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33C︒B.众数是33C︒C.平均数是197C7︒D.4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33 位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7︒,故选项C不符合题意;从统计图可看出4日气温为33℃,5日气温为23℃,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.18.(2021·四川成都市)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.19.(2021·浙江宁波市)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20.(2021·四川资阳市)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.二、填空题1.(2021·浙江丽水市)根据第七次全国人口普查,华东,,,,,A B C D E F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.2.(2021·四川乐山市)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x乙=(5+9+6+7+8)÷5=7(环),2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.三、解答题1.(2021·北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:≤<≤<≤<≤<≤≤):x x x x x68,810,1012,1214,1416b .甲城市邮政企业4月份收入的数据在1012x ≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为2p .比较12,p p 的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1m =;(2)12p p <,理由见详解;(3)乙城市邮政企业4月份的总收入为2200百万元.【分析】(1)由题中所给数据可得甲城市的中位数为第13个数据,然后问题可求解;(2)由甲、乙两城市的中位数可直接进行求解;(3)根据乙城市的平均数可直接进行求解.【详解】解:(1)由题意可得m 为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵68x ≤<有3家,810x ≤<有7家,1012x ≤<有8家,∴中位数落在1012x ≤<上,∴10.1m =;(2)由(1)可得:甲城市中位数低于平均数,则1p 最大为12个;乙城市中位数高于平均数,则2p 至少为13个,∴12p p <;(3)由题意得:200112200⨯=(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.【点睛】本题主要考查中位数、平均数及统计与调查,熟练掌握中位数、平均数及统计与调查是解题关键. 2.(2021·江苏南京市)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t ,你对它与中位数的差异有什么看法? (2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)6.6t ;差异看法见解析;(2)1113a ≤<(其中a 为标准用水量,单位:t )【分析】(1)从中位数和平均数的定义和计算公式的角度分析它们的特点即可找出它们差异的原因; (2)从表中找到第75和第76户家庭的用水量,即可得到应制定的用水量标准数据.【详解】解:(1)由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为:6.4 6.8 6.62+=( t ),而这组数据的平均数为9.2t , 它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
2019中考数学限时训练:课时29 统计(有答案)
课时29统计(时间:40分钟满分:60分)评分标准:选择填空每题3分.基础过关1.(2018安顺)要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是() A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生2.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,样本容量是() A.300名B.300C.30名D.303.(2018永州)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45C.45,51 D.52,534.(2018滨州)如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的方差为()A.4 B.3C.2 D.15.(2018郴州)甲、乙两超市在1月至8月间的盈利情况统计图如图1所示,下面结论不正确的是()图1A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市6.如图2所示是根据九年级某班全班同学一周的锻炼情况绘制的条形统计图,下面说法错误的是()图2A.一周锻炼时间为7小时的人数最多B.全班共有50名同学C.全班同学一周锻炼时间的平均数为6.5小时D.一周锻炼时间超过6小时的人占总数的一半7.(2018黔南州)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差s2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是__________.甲乙丙丁x7887s21 1.20.9 1.88.(2018临安区)为了估计池塘里有多少条鱼,从池塘里捕捞了1 000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼__________条.9.(2018南宁)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是__________.10.一家鞋店对上一周某品牌女鞋的销量统计如下:尺码(厘米)2222.52323.52424.525销量(双)1251173 1 该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是__________.11.