解析几何中的最值问题的求解

合集下载

几何求最大值的方法

几何求最大值的方法

几何求最大值的方法几何求最大值的方法是一个涵盖多个领域的复杂问题,涉及数学、物理、工程等多个学科。

在几何学中,求最大值的问题通常涉及到图形的性质、空间结构和优化理论。

下面将详细介绍一些常用的几何求最大值的方法,并阐述它们的原理和应用。

一、基础概念在几何学中,最大值问题通常涉及到距离、角度、面积、体积等几何量。

求这些量的最大值,需要理解几何对象的基本性质,如点、线、面、体之间的关系和性质。

二、基本方法解析几何法:通过建立坐标系,将几何问题转化为代数问题,利用代数方法求解最大值。

例如,在平面几何中,可以通过求解二次函数的极值来找到某个图形的最大面积或最大距离。

几何不等式法:利用几何不等式来求解最大值。

例如,在三角形中,利用三角形的三边关系、角度关系等不等式,可以求解三角形的最大面积或最大周长。

几何变换法:通过平移、旋转、对称等几何变换,将问题转化为更简单的形式,从而求解最大值。

例如,在立体几何中,可以通过旋转体来求解某个几何体的最大体积。

三、实际应用几何求最大值的方法在实际生活中有着广泛的应用。

例如,在建筑设计中,可以利用几何求最大值的方法来优化建筑的空间布局,提高建筑的使用效率;在交通运输中,可以利用几何求最大值的方法来规划最优的运输路线,降低运输成本;在机器人路径规划中,也可以利用几何求最大值的方法来找到机器人的最优运动轨迹。

四、案例分析以一个具体的案例为例,假设我们有一个固定的圆形区域,需要在其中放置尽可能多的相同大小的圆形物体。

这个问题可以转化为求解圆形区域内能够容纳的最大圆形物体数量。

通过解析几何法和几何不等式法,我们可以找到最优的排列方式,使得圆形区域内能够容纳的圆形物体数量达到最大。

五、结论与展望几何求最大值的方法是一个复杂而重要的领域,具有广泛的应用前景。

随着数学、物理、工程等学科的不断发展,几何求最大值的方法也将不断更新和完善。

未来,我们可以期待更多创新的方法和理论的出现,为实际问题的解决提供更多有效的工具和手段。

解析几何中最值问题的常用方法

解析几何中最值问题的常用方法
3 +2 +l = o x y 0 2
分 :zxy y x , 族 丢 平 的 析 =一, = — 作 与 ×行 令 34则 孚 z 一
平行线 。 注意到当直线 与椭 圆相切时 , 线在 Y轴上的截距 一 直 有最值 , z有最值。 即 (x 4 — = 3 一 v. 0 Z
由 I 得
分 : 最 值即 的 大 , 看 析求 小 ,求 最 值而 } 作
两点 A(、)l 10的斜率。 xyB一 ,) 故等价于在椭圆上找一个点 A, 使
它与 B连线斜率最大。 解析 : A 设 B方程为 y k + ) =【 1 x
f= 【 1 y kx ) +
的能力 , 中学数学复 习中不可忽视的问题。下面我结合具体 是
时 ,距离 之和有 最小值 。本题 中点 A B在 l 、 的异筒 ,易得
变式 : 已知圆 C ( 4 + 24 圆 D的圆心 D在 Y轴上且 : + 】 y= , X 与圆 C相 外切 , D与 Y轴交于 A、 圆 B点 , P为 ( 3 0)当 点 一, , 点 D在 Y轴上移动时, _ P 求/A B的最大值 。 _ 答案 : ctn at a
3  ̄2 a 4 = a+ s + s 0,由方程有实数根得△ =Is - x3X4 ≥0, 2) 4 Z S
即s 1 ≥ 2或 S ( )从 而 得 a 一 I= 6 ≤O 舍 , = 4b一 。
当 I HP l P A B取得最大值时, P的坐标是— 点


提示 : 当点 A B I 、 在 同侧时 , 距寓之差有最大值 ; l 在 异侧
甘肃省张掖市实验 中学
王希明
【 要】 摘 解析几何中的最值问题是历届高考的热点, 如何利用合理的数学方法解决这类问题, 提高学生分析问题和解决问

解析几何中最值问题的求法

解析几何中最值问题的求法

=T t _A - X 3 + X 2 c s0 了 ) 当 0 - I 即(- ) 2 / 一 一 / 。 / 2 / o (+, f - x y \ 1 、

解 :设 与直 线 3- 3 1 = x 2, 6 O斜 率 相 同 且 与 椭 圆 7Z4 : 8 _ x+  ̄ 2
三 、 用 不 等 式 。 其 是 均 值 不 等 式 求最 值 利 尤
J  ̄AAMB的 面 积 的 最 小值 是 0 -  ̄ 4

