高中数学《直线与平面垂直,平面与平面垂直的性质》学案 新人教A版必修2

合集下载

高中数学 2.3.1 直线与平面垂直的判定与性质导学案 新人教A版必修2

高中数学 2.3.1 直线与平面垂直的判定与性质导学案 新人教A版必修2
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获.幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。幸福是“零落成泥碾作尘,只有香如故”的圣洁。幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。幸福是“人生自古谁无死,留取丹心照汗青”的气节。
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
A.平面 必平行于 B.平面 必垂直于
C.平面 必与 相交D.存在 的一条中位线平行于 或在 内
6.已知平面 和平面 相交, 是 内一条直线,则有(B).
A.在 内必存在与 平行的直线B.在 内必存在与 垂直的直线
C.在 内不存在与 平行的直线D.在 内不一定存在与 垂直的直线
7.若平面 ∥平面 ,直线 ,则 与 _垂直_.
【例题讲解】
例1判断下列命题是否正确,并说明理由.
⑴两条平行线中的一条垂直于某条直线,则另一条也垂直于这条直线; (√)
⑵两条平行线中的一条垂直于某个平面,则另一条也垂直于这个平面;(√)
⑶两个平行平面中的一个垂直于某个平面,则另一个也垂直与这个平面;(√)

高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2

高中数学 2.3.1直线与平面垂直的判定全册精品教案 新人教A版必修2

第一课时直线与平面垂直的判定(一)教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理;(2)直线和平面所成的角.难点:直线与平面垂直判定定理的探究.关系如何,依据是什么?(图)生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无数条直线?学生找一反例说明.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面α垂直?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂直的判定定理中的“两条相交直线”改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面α垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.典例剖析例 1 如图,已知a∥b,a⊥α,求证:b⊥α.证明:在平面α内作两条相交直线m、n.因为直线a⊥α,根据直线师:要证b⊥α,需证b与α内任意一条直线的垂直,又a∥b,问题转化为a与面α内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明巩固所知识培养学生转化化归能力、书写表达能力.与平面垂直的定义知 a ⊥m ,a ⊥n .又因为b ∥a , 所以b ⊥m ,b ⊥n . 又因为,m n αα⊂⊂,m 、n 是两条相交直线,b ⊥α.过程.……师:此结论可以直接利用,判定直线和平面垂直.探索新知二、直线和平面所成的角 如图,一条直线PA 和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A 叫做斜足.过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.典例剖析 例2 如图,在正方体ABCD – A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.分析:找出直线A 1B 在平面A 1B 1CD 内的射影,就可以求出A 1B 和平面A 1B 1CD 所成的角.解:连结BC 1交B 1C 于点O ,连结A 1O .师:此题A 1是斜足,要求直线A 1B 与平面A 1B 1CD 所成的角,关键在于过B 点作出(找到,面A 1B 1CD 的垂线,作出(找到)了面A 1B 1CD 的垂线,直线A 1B 在平面A 1B 1CD 内的射影就知道了,怎样过B 作平面A 1B 1CD的垂线呢?生:连结BC 1即可. 师:能证明吗? 学生分析,教师板书,共点拔关键点,突破难点,示范书写及解题步骤.设正方体的棱长为a ,因为A 1B 1⊥B 1C 1, A 1B 1⊥B 1B ,所以A 1B 1⊥平面BCC 1B 1.所以A 1B 1⊥BC 1.又因为BC 1⊥B 1C ,所以B 1C ⊥平面A 1B 1CD .所以A 1O 为斜线A 1B 在平面A 1B 1CD 内的射影,∠BA 1O 为A 1B与平面A 1B 1CD 所成的角.在Rt △A 1BO 中,12A B a =,22BO a =, 所以112BO A B =, ∠BA 1O = 30°因此,直线A 1B 和平面A 1B 1CD 所成的角为30°.同完成求解过程.随堂练习1.如图,在三棱锥V –ABC 中,VA = VC ,AB = BC ,求证:VB ⊥AC .2.过△ABC 所在平面α外一点P ,作PO ⊥α,垂足为O ,连接PA ,PB ,PC .(1)若PA = PB = PC ,∠C =90°,则点O 是AB 边的 心.(2)若PA = PB =PC ,则点O 是△ABC 的 心.(3)若P A ⊥PB ,PB ⊥PC ,PB ⊥P A ,则点O 是△ABC 的 .心.3.两条直线和一个平面所学生独立完成 答案: 1.略2.(1)AB 边的中点;(2)点O 是△ABC 的外心;(3)点O 是△ABC 的垂心.3.不一定平行. 4.AC ⊥BD .巩固所学知识成的角相等,这两条直线一定平行吗?4.如图,直四棱柱A ′B ′C ′D ′ – ABCD (侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD 满足什么条件时,A ′C ⊥B ′D ′?归纳总结 1.直线和平面垂直的定义判定2.直线和平面所成的角定义与解答步骤、完善.3.线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结的习惯和能力.课后作业2.7 第一课时 习案学生独立完成强化知识 提升能力备选例题例1 如图,在空间四边形ABCD 中,AB = AD ,CB = CD ,M 为BD 中点,作AO ⊥MC ,交MC 于O .求证:AO ⊥平面BCD .【解析】连结AM∵AB = AD ,CB = CD ,M 为BD 中点. ∴BD ⊥AM ,BD ⊥CM .又AM ∩CM = M ,∴BD ⊥平面ACM . ∵AO 平面ACM ,∴BD ⊥AO .又MC ⊥AO ,BD ∩MC = M ,∴AO ⊥平面貌BCD . 【评析】本题为了证明AO ⊥平面BCD ,先证明≠了平面BCD 内的直线垂直于AO 所在的平面.这一方法具有典型性,即为了证明线与面的垂直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直.这样互相转化,螺旋式往复,最终使问题得到解决.例2 已知棱长为1的正方体ABCD – A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.【解析】取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连AO . 由已知正方体,易知EO ⊥ABC 1D 1,所以∠EAO 为所求. 在Rt △EOA 中,11122EO EF AD ===,AE =,sin ∠EAO = EO AE=.所以直线AE 与平面ABC 1D 1【评析】求直线和平面所成角的步骤: (1)作——作出斜线和平面所成的角;(2)证——证明所作或找到的角就是所求的角;(3)求——常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角形)(4)答.。

