最新解析几何范围最值问题(教师)

合集下载

2023年高考数学热点专题解析几何模型通关圆锥曲线中的范围与最值问题(解析版)

2023年高考数学热点专题解析几何模型通关圆锥曲线中的范围与最值问题(解析版)

2023年高考数学热点专题解析几何模型通关圆锥曲线中的范围与最值问题(解析版)圆锥曲线中的范围与最值问题思路引导圆锥曲线中的范围、最值问题的求解常用的三种方法:(1)不等关系法:根据题意建立含参数的不等式,通过解不等式求参数范围;(2)基本不等式法:根据题意将函数变形为两项和或积的形式,利用基本不等式求范围;(3)函数法:用其他变量表示该参数,建立函数关系,利用求函数的单调性求解.母题呈现考法1利用不等关系求最值(范围)【例1】(2022·三明一中模拟预测)已知椭圆的一个顶点A (0,-1),焦点在x 轴上,离心率为32.(1)求椭圆的标准方程;(2)设直线y =kx +m (k ≠0)与椭圆交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.【解题指导】【解题技巧】寻找不等关系的突破口(1)利用判别式来构造不等式,从而确定所求范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出所求范围;(4)利用已知不等关系构造不等式,从而求出所求范围;(5)利用函数值域的求法,确定所求范围.【跟踪训练】(2022·石家庄二中模拟预测)已知双曲线的焦点在x ).(1)求双曲线的标准方程;(2)双曲线的左右顶点为A ,B ,且动点(),C m n ,(),D m n -在双曲线上,直线BC 与直线AD 交于点P ,()M,)N,求PM PN →→⋅的取值范围.考法2利用基本不等式求最值【例2】(2022·全国甲(理)T )20.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【例3】(2022·河南焦作·三模)已知抛物线2:2(0)C y px p =>的焦点为F ,直线8y =与抛物线C 交于点P ,且5||2PF p =.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,求PQ 的最小值.【解题技巧】巧用基本不等式求最值问题利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值。

高三数学—07—解析几何最值及参数范围问题—教师版

高三数学—07—解析几何最值及参数范围问题—教师版

高三数学春季班(教师版)教师日期学生课程编号课型专题课题解析几何最值及参数范围问题教学目标1.能够比较熟练地应用数形结合的方法,结合曲线的定义和几何性质,以及参数或其它代换的方法解决解析几何的最值和参数范围问题;2.能够根据变化中的几何量的关系,通过联立韦达定理,建立目标函数,然后利用求函数的方法解决解析几何中的最值和参数范围问题;教学重点1.灵活运用联立韦达定理解决解析几何的最值和参数范围问题;2.巧妙应用特殊方法解决解析几何最值和参数范围问题.教学安排版块时长1知识梳理202例题解析503巩固训练304师生总结205课后练习30PCDBAOXYP'圆锥曲线中的最值和参数取值范围问题是解析几何综合问题的重要内容之一,它融解析几何知识、函数、不等式等知识为一体,综合性强,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。