≥ , 当x0 l = , P 普。 o・ = 时,AJ 即J J 一 . . P A
所 以 距 点 A 最 近 的 点 P的 坐 标 为 ( , )即最 短 距 离 为 。 00,
二、 利用 三 角 函数 , 其 是 正 、 弦 函数 的 有 界 性 。 最 值 尤 余 求
相切的直线z 的方程为3-y£ , x2 : 则由{ +o 7 x
得 l 6+ x
j 2 t 一 y+ =U
例3 知椭圆c 筝+ 1 曰 椭圆中 已 : 孚= , 是过 A 心的 任意弦, f
是 线 段 A 的 垂 直 平 分 线 . 是 与椭 圆 的 交 点 .求 △AMB 的 面 积 的最 小 值 解 : 设 线 段 AB所 在 直 线 的 斜 率 存 在 且 不 为 零 . A 所 假 设 B 在 的 直线 方 程 为 y k ( ≠0 , x ,A , =xk ) A( ^ ) Y
6 £ 2= , 缸十2 8 0 由判 别 式 △= 624 1 ( — 8 = . f± , 直线 3 t x 6t 2 )0 得 = 8 故 - 2 的方 程 为 3 一 忙 8 0 又 - 直 线 3 - y 6 0与 直 线 Z3 - ’ 2 =。 , - x 2 一1 - - :x 2, 一

高中数学解析几何中求最值的方法

高中数学解析几何中求最值的方法

一、利用圆锥曲线的定义圆锥曲线的定义,是曲线上的动点本质属性的反映。

研究圆锥曲线的最值,利用圆锥曲线的定义,可使问题简化。

例1、若使双曲线上一点M到定点A(7,)的距离与M到右焦点F的距离之半的和有最小值,求M点的坐标。

解析:如图所示,由双曲线定义2可知,,所以|MF|=2|MP|。

令,即。

此问题转化为折线AMP的最短问题。

显然当A、M、P同在一条与x轴平行的直线上时,折线AMP最短,故M点的纵坐标为,代入双曲线方程得M(,)。

二、利用几何图形的对称性对称思想是研究数学问题常用的思想方法,利用几何图形的对称性去分析思考最值问题。

例2、已知点A(2,1),在直线和上分别求B点和C 点,使△ABC的周长最小。

分析:轴对称的几何性质以及两点间的距离以直线段为最短。

解析:先找A(2,1)关于直线、的对称点分别记为和,如图所示,若在、上分别任取点和,则△ABC周长=周长。

故当且仅当、、、四点共线时取等号,直线方程为:,与、的交点分别为B(,)、C(,0)。

三、利用参数的几何意义利用参数的几何意义,把它转化为几何图形中某些确定的几何量(如角度、长度、斜率)的最大值、最小值问题。

例3、椭圆内有两点A(4,0),B(2,2),M是椭圆上一动点,求|MA|+|MB|的最大值与最小值。

分析:若直接利用两点的距离公式,难度较大,通过椭圆定义转化后,利用几何性质可解决问题。

解析:|MA|+|MB|=2a-|MC|+|MB|=10+|MB|-|MC|,根据平面几何性质:||MB|-|MC||,当且仅当M、B、C共线时取等号,故|MA|+|MB|的最大值是,最小值是。

四、利用代数性质将问题里某些变化的几何量(长度、点的坐标、斜率、公比)设为自变量,并将问题里的约束条件和目标表示为自变量的解析式,然后利用代数性质(如配方法、不等式法、判别式法等)进行解决,可使问题简单化。

例4、过抛物线的焦点作两条互相垂直的弦AC、BD,求四边形ABCD面积的最小值。

浅谈高考解析几何中的最值问题

浅谈高考解析几何中的最值问题
轴 AB 匕一 点 , 到 直 线 AP M

图4
转化 为 l A I l F I +4的 P + P 最 小 值 ,再 由 图 2 可 知 l 十 l A I 最 小 值 就 PF 1 的 P
是点 A 到右 焦点 的距离 .
图2
的 距 离 等 于 I B 1 求 椭 圆 上 点 到 点 M 的 距 离 的 最 . M
l Fl P 的最小值 转化 为 I Q l l P 1 + 的最 小 值 , 由 P P 再 图 1知 I PQI I 的最小 值是 点 Q到 准线 的距离 . + I PP
析 由抛物 线定 义知 I Fl 于 点 P 到 准线 的距 P 等 离 I ,P + I FI l QI I P l PP l 1 QI — + ≥3 P P P

/ 】 6 - 战


√2


图 1
1 6 时 ; 一 ,) ) 一 , 一 A 譬; 当 d (
2 )当 6 一 时 , 一 一 d ; A( ,一 ) .
义 l — I P l 把 I + I , l PF P PQ
M F J B5

1 AI P 的最小值 为 多少 ?
思 维 导 引 根 据 双 曲 线

A /
的定 义 I l l +4 PF — PF l ,
把 1 + f 的 最 小 值 PF l PA l
为椭 圆 上 , 于 z轴 的上 方 , 位 且 P A上 P 若 M 为 椭 圆长 F,
P( y , z,) 则 一 ( + 6 y z , ),i 一 ( z一4 ,
), APIF _ P,所 以( z+6 ( -4 + 一d ) - ) .