(8分)(2018宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t <4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图3所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1 200人,试估计每周课外阅读时间满足3≤t<4的人数.图312.(8分)为了了解学生的课外阅读情况,学校学生会对八年级部分学生2018年以来课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了如图4所示的不完整的图表.图4本数(本)频数(人数)频率5 a 0.206180.367140.28880.16合计 b 1(1)统计图表中的a=__________,b=__________;(2)请将频数分布直方图补充完整;(3)求所有被调查的学生2018年以来课外阅读的平均本数;(4)若该校八年级共有600名学生,请你估计该校八年级学生2018年以来课外阅读7本及以上的人数.13.(8分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环保意识,举办了“我参与,我环保”的知识竞赛.从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:7688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100 人数年级初一123 6初二011018 (说明:成绩90分及以上为优秀,80~89分为良好,60~79分为合格,60分以下为不合格) 分析数据:年级平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识的水平较好并说明理由.(至少从两个不同的角度说明推断的合理性)拓展提升1.(2018南京)某排球队6名场上队员的身高(单位:cm.)是:180,184,188,190,192,194.现用一名身高为186 cm.的队员换下场上身高为192 cm.的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大2.小明等五名同学四月份参加某次数学测验的成绩如下:100,100,x,x,80.已知这组数据的中位数和平均数相等,那么整数x的值为__________.参考答案:基础过关 1.B 2.D 3.A 4.A 5.D 6.C 7.丙 8.20 000 9.4 10.众数11.解:(1)由条形图知,等级A 的人数为20人, 由扇形图知,等级A 人数占总调查人数的10%, ∴20÷10%=20×10010=200(人),即本次调查的学生人数为200人. (2)由条形图知,等级C 的人数为60人, ∴等级C 所占的百分比为60200×100%=30%,等级B 所占的百分比为1-10%-30%-45%=15%, 等级B 的人数为200×15%=30(人), 等级D 的人数为200×45%=90(人),等级B 所在扇形的圆心角度数为360°×15%=54°. 补全条形统计图略.(3)∵等级C 所占的百分比为30%,∴全校每周课外阅读时间满足3≤t <4的人数约为1 200×30%=360(人). 12.(1)10,50.【提示】∵被调查的总人数b =18÷0.36=50, ∴a =50×0.2=10.(2)补全频数分布直方图略.(3)所有被调查的学生2018年以来课外阅读的平均本数= 5×10+6×18+7×14+8×850=6.4(本).(4)该校八年级学生2018年以来课外阅读7本和8本的人数约有600×14+850=264(名).13.(1)整理、描述数据的表格中填8,分析数据的表格中依次填89,77. (2)初一年级掌握生态环保知识的水平较好.理由如下:(合理即可)因为两个年级的平均数相差不大,但是初一年级同学的中位数是88.5,众数是89,初二年级同学的中位数是77,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识的水平较好.拓展提升 1. A 2. 60或110。
中考第一轮复习第29讲《数据的分析》专题训练含答案
第29讲数据的分析考纲要求命题趋势1.会求一组数据的平均数、加权平均数、中位数、众数、极差、方差,能理解它们在实际问题中反映的意义,而且会运用样本估计总体的思想方法解决实际应用问题.2.了解样本方差、总体方差的意义.会根据同类问题的两组样本数据的方差比较两组样本数据的波动情况.中考主要考查算术平均数、加权平均数、中位数、众数、极差和方差的计算,结合实际问题来描述一组数据的集中趋势和离散程度.题型以选择题、填空题为主,还常与统计图、概率等知识进行综合考查.知识梳理一、平均数、众数与中位数1.平均数(1)平均数:对于n个数x1,x2,…,x n,我们把1n(x1+x2+…+x n)叫做这组数据的算术平均数,简称__________,记为x.(2)加权平均数:如果有n个数x1,x2,…,x n,x1出现f1次,x2出现f2次,x3出现f3次,…,x k出现f k次(其中f1+f2+…+f k=n),那么x=1n(x1f1+x2f2+…+x k f k)叫做x1,x2,…,x k这k个数的加权平均数,其中f1,f2,…,f k分别叫做x1,x2,…,x k的权,f1+f2+f3+…+f k =n.2.众数在一组数据中,出现次数__________的数叫做这组数据的众数(一组数据的众数有时有几个).3.中位数将一组数据按__________依次排列,把处在__________的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.二、数据的波动1.极差一组数据中__________与__________的差,叫做这组数据的极差.2.方差在一组数据x1,x2,x3,…,x n中,各数据与它们的平均数x的差的__________的平均数叫做这组数据的方差,即s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].3.极差、方差和标准差都可以衡量一组数据的波动大小;方差(或标准差)越大,说明这组数据波动越大.自主测试1.某市5月1日~10日十天的空气污染指数的数据如下(主要污染物为可吸入颗粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别是()A.36,78 B.36,86 C.20,78 D.20,77.32.