2.3.3直线与平面2.3.4平面与平面垂直的性质(1)学案(含解析)新人教A版必修2

2.3.3直线与平面2.3.4平面与平面垂直的性质(1)学案(含解析)新人教A版必修2

2.3.3 & 2.3.4 直线与平面、平面与平面垂直的性质第一课时 直线与平面、平面与平面垂直的性质[提出问题]世界上的高楼大厦太多了:中国上海中心大厦632米,天津高银117大厦621米,位于深圳的平安国际金融大厦600米(如右图).问题1:上海中心大厦外墙的每列玻璃形成的直线与地面有何位置关系?提示:垂直.问题2:每列玻璃形成的直线是什么位置关系? 提示:平行. [导入新知]直线与平面垂直的性质定理(1)文字语言:垂直于同一个平面的两条直线平行. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b .(4)作用:①线面垂直⇒线线平行; ②作平行线. [化解疑难]对于线面垂直的性质定理的理解(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.[提出问题]教室内的黑板所在的平面与地面所在的平面垂直.问题1:在黑板上任意画一条线与地面垂直吗? 提示:不一定,也可能平行、相交(不垂直). 问题2:怎样画才能保证所画直线与地面垂直? 提示:只要保证所画的线与两面的交线垂直即可. [导入新知]平面与平面垂直的性质定理 (1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (2)图形语言:(3)符号语言:⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂αa ⊥l⇒a ⊥β.(4)作用:①面面垂直⇒线面垂直; ②作面的垂线. [化解疑难]对面面垂直的性质定理的理解 (1)定理成立的条件有三个: ①两个平面互相垂直; ②直线在其中一个平面内; ③直线与两平面的交线垂直.(2)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直. (3)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.[例1] 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE .[解] 证明:取CE 的中点G ,连接FG ,BG ,AF .∵F 为CD 的中点,∴GF ∥DE , 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE .则GF ∥AB . 又∵AB =12DE ,∴GF =AB .则四边形GFAB 为平行四边形.于是AF ∥BG . ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF .又∵CD ∩DE =D ,CD ,DE ⊂平面CDE ,∴AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE . [类题通法]1.此类问题是证明两个平面垂直比较难的问题,证明时要综合题目中的条件,利用条件和已知定理来证,或从结论出发逆推分析.2.若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行, 可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.[活学活用]如图,在四棱锥P ­ABCD 中,底面ABCD 为菱形,PB ⊥平面ABCD .(1)若AC =6,BD =8,PB =3,求三棱锥A ­PBC 的体积; (2)若点E 是DP 的中点,证明:BD ⊥平面ACE . 解:(1)∵四边形ABCD 为菱形, ∴BD 与AC 相互垂直平分,∴底面ABCD 的面积S 菱形ABCD =12×6×8=24,∴S △ABC =12S 菱形ABCD =12.又PB ⊥平面ABCD ,且PB =3,∴三棱锥A ­PBC 的体积V A ­PBC =V P ­ABC =13×PB ×S △ABC =12.(2)证明:如图,设BD 与AC 相交于点O ,连接OE ,∵O 为BD 的中点,E 是DP 的中点,∴OE ∥PB . 又PB ⊥平面ABCD ,∴OE ⊥平面ABCD . ∵BD ⊂平面ABCD ,∴OE ⊥BD , 由(1)知AC ⊥BD ,又AC ∩OE =O , ∴BD ⊥平面ACE .[例2] 如图所示,P 是四边形ABCD 所在平面外的一点,四边形ABCD 是∠DAB =60°,且边长为a 的菱形.侧面PAD 为正三角形,其所在平面垂直于底面ABCD .(1)若G 为AD 边的中点,求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB .[解] 证明:(1)连接PG ,由题知△PAD 为正三角形,G 是AD 的中点,则PG ⊥AD . 又∵平面PAD ⊥平面ABCD ,PG ⊂平面PAD ,∴PG ⊥平面ABCD . ∵BG ⊂平面ABCD , ∴PG ⊥BG .又∵四边形ABCD 是菱形, 且∠DAB =60°, ∴△ABD 是正三角形. 则BG ⊥AD .又∵AD ∩PG =G ,且AD ,PG ⊂平面PAD , ∴BG ⊥平面PAD .(2)由(1)可知BG ⊥AD ,PG ⊥AD .又∵BG ,PG 为平面PBG 内两条相交直线, ∴AD ⊥平面PBG .∵PB⊂平面PBG,∴AD⊥PB.[类题通法]证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理,本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.[活学活用]如图,菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF 的中点.(1)求证:平面AHC⊥平面BCE;(2)求此几何体的体积.解:(1)证明:连接AE,在菱形ABEF中,因为∠ABE=60°,所以△AEF是等边三角形.又因为H是线段EF的中点,所以AH⊥EF,所以AH⊥AB.因为平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,所以AH⊥平面ABCD,所以AH⊥BC.在直角梯形ABCD中,AB=2AD=2CD=4,∠BAD=∠CDA=90°,得到AC=BC=22,从而AC2+BC2=AB2,所以AC⊥BC.又AH∩AC=A,所以BC⊥平面AHC.又BC⊂平面BCE,所以平面AHC⊥平面BCE.(2)连接FC,因为V=V E­ACB+V F­ADC+V C­AEF,又易得S△ACB=4,S△ADC=2,S△AEF=43,所以V=V E­ACB+V F­ADC+V C­AEF=13(23×4+23×2+2×43)=2033.[例3] 已知:如图,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.[解] 证明:(1)在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G.∵平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.∵PA⊂平面PAC,∴DF⊥PA.同理可证,DG⊥PA.∵DG∩DF=D,∴PA⊥平面ABC.(2)连接BE并延长交PC于点H.∵E是△PBC的垂心,∴PC⊥BH.又∵AE是平面PBC的垂线,∴PC⊥AE.∵BH∩AE=E,∴PC⊥平面ABE,∴PC⊥AB.又∵PA⊥平面ABC,∴PA⊥AB.∵PA∩PC=P,∴AB⊥平面PAC.∴AB⊥AC,即△ABC是直角三角形.[类题通法]线线、线面、面面垂直关系的综合应用主要体现了转化思想.证明线面垂直常转化为线线垂直,证明面面垂直常转化为线面垂直.[活学活用]如图,在三棱锥P­ABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB;(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.证明:(1)∵E,F分别为AC,BC的中点,∴EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(2)∵PA=PC,E为AC的中点,∴PE⊥AC.又∵平面PAC⊥平面ABC,∴PE⊥平面ABC,∴PE⊥BC.又∵F为BC的中点,∴EF∥AB.∵∠ABC=90°,∴BC⊥EF.∵EF∩PE=E,∴BC⊥平面PEF.又∵BC⊂平面PBC,∴平面PBC⊥平面PEF.5.垂直性质定理应用的误区[典例] 已知两个平面垂直,有下列命题:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数是( )A.3 B.2C.1 D.0[解析] 如图,在正方体ABCD­A1B1C1D1中,对于①AD1⊂平面AA1D1D,BD⊂平面ABCD,AD1与BD是异面直线,所成角为60°,①错误;②正确.对于③,AD1⊂平面AA1D1D,AD1不垂直于平面ABCD;对于④,过平面AA1D1D内点D1作D1C.∵AD⊥平面D1DCC1,D1C⊂平面D1DCC1,∴AD⊥D1C.但D1C不垂直于平面ABCD,④错误.[答案] C[易错防范]对于④,很容易认为是正确的,其实与面面垂直的性质定理是不同的,“一个平面内垂直于交线的直线与另一个平面垂直”与“过一个平面内任意一点作交线的垂线,此垂线与另一个平面垂直”是不同的,关键是过点作的直线不一定在已知平面内.[成功破障]如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么( )A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ答案:A[随堂即时演练]1.下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案:D2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是( )A.若m⊂α,n⊂β,m∥n,则α∥βB.若n⊥α,n⊥β,m⊥β,则m⊥αC.若m∥α,n∥β,m⊥n,则α⊥βD.若α⊥β,n⊥β,m⊥n,则m⊥α答案:B3.若a,b表示直线(不重合),α表示平面,有下列说法:①a⊥α,b∥α⇒a⊥b;②a ⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.其中正确的是________(填序号).答案:①④4.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.答案:平行5.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1,求证:CF⊥平面BDE.证明:如图,设AC∩BD=G,连接EG,FG.由AB=2易知CG=1,则EF=CG=CE.又EF∥CG,所以四边形CEFG为菱形,所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF,所以BD⊥CF.又BD∩EG=G,所以CF⊥平面BDE.[课时达标检测]一、选择题1.若l,m,n表示不重合的直线,α表示平面,则下列说法中正确的个数为( )①l∥m,m∥n,l⊥α⇒n⊥α;②l∥m,m⊥α,n⊥α⇒l∥n;③m⊥α,n⊂α⇒m⊥n.A.1 B.2C.3 D.0答案:C2.如果直线a与平面α不垂直,那么平面α内与直线a垂直的直线有( )A.0条B.1条C.无数条D.任意条答案:C3.(浙江高考)设l是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β答案:B4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β答案:D5.如图,线段AB的两端在直二面角α­l­β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是( )A.30° B.45°C.60° D.75°答案:B二、填空题6.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB,则直线a与直线l的位置关系是________.答案:平行7.如图,四面体P­ABC中,PA=PB=13,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.答案:78.如图,已知六棱锥P­ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有______(把所有正确的序号都填上).答案:①④三、解答题9.如图,三棱锥P­ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.证明:∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊥AC,∴PA⊥平面ABC.又BC ⊂平面ABC,∴PA⊥BC.又∵AB⊥BC,AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,∴BC⊥平面PAB.又BC⊂平面PBC,∴平面PAB⊥平面PBC.10.如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明:(1)在四棱锥P­ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.- 11 -。

人教A版高中数学必修二直线与平面垂直,平面与平面垂直的性质学案

人教A版高中数学必修二直线与平面垂直,平面与平面垂直的性质学案

数学必修2编号_18时间___________ 班级___ 组别___ 姓名________编制人:审核人:下科行政:【学习目标】(1)掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.自主学习案【知识梳理】1、直线与平面垂直的性质定理:符号表示:2、平面与平面垂直的性质定理: 。

符号表示:【预习自测】1.判断下列命题是否正确,正确的在括号内画“√”错误的画“×”.a.垂直于同一条直线的两个平面互相平行. ()b.垂直于同一个平面的两条直线互相平行. ()c.一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直. ()2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系是 .3.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一平面内的任意一条直线.②一个平面内的已知直线必垂直于另一个平面的无数条直线.③一个平面内的任意一条直线必垂直于另一个平面.④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数是() A.3 B.2 C.1 D.0【合作探究】例1.如图4,AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在平面,D、E分别是VA、VC的中点,直线 DE与平面VBC有什么关系?试说明理由.例2.S为三角形ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC。

求证:AB ⊥BC 。

例3.在几何体ABCDE 中,∠BAC=2,DC ⊥平面ABC ,EB ⊥平面ABC ,F 是BC 的中点,AB=AC=BE=2,CD=1(Ⅰ)求证:DC ∥平面ABE ; (Ⅱ)求证:AF ⊥平面BCDE ;(Ⅲ)求证:平面AFD ⊥平面AFE .例4 .如图, 四边形ABCD 中, AD ∥BC, AD=AB=2, ∠BCD=45°, ∠BAD=90°. 将△ADB 沿BD 折起, 使ABD ⊥平面BCD, 构成三棱锥A-BCD. 则在三棱锥A-BCD 中。

高中数学必修二(2.3.3直线与平面垂直的性质)示范教案新人教A版必修2

高中数学必修二(2.3.3直线与平面垂直的性质)示范教案新人教A版必修2

△POB、△ POC中, ∵PO=PO=P,O AO=BO=C,O∠ POA=∠POB=∠POC, ∴△ POA≌△ POB≌△ POC. ∴PA=PB=PC取. AB 的中点 D, 连接 OD、 PD,则 OD⊥AB,PD⊥AB. ∵PD∩OD=D∴, AB⊥平面 POD. ∵PO 平面 POD∴, PO⊥AB. 同理 , 可证 PO⊥BC. ∵AB α , BC α ,AB∩BC=B,∴PO⊥ α ,即 l ⊥ α . 若 l 不经过点 O时,可经过点 O作 l ′∥ l. 用上述方法证明 ∴l ⊥ α. 知能训练 如图 10,已知正方体 ABCD—A1 B1C1D1 的棱长为 a, (1)求证: BD1⊥平面 B1AC; (2)求 B到平面 B1AC的距离 .
. 它的定义是以否定形式给
出的,其证明方法多用反证法 .
②如图 3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面
.
图3
③如图 4,长方体 ABCD—A′B′C′D′中,棱 AA′、 BB′、 CC′、 DD′所在直线都垂直于 所在的平面 ABCD,它们之间具有什么位置关系?
图4
图5
EA , EB
证明:
l
l EA l EB
又∵a α ,EA⊥ α , ∴a⊥EA. 又∵ a⊥AB,∴a⊥平面 EAB.
图7 l ⊥平面 EAB.
∴a∥l.
例 1 如图 8, 已知直线 a⊥b,b⊥ α , a 求证: a∥ α .
思路 2 α.
图8 证明: 在直线 a 上取一点 A,过 A 作 b′∥ b,则 b′必与 α 相交,设交点为 B,过相交直线 a、b′作平面 β ,设 α ∩ β=a′, ∵b′∥ b,a⊥b, ∴a⊥b′. ∵b⊥ α ,b′∥ b, ∴b′⊥ α . 又∵ a′ α, ∴b′⊥ a′. 由 a,b′, a′都在平面 β 内,且 b′⊥ a,b′⊥ a′知 a∥a′. ∴a∥ α . 例 2 如图 9,已知 PA⊥矩形 ABCD所在平面, M、N 分别是 AB、 PC的中点 . (1)求证: MN⊥CD; (2)若∠ PDA=45°,求证 :MN⊥面 PCD.

