2004年高考.重庆卷.理科数学试题及答案

合集下载

04年高考理科数学全国1卷

04年高考理科数学全国1卷

2004年高考试题全国卷Ⅰ 理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k )=C kn P k (1-P )n -k一、选择题 :本大题共12小题,每小题6分,共601.2(1)i i -⋅= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xx x f 则若 ( )A .bB .-bC .b1D .-b13.已知a 、b 均为单位向量,它们的夹角为60°,那么|a+3b |=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y =x 2-2x +2(x <1)B .y =x 2-2x +2(x ≥1)C .y =x 2-2x (x <1)D .y =x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )球的表面积公式S =42R π其中R 表示球的半径, 球的体积公式V =334R π,其中R 表示球的半径A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2||PF=( )A .23 B .3 C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H .设四面体EFGH的表面积为T ,则ST 等于( )A .91B .94C .41D .3111.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516C .12518 D .1251912.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB =60°,则动点P的轨迹方程为 .15.已知数列{a n },满足112311,23(1)n n a a a a a n a -==++++- (n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cossincossin)(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axex x f 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°. (I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :2221(0):1x y a l x y a-=>+=与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值.22.(本小题满分14分)已知数列1{}1n a a =中,且a 2k =a 2k -1+(-1)K , a 2k +1=a 2k +3k , 其中k =1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cossin)cos(sin)(22222--+=212s i n 41)c o s s i n 1(21)c o s s i n 1(2c o s s i n 122+=+=--=x x x x x x x 所以函数f (x )的最小正周期是π,最大值是43,最小值是41.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P (ξ=0)=0.52×0.62=0.09.P (ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P (ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P (ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P (ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22axax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当0a >时,由220x ax +>,解得2x a<-或0x >,由220x ax +<,解得20.x a-<<所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2,由2x +ax 2<0,解得x <0或x >-a2.所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O .连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE .∵AD ⊥PB ,∴AD ⊥OB ,∵PA =PD ,∴OA =OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD . 由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB =120°,∠PEO =60° 由已知可求得PE∴PO =PE ·sin60°322=,即点P 到平面ABCD 的距离为32.(II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.3(0,0,),(0,0)22P B ,P B 中点G的坐标为3(0,,)44.连结AG .又知0),(0).22A C -由此得到:3(1,,),443(0,,),(2,0,0).22G A PB BC =--=-=-于是有0,0G A PB BC PB ⋅=⋅=所以.,G A PB BC PB G A BC ⊥⋅⊥的夹角 为θ等于所求二面角的平面角,于是cos 7||||G A BC G A BC θ⋅==-⋅所以所求二面角的大小为arccos7π- .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG //BC ,FG =12BC .∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角.∵AD ⊥面POB ,∴AD ⊥EG .又∵PE =BE ,∴EG ⊥PB ,且∠PEG =60°. 在Rt △PEG 中,EG =PE ·cos60°2.在Rt △GAE 中,AE =12AD =1.于是tan ∠GAE =E G A E2,又∠AGF =π-∠GAE .所以所求二面角的大小为π-2.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①所以242210.48(1)0.a a a a ⎧-≠⎪⎨+->⎪⎩解得0a << 1.a ≠双曲线的离心率e a==0a <<1,a ≠2e ∴>e ≠即离心率e的取值范围为).2+∞(II )设)1,0(),,(),,(2211P y x B y x A11225,125(,1)(,1).12PA PB x y x y =∴-=-由此得125.12x x =由于x 1+x 2都是方程①的根,且1-a 2≠0, 所以222172.121ax a=--222252.121ax a =--消去2x ,得222289160aa-=-由0a >,所以1713a =22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k, 同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1) =(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++kka 2k = a 2k -1+(-1)k=2123+k(-1)k -1-1+(-1)k=2123+k(-1)k=1.{a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1(C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ=(A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-•=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=••-+=•-+FGG B F B FG G B 即所求二面角的大小为π33 解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1),=DM (0,21,-21),,0,01=•=•DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=•G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .33||||11-=•=G B CD G B CD θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA •=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+•+=•x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=•OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0.∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ4≤ 直线l 在y 轴上截距的变化范围是34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年普通高等学校招生全国统一考试重庆卷理科数学试题及答案