浅谈如何有效地解决解析几何中的最值问题

浅谈如何有效地解决解析几何中的最值问题
我们应大胆地 尝试此做法.本题主要考查直 线、圆和椭 圆参数方 程的理解以及 化参数方程为普通方程的方法,椭圆方程 的应用、
由双 曲线的第二定义 知
:, 。
Il d 1 I Nl = ,  ̄
所以I 4 I =I + =I +I I P I P I P I d P I . M F M M

C:{ 2
【 =3i y sn0
( 为参数) 0 .
( ) C,C 的方 程为普通 方程 ,并说 明它们 分别表 示什 1化
么 曲线 ;

半 =, } }则y , 直 径r1设 j 当 ,
线 Y= 与圆 c相切 时 ,卫 取最值 .
所 以
Байду номын сангаас0
( ) C 上的点 P对应 的参数为 £ ,Q为 C 上 的动点 , 2若 = 2
( ) —Y: 2设 m,
均为参数 方程 ,两 问相 互关联 ,可 以化 参数方程 为熟 悉的普通
方 程 ,于是 问题 获 得 如 下 解 法 .
则 , —m与圆 C相切 时 , — , = Y有最值 ,
所 以
、2 /
解 ( C ( 4+ 一) 1C 昔 ・ :1 - ) ( 3=,z ): + : 手 1
分 析 : 本 题 与 例 3有 类 似 之 处 , 利 用 定 义 及 几 何 特 征 可 买
现 问题 的转 化 .
故 (+刚, 手i) 一 4 2 s . 2c n
C 为 直 线 一2 , y一7=0 , 到 G 的距 离 d=T - ・ V3
解 由 曲音一 =知 =,= :双 线 手 1 1b9 6 2,
所 以 c =2 , 5 ) 5 ,0 ,

解析几何中最值问题的九种解题策略

解析几何中最值问题的九种解题策略

解析几何中最值问题的九种解题策略(广东省封开县江口中学 526500) 黎伟初解析几何中涉及最值问题常有求夹角、面积、距离最值或与之相关的一些问题;求直线与圆锥曲线(圆)中几何元素的最值或与之相关的一些问题。

这些问题的处理有九种解题策略。

一.代数策略 解析几何沟通了数学内数与形、代数与几何等最基本对象之间的关系。

是一门用代数方法研究几何问题及用几何意义直观反映代数关系的学科。

因此在处理解析几何中最值问题时,若目标与条件具有明确的互动函数关系时,不妨可考虑建立目标函数,通过函数的单调性、均值不等式、判别式、二次函数的图象等知识点来解决。

1.二次函数法 利用二次函数求最值要注意自变量的 取值范围及对称轴位置,当对称轴位置不确定时,必须进行分类讨论。

例1.若椭圆14922=+y x 上点P 到定 点A (a ,0)(0<a <3)的距离最短是1 ,则实数a 的值是 分析:设椭圆上一点P (3cos θ,2sin θ),()()220sin 2cos 3)(-+-==θθθa f PA ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2254453cos 5a a θ① 当350≤<a 时,因为1530≤<a ,所以 当a 53cos =θ时, 有f (θ)= 1544)53(arccos 2=-=a a f ,得)(35215)(215舍或舍>=-=a a 。

② 当335<<a 时,因为59531<<a ,所以当cos θ=1时,)0()(min min f f =θ1544)531(522=-+-=a a ,得a =2 或a = 4(舍), 综上得a = 2. 2.单调性 若所构造的函数在指定区间上具有单调性时,求最值可用单调性解决,但要注意自变量的取值范围。

例2.已知圆C :(x + 4)2 + y 2= 4, 圆D 的圆心D 在y 轴上且与圆C 相外切,圆D 与y 轴交于A 、B 点,点P 为(–3,0),当点D 在y 轴上移动时,求∠APB 的最大值。

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。

高中数学:几何最值问题求法

高中数学:几何最值问题求法

高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。

分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。

由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。

由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。

二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。

x为实数,方程有解,,解得,故。

即。

2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。

当时,,即;当y=7时,,即。

注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。

解析几何中的最值问题

解析几何中的最值问题
2 2
的最值。 求: S = x − 2y 的最值。
解:
Y
由 S = x −2y 得
y= 1x− 1S 2 2
O
− 1 s 为直线在 轴上的截距。 为直线在y轴上的截距 轴上的截距。 2 取最小时,S 取最大值。 当 − 1 s 取最小时 取最大值。 2
此时,直线与圆相切。 此时,直线与圆相切。 .
设右准线为 L , 则 L 的方程是 x =
又设 P 到 L 的距离为 PB ,则
4 3
L
B
PF =e PB
P
A
F
PF 2 即 PB = = PF e 3
B1 P1
2 ∴ PA + PF = PA + PB 3 当且仅当 A、P、B共线时, + PB 最小。 共线时, PA 最小。
X=
4 3
4 8 此 小 为 − = 最 值 4 3 3
小 结
代数方法讨论几何问题是解析几何的特点和手段 讨论几何问题是解析几何的特点和手段。 1 用代数方法讨论几何问题是解析几何的特点和手段。 对于解析几何中的极值问题的解决 首先应注意函数方法 参数法)的运用, 函数方法( 首先应注意函数方法(参数法)的运用, 将所求对象表示成某个变量的函数, 将所求对象表示成某个变量的函数, 利用代数方法来解决。 利用代数方法来解决。
X
圆心(1、-2)到直线的距离等于 5 圆心( 、 )
− 1s 2
1 + 2 − S 2 2 = 5 4
5