“恒盛”超市购进一批大米,大米的标准包装为每袋30 kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米重量的平均数和极差分别是()A.0,1.5 B.29.5,1C.30,1.5 D.30.5,03.某校为了选拔学生参加我市无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是s2甲=51、s2乙=12.则甲、乙两选手成绩比较稳定的是__________.考点一、平均数、众数、中位数【例1】某校艺术节演出中,5位评委给某个节目打分如下:9分,9.3分,8.9分,8.7分,9.1分,则该节目的平均得分是__________分.(2)某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了3月份这三种文具盒的销售情况,并绘制统计图如下:文具店3月份3种文具盒销售情况扇形统计图3种文具盒销售情况条形统计图①请把条形统计图补充完整;②小亮认为该商店3月份这三种文具盒总的平均销售价格为13(10+15+20)=15元,你认为小亮的计算方法正确吗?如果不正确,请计算总的平均销售价格.分析:(1)直接利用算术平均数的求法求;(2)该商店3月份这三种文具盒总的平均销售价格是求加权平均数. 解:(1)9 (2)①3种文具盒销售情况条形统计图②不正确,平均销售价格为(10×150+15×360+20×90)÷(150+360+90)=8 700÷600=14.5(元).方法总结 平均数、众数和中位数是以不同角度反映一组数据的集中趋势.众数是一组数据中出现次数最多的,而中位数是一组数据从小到大(或从大到小)排列处于中间位置的一个数或两个数的平均数,平均数则是所有数的和与个数的商,求解时一定要明确其求法.触类旁通1 我市某一周的最高气温统计如下表:最高气温/℃25262728天数112 3则这组数据的中位数与众数分别是()A.27,28 B.27.5,28C.28,27 D.26.5,27考点二、极差与方差【例2】(1)在九年级体育考试中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为()A.2 B.4 C.6 D.8(2)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是s2甲=0.65,s2乙=0.55,s2丙=0.50,s2丁=0.45,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁解析:(1)根据极差的概念求;(2)比较四个人方差的大小.答案:(1)C(2)D方法总结极差和方差都是表示该组数据的波动大小的数据,从统计的角度看,在平均成绩相同的情况下看成绩的稳定性就是比较方差的大小.触类旁通2 一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如图.(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.491.7%16.7%乙组 1.383.3%8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出三条支持乙组学生观点的理由.1.(上海)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.82.(浙江台州)为了解某公司员工的年工资情况,小王随机调查了10名员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20,下列统计量中,能合理反映该公司员工年工资中等水平的是()A.方差 B.众数C.中位数 D.平均数3.(湖南长沙)甲、乙两学生在训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.s2甲<s2乙 B.s2甲>s2乙C.s2甲=s2乙 D.不能确定4.(浙江宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28 B.3,29C.2,27 D.3,285.(浙江义乌)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是________分,众数是________分.6.(四川乐山)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),下图是根据调查结果绘制的两幅不完整的统计图.条形统计图扇形统计图请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了__________名同学;(2)条形统计图中,m=__________,n=__________;(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6 000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?1.北京市今年6月某日部分区县的最高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温/℃32323032303229323032 则这10个区县该日最高气温的众数和中位数分别是()A.32,32 B.32,30 C.30,32 D.32,312.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是()A.平均数 B.极差 C.中位数 D.方差3.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B .甲运动员得分的中位数大于乙运动员得分的中位数C .甲运动员的得分平均数大于乙运动员的得分平均数D .甲运动员的成绩比乙运动员的成绩稳定4.某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:节电量/千瓦时20 30 40 50 户数 10 40 30 20则4月份这100户节电量的平均数、中位数、众数分别是( ) A .35,35,30 B .25,30,20 C .36,35,30 D .36,30,305.一个样本为1,3,2,2,a ,b ,c .已知这个样本的众数为3,平均数为2,那么这个样本的方差为__________.6.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为s 2甲=3.6,s 2乙=15.8,则______种小麦的长势比较整齐.7.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人,投票结果统计如图(1)所示:(1) (2)其次,对三名候选人进行了笔试和面试两项测试,各项成绩如下表所示:测试项目 测试成绩/分 甲 乙 丙笔试 92 90 95 面试85 9580图(2)是某同学根据上表绘制的一个不完整的条形图. 