2004年普通高等学校招生全国统一考试重庆卷理科数学试题及答案

2004年普通高等学校招生重庆卷理工农医类数学试题本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那幺n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数)23(log 21-=x y 的定义域是( )A .),1[+∞B .),32(+∞C . ]1,32[D .]1,32(2.设复数1Z =, 则22Z Z -= ( )A –3B 3C -3iD 3i 3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为:( )A 2B 2C 1D 4.不等式221x x +>+的解集是:( ) A (1,0)(1,-+∞B (,1)(0,1)-∞-C (1,0)(0,1)-D (,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+= ( )A 12-B 12C D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为:( )A 2B 4C 6D 12 7.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A 0a <B 0a >C 1a <-D 1a > 8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为:( )A B C D 9. 若数列{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( )A 4005B 4006C 4007D 400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )A 110B 120C 140D 112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的面积与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成图形可能是:( )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =14.曲线23112224y x y x =-=-与在交点处切线的夹角是______(用幅度数作答)15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..P n …,记纸板P n 的面积为n S ,则lim ______n x S →∞=16.对任意实数K ,直线:y kx b =+与椭圆:2cos (02)14sin x y θθπθ⎧=⎪≤≤⎨=+⎪⎩恰有一个公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数x x x x y 44cos cos sin 32sin -+=的取小正周期和取小值;并写出该函数在[0,]π上的单调递增区间设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求: (1)ξ的概率的分布列及期望E ξ; (2 ) 停车时最多已通过3个路口的概率19.(本小题满分12分)如图,四棱锥P-ABCD 的底面是正方形,,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面(1) 证明MF 是异面直线AB 与PC 的公垂线;(2) 若3PA AB =,求直线AC 与平面EAM 所成角的正弦值20.(本小题满分12分)设函数()(1)(),(1)f x x x x a a =-->(1) 求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2) 若不等式12()()0f x f x +≤成立,求a 的取值范围D设0p>是一常数,过点(2,0)Q p的直线与抛物线22y px=交于相异两点A、B,以线段AB为直经作圆H(H为圆心)试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程22.(本小题满分14分)设数列{}n a满足1112,,(1,2,3.......)n nna a a na+==+=(1)证明na>n 成立;(2)令1,2,3......)nb n==,判断1n nb b+与的大小,并说明理由2004年普通高等学校招生重庆卷理工农医类数学试题参考答案一、选择题:每小题5分,共60分.1.D 2.A 3.D 4.A 5.B 6.C 7.C 8.C 9.B 10.B 11.B 12.D11.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )A 110B 120C 140D 1120解:10位同学参赛演讲的顺序共有:1010A ;要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有33A 种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有66A 种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有27A 种方法根据分步计数原理(乘法原理),共有33A 66A ⋅27A ⋅种方法 所以,一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:3623671010120A A A P A ⋅⋅== 故选B二、填空题:每小题4分,共16分. 13.-2 14.4π 15.3π16.[-1,3] 三、解答题:共74分.17.(本小题12分)解:x x x x y 44cos cos sin 32sin -+=)62s i n (22c o s 2s i n 32s i n 3)c o s )(s i n c o s (s i n 2222π-=-=+-+=x xx xx x x x故该函数的最小正周期是π;最小值是-2; 单增区间是[π31,0],],65[ππ 18.(本小题12分) 解:(I )ξ的所有可能值为0,1,2,3,4用A K 表示“汽车通过第k 个路口时不停(遇绿灯)”,则P (A K )=4321,,,),4,3,2,1(43A A A A k 且=独立. 故,41)()0(1===A P P ξ25681)43()()4(,2562741)43()()3(,64941)43()()2(1634143)()1(4432134321232121==⋅⋅⋅====⋅⋅⋅====⋅⋅===⨯=⋅==A A A A P P A A A A P P A A A P P A A P P ξξξξ从而ζ有分布列:ξ 0 1 2 3 4P41 163 649 25627 25681 25652525681425627364921631410=⨯+⨯+⨯+⨯+⨯=ξE(II )256175256811)4(1)3(=-==-=≤ξξP P答:停车时最多已通过3个路口的概率为256175.19.(本小题12分)(I )证明:因PA ⊥底面,有PA ⊥AB ,又知AB ⊥AD ,故AB ⊥面PAD ,推得BA ⊥AE , 又AM ∥CD ∥EF ,且AM=EF , 证得AEFM 是矩形,故AM ⊥MF.又因AE ⊥PD ,AE ⊥CD ,故AE ⊥面PCD , 而MF ∥AE ,得MF ⊥面PCD , 故MF ⊥PC ,因此MF 是AB 与PC 的公垂线.(II )解:连结BD 交AC 于O ,连结BE ,过O 作BE 的垂线OH , 垂足H 在BE 上. 易知PD ⊥面MAE ,故DE ⊥BE , 又OH ⊥BE ,故OH//DE , 因此OH ⊥面MAE. 连结AH ,则∠HAO 是所要求的线AC 与面NAE 所成的角 设AB=a ,则PA=3a , a AC AO 2221==.因Rt △ADE~Rt △PDA ,故中从而在AHO Rt a ED OH a a a a PDAD ED ∆===+==.10221,10)3(2222.10520122102sin ==⨯==a a AO OH HAO 20.(本小题12分)解:(I ).)1(23)(2a x a x x f ++-=')(,;0)(,;0)(,:)())((3)(,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(II )因故得不等式,0)()(21≤+x f x f.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x 代入前面不等式,两边除以(1+a ),并化简得.0)()(,2,)(212.0252212成立不等式时当因此舍去或解不等式得≤+≥≤≥≥+-x f x f a a a a a 21.(本小题12分)解法一:由题意,直线AB 不能是水平线, 故可设直线方程为:p x ky 2-=.又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky消去x 得 04222=--p p k y y由此得 ⎩⎨⎧-==+.4,22p y y pk y y B A B A⎪⎩⎪⎨⎧==+=++=+22224)2()(,)24()(4p p y y x x p k y y k p x x B A B A B A B A 因此OB OA y y x x B A B A ⊥=+=⋅即,0. 故O 必在圆H 的圆周上.又由题意圆心H (H H y x ,)是AB 的中点,故⎪⎪⎩⎪⎪⎨⎧=+=+=+=.2,)2(22kp y y y p k x x x B A B B A H 由前已证,OH 应是圆H 的半径,且p k k y x OH H H 45||2422++=+=.从而当k=0时,圆H 的半径最小,亦使圆H 的面积最小.此时,直线AB 的方程为:x=2p.解法二:由题意,直线AB 不能是水平线,故可设直线方程为:ky =x -2p又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky分别消去x ,y 得⎪⎩⎪⎨⎧=++-=--.04)2(2,04222222p x k p x p pky y 故得A 、B 所在圆的方程.02)2(2222=-+-+pky x k p y x 明显地,O (0,0)满足上面方程所表示的圆上,又知A 、B 中点H 的坐标为),,)2(()2,2(2kp p k y y x x BA B A +=++ 故 22222)2(||p k p k OH ++=而前面圆的方程可表示为22222222)2()(])2([p k p k pk y p k x ++=-++- 故|OH|为上面圆的半径R ,从而以AB 为直径的圆必过点O (0,0). 又22422)45(||p k k OH R ++==,故当k=0时,R 2最小,从而圆的面积最小,此时直线AB 的方程为:x=2p. 解法三:同解法一得O 必在圆H 的圆周上又直径|AB|=22)()(B A B A y y x x -+-.44222222222p x x p x x px px x x y y x x B A B A BA B A B A B A =⋅+≥+++=+++=上式当B A x x =时,等号成立,直径|AB|最小,从而圆面积最小.此时直线AB 的方程为x=2p.22.(本小题14分)(I )证法一:当,1122,11+⨯>==a n 时不等式成立..1)1(2,1.1)1(213221,1.12,122221时成立时时当成立时假设++>+=∴++>++>++=+=+>=++k a k n k a k a a a k n k a k n k k k k k k综上由数学归纳法可知,12+>n a n 对一切正整数成立.证法二:当n=1时,112321+⨯=>=a .结论成立.假设n=k 时结论成立,即 .12+>k a k当)1(1)(,1>+=+=x x x x f k n 由函数时的单增性和归纳假设有 .012132)12112(.3212112:.12112121显然成立而这等价于因此只需证≥+⇔+≥++++≥++++++>+=+k k k k k k k k k a a a k k k所以当n=k+1时,结论成立. 因此,12+>n a n 对一切正整数n 均成立. 证法三:由递推公式得 ,1221212--++=n n n a a a 21212222222112,12a a a a a a n n n ++=++=--- 上述各式相加并化简得 )1(2211)1(222121212-+>+++-+=-n a a n a a n n ).,2,1(12,12,1).2(1222 =+>+>=≥+>+=n n a n a n n n n n n 故明显成立时又(II )解法一:1)1211(1)11(1211+++<++=+=++n n n n n a n a n a b b n n n n n ..12141)21(12)1(21)12()1(212n n b b n n n n n n n nn <<+-+=++=+++=+故 解法二:na a a n n a n ab b n n n nn n n -++=-+=-++)1(11111..0)1()1(1)]1()1([)1()1(1)]12()1([)1)(1(1))()](12)(1([)1(1])1([)1(112n n n nn n n n b b n n a n n n n n n a n n n n n n n n a n n n n n n n n a n n a n n n a n n <<+-++=+-++++=+-+++++=+-+-+≤-+-+=+所以的结论由 解法三:n a n a b b n n nn 2212211-+=-++ 0)1121(11)121212(11)12(11)21(1122222<-++=+-+++<-++=-+++=nn n nn n n n a a n n a a a n n n n nn故n n n n b b b b <<++1221,因此. I。