S最小值 = 0
S最大值 = 10
例4、已知:实数 x、y 满足 (x − 1) + (y + 2) = 5 。 、已知: 、

高中数学解题方法系列:解析几何中常见的最值求法

高中数学解题方法系列:解析几何中常见的最值求法

高中数学解题方法系列:解析几何中常见的最值求法最值问题是数学高考的热点,也是解析几何综合问题的重要内容之一。

圆锥曲线的最值问题几乎是高考的必考点,它融解析几何、函数、不等式等知识为一体,是综合试题考查的核心,对解题者有着相当高的能力要求,但其解法仍然有章可循,有法可依。

解析几何求最值常见类型之一是直接根据题意,利用几何关系或代数特征的几何意义求最值。

另一种类型是先根据条件列出所求目标的函数关系式,转化为前一类型或根据函数关系式的特征选用函数法、不等式法等求出它的最值。

本文从几个例子介绍解析几何最值问题的几种常见类型和方法。

一、结合“几何意义”求最值(一)两线段距离的最值问题这是圆锥曲线最值问题的基本方法,根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等问题来解。

例如:已知点F1,F2是双曲线的左右焦点,点A(1,4),P是双曲线右支上动点,则│PF1│+│PA│的最小值是多少。

解析:根据双曲线的定义,建立点A,P与两焦点之间的关系,发现两点之间线段最短。

即│PF1│+│PA│=│PF1│-│PF2│+│PA│+│PF2│=2a+│PA│+│PF2│≥4+│AF2│=9。

(二)特定代数式的最值问题因为一些数学概念如斜率、截距、两点距离等有特别的代数结构特征,可以根据这些表达式特征把所求的最值转化为平面上两点之间的距离、直线的截距或直线的斜率等问题来解。

例如:已知实数x,y满足方程x2-6x+y2+6=0。

求①的最大值;②y-x最小值;③x2+(y+2)2的最小值。

解析:①因为的几何意义是圆x2-6x+y2+6=0上的点(x,y)与定点(-1,0)连线的斜率,由数形结合算得最大值为。

②令y-x=b的几何意义是与圆x2-6x+y2+6=0有交点的平行直线系y=x+b在y轴上的截距,数形结合算得最小值为-3-。

③x2+(y+2)2的几何意义是圆x2-6x+y2+6=0上的点到定点(0,-2)的距离,数形结合算得最小值是-。

高中数学期末备考:解析几何03圆中最值问题含解析

高中数学期末备考:解析几何03圆中最值问题含解析

3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。

解析几何中的一些最值问题

解析几何中的一些最值问题

OCCUPATION2011 7162解析几何中的一些最值问题文/王海滔最值问题遍及中学数学的代数、三角、立体几何及解析几何等学科内的各个分支,在生产实践当中广泛应用,解析几何中的最值问题也是历届各类考试的热点。

如何利用相关的数学方法,运用数形结合的思想解决这类问题,来提高学生分析问题和解决问题的能力,为进一步学好高等数学中的最值问题打下基础,是中学数学复习中不可忽视的问题。

下面,笔者结合具体的例子,对解析几何中的最值问题介绍几种解答方法。

一、利用对称性求最值(动点在直线上)动点在直线上求最值,解决的办法是把折线问题转化成直线问题,利用平面内两点间直线段最短的公理,或利用两点间距离公式求出线段长的最值。

【例1】已知点P 在x 轴上运动,A (-2,2),B (1,3)(1)则│P A │+│PB │的最小值为多少?分析:作出A 点关于x 轴的对称点A'(-2,2),那么│P A │+│PB │=│P A'│+│PB │,利用三角形两边之和大于第三边,可得:│P A'│+│PB │≥│A'B │,当且仅当A',P ,B 三点共线时取得最小值│A'B(2)则│PB │-│P A 分析:此题不用找对称点,利用三角形两边之差小于第三边,只要延长BA 交x 轴于P ,│PB │-│PA │此时得到的最大值为│BA小结:当动点在直线上时,(1)求线段长之和的最小值时,若定点是异侧,则两定点距离即为最小值。

若是同侧,作对称点即可解决。

(2)求线段长之差的最大值时,若定点是同侧,则两定点距离即为最大值。

若是异侧,就利用对称性,转化到同侧,也可解决。

二、利用圆锥曲线的定义求最值(动点在圆锥曲线上)动点在圆锥曲线上求最值,解决方法是先利用圆锥曲线定义对所求的问题进行转化,再利用平面内两点间直线段最短的公理,或利用点到直线的距离为垂线段最短,求出最值。

【例2】已知F 是抛物线y 2=4x 的焦点,A (4,2),点P 是该抛物线上的一个动点,试求│PF │+│P A │的最小值为______。

解析几何中的最值求法

解析几何中的最值求法

中学生数理
5 ) 两点的距离之和. 求 B关 于 直 线 y=z的 对 称 点 C( 5 , 1 ) , 连 接 AC, 则 线 段 AC的 长 度 即为 所 求 .
三、 图形 法
分析 : 借助直线到直线的角的正切公式得 :
t a n A CB
筹 1 3 2 + 上 2 E 一 + ≤ 、 T 1
2 0 1 3年 第 7期
解 析 几 何 中 的 最 值 求 法
■ 马 英 华
解 析 几 何 中最 值 的 求 法 灵 活 多 样 , 贯穿各 章节 , 也 是 高 考 易求 出 AB O为 3 O 。 , 此时, AB 的斜 率 为 .