但其解法仍然有章可循,有法可依。

常见的解法主要是联立利用韦达定理,当然也有一些特殊的方法,如几何法,点差法以及代换等方法。

一、特殊法求解最值及参数取值范围【例1】已知点()()4,1,0,4A B ,在直线:31l y x =-上找一点P ,求使PA PB -最大时P 的坐标. 【难度】★★ 【答案】()2,5【解析】如图,设点(),C x y 是点B 关于直线l 的对称点,则由3=l k ,得:31-=BC k ,∴直线BC 的方程为:431+-=x y ,将其与直线31y x =-联立,解得37,22D ⎛⎫⎪⎝⎭,其中D 为BC 中点,利用中点坐标公式,得()3,3C .显然,PA PB PA PC AC -=-≤,当且仅当A 、C 、P 三点共线时,PA PB -最大.可求得,直线AC 方程为092=-+y x ,与l 方程联立解得P 的坐标为()2,5.知识梳理解析几何最值及参数范围问题例题解析【例2】求椭圆2212x y +=上的点到直线32+=x y 的距离的最大值和最小值,并求取得最值时椭圆上点的坐标. 【难度】★★36,此时点坐标为2336233( 【解析】设椭圆的切线方程为y x b =+,代入椭圆方程,得0224322=-++b bx x 由0)22(34)4(22=-⨯⨯-=∆b b ,得3±=b .当3b =直线3y x =+3y x =+离261=d ,将3b =0224322=-++b bx x ,解得23x =,此时3y =,即椭圆上的点33(33-到直线3y x =+的距离最小,最小值是62.当3b =-时,直线3y x =到直线3y x =+2362d =,将3b =0224322=-++b bx x ,解得23x =3y =,即椭圆上的点233(到直线23y x =+36.【例3】已知正OAB ∆的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB ∆的内接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为22(47cos )(7cos )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE 、PF ,切点为E 、F ,求CE CF ⋅u u u r u u u r的最大值和最小值.【难度】★★【答案】(1)22(4)16x y -+=;(2)最大值为169-,最小值为8- 【解析】(1)设B A ,两点坐标分别为11(,)x y ,22(,)x y ,由题设知22221122x y x y +=+. 又因为2112y x =,2222y x =,可得22112222x x x x +=+.即1212()(2)0x x x x -++=.由10x >,20x >,可知12x x =,故,A B 两点关于x 轴对称,所以圆心C 在x 轴上.设C 点的坐标为(,0)r ,则A 点坐标为33()2r ,于是有233)22r r =⨯,解得4r =,所以圆C 的方程为22(4)16x y -+=.(2)设2ECF a ∠=,则2||||cos 216cos 232cos 16CE CF CE CF ααα⋅=⋅==-u u u r u u u r u u u r u u u r .在Rt PCE ∆中,4cos ||||x PC PC α==,由圆的几何性质得 ||||17PC MC ≤+=18+=,||||1716PC MC ≥-=-=,所以12cos 23α≤≤,由此可得1689CE CF -≤⋅≤-u u u r u u u r .则CE CF ⋅u u u r u u u r 的最大值为169-,最小值为8-.【例4】已知以4=t 为周期的函数()(](]21,1,112,1,3x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0>m .若方程3()f x x =恰有5个实数解, 则m 的取值范围为( ).A .15833⎛⎫⎪ ⎪⎝⎭B .1573⎛ ⎝C .48,33⎛⎫ ⎪⎝⎭D .473⎛ ⎝ 【难度】★★★ 【答案】B【解析】因为当(]1,1x ∈-时,将函数化为方程2221(0)y x y m+=≠,实质上为一个半椭圆, 同时在坐标系中作出当(]1,3x ∈的图像,再根据周期性作出函数其它部分的图像,如图所示.由图易知直线3x y =(1)与第2个椭圆()22241(0)y x y m -+=≠(2),O 1357124689相交,而与第3个半椭圆()22281(0)y x y m-+=≠(3),无公共点时,方程恰有5个实数解,将(1)代入(2)得()222291721350m x m x m +-+= 令29t m =()0t >,则()218150t x tx t +-+=.由()2(8)41510t t t ∆=-⨯+>,得15t >.由2915m >,且0m >,得153m >.同样将(1)代入(3),由0∆<得7m < 综上知157m ∈⎝.故选B .【例5】某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角.(1) 求抛物线Γ方程;(2) 如果使“蝴蝶形图案”的面积最小,求α的大小? 【难度】★★【答案】(1)y x 42=;(2)4πα=“蝴蝶形图案”的面积为8;【解析】(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= (2) 设m AF =,则点)1cos ,sin (+-ααm m A ,所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m 解得αα2sin )1(cos 2+=AF 同理: αα2cos )sin 1(2-=BF ,αα2cos )sin 1(2+=DF αα2sin )cos 1(2-=CF “蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ,则121141422-⎪⎭⎫⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8.