2004高考数学试题(全国4理)及答案

2004高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

04年高考理科数学全国2卷

04年高考理科数学全国2卷

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2}(B ){x |x >3} (C ){x |-1<x <2}(D ){x |2<x <3}(2)2212lim 45n x x x x →+-+-=(A )12(B )1 (C )25(D )14(3)设复数ω=-12,则1+ω=(A )–ω(B )ω2(C )1ω-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1(C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π(B )6π (C )-12π(D )12π(6)函数y =-e x的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为(A )13(B (C )23(D (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条(C )3条 (D )4条(9)已知平面上直线l 的方向向量43(,)55e =-,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11O A =λe ,其中λ=(A )115(B )-115(C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,32π) (B )(π,2π) (C )(32π,52π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π(D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是(写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB =AD +DB =623tan tan +=+CDB CD A CD ,由AB =3得CD =2+6 故AB 边上的高为18.(I)解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C19.(I )证: 由a 1=1,a n +1=nn 2+S n (n =1,2,3,…),知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n +1=S n +1-S n (n =1,2,3,…),则S n +1-S n =nn 2+S n (n =1,2,3,…),∴nS n +1=2(n +1)S n ,112n n S n S n++=(n =1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,114(2)11n n S Sn n n +-=⋅≥+-,于是S n +1=4(n +1)·11n S n --=4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n +1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1, ∵CB =CA 1,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1,∴A 1B 1, 又BB 1=1,∴A 1B =2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD =12A 1B =1,CD =CC 1 又DM =12AC 1=2,DM =C 1M ,∴△CDN ≌△CC 1M ,∠CDM =∠CC 1M =90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II )设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG =12CD ∴FG =12,FG ⊥BD . 由侧面矩形BB 1A 1A 的对角线的交点为D ,知BD =B 1D =12A 1B =1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=2,∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2)2=32. ∴cos∠B 1GF=2222211113(()222B G FG B FBG FG+-+-==⋅即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B ,0,0),B 1,1,0),A 1(0,1,1),D (2,12,12),M (2,1,0),CD =(2,12,12),1A B =,-1,-1), DM =(0,12,-12),10,0,CD A B CD DM ⋅=⋅=∴CD ⊥A 1B ,CD ⊥DM .因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G 11(,),444BD =(-2,12,12),1B G=31(,),444--∴10BD BG ⋅=,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与1B G 的夹角θ等于所求二面角的平面角,cos 11||||CD B G CD B G θ⋅==-⋅所以所求二面角的大小为π21.解:(I )C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为y =x -1.将y =x -1代入方程y 2=4x ,并整理得x 2-6x +1=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OA OB ⋅=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.222112||||OA OB x y x y ⋅=+⋅+==cos<,OA OB >=41||||OA OB OA OB ⋅=-⋅所以OA 与OB 夹角的大小为π-arccos41. 解:(II)由题设知FB AF λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即21211(1)(1)(2)x x y y λλ-=-⎧⎨=-⎩ 由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0.∴B (λ或B (λ,又F (1,0),得直线l 的方程为(λ-1)y =2x -1)或(λ-1)y x -1)当λ∈[4,9]时,l 在y21λ+-[4,9]上是递减的,∴34≤43≤,-43≤4≤ 直线l 在y 轴上截距的变化范围是4334[,][,]3443--22.(I)解:函数f (x )的定义域是(-1,∞),'f (x )=111x-+.令'f (x )=0,解得x =0,当-1<x <0时, 'f (x )>0,当x >0时,'f (x )<0,又f (0)=0,故当且仅当x =0时,f (x )取得最大值,最大值是0(II)证法一:g (a )+g (b )-2g (2a b +)=a ln a +b ln b -(a +b )ln 2a b +=a 22ln ln a bb a b a b+++.由(I )的结论知ln(1+x )-x <0(x >-1,且x ≠0),由题设0<a <b ,得0,1022b a a ba b-->-<<,因此2ln ln(1)22a b a b a a b a a --=-+>-+,2ln ln(1)22b a b a b a b b b--=-+>-+. 所以a 22ln ln a b b a b a b +++>-022b a a b---=.又2,2a a b a b b +<+ a 22ln ln a b b a b a b +++<a 22ln ln ()ln ()ln 2.2a b b b b b a b a b a b a b++=-<-++综上0<g (a )+g (b )-2g (2a b+)<(b -a )ln2.(II)证法二:g (x )=x ln x ,'()ln 1g x x =+,设F (x )= g (a )+g (x )-2g (2a x+),则'()'()2[()]'ln ln .22a x a xF x g x g x ++=-==当0<x <a 时'()0,F x <因此F (x )在(0,a )内为减函数当x >a 时'()0,F x >因此F (x )在(a ,+∞)上为增函数从而,当x =a 时,F (x )有极小值F (a )因为F (a )=0,b >a ,所以F (b )>0,即0<g (a )+g (b )-2g (2a b+).设G (x )=F (x )-(x -a )ln2,则'()ln ln ln 2ln ln().2a xG x x x a x +=--=-+当x >0时,'()0G x <,因此G (x )在(0,+∞)上为减函数,因为G (a )=0,b >a ,所以G (b )<0.即g (a )+g (b )-2g (2a b+)<(b -a )ln2.。

2004年高考数学试题(全国2理)及答案

2004年高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004高考数学试题(全国1理)及答案

2004高考数学试题(全国1理)及答案

2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。

2004年高考理科数学全国卷(word版含答案)

2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年高考数学试题(全国4理)及答案

2004年高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为图2Cy图1根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+=由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分.(Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( ) A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( I A)∪B=IB .( I A)∪( I B)=IC .A ∩( I B)=φD .( I A)∪( I B)= I B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K ,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=B 1),41,43,42(--∴01=∙B ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .33||||11-=∙=G B CD θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln (2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=B 1),41,43,42(--∴01=∙B ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .33||||11-=∙=G B CD θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln (2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004高考数学试题(全国2理)及答案

2004高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形,BA'C'又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .331-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y xcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年普通高校招生全国统一考试(重庆卷)数学试卷分析

2004年普通高校招生全国统一考试(重庆卷)数学试卷分析

2004年普通高校招生全国统一考试(重庆卷)数学试卷分析重庆市教育科学研究院张晓斌400015这次参加重庆卷数学考试的普通高中学生共有112668人,比去年增加28619人,其中理科69795人,占61.95%,文科42873人,占38.05%。