重点考查的范 围, 而考生有时却无从下手. 下 面 就 如 何 找 到 突

将 所 求 问 题 用 图 形 示 意 出来 , 再结合图形求解. 例 3 求
sl n
当且仅 当 z一_ = - , 即z 一√ 2 时取等号.
七、 导 数 法
a  ̄

: N.
c咖
分析 : 可将式子看成斜率公式 , 表 示 点 A( C O S a , s i n a ) 与 点 B ( 2 , O ) 连 线 的斜 率 . 而 点 A 在单 位 圆 上 , 可 以画 出单 位 圆 , 如
图 3所 示 .
所 求 最 值 的 函数 表 达 式 比较 复 杂 时 可 以使 用 导 数 研 究 . 对 于 求 出 函数 关 系式 的题 目, 便 可 以通 过 求 导 研 究 最 值 , 上 题 在 求 出正 切 值 后 便 可 以求 导数 来 求 最 值 , 不再赘述. 作者单位 : 河 南 省 宝 丰 县 第 一 高 级 中学

立体几何解析几何最值问题

立体几何解析几何最值问题

立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。

在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。

在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。

解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。

解析几何中最值问题的解决方法通常是通过求导来进行。

我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。

这种方法在求解平面最值问题时非常有效。

而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。

解决这类问题可以利用几何性质和定理来进行推导和求解。

比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。

具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。

例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。

2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。

例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。

3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。

例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。

总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。

解析几何中的最值问题

解析几何中的最值问题
解: y 12 的几何意义
x6 是动点(x, y)与 定点(6,12)两点连 线的斜率
x y 36 (x 0)
2 2
y

P(6,12)
o
A(0,6)
x
解法小结:数形结合法
y 12 1 、 已知实数x, y满足 x 36 y 0, 则 3 x6 6 4 的最大值为 _______, 2 x y的最大值为 ________ 。
x
x y 例3.设实数x,y满足 1 16 9 12 2 , 则3x 4 y的最大值是 ______
12 2 . 最小值是 _______
2
2
y
O
x
解1 :换元法。 设x 4 cos , y 3 sin , 则
知识迁移
若将椭圆换成 双曲线、抛物线 又如何进行换元 呢?
3x 4 y 12(cos sin )
方法:数形结合法
Q1
| AF 1 | 16
7,
.
Y
.
F
O
. .
A
| QF | 。
X
F1
总结规律:延长线段AF1(F1为另一焦点)与 椭圆的交点Q就是所求的点。AQ过另一焦点F1!
Q
例3备
知识迁移
x2 y2 1的右焦点,P是其上一点,定点B(2,1). 变 F是 25 9 17 式 5 | PB | | PQ | 4 题 则 | PB | | PF | 的最小值 _______; 4 37 10 37 最大值 10 | PB | | PF | 的最小值 ________, _______
几何法、换元法
3 表示点P (cos , sin )与A( ,2)连线斜率的一半. 2 3 2 2 即圆x y 1上点与A( ,2)连线斜率的一半. 2 y A 3 设切线方程y 2 k ( x ), 2 圆心O(0,0)到切线的距离等于半径1 可解得 k 12 2 21 , k 12 2 21 O 5 5 x