请你根据以上信息解答下列问题: (1)补全图;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?参考答案导学必备知识 自主测试1.A 2.C 3.乙 探究考点方法触类旁通1.A 由统计表可知,温度为25 ℃有1天,温度为26 ℃有1天,温度为27 ℃有2天,温度为28 ℃有3天.触类旁通2.分析:评价成绩的好坏,不能只看某一方面,应多方面考虑. 解:(1)甲组:中位数7;乙组:平均分7,中位数7;(2)(答案不唯一)①乙组学生的平均分高于甲组学生的平均分;②乙组学生的方差低于甲组学生的方差;③乙组学生成绩不低于7分的人数比甲组多.品鉴经典考题1.B 因为这组数据从小到大排列为5,5,5,6,7,8,13,第四个数6为中位数.2.C 因为中位数前面和后面的数据个数相同,所以能合理反映该公司员工年工资中等水平.3.A 根据方差的意义知,射击成绩比较稳定,则方差较小.∵甲的成绩比乙的成绩稳定,∴有s 2甲<s 2乙.故选A.4.B 因为这组数中,最大的数是30,最小的数是27, 所以极差为30-27=3.29出现了3次,出现的次数最多, 所以众数是29.5.90 90 因为观察折线图可知:成绩为90的最多,所以众数为90; 这组学生共10人,中位数是第5,6名的平均分,读图可知第5,6名的成绩都为90,故中位数为90.6.解:(1)200 根据条形图得出文学类人数为70,利用扇形图得出文学类所占百分比为35%,故本次调查中,一共调查了70÷35%=200(人).(2)40 60 根据科普类所占百分比为30%, 则科普类人数为:n =200×30%=60, m =200-70-30-60=40, 故m =40,n =60.(3)72 艺术类读物所在扇形的圆心角是40200×360°=72°. (4)由题意,得6 000×30200=900(册).答:学校购买其他类读物900册比较合理. 研习预测试题1.A 2.C 3.D 4.C5.87 ∵这个样本的众数为3,∴a ,b ,c 中至少有两个为3,设a =b =3,∴1+3×3+2×2+c 7=2,∴c =0.∴s 2=17×[(1-2)2+(3-2)2+(2-2)2+(2-2)2+(3-2)2+(3-2)2+(0-2)2]=87.6.甲7.解:(1)(2)甲的票数:200×34%=68(票),乙的票数:200×30%=60(票),丙的票数:200×28%=56(票).(3)甲的平均成绩:x 1=68×2+92×5+85×32+5+3=85.1,乙的平均成绩:x2=60×2+90×5+95×32+5+3=85.5,丙的平均成绩:x3=56×2+95×5+80×32+5+3=82.7.∵乙的平均成绩最高,∴应该录取乙.。
2020年中考数学考点总动员第29讲 统计(含答案解析)
第29讲统计1.调查方式(1)普查:对对象进行的调全体查叫做全面调查(普查).(2)抽样调查:从被考察的全体对象中抽取部分进行考察的调查方式叫做抽样调查.(3)调查方式的选取:①调查的范围小,调查不具有破坏性,数据要求精确、全面时,选用全面调查;②所调查对象涉及面大、范围广,或受条件限制,或具有破坏性等时,一般采用抽样调查.2.总体、个体、样本及样本容量3.频数与频率频数:对总的数据按一定的组距将其分组,一般我们称落在不同小组中的数据个数为该组的频数.频率:每个小组中的频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的份量,频率之和等于1.4.几种常见的统计图5.数据的代表与波动(1)平均数、中位数、众数(2)方差设一组数据x 1,x 2,…,x n 中,各数据与它们的平均数x 的差的平方分别是(x 1-x)2,(x 2-x)2,…,(x n -x)2.那么我们用它的平均数即s 2=1n [(x 1-x)2+(x 2-x)2+…+(x n -x)2]来衡量一组数据的波动大小,并把它叫做这组数据的方差.方差越大,数据的波动越大,方差越小,数据的波动越小.考点1:调查方式及其数据的收集【例题1】(2019•山东省济宁市 •3分)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率 D .调查济宁市居民日平均用水量 【答案】B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.调查某批次汽车的抗撞击能力,适合抽样调查,故A 选项错误; B.调查某班学生的身高情况,适合全面调查,故B 选项正确; C.调查春节联欢晚会的收视率,适合抽样调查,故C 选项错误; D.调查济宁市居民日平均用水量,适于抽样调查,故D 选项错误. 故选:B .归纳:1.一般来说,对于具有破坏性的、搜集整理及计算数据的工作量大、无法普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选择普查.2.明确总体、个体、样本、样本容量的含义:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.考点2:数据的代表与波动【例题2(2018•四川凉州•3分)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4 C.3,1,2 D.2,1,0.2【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.【解答】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3﹣2)2+3×(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.归纳:平均数、中位数、众数和方差的选择及意义1.均是用来刻画一组数据的平均水平,表示数据的集中趋势.2.平均数:(1)应用平均数时,所有数都参与运用,能充分地利用数据所提供的信息,但当一组数据中存在极大值或极小值时,平均数则不能准确的表示数据的集中情况;(2)求一组数据的平均数时要注意该组数据的平均数是算术平均数还是加权平均数,再选取适当的公式进行求解.3.中位数:(1)结合中位数的求解是按照大小顺序排列的特性,故中位数不会受到极大值或者极小值的影响,但这样使得所有信息不能充分利用;(2)求一组数据的中位数时首先要按照数据的大小顺序进行排列,再注意所求数据的总个数是奇数个还是偶数个.4.众数:(1)很多实际问题中,人们最关心、最重视的是出现次数最多的数即该组数据的众数;(2)一组数据中众数可能不止一个.当一组数据中存在多个数据均是出现次数最多且出现次数相同,则这几个数据均为众数.5.方差:要求比较两组或几组数据的稳定性,通过比较几组数据的方差的大小:方差越小,数据越稳定,数据的波动越小;方差越大,数据越不稳定,数据的波动越大.考点3:统计图的分析【例题3】(2018•江苏盐城•10分)“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【考点】扇形统计图,条形统计图【解析】【解答】解:(1)一共调查家长和学生:80÷20%=400(人)。