一、命题范围及试卷结构本次考试的命题范围是普通高中数学教学大纲和2004年普通高校招生全国统一考试大纲所规定的全部内容。

经统计各知识点所占分值如下表。

本次试题充分考虑了文理科学生的实际情况,适当拉大了文理科试题的差异,既体现了个性,也体现了共性。

文理科有7个选择题,1个填空题,1.5个解答题相同,共计9.5个题相同,还有1道姊妹题(第21题),这样文理试题计有11.5个题不同。

本次试题各类题型(选择题、填空题、解答题)的分布、总个数、每个题的分值分布等都与近几年全国高考数学试卷相同。

二、试题评价1.注重基础,贴近教材总体来看,本次试题无偏题,无怪题,所有题目都是大家熟悉的题型,严格遵循考纲的要求,注重了“三基”的考查和应用数学的意识与数学能力的考查,较好的体现了循序渐进,入手容易,深入难的设题思路。

如文理科解答题除第18题外,其余5个题得分容易,但得满分难。

中学数学中所学的基础知识、基本技能和基本数学思想方法是学生继续深造的基础,也是培养学生数学能力的前提。

基础知识一般包括概念、性质、法则、定理、公式等,本次文理试题的各个题目都是以相应的基本知识为载体的,不可能脱离基础知识而独立存在,因而所有的题目都体现了对基础知识的考查。

基本技能是指对变形、代换、推理、计算等技巧所掌握的熟练程度,如文理的选择填空题第1——8题,第13、14题,只要平时基础扎实的学生都能快速作答。

又如文理科解答题第21、22题考查了一些基本的技能技巧。

基本数学思想方法是指在中学数学中影响全局的、具有重大价值的、有深远意义的解决问题的思想、方法和策略,如函数方程、整体代换、数形结合、分类讨论、待定系数、化归与转化、运动变换等,如考题中很多题目都渗透了函数方程思想,如文理科的第21题,理科的第15、16题就要充分运用数形结合的思想去解决,理科第20题考查了分类讨论的思想。