高中数学 2.3直线、平面垂直的判定及其性质教学设计 新人教A版必修2

高中数学 2.3直线、平面垂直的判定及其性质教学设计 新人教A版必修2

2015高中数学 2.3直线、平面垂直的判定及其性质教学设计新人教A版必修2(一)、观察归纳直线与平面垂直的定义1、直观感知问题1:请同学们观察图片,说出旗杆与地面、大桥桥柱与水面是什么位置关系?你能举出一些类似的例子吗?设计意图:从实际背景出发,直观感知直线和平面垂直的位置关系,从而建立初步印象,为下一步的数学抽象做准备。

师生活动:观察图片,引导学生举出更多直线与平面垂直的例子,如教室内直立的墙角线和地面的位置关系,直立书的书脊与桌面的位置关系等,由此引出课题。

2、观察归纳思考1:直线和平面垂直的意义是什么?我们已经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系,直线和平面垂直的问题同样可以转化为考察直线和平面内直线的关系。

问题2:(1)如图1,在阳光下观察直立于地面旗杆AB及它在地面的影子BC,旗杆所在的直线与影子所在直线的位置关系是什么?(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B′C′的位置关系又是什么?由此可以得到什么结论?设计意图:引导学生用“平面化”与“降维”的思想来思考问题,通过观察思考,感知直线与平面垂直的本质内涵。

师生活动:学生思考作答, 教师用多媒体课件演示旗杆在地面上的影子随着时间的变化而移动的过程,再引导学生根据异面直线所成角的概念得出旗杆所在直线与地面内的任意一条直线都垂直。

问题3:如图2,AC、AD是用来固定旗杆AB的铁链,它们与地面内任意一条直线都垂直吗?设计意图:通过反面剖析,进一步感悟直线与平面垂直的本质。

师生活动:引导学生将三角板直立于桌面上,用一直角边作旗杆AB,斜边作为铁链AC,观察桌面上的直线(用笔表示)是否与AC垂直,由此否定上述结论。

问题4、通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?设计意图:让学生归纳、概括出直线与平面垂直的定义。

师生活动:学生回答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,同时给出直线与平面垂直的记法与画法。

高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2

高中数学 2.3.1直线与平面垂直的判定教案 新人教A版必修2

高中数学 2.3.1直线与平面垂直的判定教案新人教A版必修2(一)教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理;(2)直线和平面所成的角.难点:直线与平面垂直判定定理的探究.[教学过程教学内容师生互动设计意图新课导入问题:直线和平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、直线和平面垂直的定义、画法如果直线l与平面α内的任意一条直线都垂直,我们说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图.师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?生:旗杆与地面内任意一条经B的直线垂直.师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无数条直线?学生找一反例说明.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面α垂直?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂直的判定定理中的“两条相交直线”改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面α垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.典例剖析]例 1 如图,已知a∥b,a⊥α,求证:b⊥α.证明:在平面α内作两条相交直线m、n.因为直线a⊥α,根据直线与平面垂直的定义知a⊥m,a⊥n.又因为b∥a,所以b⊥m,b⊥n.又因为,m nαα⊂⊂,m、n是两条相交直线,b⊥α.师:要证b⊥α,需证b与α内任意一条直线的垂直,又a∥b,问题转化为a与面α内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明过程.……师:此结论可以直接利用,判定直线和平面垂直.巩固所知识培养学生转化化归能力、书写表达能力.探索新知二、直线和平面所成的角如图,一条直线PA和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A叫做斜足.过斜线上斜足以外的一点向平面引垂线教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.PO ,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.典例剖析例2 如图,在正方体ABCD–A1B1C1D1中,求A1B和平面A1B1CD所成的角.分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角解:连结BC1交B1C于点O,连结A1O.设正方体的棱长为a,因为A1B1⊥B1C1,A1B1⊥B1B,所以A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又因为BC1⊥B1C,所以B1C⊥平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,∠BA1O为A1B与平面A1B1CD所成的角.在Rt△A1BO中,12A B a=,22BO a=,所以112BO A B=,∠BA1O = 30°因此,直线A1B和平面A1B1CD所成的角为30°.师:此题A1是斜足,要求直线A1B与平面A1B1CD所成的角,关键在于过B点作出(找到,面A1B1CD的垂线,作出(找到)了面A1B1CD的垂线,直线A1B在平面A1B1CD内的射影就知道了,怎样过B作平面A1B1CD的垂线呢?生:连结BC1即可.师:能证明吗?学生分析,教师板书,共同完成求解过程.点拔关键点,突破难点,示范书写及解题步骤.随堂练习1.如图,在三棱锥V–ABC中,VA = VC,AB = BC,求证:VB⊥AC.学生独立完成答案:1.略2.(1)AB边的中点;(2)点O是△ABC的外心;(3)点O是△ABC的垂心.巩固所学知识2.过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC.(1)若PA= PB= PC,∠C=90°,则点O是AB边的心.(2)若PA = PB =PC,则点O是△ABC的心.(3)若P A⊥PB,PB⊥PC,PB⊥P A,则点O是△ABC的.心.3.两条直线和一个平面所成的角相等,这两条直线一定平行吗?4.如图,直四棱柱A′B′C′D′–ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A′C⊥B′D′?3.不一定平行.4.AC⊥BD.归纳总结1.直线和平面垂直的定义判定2.直线和平面所成的角定义与解答步骤、完善.3.线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结的习惯和能力.课后作业 2.7 第一课时习案学生独立完成强化知识提升能力例1 如图,在空间四边形ABCD中,AB = AD,CB = CD,M为BD中点,作AO⊥MC,交MC于O.求证:AO⊥平面BCD.【解析】连结AM∵AB = AD,CB = CD,M为BD中点.∴BD ⊥AM ,BD ⊥CM .又AM ∩CM = M ,∴BD ⊥平面ACM . ∵AO 平面ACM ,∴BD ⊥AO .又MC ⊥AO ,BD ∩MC = M ,∴AO ⊥平面貌BCD .【评析】本题为了证明AO ⊥平面BCD ,先证明了平面BCD 内的直线垂直于AO 所在的平面.这一方法具有典型性,即为了证明线与面的垂直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直.这样互相转化,螺旋式往复,最终使问题得到解决.例2 已知棱长为1的正方体ABCD – A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.【解析】取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连AO . 由已知正方体,易知EO ⊥ABC 1D 1,所以∠EAO 为所求. 在Rt △EOA 中, 111222EO EF AD ===, 2215()12AE =+=, sin ∠EAO =10EO AE =. 所以直线AE 与平面ABC 1D 1所成的角的正弦值为10. 【评析】求直线和平面所成角的步骤:(1)作——作出斜线和平面所成的角; (2)证——证明所作或找到的角就是所求的角;(3)求——常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角形)⊂≠。

2.3.3-4 直线与平面垂直的性质、平面与平面垂直的性质 学案(人教A版必修2)

2.3.3-4 直线与平面垂直的性质、平面与平面垂直的性质 学案(人教A版必修2)