20xx年初中中考数学专题训练统计信息问题及标准答案
20xx年初中中考数学专题训练统计信息问题及标准答案20xx-20xx 年中考数学专题训练统计信息问题及答案统计图表在日常生活中的应用十分广泛,能否准确地阅读统计图表,获取有效信息已成为衡量现代合格公民的重要标准之一.新的课程标准也要求同学们形成统计观念,能够利用统计图表提供的信息决策生产和生活,因此,以统计图表为载体的信息应用题已越来越多的出现在中考试卷上.【例题经典】折线统计图与扇形统计图的综合应用.例 1 ( 20xx 年贵阳市)下面两幅统计图,反映了某市甲、 ?乙两所中学学生参加课外活动的情况,请你通过图中信息回答下面的问题.1)通过对图(一)的分析,写出一条你认为正确的结论;2)通过对图(二)的分析,写出一条你认为正确的结论;3) 20xx 年甲、乙两所中学参加科技活动的学生人数共有多少?【解析】本例主要考查学生处理信息的能力,合理利用有用的信息,排除过剩的信息是解决此类问题的关键.1) 1997 年至 20xx 年甲校学生参加课外活动的人数比乙校增长的快. 2)甲校学生参加文体活动的人数比参加科技活动的人数多.3)2000× 38%+1105× 60%=1423扇形统计图和条形统计图的综合应用.例 2 (20xx 年济宁市)某农机公司为更好地服务于麦收工作,按图 1 给出的比例,从甲、乙、丙三个工厂共购买了150 台同种农机, ?公司技术人员对购买的这批农机全部进行了检验,绘制了如图 2 所示的统计图.请你根据图中提供的信息,解答下列问题:1)求该农机公司从丙厂购买农机的台数;2)求该农机公司购买的 150 台农机中优等品的台数;3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?②甲厂20xx 年生产的 360 台产品中的优等品有多少台?【解析】( 1)农机公司从丙厂购买农机:150×( 1-40%-40%) =30(台);2)优等品的台数为: 50+50+26=127(台);3)①∵ 26 51 50 ,∴丙厂的产品质量较好些.306060360× 50②甲厂 20xx 年生产的360 台产品中的优等品数为:=300(台).60【考点精练】1.( 20xx 年湖州市)九年级某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图, ?请结合直方图提供的信息,回答下列问题:1)该班共有 ______名同学参加这次测验;2)在该频数分布直方图中画出频数折线图;3)这次测验成绩的中位数落在 ________分数段内;4)若这次测验中,成绩 80 分以上(不含 80 分)为优秀, ?那么该班这次数学测验的优秀率是多少?2.某班 40 名学生的某次数学测验成绩统计表如下:成绩(分)5060708090100人数(人)2x10y42( 1)若这个班的数学平均成绩是69 分,求 x 和 y的值;( 2)设此班40 名学生成绩的众数为a,中位数为b,求( a-b )2 的值;( 3)根据以上信息,你认为这个班的数学水平怎么样?3.( 20xx 年xx市)现从我市区近期卖出的不同面积的商品房中随机抽取1000 套进行统计,并根据结合绘出如图所示的统计图,请结合图中的信息,解答下列问题:( 1)卖出面积为110-130m 的商品房有 _______套,并在上图中补全统计图;(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的_______%;3)假如你是房地产开发商,根据以上提供的信息, ?你会多建住房面积在什么范围内的住房?为什么?4.射击集训队在一个月的集训中,对甲、乙两名运动员进行了10 次测试,成绩如图.( 1)根据上图所提供的信息填写下表:平均数众数方差甲71.2乙2.2( 2)如果你是教练,会选择哪位运动员参加比赛?请说明理由.5.为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,?每个月对他们的学习水平进行一次测验,如图是两人赛次 5 次测验成绩的折线统计图.( 1)分别求出甲、乙两名学生 5 次测验成绩的平均数及方差.( 2)如果你是他们的辅导教师,应选派哪一名学生参加这次数学竞赛,?请结合所学统计知识说明理由.6.( 20xx 年沈阳市)学校鼓励学生参加社会实践,?小萌所在班级的研究性学习小组在假期对她们所在城市的一家晚报的读者进行了一次问卷调查,?以便了解读者对该种报纸四个版面的喜欢情况.她们调查了男女读者各 500 名, ?要求每个读者选出自己最喜欢的一个版面,并将得到的数据绘制了下面尚未完成的统计图.( 1)请直接将图(1)所示的统计图补充完整;( 2)请分别计算出喜欢各版面的总人数,并根据计算结果利用图( 2)?画出折线统计图;( 3)请你根据上述统计情况,对该报社提出一条合理化建议.7.( 20xx 年伊春市)某校为了了解九年级学生的体能情况, ?抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12 ,乙同学计算出跳绳次数不少于 100 次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17: 15,结合统计图回答下列问题:1)这次共抽调了多少人?2)若跳绳次数不少于 130 人为优秀,则这次测试成绩的优秀率是多少?( 3)如果这次测验成绩的中位数是120 次,那么这次测试中,成绩为120? 次的学生至少有多少人?8.根据北京市统计局公布的2000 年、 20xx 年北京市常住人口相关数据,?绘制统计图表如下:2000 年、 20xx 年北京市常住人口中受教育程序情况统计表(人数单位:万人)年份大学程度人数(指高中程度人数初中程度小学程度其它大专及以上)(含中专)人数人数人数2000 年233 320 475 234 12020xx 年362 372 476 212 114请利用上述统计图表提供的信息回答下列问题:( 1)从 2000 年到 20xx 年北京市常住人口增加了多少万人?( 2) 20xx 年北京市常住人口中,少儿(0~ 14 岁)人口约为多少万人?( 3)请结合 2000 年和 20xx 年北京市常住人口受教育程序的状况,谈谈你的看法.答案 :考点精练1.( 1) 40 ( 2)略( 3)70.5 ~ 80.5( 4)47.5%2.