精编版-2004年重庆高考理科数学真题及答案

精编版-2004年重庆高考理科数学真题及答案

2004年重庆高考理科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.(5分)设复数1Z =+,则22(Z Z -= ) A .3-B .3C .3i -D .3i3.(5分)圆222430x y x y +-++=的圆心到直线1x y -=的距离为:( )A .2B C .1 D 4.(5分)不等式221x x +>+的解集是( ) A .(1-,0)(1⋃,)+∞ B .(-∞,1)(0-⋃,1) C .(1-,0)(0⋃,1)D .(-∞,1)(1-⋃,)+∞5.(5分)sin163sin 223sin 253sin 313︒︒+︒︒等于( )A .12-B .12C .D 6.(5分)若向量a b 与的夹角为60︒,||4,(2)(3)72b a b a b =+-=-,则向量a 的模为( ) A .2B .4C .6D .127.(5分)一元二次方程2210ax x ++=,(0)a ≠有一个正根和一个负根的充分不必要条件是( ) A .0a <B .0a >C .1a <-D .1a >8.(5分)设P 是60︒的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A ,B 为垂足,4PA =,2PB =,则AB 的长为:( )A .B .C .D .9.(5分)若数列{}n a 是等差数列,首项10a >,200320040a a +>,2003a .20040a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .4005B .4006C .4007D .400810.(5分)已知双曲线22221x y a b-=,(0,0)a b >>的左,右焦点分别为1F ,2F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为( )A .43 B .53C .2D .7311.(5分)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A .110B .120C .140D .112012.(5分)若三棱锥A BCD -的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC ∆组成图形可能是:( )A .B .C .D .二、填空题(共4小题,每小题4分,满分16分)13.(4分)若在5(1)ax +的展开式中3x 的系数为80-,则a = .14.(4分)曲线2122y x =-与3124y x =-在交点处的切线夹角是 .(以弧度数作答)15.(4分)如图1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形3P 、4P 、⋯、n P ⋯,记纸板n P 的面积为n S ,则lim n n S →∞= .16.(4分)直线:(3)5y k x =+与椭圆:32cos (02)14sin x y θθπθ⎧=⎪⎨=+⎪⎩恰有一个公共点,则k 取值是 .三、解答题(共6小题,满分74分)17.(12分)求函数44sin 23sin cos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间.18.(12分)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率的分布列及期望E ξ; (Ⅱ)停车时最多已通过3个路口的概率.19.(12分)如图,四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,AE PD ⊥,//EF CD ,AM EF = (1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.20.(12分)设函数()(1)()f x x x x a =--,(1)a >(1)求导数()f x '并证明()f x 有两个不同的极值点1x ,2x ; (2)若不等式12()()0f x f x +成立,求a 的取值范围.21.(12分)设0p >是一常数,过点(2,0)Q p 的直线与抛物线22y px =交于相异两点A 、B ,以线段AB 为直径作圆(H H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程.22.(14分)设数列{}n a 满足:12a =,*11()n n na a n N a +=+∈. (Ⅰ)证明:21n a n +*n N ∈恒成立; (Ⅱ)令*)n nb n N n=∈,判断n b 与1n b +的大小,并说明理由.2004年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3【解答】解:要使函数有意义:(32)12log 0x -, 即:1122log (32)log 1x -可得 0321x <- 解得2(,1]3x ∈故选:D .2.(5分)设复数1Z =+,则22(Z Z -= ) A .3-B .3C .3i -D .3i【解答】解:复数1Z =,222(1)2(1Z Z ∴-=-12=-+--3=-故选:A .3.(5分)圆222430x y x y +-++=的圆心到直线1x y -=的距离为:( )A .2B C .1 D 【解答】解:圆222430x y x y +-++=的圆心(1,2)-,它到直线1x y -=故选:D . 4.(5分)不等式221x x +>+的解集是( ) A .(1-,0)(1⋃,)+∞ B .(-∞,1)(0-⋃,1)C .(1-,0)(0⋃,1)D .(-∞,1)(1-⋃,)+∞【解答】解:法一:221x x +>+ 得2201x x -+>+ 即(1)01x x x ->+ 可得 (1)(1)0x x x -+>可得10x -<<或1x >. 法二:验证,2x =-、12不满足不等式,排除B 、C 、D . 故选:A .5.(5分)sin163sin 223sin 253sin 313︒︒+︒︒等于( )A .12-B .12C .D 【解答】解:原式sin163sin 223cos163cos 223=︒︒+︒︒ cos(163223)=︒-︒ cos(60)=-︒12=. 故选:B .6.(5分)若向量a b 与的夹角为60︒,||4,(2)(3)72b a b a b =+-=-,则向量a 的模为( ) A .2B .4C .6D .12【解答】解:(2)(3)a b a b +-22||||||cos606||a a b b =-︒- 2||2||9672a a =--=-, 2||2||240a a ∴--=.(||6)(||4)0a a ∴-+=. ||6a ∴=.故选:C .7.(5分)一元二次方程2210ax x ++=,(0)a ≠有一个正根和一个负根的充分不必要条件是( ) A .0a <B .0a >C .1a <-D .1a >【解答】解:一元二次方程2210ax x ++=,(0)a ≠有一个正根和一个负根的充要条件是1210x x a⨯=<,即0a <,而0a <的一个充分不必要条件是1a <-故选:C .8.(5分)设P 是60︒的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A ,B 为垂足,4PA =,2PB =,则AB 的长为:( ) A .23B .25C .27D .42【解答】解:设平面PAB 与二面角的棱l 交于点Q , 连接AQ 、BQ 可得直线l ⊥平面PAQB ,所以AQB ∠是二面角l αβ--的平面角,60AQB ∠=︒, 故PAB ∆中,18060120APB ∠=︒-︒=︒,4PA =,2PB =,由余弦定理得:2222cos120AB PA PB PA PB =+-︒,22142242()282=+-⨯⨯⨯-=,所以2827AB ==, 故选:C .9.(5分)若数列{}n a 是等差数列,首项10a >,200320040a a +>,2003a .20040a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .4005 B .4006C .4007D .4008【解答】解:解法1:由200320040a a +>,200320040a a <,知2003a 和2004a 两项中有一正数一负数,又10a >,则公差为负数,否则各项总为正数,故20032004a a >,即20030a >,20040a <.140062003200440064006()4006()022a a a a S ++∴==>,40071400720044007()400702S a a a ∴=+=<, 故4006为0n S >的最大自然数. 故选B .解法2:由10a >,200320040a a +>,200320040a a <,同解法1的分析得20030a >,20040a <,2003S ∴为n S 中的最大值.n S 是关于n 的二次函数,如草图所示,2003∴到对称轴的距离比2004到对称轴的距离小,∴40072在对称轴的右侧. 根据已知条件及图象的对称性可得4006在图象中右侧零点B 的左侧, 4007,4008都在其右侧,0n S >的最大自然数是4006. 故选:B .10.(5分)已知双曲线22221x y a b-=,(0,0)a b >>的左,右焦点分别为1F ,2F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为( ) A .43B .53C .2D .73【解答】解:设(,)P x y ,由焦半径得1||PF ex a =+,2||PF ex a =-, 4()ex a ex a ∴+=-,化简得53a e x=, p 在双曲线的右支上,x a ∴,53e∴,即双曲线的离心率e 的最大值为53故选:B .11.(5分)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A .110B .120C .140D .1120【解答】解:由题意知本题是一个古典概型,试验发生包含的所有事件是10位同学参赛演讲的顺序共有:1010A ;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有33A 种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有66A 种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有27A 种方法.