解析几何最值问题求解的基本思路探究

解析几何最值问题求解的基本思路探究

解析几何最值问题求解的基本思路探究李莉莉(四川师范大学附属中学㊀610000)摘㊀要:高中阶段的解析几何问题一般是以综合题的类型出现ꎬ考查学生的几何知识ꎬ以及观形㊁设参㊁转化㊁替换等数学思想的能力.解析几何的最值问题的求解方法与代数㊁圆锥曲线㊁目标函数中的最值问题有一定的区别ꎬ同时又存在着某种联系.本文主要通过对一些相关例题的介绍ꎬ帮助同学们总结出一些比较典型的解题方法ꎬ希望同学们能在学习的过程中快速总结解题技巧ꎬ提高个人的解决问题的能力以及数学的应用意识.关键词:高中数学ꎻ课堂教学ꎻ最值问题中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)10-0016-02收稿日期:2021-01-05作者简介:李莉莉(1979.12-)ꎬ女ꎬ四川省成都人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀一㊁联系平面几何知识求解解析几何的最值问题㊀㊀有一类解析几何问题会与平面几何的知识建立密切的联系ꎬ同学们需要借助题目中的已知条件建立坐标系ꎬ并寻找目标函数ꎬ然后将平面图形的解析式与解析几何的解析式放在坐标系中ꎬ寻找两个图象之间的关系ꎬ再利用求解函数最值问题的方式寻找问题的答案.例1㊀假设P点是直线l:x-y+9=0上的一点ꎬ过点P做出与椭圆C:x212+y23=1存在共同焦点的椭圆Dꎬ如果其长轴最短ꎬ试着求出椭圆D的方程.分析㊀题目中给出了椭圆曲线的方程ꎬ同学们需要先找到椭圆的焦点ꎬ然后判断椭圆与直线方程的位置关系ꎬ之后可将问题进行转化ꎬ可将题目中的 椭圆D的长轴最短 这个已知条件通过分析转化为求解在直线l上求点P并使得|PF1|+|PF2|最小ꎬ从而求解题目要求.解㊀由题目已知条件可知椭圆D的焦点为F1(-3ꎬ0)㊁F2(3ꎬ0).设存在点F1(xꎬy)是点F1(-3ꎬ0)关于直线l的对称点ꎬ可以解得F1坐标为(-9ꎬ6).在坐标系上连接F1F2ꎬ则直线F1F2与直线l的交点为Pꎬ如图所示.F1F2的方程求得y=-12x+32ꎬ将该方程与直线l联立可求得P点坐标为P(-5ꎬ4).设椭圆D的方程为:x212+λ+y23+λ=1又因为点P在椭圆D上ꎬ将P点坐标带入可得λ=33因此椭圆D的方程为x45+y236=1㊀㊀二㊁结合圆锥曲线定义及相关性质求解解析几何的最值问题㊀㊀在高中数学中常见的解析几何问题有椭圆㊁双曲线㊁抛物线等等ꎬ相关的性质㊁定义在课堂上都有帮助同学们进行总结ꎬ在日常练习的时候需要同学们准确地把握相关的知识ꎬ灵活的运用解决解析几何的最值问题.而在运用定义和性质解决相关圆锥曲线问题时ꎬ可能会在图线中出现三角形ꎬ同学们要切记可以使用三角形的相关性质解答ꎬ该性质为: 三角形的两边之和大于第三边ꎬ三角形的两边之差小于第三边. 例如下面这道题.例2㊀假设线段AB的长固定不变为3ꎬ假设线段AB的两端都在抛物线y2=x上移动ꎬ如果线段AB的中点为Mꎬ试着求解点M到y轴的最短距离ꎬ并且求出此时点M的坐标具体为多少.分析:题目中给出的抛物线方程式的图象为开口向右的在第一象限和第四象限的图象ꎬ而且题目中的已知条件可得AB在抛物线上移动但AB连接的线段的长是固定不变的.同学们首先需要求出抛物线的焦点Fꎬ然后将图象上的A㊁B㊁F三点连接成一个三角形ꎬ试着将问题进行转化ꎬ从而确定线段AB的位置.解㊀根据题目条件可设抛物线的焦点为Fꎬ准线为lꎬ61分别作AC㊁BD㊁MK垂直于准线交准线l在点C㊁D㊁K上ꎬ如图所示:则根据题目条件可知|MK|=12(|AC|+|BD|)=12(|AF|+|BF|)ȡ12|AB|=32即当线段AB是过F点的弦时ꎬ|AF|+|BF|=|AB|此时可求得|MK|可以取最小值32ꎬ则此时点M到y轴的距离最短.又因为抛物线焦点坐标为F(14ꎬ0)ꎬ准线方程为x=-14ꎬ因此点M到y轴的最短距离为32-14=54ꎬ即xM=54.㊀因此xA+xB=2xM=52ꎬ即y2A+y2B=52ꎬ而y2M=(yA+yB2)2=14(y2A+y2B+2yAyB)又因为AB过点Fꎬ因此yAyB=-14ꎬ故y2M=14 (52-12)=12ꎬ即yM=ʃ22.当M到y轴的距离最短时ꎬ点M的坐标为(54ꎬ22)ꎬ(54ꎬ-22)㊀㊀三㊁建立目标函数求解函数的最值求解圆锥曲线的最值问题可以将题目转化为求解函数的最值问题ꎬ因为圆锥曲线方程本质上来讲也是一种函数的存在形式ꎬ所以同学们可以建立相关的目标函数ꎬ根据题目的要求对题目问题进行转化ꎬ从而简化解题的过程ꎬ提高解题的准确性.例3㊀已知抛物线C的焦点为坐标原点Oꎬ抛物线C的顶点在x轴的负半轴上ꎬ若存在直线l:x+y+m=0(m>0)与抛物线C相交于A㊁B两点ꎬ试求当әAOB面积最大取值为26时直线l的方程.分析㊀这道题目中ꎬ同学们首先应该根据题目中给出的相关条件设出题目中方程的形式ꎬ分别将抛物线的方程和顶点用未知数的方式设出来ꎬ然后根据相关的点求解点到直线的距离ꎬ将问题转化为函数的最值问题ꎬ从而得出抛物线的方程和直线方程.解㊀根据题目可知抛物线C的顶点坐标为(aꎬ0)ꎬ且a<0ꎬ因此抛物线的方程为y2=2(-2a)(x-a)ꎬ即y2=-4a(x-a).将直线l与抛物线C的方程联立可得x+y+m=0y2=-4a(x-a){消去y可得:x2+(2m+4a)x+m2-4a2=0该方程判别式Δ=(2m+4a)2-4(m2-4a2)>0ꎬ解得:㊀m<-2aꎬ从而x1+x2=-2m-4ax1x2=m2-4a2{由弦长公式可得|AB|=2 (x1+x2)2-4x1x2=232a2+16maO到AB的距离为d=m2故әAOB的面积为SәAOB=12 2 32a2+16ma m2=8a2+4ma m=2 (-a)(-4a-2m) m mɤ2 (-a) (-4a3)3=26故a=-32当且仅当-4a-2m=mꎬ即m=2时(适合m<-2a的要求)SәAOB的面积最大.因此抛物线C的方程为y2=6(x+32)ꎬ直线l的方程为x+y+2=0.解析几何中的最值问题的常用方法还有很多ꎬ希望各位同学能在遇到相关题目时注意总结ꎬ注意建立目标函数ꎬ准确地把握解析几何的相关定义和性质ꎬ从而利用函数的相关知识求解最值ꎬ提高学生的解题能力ꎬ让同学们学过的知识都能达到融会贯通的程度.㊀㊀参考文献:[1]姜坤崇.解析几何最值问题的解法[J].中学生数学(高中版)ꎬ2015(6):25-26.[2]蔡玉书.解析几何中的最值问题[J].中等数学ꎬ2015(02):17-22.[责任编辑:李㊀璟]71。