( 1) x=18, y=4( 2) a=60 b=65( a-b )2=25( 3)平均分 69 分,说明 40 名学生人均分及格;众数60 分,说明大部分学生处于刚及格范围,波动较小,两极分化不太严重,总体水平可以.3.解:( 1) 150 如图所示:( 2) 45( 3)由上可知,一般会建住房面积在2范围的住房,90~ 110m2因为面积在90~ 110m 范围的住房较多人需求,易卖出去.4.( 1) 7,6, 82)只要用统计数据对所持观点说明是合理的即可,如选甲运动员参赛 , 理由:? ①从平均分数看,两人平均成绩一样②从方差上看,甲的方差小于乙的方差,甲的成绩比乙稳定,故选甲运动员参赛,或选乙运动员参赛, 理由:① 从众数上看,乙比甲成绩好② 从发展趋势上看,乙比甲潜能最大,故选择乙运动员参赛5.( 1) x 甲= 1 ( 65+80+80+85+90) =80,5S2=1222) =70, x1( 70+90+85+75+80) =80;甲( 15+0+0+5 +10乙=55S乙2=1 ( 102+10 2+5 2+52+0) =505( 2)?①甲最近2 次的成绩不低于乙②甲最近 3 次的成绩直线上升,而乙的成绩有所下降,所以, ?应选甲参加数学竞赛6.解:( 1)如答图2)新闻版:500×30%+500× 32%=310(人) ? 文娱版:500× 10%+500× 30%=200(人)体育版:500× 48%+500× 20%=340(人) ?生活版:500× 12%+500× 18%=150(人)绘制的折线统计图如图所示( 3)积极向上,有意义即可.7.解:( 1)第一组的频率为1-0.96=0.04,第二组的频率为0.12-0.04=0. 08, 12=150(人),这次共抽调了150 人( 2)第一组人数为150×0.04=6 (人),0.08第三,四组人数分别为51 人, 45人,这次测试的优秀率为1506 125145 × 100%=24%.150( 3)成绩为 120? 次的学生至少有7 人8.解:( 1) 1536-1382=154 (万人),故从 2000 年到 20xx?年北京市常住人口增加了154 万人2)1536× 10.2%=156.672 ≈ 157(万人),故 20xx?年到北京市常住人口中,少儿(0~ 14 岁)人口约为157 万人.( 3)例如:依数据可得,2000 年受大学教育的人口比例为16.86%,20xx 年受大学教育的人口比例为 23.57%,可知,受大学教育的人口比例明显增加,教育水平有所提高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习第二十九讲统计【基础知识回顾】1、是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查:是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本【赵老师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取当受条件限制】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
3、众数:在一组数据出现次数的数据,称为该组数据的众数【赵老师提醒:1、平均数:中位数和众数从不同的绝度描述了一组数据的(用法可补立)2、在一组数据中,平均数、中位数都是唯一的,而众数可能,求中位数时一定要先将原数据】三、数据的波动:1、极差:一组数据中与的差,叫做这组数据的极差2、方差:几个数据x1 ,x2 ,x3 …xn的平均数为x,则这组数据的方差s 2=3、标准差:方差的【赵老师提醒:极差、方差、标准差都是反应一组数据大小的,其值越大,说明这组数据波动】四、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【赵老师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角= 3600X2、频数分布直方圆中每个长方形的高时就有小长方形高的和为】【典型例题解析】考点二:平均数、众数、中位数例2(武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.22,25 B.22,24 C.23,24 D.23,25考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:将图表中的数据按从小到大排列:20,22,22,22,23,24,25,26,27,27,30,其中数据22出现了三次,出现的次数最多,为众数;24处在第6位,为中位数.所以这组数据的众数是22,中位数是24.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这些概念掌握不清楚而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.对应训练A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,4考点:众数;中位数.分析:根据中位数的定义与众数的定义,结合图表信息解答.解答:解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.65,共有4人,所以,众数是1.65.因此,中位数与众数分别是1.70,1.65.故选C.点评:本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.对应训练4.(宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28 B.3,29 C.2,27 D.3,28考点:极差;众数.专题:常规题型.分析:根据极差的定义,找出这组数的最大数与最小数,相减即可求出极差;根据众数的定义,找出这组数中出现次数最多的数即可.解答:解:这组数中,最大的数是30,最小的数是27,考点四:统计图表的综合运用例6 (镇江)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.点评:本题考查学生的读图能力以及频率、频数的计算.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.对应训练6.(湛江)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A、B两种态度的人数即可得到C态度的人数;(3)用家长总数乘以持反对态度的百分比即可.解答:解:(1)调查家长总数为:50÷25%=200人;(2)持赞成态度的学生家长有200-50-120=30人,故统计图为:(3)持反对态度的家长有:80000×60%=48000人.