2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质【课标要求】1.掌握直线与平面垂直,平面与平面垂直的性质定理. 2.能运用性质定理解决一些简单问题. 【核心扫描】1.线面垂直、面面垂直性质定理的应用.(重点) 2.线线、线面、面面垂直关系的相互转化.(难点)新知导学1.温馨提示:线与直线平行的结论.(2)该定理可用来判定两直线平行,揭示了“平行”与“垂直”这两种特殊位置关系之间的转化.温馨提示 其他性质(1)如果两个平面垂直,那么经过第一个平面内一点且垂直于第二个平面的直线在第一个平面内.即α⊥β,A ∈α,A ∈b ,b ⊥β⇒b ⊂α.(2)如果两个平面互相垂直,那么其中一个平面的垂线平行于另一个平面或在另一个平面内.即α⊥β,b ⊥β⇒b ∥α或b ⊂α.互动探究探究点1 垂直于同一直线的两个平面有什么关系? 提示 平行(可用此结论判定面面平行).探究点2 两个平面均垂直于一个平面,这两个平面有什么关系? 提示 关系不能确定,平行、相交(垂直)都有可能.类型一利用线面垂直性质定理证平行问题【例1】如图所示,在正方体A1B1C1D1-ABCD中,EF与异面直线AC,A1D都垂直相交.求证:EF∥BD1.[思路探索]分别证明EF、BD都垂直平面ACB1即可.1证明如图所示:连接AB1,B1D1,B1C1,BD.∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.又AC⊥BD,DD1∩BD=D,∴AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,∴AC⊥BD1.同理可证BD1⊥B1C.又B1C∩AC=C,∴BD1⊥平面AB1C.∵EF⊥AC,EF⊥A1D,又A1D∥B1C,∴EF⊥B1C.又AC∩B1C=C,∴EF⊥平面AB1C,∴EF∥BD1.[规律方法]线面垂直的性质是证明线线平行的方法之一,还可进而证明线面、面面平行.【活学活用1】如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE =AB=2a,CD=a,F为BE的中点.求证:DF∥平面ABC.证明取AB的中点G,连接FG、GC,则FG为△BEA中位线,∴FG∥AE.∵AE⊥平面ABC,FG∥AE,∴FG⊥平面ABC.∵FG⊥平面ABC,CD⊥平面ABC,∴FG ∥CD .又FG =12AE =CD =a .∴四边形CDFG 为平行四边形,FD ∥CG .∵FD ∥CG .CG ⊂平面ABC ,∴DF ∥平面ABC . 类型二 利用面面垂直的性质定理证垂直问题【例2】 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. 已知α⊥γ,β⊥γ,α∩β=l . 求证:l ⊥γ.[思路探索] 根据直线和平面垂直的判定定理,可在γ内构造两相交直线分别与平面α,β垂直;或者由面面垂直的性质易在α,β内作出平面γ的垂线,再设法证明l 与其平行即可.证明 法一 在γ内取一点P ,作P A 垂直α与γ的交线于A ,PB 垂直β与γ的交线于B ,则P A ⊥α,PB ⊥β.∵l =α∩β,∴l ⊥P A ,l ⊥PB .又P A ∩PB =P ,且P A ⊂γ,PB ⊂γ, ∴l ⊥γ.法二 在α内作直线m 垂直于α与γ的交线,在β内作直线n 垂直于β与γ的交线, ∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n .又n ⊂β,∴m ∥β.又m ⊂α,α∩β=l , ∴m ∥l .∴l ⊥γ.[规律方法] 面面垂直的性质是作平面的垂线的重要方法,因此,在有面面垂直的条件下,若需要平面的垂线,要首先考虑面面垂直的性质.【活学活用2】 如图,在三棱锥P ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB .∴AD ⊥平面PBC .又BC ⊂平面PBC ,∴AD ⊥BC .又∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB ,∴BC ⊥AB .类型三 利用面面垂直的性质定理求二面角【例3】 在平面四边形ABCD 中,已知AB =BC =CD =a ,∠ABC =90°,∠BCD =135°,沿AC 将四边形折成直二面角B -AC -D .(1)求证:平面ABC ⊥平面BCD ;(2)求平面ABD 与平面ACD 所成的角的度数. [思路探索] 关于折叠问题,关键明确在折叠前后哪些量发生变化,如线与线的位置关系,角的大小等,要抓住不变量来解题.(1)证明 如图所示,其中图(1)是平面四边形,图(2)是折后的立体图.在四边形ABCD 中, ∵AB =BC ,AB ⊥BC , ∴∠ACB =45°,而∠BCD =∠ACB +∠ACD =135°, ∴∠ACD =90°,即CD ⊥AC .又平面ABC 与平面ACD 的二面角的平面为直角,且平面ABC ∩平面ACD =AC ,∴CD ⊥平面ABC ,又CD ⊂平面BCD ,∴平面ABC ⊥平面BCD . (2)解 过点B 作BE ⊥AC ,E 为垂足,则BE ⊥平面ACD . 又过点E 在平面ACD 内作EF ⊥AD ,F 为垂足,连接BF . 由已知可得BF ⊥AD , ∴∠BFE 是二面角B -AD -C 的平面角.∵E 为AC 的中点,∴AE =12AC =22a .又sin ∠DAC =CD AD =33,EF =33AE ,∴EF =22a ·33=66a ,tan ∠BFE =BEEF= 3.∴∠BFE =60°,即平面ABD 与平面ACD 所成的角的度数为60°.[规律方法] 当一个平面与二面角的一个面垂直时,常利用面面垂直的性质作出二面角面的垂线,而作出平面角.【活学活用3】 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为正方形,且P A =AD =2,E 、F 分别为AD 、PC 中点.(1)求异面直线EF 和PB 所成角的大小; (2)求证:平面PCE ⊥平面PBC ; (3)求二面角E -PC -D 的大小.(1)解 如图,取PB 的中点G ,连接FG 、AG , ∵E 、F 分别为AD 、PC 中点,∴FG 綉12BC ,AE 綉12BC ,∴FG 綉AE ,∴四边形AEFG 是平行四边形,∴AG ∥FE ,∵P A =AD =AB ,∴AG ⊥PB ,即EF ⊥PB , ∴EF 与PB 所成的角为90°.(2)证明 由(1)知AG ⊥PB ,AG ∥EF , ∵P A ⊥平面ABCD ,∴BC ⊥P A , ∵BC ⊥AB ,AB ∩BC =B , ∴BC ⊥平面P AB ,∴BC ⊥AG ,又∵PB ∩BC =B , ∴AG ⊥平面PBC , ∴EF ⊥平面PBC , ∵EF ⊂平面PCE ,∴平面PCE ⊥平面PBC .(3)解 作EM ⊥PD 于点M ,连接FM , ∵CD ⊥平面P AD ,∴CD ⊥EM , ∴EM ⊥平面PCD ,EM ⊥PC ,由(2)知EF ⊥平面PBC ,∴EF ⊥PC , 又EM ∩EF =E , ∴PC ⊥平面EFM , ∴FM ⊥PC ,∴∠MFE 是二面角E -PC -D 的平面角或其补角.∵P A =AD =2,∴EF =AG =2,EM =22,∴sin ∠MFE =EM EF =12,∴∠MEF =30°,即二面角E -PC -D 的大小为30°. 方法技巧 转化思想在垂直关系转换中的应用 线线垂直、线面垂直和面面垂直的转换关系如下:当证明垂直关系时,要灵活地应用垂直之间的转换关系.当运用平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.【示例】 如图所示,在四棱锥V -ABCD 中,底面四边形ABCD 是正方形,侧面三角形VAD 是正三角形,平面VAD ⊥底面ABCD .(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的平面角的正切值. [思路分析] (1)用面面垂直的性质 (2)由(1)利用垂线法作平面角.(1)证明 ∵底面四边形ABCD 是正方形, ∴AB ⊥AD .又∵平面VAD ⊥底面ABCD ,AB ⊂平面ABCD ,且平面VAD ∩平面ABCD =AD , ∴AB ⊥平面VAD .(2)解 如图所示,取VD 的中点E ,连接AE ,BE . ∵△VAD 是正三角形,∴AE ⊥VD ,AE =32AD .∵AB ⊥平面VAD , ∴AB ⊥VD .又∵AE ∩AB =A , ∴VD ⊥平面ABE .∴BE ⊥VD .因此∠AEB 就是所求二面角的平面角,于是tan ∠AEB =233.[题后反思] 证明垂直问题,要结合条件充分利用已知或证出的垂直关系的性质灵活地进行垂直间的转化.课堂达标1.平面α⊥平面β,a⊥α,则有().A.a∥βB.a∥β或a⊂βC.a与β相交D.a⊂β解析由已知易得:a∥β或a⊂β.答案 B2.(2012·济宁高一检测)已知平面α⊥平面β,则以下说法正确的个数是().①平面α内的直线必垂直平面β内的无数条直线;②在平面β内垂直于平面α与平面β的交线的直线必垂直于α内的任意一条直线;③α内的任意一条直线必垂直于β;④过β内的任意一点作平面α与平面β的交线的垂线,此直线必垂直于α.A.4 B.3C.2 D.1解析①②正确,③④不正确.答案 C3.已知a、b为直线,α、β为平面.在下列四个命题中,正确的命题是________.①若a⊥α,b⊥α,则a∥b;②若a∥α,b∥α,则a∥b;③若a⊥α,a⊥β,则α∥β;④若α∥b,β∥b,则α∥β.解析由“垂直于同一平面的两直线平行”知①真;由“平行于同一平面的两直线平行或异面或相交”知②假;由“垂直于同一直线的两平面平行”知③真;易知④假.答案①③4.已知α、β、γ是三个互不重合的平面,l是一条直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两个点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析①也可能是直线l⊂α;②正确;③中的两个点可以在平面的两侧;④正确.答案②④5.如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,P A⊥平面ABCD,且P A =AB,点E是PD的中点.(1)求证:AC⊥PB;(2)求证:PB∥平面AEC;(3)求二面角E-AC-B的大小.(1)证明(1)由P A⊥平面ABCD可得P A⊥AC.又AB⊥AC,所以AC⊥平面P AB,所以AC⊥PB.(2)证明如图,连接BD交AC于点O,连接EO,则EO是△PDB的中位线,∴EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(3)解如图,取AD的中点F,连接EF,FO,则EF是△P AD的中位线,∴EF∥P A.又P A⊥平面ABCD,∴EF⊥平面ABCD.同理,FO 是△ADC 的中位线, ∴FO ∥AB ,∴FO ⊥AC . 因此,∠EOF 是二面角E -AC -D 的平面角.又FO =12AB =12P A =EF ,∴∠EOF =45°.而二面角E -AC -B 与二面角E -AC -D 互补,故所求二面角E -AC -B 的大小为135°.课堂小结1.直线与平面垂直的性质定理是平行关系与垂直关系的完美结合,利用垂直关系可判断平行,反过来由平行关系也可判定垂直,即两条平行直线中的一条垂直于一个平面,则另一条直线也垂直于这个平面.2.面面垂直的性质定理是判断线面垂直的又一重要定理.3.灵活进行线线、线面、面面垂直关系之间的转换,是判定和运用垂直关系的关键.。

新人教A版必修2高中数学学案教案: 2.3.1直线与平面垂直的判定与性质

新人教A版必修2高中数学学案教案: 2.3.1直线与平面垂直的判定与性质

数学 2.3.1直线与平面垂直的判定与性质教案新人教A版必修2一、教学目标1、知识与技能(1)掌握直线和平面垂直的定义及判定定理、性质定理;(2)掌握判定直线和平面垂直的方法;掌握直线和平面垂直的性质。

(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2、过程与方法(1)感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。