解析几何中的最值问题的求解

解析几何中的最值问题的求解

解析几何中的最值问题的求解摘要:解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求.因此,这类最值问题成为了数学高考中的热点和难点.关键词:解析几何圆锥曲线函数不等式1 利用二次函数二函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数、三角函数等,但要特别注意函数自变量的取值范围。

例如:已知P点在圆上移动,Q点在椭圆上移动,试求|PQ|的最大值。

本题中P、Q两个都是动点,不易看出P、Q在什么位置时|PQ|最大?所以先让Q点固定,当PQ通过圆心O时|PQ|此时最大,因此要求|PQ|的最大值,转化为先要求出的最大值.本题还可以应用椭圆的参数方程求解,设Q点坐标为,则可表示为θ的函数,即==,而,所以当且仅当时,的最大值27,即的最大值为,解法更简洁.2 利用圆锥曲线的定义利用圆锥曲线的定义求最值是比较常见的方法,深刻理解两个定义结合三角形相关结论进行线段间的转化是解题的关键。

例如:已知椭圆, A(4,0),B(2,2)是椭圆内的两点,P是椭圆上任一点,求:(1)求|的最小值和最大值.(2)求的最小值.本题中(1)设C为椭圆的左焦点, 由椭圆的第一定义,知|PA|=2a-|PC|∴|PA|+|PB|=2a-|PC|+|PB|=10+(|PB| -|PC|)根据三角形的性质:两边之差的绝对值小于第三边,当P运动到与B、C成一条直线时,取得最大和最小值.即-|BC|≤|PB| -|PC|≤|BC|.当P到P′位置时,|PB| -|PC|=|BC|,|PA|+|PB|有最大值,最大值为10+|BC|=;当P到P”位置时,|PB| -|PC|=-|BC|,|PA|+|PB|有最小值,最小值为10-|BC|=.另外(2)中的最小值还可以利用椭圆的光学性质来解释:从一个焦点发出的光线经过椭圆面反射后经过另一焦点,而光线所经过的路程总是最短的(如图1)。

解析几何最值问题

解析几何最值问题
空间图形的体积最值
对于旋转体等特殊图形,可利用相应公式和不等式求解; 对于一般图形,可通过变量替换和不等式等方法转化为更 易处理的问题。
条件面积(体积)最值
在给定条件下求平面图形或空间图形的面积(体积)最值, 常结合不等式和等式约束条件进行求解。
05
典型案例分析
平面曲线最值问题案例
案例一
01
求点到直线的最短距离
案例二
02
求两圆之间的最短距离
案例三
03
求椭圆上一点到直线的最大距离
空间曲线最值问题案例
案例一
求空间一点到直线的最短距离
案例二
求空间一点到平面的最短距离
案例三
求空间两异面直线之间的最短距离
曲面最值问题案例
案例一
求曲面上一点到平面的最短距离
案例二
求曲面上两点之间的最短距离
案例三
求曲面上的最值点坐标
06
总结与展望
研究成果总结
解析几何最值问题的基本理论和 方法的梳理和归纳,包括最值问 题的定义、性质、求解方法等。
针对不同类型的解析几何最值问 题,提出了相应的求解策略和方 法,如线性规划、二次规划、动
态规划等。
通过实例分析和数值计算,验证 了所提方法的有效性和实用性, 为解决实际问题提供了有力支持。
THANKS
感谢观看
04
解析几何在最值问题中的应用
曲线与曲面的最值问题
曲线上的最值点
通过求导找到曲线的极值点,比 较各极值点和端点的函数值来确
定最值。
曲面的最值点
对于二元函数表示的曲面,分别 求偏导数并令其为零,解方程组 得到可能的极值点,进一步判断
最值。
条件极值
在给定条件下求曲线或曲面的最 值,常用拉格朗日乘数法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 2, 所 以 s 一 =s=
坐标 为 ( 2 c o s O , s i n e ), 则I q Q I 可表 示 为 l 的 函数, 即 I q g r = ( 3 c o s O ) + ( s i n O 一 4 )