根据分步计数原理(乘法原理),共有362367A A A 种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连), 而二班的2位同学没有被排在一起的概率为:3623671010120A A A P A ==. 故选:B .12.(5分)若三棱锥A BCD -的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC ∆组成图形可能是:( )A .B .C .D .【解答】解:设二面角A BC D --的大小为θ,如图.作PR ⊥面BCD 于R ,PQ BC ⊥于Q ,PC AB ⊥于T ,则PQR θ∠=, 且由条件sin PT PR PQ θ==, ∴sin PTPQθ=为小于1的常数, 故选:D .二、填空题(共4小题,每小题4分,满分16分)13.(4分)若在5(1)ax +的展开式中3x 的系数为80-,则a = 2- .【解答】解:5(1)ax +展开式的通项为155()r r r r rr T C ax a C x +== 令3x =的展开式中3x 的系数为333510a C a = 展开式中3x 的系数为80- 31080a ∴=-2a ∴=-故答案为2-14.(4分)曲线2122y x =-与3124y x =-在交点处的切线夹角是 4π.(以弧度数作答)【解答】解:由232224x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩得322160x x +-=,2(2)(48)0x x x -++=,2x ∴=. ∴两曲线只有一个交点.21(2)2y x x '=-'=-,2|2x y =∴'=-.又323(2)44x y x '=-'=,∴当2x =时,3y '=.∴两曲线在交点处的切线斜率分别为2-、3, 23||11(2)3--=+-⨯.∴夹角为4π. 故答案为:4π15.(4分)如图1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形3P 、4P 、⋯、n P ⋯,记纸板n P 的面积为n S ,则lim n n S →∞=3π.【解答】解:每次剪掉的半圆形面积构成一个以8π为首项,以14为公比的等比数列, 则128lim 1614n n a a a ππ→∞++⋯+==- 故:lim 263n n S πππ→∞=-=故答案为:3π 16.(4分)直线:(3)5y k x =+与椭圆:32cos (02)14sin x y θθπθ⎧=⎪⎨=+⎪⎩恰有一个公共点,则k 取值是 0 .【解答】解:椭圆:32cos (02)14sin x y θθπθ⎧=⎪⎨=+⎪⎩22(3)(1)116x y --= 直线(3)5y k x =+恒过(35) 而点(35)在椭圆上且为上定点,则直线:(3)5y k x =+与椭圆:32cos (02)14sin x y θθπθ⎧⎪⎨=+⎪⎩恰有一个公共点即0k =, 故答案为0.三、解答题(共6小题,满分74分)17.(12分)求函数44sin cos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间.【解答】解:44sin cos cos y x x x x =+-2222(sin cos )(sin cos )2x x x x x =+-2cos2x x =-2sin(2)6x π=-.故该函数的最小正周期是π;最小值是2-;单调递增区间是[0,]3π,5[6π,]π.18.(12分)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率的分布列及期望E ξ; (Ⅱ)停车时最多已通过3个路口的概率.【解答】解:()I 由题意知ξ的所有可能值为0,1,2,3,4 用K A 表示“汽车通过第k 个路口时不停(遇绿灯)”, 则()()123431,2,3,4,,,,4K P A k A A A A ==且独立. 故11(0)()4P P A ξ===, 12313(1)()4416P P A A ξ===⨯=2123319(2)()()4464P P A A A ξ====, 312343127(3)()()44256P P A A A A ξ====, 41234381(4)()()4256P P A A A A ξ====从而ξ有分布列:13927815250123441664256256256E ξ=⨯+⨯+⨯+⨯+⨯=81175()(3)1(4)1256256II P P ξξ=-==-=即停车时最多已通过3个路口的概率为175256. 19.(12分)如图,四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,AE PD ⊥,//EF CD ,AM EF = (1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.【解答】()I 证明:因PA ⊥底面,有PA AB ⊥,又知AB AD ⊥, 故AB ⊥面PAD ,推得BA AE ⊥, 又////AM CD EF ,且AM EF =, 证得AEFM 是矩形,故AM M F ⊥.又因AE PD ⊥,AE CD ⊥,故AE ⊥面PCD , 而//MF AE ,得M F ⊥面PCD , 故MF PC ⊥,因此MF 是AB 与PC 的公垂线.()II 解:连接BD 交AC 于O ,连接BE ,过O 作BE 的垂线OH ,垂足H 在BE 上.易知PD ⊥面MAE ,故DE BE ⊥, 又OH BE ⊥,故//OH DE ,因此OH ⊥面MAE .连接AH ,则HAO ∠是所要求的线AC 与面NAE 所成的角 设AB a =,则3PA a =,1222AO AC a ==. 因Rt ADE ~Rt PDA ∆∆,故 222210(3)AD a aED PD a a ===+, 12210aOH ED ==. 从而在Rt AHO ∆中 215sin 10210220OH a HAO AO a ==⨯==.20.(12分)设函数()(1)()f x x x x a =--,(1)a >(1)求导数()f x '并证明()f x 有两个不同的极值点1x ,2x ; (2)若不等式12()()0f x f x +成立,求a 的取值范围. 【解答】解:(1)2()32(1)f x x a x a '=-++. 令()0f x '=得方程232(1)0x a x a -++=.因△24(1)40a a a =-+>,故方程有两个不同实根1x ,2x 不妨设12x x <,由12()3()()f x x x x x '=--可判断()f x '的符号如下: 当1x x <时,()0f x '>; 当12x x x <<时,()0f x '<;当2x x >时,()0f x '>因此1x 是极大值点,2x 是极小值点.(2)因12()()0f x f x +,故得不等式3322121212(1)()()0x x a x x a x x +-++++.即22121212121212()[()3](1)[()2]()0x x x x x x a x x x x a x x ++--++-++. 又由()I 知12122(1)3.3x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩代入前面不等式,两边除以(1)a +,并化简得 22520a a -+.解不等式得2a 或12a(舍去) 因此,当2a 时,不等式12()()0f x f x +成立.21.(12分)设0p >是一常数,过点(2,0)Q p 的直线与抛物线22y px =交于相异两点A 、B ,以线段AB 为直径作圆(H H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程.【解答】解:由题意,设直线AB 的方程为2ay x =-, 设1(A x ,1)y ,2(B x ,2)y ,则其坐标满足222ay x y px =-⎧⎨=⎩消去x 的22240y apy p --=,则212212(42)4x x a p x x p ⎧+=+⎪⎨=⎪⎩因此12120OA OB x x y y =+=OA OB ∴⊥,故O 必在圆H 的圆周上,又由题意圆心H 是AB 的中点,故2(2)H Hx a p y ap ⎧=+⎪⎨=⎪⎩, 由前已证OH 应是圆H 的半径,且42||54OH a a p =++; 从而当0a =时,圆H 的半径最小,也使圆H 的面积最小.22.(14分)设数列{}n a 满足:12a =,*11()n n na a n N a +=+∈. (Ⅰ)证明:21n a n +*n N ∈恒成立; (Ⅱ)令*)n nb n N n=∈,判断n b 与1n b +的大小,并说明理由.【解答】解:(1)证法一:当1n =时,12211a =⨯+ 假设n k =时,21k a k +2分), 当1n k =+时,22122112232(1)1k k k ka a k k a a +=++>++>++.(5分) 1n k ∴=+时,12(1)1k a k +>++综上由数学归纳法可知,21n a n +6分)证法二:由递推公式得2212112n n n a a a --=++,2222122122211122n n m a a a a a a ---=++=++(2分) 上述各式相加并化简得22212211112(1)22(1)222111(2)nn a a n n n n n a a -=+-++⋯+>+-=+>+++(4分)又1n=时,na*)na n N>∈(6分)(2)解法一:1211(1)(1)21nn nbb a n+==+<++(8分)12n===<+(10分)又显然*0()nb n N>∈,故1n nb b+<成立(12分)解法二:22222211211(2)11n n nn n nma a ab b an n n a n++-=-=++-++(8分)22111121(2)(2)1121nma nn a n n n n+=+-<+-+++(10分)111()0121n n n=-<++故221n nb b+<,因此1n nb b+<(12分)。