3、情感态度与价值观:培养学生学会从“感性认识”到“理性认识”过程中获取新知。

二、教学重点、难点:直线与平面垂直的定义和判定定理的探究。

三、教学设计(一)创设情景,揭示课题举例:旗杆与地面,大桥的桥柱和水面等的位置关系。

模型演示:直棱柱的侧棱与底面的位置关系。

(二)研探新知1、直线与平面垂直的定义:直线l与平面内α的任意一条直线都垂直。

记作:l ⊥α。

直线l叫做平面α的垂线,平面α叫做直线l的垂面,垂线与平面的交点P叫做垂足。

2、直线与平面垂直的判定:(1)探究:准备一块三角形纸片。

过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)。

①折痕AD与桌面所在平面α垂直吗?②如何翻折才能使折痕AD与桌面所在平面α垂直?(AD是BC边上的高)(2)思考:①有人说,折痕AD所在直线已桌面所在平面α上的一条直线垂直,就可以判断AD垂直平面α,你同意他的说法吗?②如图,由折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD,由此你能得到什么结论?(3)归纳结论:(直线与平面垂直的判定定理)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号语言:ααα⊥⇒⊥⊥=⊂⊂l b l a l A b a b a ,,,,I 。

作用:由线线垂直得到线面垂直。

(线不在多,相交就行。

)强调:① 定理中的“两条相交直线”这一条件不可忽视;② 定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

高中数学 必修二 2.2.3.4直线与平面垂直、平面与平面垂直的性质教案 新人教A版必修2

高中数学  必修二   2.2.3.4直线与平面垂直、平面与平面垂直的性质教案 新人教A版必修2

课题:2.2.3.4直线与平面垂直、平面与平面垂直的性质(一)、复习准备:1.直线、平面垂直的判定,二面角的定义、大小及求法.2.练习:对于直线,m n 和平面,αβ,能得出αβ⊥的一个条件是( )①,//m n m α⊥,//n β②,,m n m n αβα⊥⋂=⊂③//,,m n n m βα⊥⊂④//,,m n m n αβ⊥⊥.3.引入:星级酒店门口立着三根旗杆,这三根旗杆均与地面垂直,这三根旗杆所在的直线之间具有什么位置关系?(二)、讲授新课:1. 教学直线与平面垂直的性质定理:①定理:垂直于同一个平面的两条直线平行. (线面垂直→线线平行)②练习:,,a b c 表示直线,M 表示平面,则//a b 的充分条件是( )A 、a c b c ⊥⊥且B 、////a M b M 且C 、a M b M ⊥⊥且D 、,a b c 与所在的角相等例1:设直线,a b 分别在正方体''''ABCD A B C D -中两个不同的平面内,欲使//a b ,,a b 应满足什么条件?(分组讨论→师生共析→总结归纳)(判定两条直线平行的方法有很多:平行公理、同位角相等、内错角相等、同旁内角互补、中位线定理、平行四边形等等)2.教学平面与平面垂直的性质定理:①定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(面面垂直→线面垂直)探究:两个平面垂直,过其中一个平面内一点作另一个平面的垂线有且仅有一条. ②练习:两个平面互相垂直,下列命题正确的是( )A 、一个平面内的已知直线必垂直于另一个平面内的任意一条直线B 、一个平面内的已知直线必垂直于另一个平面内的无数条直线C 、一个平面内的任意一条直线必垂直于另一个平面D 、过一个平面内任意点作交线的垂线,则此垂线必垂直于另一个平面.例2、如图,已知平面,,αβαβ⊥,直线a 满足,a a βα⊥⊄,试判断直线a 与平面α的位置关系.④练习:如图,已知平面α⊥平面γ,平面β⊥平面γ,a αβ⋂=,求证:.a γ⊥(三)、巩固练习:1、下列命题中,正确的是( )A 、过平面外一点,可作无数条直线和这个平面垂直B 、过一点有且仅有一个平面和一条定直线垂直C 、若,a b 异面,过a 一定可作一个平面与b 垂直D 、,a b 异面,过不在,a b 上的点M ,一定可以作一个平面和,a b 都垂直.2、如图,P 是ABC ∆所在平面外一点,,,PA PB CB PAB M PC =⊥平面是的中点,N 是AB 上的点,3.AN NB =求证:.MN AB ⊥3、教材P71、72页(四)巩固深化、发展思维思考1、设平面α⊥平面β,点P在平面α内,过点P作平面β的垂线a,直线a与平面α具有什么位置关系?(答:直线a必在平面α内)思考2、已知平面α、β和直线a,若α⊥β,a⊥β,a α,则直线a与平面α具有什么位置关系?五、归纳小结,课后巩固小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么?(2)类比两个性质定理,你发现它们之间有何联系?六、作业:(1)求证:两条异面直线不能同时和一个平面垂直;(2)求证:三个两两垂直的平面的交线两两垂直。

高中数学 2.3.3直线与平面垂直、平面与平面垂直的性质教案 新人教A版必修2

高中数学 2.3.3直线与平面垂直、平面与平面垂直的性质教案 新人教A版必修2

第三课时直线与平面垂直、平面与平面垂直的性质(一)教学目标1.知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.(二)教学重点、难点两个性质定理的证明.(三)教学方法学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.呢?探索新知一、直线与平面垂直的性质定理1.问题:已知直线a、b和平面α,如果,a bαα⊥⊥,那么直线a、b一定平行吗?已知,a bαα⊥⊥求证:b∥a.证明:假定b不平行于a,设bα=0b′是经过O与直线a平行的直线∵a∥b′,∴b′⊥a即经过同一点O的两线b、b′都与α垂直这是不可能的,因此b∥a.2.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行简化为:线面垂直⇒线线平行生:借助长方体模型AA′、BB′、CC′、DD′所在直线都垂直于平面ABCD,它们之间相互平行,所以结论成立.师:怎么证明呢?由于无法把两条直线a、b归入到一个平面内,故无法应用平行直线的判定知识,也无法应用公理4,有这种情况下,我们采用“反证法”师生边分析边板书.借助模型教学,培养几何直观能力.,反证法证题是一个难点,采用以教师为主,能起到一个示范作用,并提高上课效率.探索新知二、平面与平面平行的性质定理1.问题黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?2.例 1 设αβ⊥,αβ=CD,ABα⊂,AB⊥CD,AB⊥CD = B求证ABβ⊥证明:在β内引直线BE⊥CD,垂足为B,则∠ABE是二面角CDαβ--的平面角.由教师投影问题,学生思考、观察、讨论,然后回答问题生:借助长方体模型,在长方体ABCD–A′B′C′D′中,面A′ADD′⊥面ABCD,A′A⊥AD,AB⊥A′A∵AD A A A'=∴A′A⊥面ABCD故只需在黑板上作一直线与两个平面的交线垂直即可.师:证明直线和平面垂直一般都转化为证直线和平面内两条交线垂直,现AB⊥CD,需找一条直线与AB垂直,有条件αβ⊥还没有用,能否利用αβ⊥构造一条直线与AB垂直呢?生:在面β内过B作BE⊥CD即可.师:为什么呢?本例题的难点是构造辅助线,采用分析综合法能较好地解决这个问题.αβ⊥知,AB⊥BE,又AB⊥CD,BE与CD是β内的两条相交直线,所以AB⊥β3.平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直简记为:面面垂直⇒线面垂直.学生分析,教师板书典例分析例2 如图,已知平面,αβ,αβ⊥,直线a满足aβ⊥,aα⊄,试判断直线a与平面α的位置关系.解:在α内作垂直于α与β交线的直线b,因为aβ⊥,所以bβ⊥因为aβ⊥,所以a∥b.又因为aα⊄,所以a∥α.即直线a与平面α平行.例 3 设平面α⊥平面β,点P作平面β的垂线a,试判断直线a与平面α的位置关系?证明:如图,设αβ= c,过点P在平面α内作直线b⊥c,根据平面与平面垂直的性质定理有bβ⊥.因为过一点有且只有一条直线与平面β垂直,所以直线a与直线b垂合,因此aα⊂.师投影例2并读题生:平行师:证明线面平行一般策略是什么?生:转证线线平行师:假设内一条直线b∥a则b与α的位置关系如何?生:垂直师:已知,bααβ⊂⊥,怎样作直线b?生:在α内作b垂直于α、β的交线即可.学生写出证明过程,教师投影.师投影例3并读题,师生共同分析思路,完成证题过程,然后教师给予评注.师:利用“同一法”证明问题主要是在按一般途径不易完成问题的情形下,所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线不易想到,二是证直线b与直线a重合,相对容易一些,本题注意要分类讨论,其结论也可作性质用.巩固所学知识,训练化归能力.[巩固所学知识,训练分类思想化归能力及思维的灵活性.随堂练习1.判断下列命题是否正确,正确的在括号内画“√”错误的画“×”.(1)a.垂直于同一条直线的两个平面互相平行. (√)b.垂直于同一个平面的两条直线互相平行. (√)c.一条直线在平面内,另一条直线与这个平面垂直,则这学生独立完成巩固、所学知识β=,那l)已知两个平面垂直,①一个平面内已积压直线必垂直于另一平面内的任意一β=AB,试判断直线a.平行、相交或在平面归纳总结1.直线和平面垂直的性质2.平面和平面垂直的性质3.面面垂直线面垂直线线垂直学生归纳总结,教材再补充完善.回顾、反思、归纳知识提高自我整合知识的能力.课后作业 2.3 第三课时习案学生独立完成固化知识提升能力备选例题例1 把直角三角板ABC的直角边BC放置桌面,另一条直角边AC与桌面所在的平面α垂直,a是α内一条直线,若斜边AB与a垂直,则BC是否与a垂直?【解析】a ACACa ABaAC AB Aαα⊥⎫⊥⎫⎪⇒⊥⎬⎬⊂⎭⎪=⎭【评析】若BC与α垂直,同理可得AB与α也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法:“线线垂直→线面垂直→线线垂直”.例2 求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已知α⊥r,β⊥r,α∩β= l,求证:l⊥r.【分析】根据直线和平面垂直的判定定理可在r内构造两相交直线分别与平面α、β垂直.或由面面垂直的性质易在α、β内作出平面r的垂线,再设法证明l与其平行即可.[来【证明】法一:如图,设α∩r= a,β∩r= b,在r内任取一点P.过点P在r内作直线m⊥a,n⊥b.∵α⊥r,β⊥r,∴m⊥a,n⊥β(面面垂直的性质).又α∩β= l,∴l⊥m,l⊥n.又m∩n = P,m,n⊂r∴l⊥r.法二:如图,设α∩r= a,β∩r= b,在α内作m⊥a,在β内作n⊥b.∵α⊥r,β⊥r,∴m⊥r,n⊥r.∴m∥n,又n⊂β,m⊄β,∴m∥β,又α∩β= l,m⊂α,∴m∥l,又m⊥r,∴l⊥r.【评析】充分利用面面垂直的性质构造线面垂直是解决本题的关键.证法一充分利用面面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益的.。