7。
用均 值 不 等式 求最 值 要 积 累 “ 配凑” 的 技 巧与 方 法 , 同 时 注 意 三个 条 件 “ 一 正二 定 而s m o ∈ [ - 1 , l 】 , 所 以 当且 仅 当s i n 9 = 一 三 相等 ” 缺 一 不 可. 时, f q Q I 的最大值2 7 , 即I P O I 的最大值为 例如: 过 P( 一2 , - 3 ) 的直 线 L 与X轴 、 y 轴 的 负 半 轴 交 于 A、 B 点, 求使 △ AOB 面 积 l o , Q l + l = 3 , i f + l , 解法更 简洁. 最 小时 的L 方程 . 我们 可 以从 如 下两 个 角度思 考 : 一 是设 2 利 用圆锥 曲线 的 定 义 方程 y + 3 = k( x + 2 )( k < 0 ) , 所 以 利 用 圆锥 曲线 的 定 义 求 最 值 是 比 较 常 L 见的 方法 , 深 刻理 解 两 个定 义 结合三 角形 相 关 结 论 进行 线段 问的 转 化是 解题 的关 键 。
1 利 用 二 次 函 数
有最 大值 , 最 大值 为1 0 +I B ຫໍສະໝຸດ I =1 0 + 2 √ 1 0
二 函数 法 是 我 们 探 求 解 析 几何 最 值 问 ; 当 P到 P”位 置 时 , f P B —l I P c l =一 题 的 首选 方法 , 其 中所 涉及 到 的 函数 最 常见 J BC I , I P Al +J P BI 有最小值, 最 小值 为 l 0 一 的 有二 次 函数 、 三角函数等, 但 要 特 别 注 意 f B Cl =1 0 —2 41 0. 另外( 2 ) 中的最小值还可以 4 利 用判别 式 函数 自变 量的取 值 范 围。 利 用椭 圆的 光 学 性 质来 解 释 : 从一 个 焦 点发 利 用 判 别 式 求 最 值 要 有 转 化 变 元 的 例如 : 已知 P 点在 圆 + ( y - 4 ) = l 上 移 出 的光 线 经 过椭 圆面反 射后 经 过 另一 焦 点, 思想, 且 原方 程必须 存在 实数 解 , 即 原 问 2 而 光线所 经 过 的路程 总是 最短 的( 如图1 ) 。 题 中 的最 值 是 存在 的 . 再 比 如 前 面 的 问 动, Q点在椭圆 +Y 。 =l 上移动 , 试求 I P QI ( 2 ) 由题 意 知 A为 椭 圆 的 右 焦 点 . 作 题 : 设 L的 方 程 为 + = l ( a < 0 , b < o ). 过 的最 大值 。 P Q上右准 线于 点Q, 利 用 椭 圆的 第二 定 义知 本 题 中P、Q两 个 都 是 动 点 , 不 易 看 I p 4 I d
得 一旦 a + 2 . 又
=一 , 即
让 Q点 固 定 , 当P Q通 过 圆 心 O 1 时l P Q l 题 转化 为在 椭 圆上 找一 点P , 使 其到 点B * n 右 此 时最大, 因此 要 求 l P Q 1 的最 大 值 , 转 准 线 的 距 离 之 和 最 小 , 显然点P 应 是 过 B向 最 小 值 为 化 为先 要求出 Q I 的 最 大值. 本题还 右 准 线 作 垂 线 BE与 椭 圆的 交 点 , 可 以 应 用椭 圆的 参 数 方 程 求 解 , 设 Q点 l 7


Sci en ce a n d Tec hn ol og y  ̄no vat i o n He r al d
学 术 论 坛
解析 几何 中的 最值 问题 的求 解
丁 振 生
( 河北玉 田二 中 0 6 4 1 0 0 )

要: 解析几何 中的最值问题以直线或圈锥曲线作为背 景, 以函数和不等 式等知 识作为工具, 具有 较 强的综合性 , 这类问题的解决没有固定的模

此 时 ( 詈 ) = ( 詈 ) = 1 卿 n = , 6 = 。
出P 、 Q在 什 么 位 置 时 I PQl 最 大? 所 以 先


- 2 , 引, 有 ÷昙 口 D i I l + I ? B I = I P Q I + I 朋I - 问 P
3 口 + 2 s a + 4s : 0 ,
8 s i n e 一 8 s m o + 2 5 一 ( 。 “ 0 言 )

3 利 用均 值 不等 式
由方 程 有 实 数 根 得 : A= ( 2 ) 一4 x 3 × 4 S ≥ 0, 即 1 2 , 或 ≤ 0( 舍) , 代 人 方 程 得: 口 : - 4 , 6 = - 6 。
式, 其解法一般 灵活多样, 且对于解题者有着相当高的能力要求. 因此 , 这类最值问题 成为了 数学高考 中的热点和难点. 关键词 : 解析 几何 圃锥 曲线 函数 不 等式 中图分类号: G 4 2 0 文献 标识码: A 文章编号 : 1 6 7 4 —0 9 8 X( 2 0 1 3 ) 0 7( c ) 一0 2 5 6 —0 1
5 利用线 性 规 划
线 性 归划 求 最 值 在 每 年 的 高 考 题 几 乎 都 要 涉及 到 , 关键 是 画 好 可 行 区域 , 并且 理 解 目标 函数 的 几何意 义 , 从 而分 析 目标 函数 在 什么位 置存 在最 值 . 例如: ( 1 2 福建 高考) 若 函数 y = 2 图像 上
相关文档
最新文档