2004年高考数学理试题(全国1卷)及答案

2004年高考数学理试题(全国1卷)及答案

2004年高考试题全国卷Ⅰ理参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n(k )=C P k (1-P )n -k一、选择题:本大题共12小题,每小题6分,共601.(1-i )2·i =()A .2-2iB .2+2iC .-2D .22.已知函数()A .bB .-bC .D .-3.已知、均为单位向量,它们的夹角为60°,那么|+3|=()A .B .C .D .44.函数的反函数是()A .y =x 2-2x +2(x <1)B .y =x 2-2x +2(x ≥1)C .y =x 2-2x (x <1)D .y =x 2-2x (x ≥1)5.的展开式中常数项是()A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A B I ,则下列各式中错误的是()A .(A )∪B =I B .(A )∪(B )=IC .A ∩(B )=D .(A )(B )=B7.椭圆的两个焦点为F 1、F 2,过F 1作垂直于x轴的直线与椭圆相交,一个交点为P ,则=A .B .C .D .4球的表面积公式S =4其中R 表示球的半径,球的体积公式V =,其中R 表示球的半径8.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l 的斜率的取值范围是A.[-,]B.[-2,2]C.[-1,1]D.[-4,4]9.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度10.已知正四面体A B C D的表面积为S,其四个面的中心分别为E、F、G、H.设四面体E F G H 的表面积为T,则等于()A.B.C.D.11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为()A.B.C.D.12.的最小值为()A.-B.-C.--D.+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式|x+2|≥|x|的解集是.14.由动点P向圆x2+y2=1引两条切线P A、P B,切点分别为A、B,∠A P B=60°,则动点P 的轨迹方程为.15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是.①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点;在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数的最小正周期、最大值和最小值. 18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知求函数的单调区间.20.(本小题满分12分)如图,已知四棱锥P—A B C D,P B⊥A D侧面P A D为边长等于2的正三角形,底面A B C D 为菱形,侧面P A D与底面A B C D所成的二面角为120°.(I)求点P到平面A B C D的距离,(I I)求面A P B与面C P B所成二面角的大小.4 21.(本小题满分12分)设双曲线C:相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围:(I I)设直线l与y轴的交点为P,且求a的值.22.(本小题满分14分)已知数列,且a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3,a5;(I I)求{a n}的通项公式.2004年高考试题全国卷1理科数学(必修+选修Ⅱ)参考答案一、选择题D B C B A B C C B A D B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x|x≥-1}14.x2+y2=415.16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:所以函数f(x)的最小正周期是π,最大值是,最小值是.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=×0.52×0.62+×0.52×0.4×0.6=0.3P(ξ=2)=×0.52×0.62+×0.52×0.4×0.6+×0.52×0.42=0.37.P(ξ=3)=×0.52×0.4×0.6+×0.52×0.42=0.2P(ξ=4)=0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:ξ01234P0.090.30.370.20.04所以Eξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f(x)的导数:(I)当a=0时,若x<0,则<0,若x>0,则>0.所以当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(I I)当由所以,当a>0时,函数f(x)在区间(-∞,-)内为增函数,在区间(-,0)内为减函数,在区间(0,+∞)内为增函数;(I I I)当a<0时,由2x+a x2>0,解得0<x<-,由2x+a x2<0,解得x<0或x>-.所以当a<0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,-)内为增函数,在区间(-,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I)解:如图,作P O⊥平面A B C D,垂足为点O.连结O B、O A、O D、O B与A D交于点E,连结P E.∵A D⊥P B,∴A D⊥O B,∵P A=P D,∴O A=O D,于是O B平分A D,点E为A D的中点,所以P E⊥A D.由此知∠P E B为面P A D与面A B C D所成二面角的平面角,∴∠P E B=120°,∠P E O=60°由已知可求得P E=∴P O=P E·s i n60°=,即点P到平面A B C D的距离为.(I I)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于D A..连结A G.又知由此得到:所以等于所求二面角的平面角,于是所以所求二面角的大小为.解法二:如图,取P B的中点G,P C的中点F,连结E G、A G、G F,则A G⊥P B,F G//B C,F G=B C.∵A D⊥P B,∴B C⊥P B,F G⊥P B,∴∠A G F是所求二面角的平面角.∵A D⊥面P O B,∴A D⊥E G.又∵P E=B E,∴E G⊥P B,且∠P E G=60°.在R t△P E G中,E G=P E·c o s60°=.在R t△P E G中,E G=A D=1.于是t a n∠G A E==,又∠A G F=π-∠G A E.所以所求二面角的大小为π-a r c t a n.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分.解:(I)由C与t相交于两个不同的点,故知方程组有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①双曲线的离心率(I I)设由于x1+x2都是方程①的根,且1-a2≠0,22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I)a2=a1+(-1)1=0,a3=a2+31=3.a4=a3+(-1)2=4,a5=a4+32=13,所以,a3=3,a5=13.(I I)a2k+1=a2k+3k=a2k-1+(-1)k+3k,所以a2k+1-a2k-1=3k+(-1)k,同理a2k-1-a2k-3=3k-1+(-1)k-1,……a3-a1=3+(-1).所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],由此得a2k+1-a1=(3k-1)+[(-1)k-1],于是a2k+1=a2k=a2k-1+(-1)k=(-1)k-1-1+(-1)k=(-1)k=1. {a n}的通项公式为:当n为奇数时,a n¬=当n为偶数时,。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21(B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为 (A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称 (C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称(7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31(B )33 (C )32 (D )36(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2 S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n }是等比数列;(Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CD BCDACD ,由AB=3得CD=2+6故AB 边上的高为2+18.(I) 解:有一组恰有两支弱队的概率2482523=CC C(II)解:A 组中至少有两支弱队的概率21481533482523=+CC C CC C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…),知a 2=112+S 1=3a 1,224212==a S ,111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列(II )解:由(I )知,)2(14111≥-∙=+-+n n S n S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2, ∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=32123223)21()23(222121221=∙∙-+=∙-+FGG B FB FG G B即所求二面角的大小为π解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21),M(22,1,0),=CD(22,21,21),=BA 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=GB 1),41,43,42(--∴01=∙GB BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .3311-==θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OBOA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-=所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0), 得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ-≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时,'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln2b a +=a ba b b ba a +++2ln2ln.由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得21,02<-<->-bb a aab ,因此a ab aa b ba a 2)21l n (2ln-->-+-=+,bb a bb a b a b 2)21ln(2ln-->-+-=+.所以a b a b b b a a +++2ln 2ln >-22=---b a ab .又,22bba ba a +<+a ba b b ba a +++2ln2ln<a .2ln )(2ln)(2ln2lna b ba b a b ba b b bba -<+-=+++综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2x a +),则.2lnln )]'2([2)(')('x a x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2b a +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x x a x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2b a +)<(b-a)ln2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年普通高等学校招生重庆卷理工农医类数学试题本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分考试时间120分钟.第Ⅰ部分(选择题共60分)参考公式:如果事件A、B 互斥,那幺P(A+B)=P(A)+P(B)如果事件A、B 相互独立,那幺P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P,那幺n 次独立重复试验中恰好发生k 次的概率k n k knn P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =的定义域是:()A [1,)+∞B23(,)+∞C23[,1]D 23(,1]2.设复数1Z =+,则22Z Z -=()A –3B 3C -3iD 3i 3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为:()A2B2C 1D 4.不等式221x x +>+的解集是:()A (1,0)(1,)-+∞B (,1)(0,1)-∞-C (1,0)(0,1)- D (,1)(1,)-∞-+∞ 5.sin163sin 223sin 253sin 313+= (A 12-B 12C 2-D 26.若向量 a与b 的夹角为60 ,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为:()A 2B 4C 6D 127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:()A 0a <B 0a >C 1a <-D1a >8.设P 是60 的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B为垂足,4,2,PA PB ==则AB 的长为:()AB C DABCABCA BCABCPPPP9.若数列{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:()A 4005B 4006C 4007D 400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:()A 43B 53C 2D 7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A 110B 120C 140D112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的面积与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成图形可能是:()第Ⅱ部分(非选择题共90分)题号二三总分171819202122分数二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =14.曲线23112224y x y x =-=-与在交点处切线的夹角是______(用弧度数作答)15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..P n …,记纸板P n 的面积为n S ,则lim ______n x S →∞=16.对任意实数K ,直线:y kx b =+与椭圆:2cos (02)14sin x y θθπθ⎧=⎪≤≤⎨=+⎪⎩恰有一个公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数44sinc o s c o s y x x x x =+-的取小正周期和取小值;并写出该函数在[0,]π上的单调递增区间。

P 1P 2P 3P 4设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14。

假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(1)ξ的概率的分布列及期望E ξ;(2)停车时最多已通过3个路口的概率。

19.(本小题满分12分)如图,四棱锥P-ABCD 的底面是正方形,,,//,PA ABCD AE PD EF CD AM EF⊥⊥=底面(1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值。

20.(本小题满分12分)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ;(2)若不等式12()()0f x f x +≤成立,求a 的取值范围。

D设0p>是一常数,过点(2,0)Q p的直线与抛物线22y px=交于相异两点A、B,以线段AB为直经作圆H(H为圆心)。

试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程。

22.(本小题满分14分)设数列{}n a满足1112,,(1,2,3.......)n nna a a na+==+=(1)证明na>对一切正整数n成立;(2)令1,2,3......)nb n==,判断1n nb b+与的大小,并说明理由。