高中数学 直线与平面垂直2学案 新人教A版必修2

高中数学 直线与平面垂直2学案 新人教A版必修2

高二数学学案(19)直线和平面垂直的判定与性质(二)
教学目标:⒈理解斜线在平面内的射影级直线与平面所成角的概念,并会求简单的线面角 ⒉理解点到面的距离的概念,会求简单的点到面的距离。

⒊会综合运用线面平行与垂直的有关定理进行有关平行与垂直的判定。

一、 课前预习:
直线和平面垂直的定义:
线面垂直的唯一性定理:
直线和平面垂直的判定定理:
直线和平面垂直的性质定理:
二、课中研学
例1已知:l ∥α 求证:直线l 上各点到平面α的距离相等.
直线和平面的距离概念:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离。

例2 长方体1111D C B A ABCD -中,5,4,31===AA AD AB ,求直线AB 与平面CD B A 11的距离。

例3.已知ABC PA 平面⊥,∠ABC=90°,AE ⊥PB,AF ⊥PC
求证:①BC ⊥平面PAB
②AE ⊥平面PBC
③PC ⊥平面AEF
例4.已知E,F分别是正方形ABCD边AD,AB的中点,EF∩AC=M,
GC⊥平面ABCD
(1)求证:EF⊥平面GMC.
(2)若AB=4,GC=2,求点B到平面EFG的距离.
三.课堂巩固
⒈已知α∩β=l,PA⊥α, ,PB⊥β, 垂足分别为A、B,又AB⊥l, 垂足为Q,连BQ求证AB⊥l
⒉数学之友P22 例4
四.课后整学数学之友。

人教A版高中数学必修二第二章直线与平面垂直的性质、平面与平面垂直的性质教案新

人教A版高中数学必修二第二章直线与平面垂直的性质、平面与平面垂直的性质教案新

§2、3.3直线与平面垂直的性质§2、3.4平面与平面垂直的性质一、教学目标1、知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。

2、过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;(2)性质定理的推理论证。

3、情态与价值通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。

二、教学重点、难点两个性质定理的证明。

三、学法与用具(1)学法:直观感知、操作确认,猜想与证明。

(2)用具:长方体模型。

四、教学设计(一)创设情景,揭示课题问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。

(自然进入课题内容)(二)研探新知1、操作确认观察长方体模型中四条侧棱与同一个底面的位置关系。

如图2.3—4,在长方体ABCD —A1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a⊥α、b⊥α、那么直线a、b 一定平行吗?(一定)我们能否证明这一事实的正确性呢?图2.3-4 图2.3-52、推理证明引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法——反证法,然后师生互动共同完成该推理过程,最后归纳得出:垂直于同一个平面的两条直线平行。

(三)应用巩固例子:课本P.74例4做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。

(四)类比拓展,研探新知类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?例如:如何在黑板面上画一条与地面垂直的直线?引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直,这时,只要在黑板上画出一条与这交线平行的直线,则所画直线必与地面垂直。

高中数学231直线与平面垂直的判定教学设计新人教A版必修2教案

高中数学231直线与平面垂直的判定教学设计新人教A版必修2教案

高中数学231直线与平面垂直的判定教学设计新人教A版必修2教案教学设计:高中数学《新人教版必修2》第三章空间向量知识点:231直线与平面垂直的判定一、教学目标1.知识与能力目标:学习直线与平面垂直的判定方法。

巩固和运用空间向量的知识和方法解决问题。

2.过程与方法目标:学生以小组或个人为单位合作探究,自主学习,主动解决问题。

激发学生的学习兴趣和学习动机。

引导学生深入思考,灵活运用知识解决实际问题。

二、教学重点与难点1.教学重点:掌握直线与平面垂直的判定方法。

发展学生的数学思维和解决问题的能力。

2.教学难点:运用空间向量知识解决实际问题。

三、教学过程1.引入新课(10分钟)教师通过引入实际问题,激发学生的学习兴趣。

例如:“电线杆上拉着一条电线,如果我们要建造一座桥梁,需要知道电线与桥面是否垂直,该如何判断呢?”2.概念导入(5分钟)教师板书直线与平面垂直的判定方法:“向量法”、“法向量法”。