点评:本题考查了用样本估计总体和扇形统计图的知识,解题的关键是从两种统计图中整理出有关信息.7.(盐城)第三十届夏季奥林匹克运动会将于2012年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运会火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收度数与360°的比.【聚焦山东中考】1.(滨州)以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.鞋厂检查生产的鞋底能承受的弯折次数C.学校招聘教师,对应聘人员面试A.130m B.135m C.6.5m D.260m考点:用样本估计总体;加权平均数.分析:先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.解答:解:20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.3×6+04×7+0.5×1)÷20=0.325(m3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),故选A.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.3.(威海)某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下,-10,+5,0,+5,00,-5,0,+5,+10.则这10听罐头质量的平均数及众数为()A.454,454 B.455,454 C.454,459 D.455,0考点:众数;算术平均数.分析:首先求得-10,+5,0,+5,0,0,-5,0,+5,+10这10个数的平均数以及众数,然后分别加上454克,即可求解.10.(烟台)某市园林处去年植树节在滨海路两侧栽了A,B,C三个品种的树苗.栽种的A,B,C三个品种树苗数量的扇形统计图如图(1),其中B种树苗数量对应的扇形圆心角为120°.今年植树节前管理员调查了这三个品种树苗的成活率情况,准备今年从三个品种中选成活率最高的品种再进行栽种.经调查得知:A品种的成活率为85%,三个品种的总成活率为89%,但三个品种树苗成活数量统计图尚不完整,如图(2).分)100%=93%12.(菏泽)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:(1)二等奖所占的比例是多少?(2)这次数学知识竞赛获得二等奖的人数是多少?(3)请将条形统计图补充完整;(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)用单位1减去其他各组的所占的百分比即可;(2)先求得总人数,然后乘以其所占的百分比即可;(3)小长方形的高等于该组的频数;(4)一等奖的人数除以总人数即可得到抽到一等奖的概率.解答:解:(1)由1-10%-24%-46%=20%,所以二等奖所占的比例为20%(2)参赛的总人数为:20÷10%=200人,这次数学知识竞赛获得二等奖的人数是:200×20%=40人;(3)整;(2)用总人数乘以视力在4.9以上(含4.9)的人数的频率,即可求出答案.解答:解:(1)这次调查的人数是:15÷0.05=300(人),所以a=300×0.25=75,b=60÷300=0.2,因为a=75,所以4.9~5.1的人数是75,如图:(2)根据题意得:5600×(0.25+0.2)=2520(人).答:该县初中毕业生视力正常的学生有2520人.点评:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【备考真题过关】一、选择题1.(重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、数量较大,普查的意义或价值不大时,应选择抽样调查;B、数量较大,具有破坏性的调查,应选择抽样调查;C、事关重大的调查往往选用普查;D、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(衢州)下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式B.了解衢州市每天的流动人口数,采用抽查方式C.了解衢州市居民日平均用水量,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式考点:全面调查与抽样调查.分析:根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案.解答:解:A.日光灯管厂要检测一批灯管的使用寿命,应采用抽样调查方式,故此选项错误;B.了解衢州市每天的流动人口数,采用抽查方式;故此选项正确;C.了解衢州市居民日平均用水量,应采用抽样调查方式;故此选项错误;D.旅客上飞机前的安检,应采用全面调查方式;故此选项错误.故选:B.点评:此题主要考查了全面调查与抽样调查的特点,用到的知识点为:破坏性较强的,涉及人数较多的调查要采用抽样调查.3.(南宁)下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③考点:全面调查与抽样调查.分析:本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.解答:解:①调查一批灯泡的使用寿命,适合抽样调查;②调查全班同学的身高,适合全面调查;③调查市场上某种食品的色素含量是否符合国家标准,适合抽样调查;④企业招聘,对应聘人员进行面试,适合全面调查;故选B.点评:本题主要考查了全面调查和抽样调查,在解题时选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是本题的关键.4.(攀枝花)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩考点:总体、个体、样本、样本容量.分析:根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解答:解:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩,故选C.点评:此题主要考查了样本确定方法,根据样本定义得出答案是解决问题的关键.5.(梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对考点:总体、个体、样本、样本容量.专题:计算题.分析:根据总体、个体、样本、样本容量的定义进行解答.解答:解:∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体.故选B.