2004年普通高等学校招生重庆卷理工农医类数学试题参考答案一、选择题:每小题5分,共60分.1.D 2.A 3.D 4.A 5.B 6.C 7.C8.C9.B10.B11.D12.D二、填空题:每小题4分,共16分.13.-214.4π15.3π16.[-1,3]三、解答题:共74分.17.(本小题12分)解:xx x x y 44cos cos sin 32sin -+=)62sin(22cos 2sin 32sin 3)cos )(sin cos (sin 2222π-=-=+-+=x x x x x x x x 故该函数的最小正周期是π;最小值是-2;单增区间是[π31,0],],65[ππ18.(本小题12分)解:(I )ξ的所有可能值为0,1,2,3,4用A K 表示“汽车通过第k 个路口时不停(遇绿灯)”,则P (A K )=4321,,,),4,3,2,1(43A A A A k 且=独立.故,41)()0(1===A P P ξ25681)43()()4(,2562741)43()()3(,6494143()()2(1634143)()1(4432134321232121==⋅⋅⋅====⋅⋅⋅====⋅⋅===⨯=⋅==A A A A P P A A A A P P A A A P P A A P P ξξξξ从而ζ有分布列:25652525681425627364921631410=⨯+⨯+⨯+⨯+⨯=ξE (II )256175256811)4(1)3(=-==-=≤ξξP P 答:停车时最多已通过3个路口的概率为256175.19.(本小题12分)(I )证明:因PA ⊥底面,有PA ⊥AB ,又知AB ⊥AD ,故AB ⊥面PAD ,推得BA ⊥AE ,又AM ∥CD ∥EF ,且AM=EF ,证得AEFM 是矩形,故AM ⊥MF.又因AE ⊥PD ,AE ⊥CD ,故AE ⊥面PCD ,而MF ∥AE ,得MF ⊥面PCD ,故MF ⊥PC ,因此MF 是AB 与PC 的公垂线.(II )解:连结BD 交AC 于O ,连结BE ,过O 作BE 的垂线OH ,垂足H 在BE 上.易知PD ⊥面MAE ,故DE ⊥BE ,又OH ⊥BE ,故OH//DE ,因此OH ⊥面MAE.连结AH ,则∠HAO 是所要求的线AC 与面NAE 所成的角设AB=a ,则PA=3a ,a AC AO 2221==.因Rt △ADE~Rt △PDA ,故中从而在AHO Rt a ED OH a a a a PD AD ED ∆===+==.10221,10)3(2222.10520122102sin ==⨯==a a AO OH HAO 20.(本小题12分)解:(I ).)1(23)(2a x a x x f ++-=')(,;0)(,;0)(,:)())((3)(,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(II )因故得不等式,0)()(21≤+x f x f .0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x 代入前面不等式,两边除以(1+a ),并化简得.0)()(,2,)(212.0252212成立不等式时当因此舍去或解不等式得≤+≥≤≥≥+-x f x f a a a a a 21.(本小题12分)解法一:由题意,直线AB 不能是水平线,故可设直线方程为:p x ky 2-=.又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky 消去x 得04222=--p pky y 由此得⎩⎨⎧-==+.4,22p y y pk y y B A B A ⎪⎩⎪⎨⎧==+=++=+22224)2()(,)24()(4p p y y x x p k y y k p x x B A B A B A B A 因此OB OA y y x x OB OA B A B A ⊥=+=⋅即,0.故O 必在圆H 的圆周上.又由题意圆心H (H H y x ,)是AB 的中点,故⎪⎪⎩⎪⎪⎨⎧=+=+=+=.2,)2(22kp y y y p k x x x B A B B A H 由前已证,OH 应是圆H 的半径,且p k k y x OH H H 45||2422++=+=.从而当k=0时,圆H 的半径最小,亦使圆H 的面积最小.此时,直线AB 的方程为:x=2p.解法二:由题意,直线AB 不能是水平线,故可设直线方程为:ky =x -2p 又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky 分别消去x,y 得⎪⎩⎪⎨⎧=++-=--.04)2(2,04222222p x k p x p pky y 故得A 、B 所在圆的方程.02)2(2222=-+-+pky x k p y x 明显地,O (0,0)满足上面方程所表示的圆上,又知A 、B 中点H 的坐标为),,)2(()2,2(2kp p k y y x x BA B A +=++故22222)2(||p k p k OH ++=而前面圆的方程可表示为22222222)2()(])2([p k p k pk y p k x ++=-++-故|OH|为上面圆的半径R ,从而以AB 为直径的圆必过点O (0,0).又22422)45(||p k k OH R ++==,故当k=0时,R 2最小,从而圆的面积最小,此时直线AB 的方程为:x=2p.解法三:同解法一得O 必在圆H 的圆周上又直径|AB|=22)()(B A B A y y x x -+-.44222222222p x x p x x px px x x y y x x B A B A BA B A B A B A =⋅+≥+++=+++=上式当B A x x =时,等号成立,直径|AB|最小,从而圆面积最小.此时直线AB 的方程为x=2p.22.(本小题14分)(I )证法一:当,1122,11+⨯>==a n 时不等式成立..1)1(2,1.1)1(213221,1.12,122221时成立时时当成立时假设++>+=∴++>++>++=+=+>=++k a k n k a k a a a k n k a k n k kk k k k 综上由数学归纳法可知,12+>n a n 对一切正整数成立.证法二:当n=1时,112321+⨯=>=a .结论成立.假设n=k 时结论成立,即.12+>k a k 当)1(1)(,1>+=+=x xx x f k n 由函数时的单增性和归纳假设有.012132)12112(.3212112:.12112121显然成立而这等价于因此只需证≥+⇔+≥++++≥++++++>+=+k k k k k k k k k a a a k k k 所以当n=k+1时,结论成立.因此,12+>n a n 对一切正整数n 均成立.证法三:由递推公式得,1221212--++=n n n a a a 21212222222112,12a a a a a a n n n ++=++=--- 上述各式相加并化简得)1(2211)1(222121212-+>+++-+=-n a a n a a n n ).,2,1(12,12,1).2(1222 =+>+>=≥+>+=n n a n a n n n n n n 故明显成立时又(II )解法一:1)1211(1)11(1211+++<++=+=++n nn n n a n a n a b b n n n n n第11页(共11页)..12141)21(12)1(21)12()1(212n n b b n n n n n n n n n <<+-+=++=+++=+故解法二:n a a a n n a n a b b nn n nn n n -++=-+=-++1(11111..0)1()1(1)]1()1([)1()1(1)]12()1([)1)(1(1))()](121([)1(1])1([)1(112n n n n n n n n b b n n a n n n n n n a n n n n n n n n a n n n n n n n n a n n a n n n a n n <<+-++=+-++++=+-+++++=+-+-+≤-+-+=+所以的结论由解法三:n a n a b b nn nn 2212211-+=-++0)1121(11)121212(11)12(11)21(1122222<-++=+-+++<-++=-+++=nn n n n n n n a a n n a a a n n nn n n 故n n n n b b b b <<++1221,因此.I。

相关文档
最新文档