向量法:如果直线的方向向量与平面的法向量垂直(内积为零),则直线与平面垂直。

法向量法:如果平面上的一条直线与平面上的两个相互垂直的直线垂直,则该直线与平面垂直。

3.理论讲解(10分钟)教师讲解“向量法”判定直线与平面垂直的具体步骤:a.求直线的方向向量。

b.求平面的法向量。

c.计算直线的方向向量与平面的法向量的点积,如果点积为零,则直线与平面垂直。

4.问题探究(20分钟)学生以小组或个人为单位完成以下问题:问题1:判断直线L:(2,1,1)+t(1,-2,1)与平面A:2x+y+z=5是否垂直。

问题2:判断直线L与平面A:x+y+z=0是否垂直,其中,直线L过点(1,1,1),且与平面B:2x-y+2z=0与平面C:x-2y-3z=4均垂直。

5.讨论分享(15分钟)学生讨论解题思路和答案,并进行交流分享。

6.新问题引入(5分钟)教师提问:“如何判断两个平面是否垂直?请你们给出自己的解决思路。

”7.拓展探究(20分钟)学生以小组或个人为单位解决以下问题:问题3:判断平面A:2x+y+z=5与平面B:3x-2y+5z=0是否垂直。

高中数学 §2.3.1 直线与平面垂直的判定教案 新人教A版必修2

高中数学 §2.3.1 直线与平面垂直的判定教案 新人教A版必修2

§2.3 直线、平面垂直的判定及其性质§2.3.1 直线与平面垂直的判定一、教材分析空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面的垂直问题是连接线线垂直和面面垂直的桥梁和纽带,可以说线面垂直是立体几何的核心.本节重点是直线与平面垂直的判定定理的应用.二、教学目标1.知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.三、教学重点与难点教学重点:直线与平面垂直的判定.教学难点:灵活应用直线与平面垂直判定定理解决问题.四、课时安排1课时五、教学设计(一)导入新课思路1.(情境导入)日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象.在阳光下观察直立于地面的旗杆及它在地面的影子.随着时间的变化,尽管影子BC的位置在移动,但是旗杆AB所在直线始终与BC所在直线垂直.也就是说,旗杆AB 所在直线与地面内任意一条不过点B的直线B′C′也是垂直的.思路2.(事例导入)如果一条直线垂直于一个平面的无数条直线,那么这条直线是否与这个平面垂直?举例说明.如图1,直线AC1与直线BD、EF、GH等无数条直线垂直,但直线AC1与平面ABCD 不垂直.图1(二)推进新课、新知探究、提出问题①探究直线与平面垂直的定义和画法.②探究直线与平面垂直的判定定理.③用三种语言描述直线与平面垂直的判定定理.④探究斜线在平面内的射影,讨论直线与平面所成的角.⑤探究点到平面的距离.活动:问题①引导学生结合事例观察探究.问题②引导学生结合事例实验探究.问题③引导学生进行语言转换.问题④引导学生思考其合理性.问题⑤引导学生回忆点到直线的距离得出点到平面的距离.讨论结果:①直线与平面垂直的定义和画法:教师演示实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线都垂直,书脊和桌面的位置关系给了我们直线和平面垂直的形象.从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.直线和平面垂直的画法及表示如下:如图2,表示方法为:a⊥α.图2 图3②如图3,请同学们准备一块三角形的纸片,我们一起做一个实验:过△ABC的顶点A翻折纸片,得折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面α垂直?容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在的平面α垂直.如图4.(1) (2)图4所以,当折痕AD垂直平面内的一条直线时,折痕AD与平面α不垂直,当折痕AD垂直平面内的两条直线时,折痕AD与平面α垂直.③直线和平面垂直的判定定理用文字语言表示为:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.直线和平面垂直的判定定理用符号语言表示为:⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊥⊥⊂⊂P b a b l a l b a ααl⊥α.直线和平面垂直的判定定理用图形语言表示为:如图5,图5 图6④斜线在平面内的射影.斜线:一条直线和一个平面相交,但不和这个平面垂直时,这条直线就叫做这个平面的斜线.斜足:斜线和平面的交点.斜线在平面内的射影:从斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.直线与平面相交,直线与平面的相互位置类同于两条相交直线,也需要用角来表示,但过交点在平面内可以作很多条直线.与平面相交的直线l 与平面内的线a 、b…所成的角是不相等的.为了定义的确定性,我们必须找到一些角中有确定值的,又能准确描述其位置的一个角,这就是由斜线与其在平面内的射影所成的锐角作为直线和平面所成的角.平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.特别地:如果一条直线垂直于平面,我们说它们所成的角为直角.一条直线和平面平行或在平面内,我们说它们所成的角为0°.如图6,l 是平面α的一条斜线,点O 是斜足,A 是l 上任意一点,AB 是α的垂线,点B 是垂足,所以直线OB(记作l′)是l在α内的射影,∠AOB(记作θ)是l与α所成的角.直线和平面所成的角是一个非常重要的概念,在实际中有着广泛的应用,如发射炮弹时,当炮筒和地面所成的角为多少度时,才能准确地命中目标,也即射程为多远?又如铅球运动员在投掷时,以多大的角度投掷,投出的距离最远?⑤点到平面的距离:经过一点向平面引垂线,垂足叫做这点在这个平面内的射影,点在平面内的射影还是一个点.垂线段:上述的点与垂足间的线段叫做这点到这个平面的垂线段.点到平面的距离:垂线段的长叫做点到平面的距离.(三)应用示例思路1例 1 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.图7证明:如图7,在平面α内作两条相交直线m、n,设m∩n=A.************变式训练如图8,已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.图8证明:过P作PO⊥平面ABC于O,连接OA、OB、OC.∵PO⊥平面ABC,BC 平面ABC,∴PO⊥BC.又∵PA⊥BC,∴BC⊥平面PAO.又∵OA ⊂平面PAO ,∴BC⊥OA.同理,可证AB⊥OC.∴O 是△ABC 的垂心.∴OB⊥AC.可证PO⊥AC.∴AC⊥平面PBO.又PB ⊂平面PBO ,∴PB⊥AC .点评:欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线面垂直.用符号语言证明问题显得清晰、简洁.例2 如图9,在正方体ABCD —A 1B 1C 1D 1中,求直线A 1B 和平面A 1B 1CD 所成的角.图9活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.解:连接BC 1交B 1C 于点O ,连接A 1O.设正方体的棱长为a ,因为A 1B 1⊥B 1C 1,A 1B 1⊥B 1B,所以A 1B 1⊥平面BCC 1B 1.所以A 1B 1⊥BC 1.又因为BC 1⊥B 1C ,所以BC 1⊥平面A 1B 1CD.所以A 1O 为斜线A 1B 在平面A 1B 1CD 内的射影,∠BA 1O 为直线A 1B 与平面A 1B 1CD 所成的角.在Rt△A 1BO 中,A 1B=a 2,BO=a 22,所以BO=B A 121,∠BA 1O=30°. 因此,直线A 1B 和平面A 1B 1CD 所成的角为30°.变式训练如图10,四面体A —BCD 的棱长都相等,Q 是AD 的中点,求CQ 与平面DBC 所成的角的正弦值.图10解:过A 作AO⊥面BCD ,连接OD 、OB 、OC ,则可证O 是△BCD 的中心,作QP⊥OD,∵QP∥AO,∴QP⊥面BCD.连接CP ,则∠QCP 即为所求的角.设四面体的棱长为a ,∵在正△ACD 中,Q 是AD 的中点,∴CQ=a 23. ∵QP∥AO,Q 是AD 的中点, ∴QP=a a a a AO 663621)33(212122=⨯=-=,得 sin∠QCP=32=CQ QP . 点评:求直线与平面所成的角,是本节的又一重点,作线面角的关键是找出平面的垂线.思路2例 1 (2007山东高考,文20)如图11(1),在直四棱柱ABCD —A 1B 1C 1D 1中,已知DC=DD 1=2AD=2AB ,AD⊥DC,AB∥DC.(1)(1)求证:D 1C⊥AC 1;(2)设E 是DC 上一点,试确定E 的位置,使D 1E∥平面A 1BD ,并说明理由.(1)证明:在直四棱柱ABCD —A 1B 1C 1D 1中,连接C 1D ,如图11(2).(2) ∵DC=DD1,∴四边形DCC1D1是正方形.∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,D1C⊂平面DCC1D1. ∴AD⊥D1C.∵AD、DC1⊂平面ADC1,且AD∩DC1=D, ∴D1C⊥平面ADC1.又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解:连接AD1、AE,如图11(3).(3)图11 设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,需使MN∥D1E,又M是AD1的中点,∴N是AE的中点.又易知△ABN≌△EDN,∴AB=DE,即E是DC的中点.综上所述,当E 是DC 的中点时,可使D 1E∥平面A 1BD.变式训练如图12,在正方体ABCD —A 1B 1C 1D 1,G 为CC 1的中点,O 为底面ABCD 的中心.求证:A 1O⊥平面GBD.图12证明:⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥AO A O A AO A BD BD AC BD A A 1111面平面 BD⊥A 1O.又∵A 1O 2=A 1A 2+AO 2=a 2+(a 22)2=223a ,OG 2=OC 2+CG 2=(a 22)2+(2a )2=243a , A 1G 2=A 1C 12+C 1G 2=(2a)2+(2a )2=249a , ∴A 1O 2+OG 2=A 1G 2. ∴A 1O⊥OG.又BD∩OG=O,∴A 1O⊥平面GBD.点评:判断线面垂直往往转化为线线垂直,勾股定理也是证明线线垂直的重要方法.例2 如图13,ABCD 为正方形,过A 作线段SA⊥面ABCD ,又过A 作与SC 垂直的平面交SB 、SC 、SD 于E 、K 、H ,求证:E 、H 分别是点A 在直线SB 和SD 上的射影.图13证明:∵⎭⎬⎫⊂⊥ABCD BC ABCD SA 平面平面 ⇒SA⊥BC, 又∵AB⊥BC,SA∩AB=A,∴BC⊥平面SAB.∴BC⊥AE.∵SC⊥平面AHKE,∴SC⊥AE.又BC∩SC=C,∴AE⊥平面SBC.∴AE⊥SB,即E 为A 在SB 上的射影.同理可证,H 是点A 在SD 上的射影.变式训练已知Rt△ABC 的斜边BC 在平面α内,两直角边AB 、AC 与α都斜交,点A 在平面α内的射影是点A′,求证:∠BA′C 是钝角.证明:如图14,过A 作AD⊥BC 于D ,连接A′D,图14∵AA′⊥α,BC α,∴AA′⊥BC.∴BC⊥A′D. ∵tan∠BAD=AD BD <tan∠BA′D=D A BD ',tan∠CAD=AD CD <tan∠CA′D=D A CD ', ∴∠BAD<∠BA′D,∠CAD<∠CA′D.∴∠BAC<∠BA′C,即∠BA′C 是钝角.(四)知能训练如图15,已知a 、b 是两条相互垂直的异面直线,线段AB 与两异面直线a 、b 垂直且相交,线段AB 的长为定值m ,定长为n (n >m )的线段PQ 的两个端点分别在a 、b 上移动,M 、N 分别是AB 、PQ 的中点.图15求证:(1)AB⊥MN;(2)MN 的长是定值.证明:(1)取PB 中点H,连接HN,则HN∥b.又∵AB⊥b,∴AB⊥HN.同理,AB⊥MH.∴AB⊥平面MNH.∴AB⊥MN.(2)∵⎭⎬⎫⊥⊥a b AB b ⇒b⊥平面PAB.∴b⊥PB. 在Rt△PBQ 中,BQ 2=PQ 2-PB 2=n 2-PB 2, ①在Rt△PBA 中,PA 2=PB 2-AB 2=PB 2-m 2, ②①②两式相加PA 2+BQ 2=n 2-m 2,∵a⊥b,∴∠MHN=90°. ∴MN=22222221)2()2(m n BQ PA NHMH -=+=+(定值). (五)拓展提升1.如图16,已知在侧棱垂直于底面三棱柱ABC —A 1B 1C 1中,AC=3,AB=5,BC=4,AA 1=4,点D 是AB 的中点.图16(1)求证:AC⊥BC 1;(2)求证:AC 1∥平面CDB 1;(1)证明:∵在△ABC 中,AC=3,AB=5,BC=4,∴△ABC 为直角三角形.∴AC⊥CB.又∵CC 1⊥面ABC,AC ⊂面ABC,∴AC⊥CC 1.∴AC⊥面BCC 1B 1.又BC 1⊂面BCC 1B 1,∴AC⊥BC 1.(2)证明:连接B 1C 交BC 1于E ,则E 为BC 1的中点,连接DE,则在△ABC 1中,DE∥AC 1. 又DE ⊂面CDB 1,则AC 1∥面B 1CD.(六)课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(七)作业课本习题2.2 B组3、4.。