点评:本题考查了总体、个体、样本、样本容量的定义,是基础题.A.4小时B.4.5小时C.5小时D.5.5小时考点:中位数.分析:中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数是的平均数即为中位数.解答:解:由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.点评:本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.A.15.5 B.16 C.16.5 D.17考点:中位数.专题:常规题型.分析:根据中位数的定义,把13名同学按照年龄从小到大的顺序排列,找出第7名同学的年龄就是这个队队员年龄的中位数.解答:解:根据图表,第7名同学的年龄是16岁,所以,这个队队员年龄的中位数是16.故选B.点评:本题考查了中位数的定义,给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.8. (肇庆)某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人9. (张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()A.20000元B.12500元C.15500元D.17500元考点:扇形统计图.分析:因为某农户一年的总收入为50000元,利用扇形图可知该农户的经济作物收入占35%,所以该农户的经济作物收入的钱数为:总收入×经济作物收入所占的百分比,求出得数即为结果.解答:解:∵某农户一年的总收入为50000元,利用扇形图可知该农户的经济作物收入占35%,∴50000×35%=17500(元).故选:D.点评:本题考查了扇形统计图,扇形统计图表现部分占整体的百分比,根据总收入×经济作物收入所占的百分比可求出解是解题关键.10.(襄阳)为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50% B.55% C.60% D.65%间的人数有()A.12 B.48 C.72 D.96A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米考点:算术平均数;中位数;众数.分析:根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可.解答:解:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.点评:此题考查了算术平均数、中位数、众数,解答此题不是直接求平均数、中位数、众数,而是利用平均数、中位数、众数的概念进行综合分析,平均数受极值的影响较大,而中位数14.(珠海)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为 2S 甲=8.5,2S 乙=2.5,2S 丙=10.1,2S 丁=7.4.二月份白菜价格最稳定的市场是( )A .甲B .乙C .丙D .丁 考点:方差.分析:据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案. 解答:解:因为甲、乙、丙、丁四个市场的方差分别为2S 甲=8.5,2S 乙=2.5,2S 丙=10.1,2S 丁=7.4,乙的方差最小,所以二月份白菜价格最稳定的市场是乙. 故选B .点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 15.(恩施州)希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%16.(杭州)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万考点:条形统计图.分析:根据条形统计图可以看出每个区的人口数,根据每个区的人口数进行判断,可选出答案.解答:解:A、只有上城区人口数都低于40万,故此选项错误;B、萧山区、余杭区两个区的人口超过100万,故此选项错误;C、上城区与下城区的人口数之和低于江干区的人口数,故此选项错误;D、杭州市区的人口数已超过600万,故此选项正确;故选:D.点评:此题主要考查了条形统计图,关键是从图中获取正确信息,从条形统计图中很容易看出数据的大小,便于比较.17.(徐州)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,16考点:众数;中位数.分析:根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.解答:解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是8,那么由中位数的定义可知,这组数据的中位数是8.故选D.点评:本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.点评:此题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19. (温州)小林家今年1-5月份的用电量情况如图所示.由图可知,相邻两个月中,用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月考点:折线统计图.专题:图表型.分析:根据折线图的数据,分别求出相邻两个月的用电量的变化值,比较即可得解.解答:解:1月至2月,125-110=15千瓦时,2月至3月,125-95=30千瓦时,3月至4月,100-95=5千瓦时,4月至5月,100-90=10千瓦时,所以,相邻两个月中,用电量变化最大的是2月至3月.故选B.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的用电变化量是解题的关键.20. (白银)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨考点:折线统计图;算术平均数.分析:从图中得到6天用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.解答:解:这6天的平均用水量:(8+12+10+15+6+9)÷6=10吨,故选:A.点评:此题主要考查了折线图的应用以及平均数求法,要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法是解题关键.二、填空题23.(白银)某学校为了了解学生课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图所示的统计图.若该校共有1200名学生,则估计该校喜欢“踢毽子”的学生有人.。