人教A版高中数学必修二第二章直线、平面垂直的判定及其性质导学案新

人教A版高中数学必修二第二章直线、平面垂直的判定及其性质导学案新

数学必修二第二章《2.3 直线、平面垂直的判定及其性质》导学案【学习目标】(1)使学生掌握直线和平面垂直的定义及判定定理;(2)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论;(3)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”“两个平面互相垂直”的概念;(4)使学生掌握两个平面垂直的判定定理;(5)使学生理会“类比归纳”思想在数学问题解决上的作用【重点难点】重点:直线与平面垂直的定义和判定定理的探究;平面与平面垂直的判定;难点:如何度量二面角的大小【学法指导】实物观察,类比归纳,语言表达【知识链接】空间点、直线、平面之间的位置关系【学习过程】一.预习自学1.线面垂直定义:如果一条直线l和平面α内的,我们就说直线l和平面α互相垂直,记作,其中直线l叫做平面的垂线,平面α叫做直线l的 , 直线与平面的交点叫做垂足.2.直线与平面垂直的判定定理:3.平面的斜线:4.直线和平面所成的角:5.二面角:6.二面角的平面角:7.面面垂直两个平面垂直的定义:两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.记作两平面垂直的判定定理:8.直线和平面垂直的性质定理:9.两平面垂直的性质定理:二.典型例题例1. 已知PA ⊥⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过A 点作AE ⊥PC 于点E ,求证:AE ⊥平面PBC点评:证明直线与平面垂直的常用方法有:利用线面垂直的定义;利用线面垂直的判定定理;利用“若直线a ∥直线b ,直线a ⊥平面α,则直线b ⊥平面α”例2.在正方体ABCD —A 1B 1C 1 D 1中, 求AC 1与面ADD 1 A 1所成的角的正弦值为 .例3.在直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,A 1B ⊥AC 1,求证:A 1B ⊥B 1C例4.在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1,CD 的中点 (1)求证:AD ⊥D 1F ;(2)求AE 与D 1F 所成的角;(3)证明平面AED ⊥平面A 1FD 1例5.正四棱锥P-ABCD 中,AB =4,高为2,求二面角P-BC -D 的大小.三.课堂检测1.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线 ( ) A .只有一条 B .有无数条 C .所有直线 D .不存在12.经过平面α外一点和平面α内一点与平面α垂直的平面有 ( )A .0个B .1个C .无数个D .1个或无数个 3.已知直线m ⊥平面α,直线⊂n 平面β,下列说法正确的有 ( )①若n m ⊥则,//βα ②若βα⊥,则m //n ③若m //n ,则βα⊥④若,//m n αβ⊥则A .1个B .2个C .3个D .4个4.下列命题,其中正确的命题有①直线上有两点到平面的距离相等,则此直线与平面平行②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面 ③直线m ⊥平面α,直线n ⊥m ,则n ∥α④a 、b 是异面直线,则存在唯一的平面α,使它与a 、b 都平行且与a 、b 距离相等 ⑤直线l 垂直于平面α内的无数条直线,则l ⊥α5.在正方形SG 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,D 是EF 的中点,沿SE 、SF 及EF 把这个正方形折成一个四面体,使G 1、G 2、G 3三点重合,重合后的点记为G ,那么,在四面体S —EFG 中必有A. SG ⊥平面EFGB. SD ⊥平面EFGC. FG ⊥平面SEFD. GD ⊥平面SEF6.在直四棱柱ABCD —A 1B 1C 1D 1中,当底面四边形ABCD 满足条件_______时,有A 1C ⊥B 1D 17.在三棱锥S —ABC 中,N 是S 在底面ABC 上的射影,且N 在△ABC 的AB 边的高CD 上,点M ∈SC ,截面MAB 和底面ABC 所成的二面角M —AB —C 等于∠NSC ,求证:SC ⊥截面MAB 8.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E PC 的中点.求证:平面PAC ⊥平面BDE .四.归纳小结 五.课外作业1.已知直线a 、b 和平面βα,,下列命题中错误的是( ) A .若αα⊥⊥b a b a 则,,//B .若b a b a //,//,,则βαβα⊥⊥C .若b a b a //,//,//,//则βαβαD .若b a b a ⊥⊥⊥⊥则,,,βαβα2. A 、B 是二面角α—l —β的棱l 上两点,P 是面β内一点,PB ⊥l 于点B ,PA 和l 所成的角为450,PA 和面α所成的角为300,则二面角α—l —β 的大小为( )A .45B .30C .600D .7503.若直线l 与平面所成角为3π,直线a 在平面内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( ) A .⎥⎦⎤⎢⎣⎡π32 0,B .⎥⎦⎤⎢⎣⎡3π 0,C .⎥⎦⎤⎢⎣⎡2π 3π,D .⎥⎦⎤⎢⎣⎡π32 3π,4.在正方体ABCD —A 1B 1C 1D 1中,M 为CC 1的中点,AC 交BD 于点O ,求证:A 1O ⊥平面MBD.5.在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 分别是BC 、CD 、CC 1的中点. 求证:面EFG ⊥面AA 1C 1C .6.如图,在正三棱锥S —ABC 中,E 、F 分别是侧棱SA 、SB 的中点,且平面CEF ⊥平面SAB . (1)若G 为EF 的中点,求证:CG ⊥平面SAB ;(2)求此三棱锥的侧面积与底面积的比值.7.在四棱锥P —ABCD 中,底面ABCD 是矩形,AB =2,BC =a ,又侧棱PA ⊥底面ABCD (1)当a 为何值时,BD ⊥平面PAC ?试证明你的结论;(2)当a =4时,求证:BC 边上存在一点M ,使得PM ⊥DM ;(3)若在BC 边上至少存在一点M ,使PM ⊥DM ,求a 的取值范围.2.3 直线、平面垂直的判定及其性质答案二.典型例题 例3 例4.(2)900 例5. 450三.课堂检测⊥1.B2.D3.B4.②④5.A6. AC BD五.课外作业a≥2a= (2)M为中点时(3)4。

高中数学《2.13直线与平面垂直的性质》导学案 新人教A版必修2

高中数学《2.13直线与平面垂直的性质》导学案 新人教A版必修2

山西省原平市第一中学高中数学《2.13直线与平面垂直的性质》导学案新人教A版必修2§213直线与平面垂直的性质一、学习目标1. 使学生理解直线与平面垂直的性质定理。

2. 使学生理解两个有关平面平行的性质定理。

2. 使学生逐渐掌握严谨的论证方法。

二、文本研读问题一:请阅读P70的内容,完成下列问题。

1.用文字语言叙述直线与平面垂直的性质定理2. 用符号语言叙述直线与平面垂直的性质定理并画出相应图形。

3.证明直线与平面垂直的性质定理。

问题二:完成下列问题。

1.证明:如果一条直线与两个平行平面中的一个垂直,那么这条直线与另一个平面也垂直。

已知:求证:证明:2.证明:垂直于同一直线的两个平面平行。

已知:求证:证明:说明:以上结论在以后解题时,可以使用。

三、交流、点评四、实战演练1.如图,三棱锥V ABC中, VA=VB=AC=BC=2,A B=2VC=1. 则二面角V AB C的大小为 ( )(A) 30;(B)60;(C) 45;(D) 以上都不对。

2.已知直线a,b和平面,且a b, a,则a,b的位置关系是3.平行于同一平面的两个平面的位置关系是4.设直线a,b分别在正方体AC1中两个不同的面所在平面内,欲使a//b,a,b应满足的条件是5.如图,m n=O,l1m,l1n,l2m,l2n,且直线l与l1,l2都相交。

求证:1= 2五、能力提升如图,正方体AC1中,E A1D, F AC且EF A1D, EF AC. 求证:EF//BD1.小结与反馈今后,找平行线的办法可归纳为:空间想找平行线,平行相等中位线,如果此法找不见,两线垂直同一面。

高中数学 直线与平面垂直的判定教学设计 新人教A版必修2

高中数学 直线与平面垂直的判定教学设计 新人教A版必修2

“直线与平面垂直的判定”教学设计(1)一、内容和内容解析本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用。

直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。

直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。

本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。

直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础。

二、目标和目标解析1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:直线与平面垂直,平面与平面垂直的性质
编制人:审核人:下科行政:
【学习目标】
(1)掌握直线与平面垂直,平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简单问题;
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.
自主学习案
【知识梳理】
1、直线与平面垂直的性质定理:
符号表示:
2、平面与平面垂直的性质定理: 。

符号表示:
【预习自测】
1.判断下列命题是否正确,正确的在括号内画“√”错误的画“×”.
a.垂直于同一条直线的两个平面互相平行. ()
b.垂直于同一个平面的两条直线互相平行. ()
c.一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直. ()2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系是 .
3.已知两个平面垂直,下列命题
①一个平面内已知直线必垂直于另一平面内的任意一条直线.
②一个平面内的已知直线必垂直于另一个平面的无数条直线.
③一个平面内的任意一条直线必垂直于另一个平面.
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
其中正确命题的个数是() A.3 B.2 C.1 D.0
【合作探究】
例1.如图4,AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在平面,D、E分别是VA、VC的中点,直线 DE与平面VBC有什么关系?试说明理由.
例2.S为三角形ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC。

求证:AB⊥BC。

例3.在几何体ABCDE 中,∠BAC=
2
,DC ⊥平面ABC ,EB ⊥平面ABC ,F 是BC 的中点,
AB=AC=BE=2,CD=1
(Ⅰ)求证:DC ∥平面ABE ; (Ⅱ)求证:AF ⊥平面BCDE ;
(Ⅲ)求证:平面AFD ⊥平面AFE .
例4 .如图, 四边形ABCD 中, AD ∥BC, AD=AB=2, ∠BCD=45°, ∠BAD=90°. 将△ADB 沿
BD 折起, 使ABD ⊥平面BCD, 构成三棱锥A-BCD. 则在三棱锥A-BCD 中。

(1)求证:平面ADC ⊥平面ABD
(2)求直线AC 与平面BDC 所成角的正切值。

S
C
B
A
A B
C
D
A
B C
D
A
B
C
D
E
F
【当堂检测】
1.下列命题中错误..
的是( )
A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β.
B .如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面β.
C .如果平面α⊥平面β,那么平面α内所有直线垂直于平面β.
D .如果平面α⊥平面γ,平面β⊥平面γ,l αβ=,那么l γ⊥.
2.已知平面α,β,直线a ,且αβ⊥,AB αβ=,a ∥α,a ⊥AB ,直线a 与直线β的位置关系是 .
3.已知平面,,αβαβ⊥,直线a 满足,a a βα⊥⊄,则直线a 与平面α的位置关系 .
课后练习案
1.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //
2.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( ) A .,,m n m n αα若则‖‖‖
B .,,αγβγαβ⊥⊥若则‖
C .,,m m αβαβ若则‖‖‖
D .,,m n m n αα⊥⊥若则‖
3. 如图, 四棱锥P-ABCD 的底面是AB=2, BC=2的矩形, 侧面PAB 是等边三角形, 且侧
面PAB ⊥底面ABCD.
(Ⅰ)证明:BC ⊥侧面PAB;
(Ⅱ)证明: 侧面PAD ⊥侧面PAB;
(Ⅲ)求侧棱PC 与底面ABCD 所成角的大小;
A
B C
D
P。

相关文档
最新文档