【例6】已知点()12,0F -、)22,0F ,平面直角坐标系上的一个动点(),P x y 满足124PF PF +=u u u r u u u u r,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程;(2)点M 是曲线C 上的任意一点,GH 为圆()22:31N x y -+=的任意一条直径,求MG MH ⋅u u u u r u u u u r 的取值范围;(3)已知点,A B 是曲线C 上的两个动点,若OA OB ⊥u u u r u u u r(O 是坐标原点),试证明:直线AB 与某个定圆恒相切,并写出定圆的方程. 【难度】★★★【答案】(1)22142x y +=;(2)[]24,0;(3)略 【解析】(1)依据题意,动点(,)P x y 2222(2)(2)4x y x y -+++=. 又12||224F F =,因此,动点(,)P x y 的轨迹是焦点在x 轴上的椭圆,且24,2222a b c =⎧⎪⇒=⎨=⎪⎩ 所以,所求曲线C 的轨迹方程是22142x y +=. (2) 设00(,)M x y 是曲线C 上任一点.依据题意,可得,MG MN NG MH MN NH =+=+u u u u r u u u u r u u u r u u u u r u u u u r u u u u r.Q GH 是直径,∴NH NG =-u u u u r u u u r .又||=1NG u u u r,22=()() =()() =||||.MG MH MN NG MN GH MN NG MN NG MN NG ∴⋅+⋅++⋅--u u u u r u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r∴22200||(3)(0)MN x y =-+-u u u u r =201(6)72x --.由22142x y +=,可得22x -≤≤,即022x -≤≤. 2221||25||||24MN MN NG ∴≤≤≤-≤u u u u r u u u u r u u u r ,0. ∴MG MH ⋅u u u u r u u u u r 的取值范围是024MG MH ≤⋅≤u u u u r u u u u r.(另解21||25MN ≤≤u u u u r:结合椭圆和圆的位置关系,有||||||||||||OM ON MN OM ON -≤≤+(当且仅当M N O 、、共线时,等号成立),于是有1||5MN ≤≤.)(3)证明:因A B 、是曲线C 上满足OA OB ⊥的两个动点,由曲线C 关于原点对称,可知直线AB 也关于原点对称.若直线AB 与定圆相切,则定圆的圆心必在原点.因此,只要证明原点到直线AB 的距离(d )是定值即可.设12||,||OA r OB r ==,点11(cos ,sin )A r r θθ,则2222(cos(),sin())(sin ,cos )22B r r r r ππθθθθ++=-.利用面积相等,有11||||||22OA OB AB d ⋅=⋅,于是2221222122211111r r d r r r r ==++. 又A B 、两点在曲线C 上,故222211222222cos sin 1,42sin cos 1.42r r r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 可得22212222cos sin 1,42sin cos 1.42r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩因此,22121134r r +=. 所以,243d =,即d 23.所以,直线AB 总与定圆相切,且定圆的方程为:2243x y +=.【例7】给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O 22a b +的圆为椭圆C 的“准圆”.已知椭圆C 的一个焦点为(2,0)F ,其短轴的一个端点到点F 3 (1)求椭圆C 和其“准圆”的方程;(2)过椭圆C 的“准圆”与y 轴正半轴的交点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,求12,l l 的方程;(3)若点A 是椭圆的“准圆”与x 轴正半轴的交点,,B D 是椭圆C 上的两相异点,且BD x ⊥轴,求AD AB ⋅的取值范围. 【难度】★★★【答案】(1)2213x y +=;224x y +=(2)直线1l 的方程为2y x =+,2l 的方程为2y x =-+, 或直线1l 的方程为2y x =-+,2l 的方程为2y x =+;(3)[0,743)+【解析】(1)由题意知2c =223a b c =+=1b =,故椭圆C 的方程为2213x y +=,其“准圆”方程为224x y +=.(2)由题意可得P 点坐标为(0,2),设直线l 过P 且与椭圆C 只有一个交点,则直线l 的方程可设为2y kx =+,将其代入椭圆方程可得223(2)3x kx ++=,即22(31)1290k x kx +++=,C由22(12)36(31)0k k ∆=-+=,解得1k =±,所以直线1l 的方程为2y x =+,2l 的方程为2y x =-+, 或直线1l 的方程为2y x =-+,2l 的方程为2y x =+.(3)由题意,可设(,),(,)B m n D m n -(33)m -<,则有2213m n +=,又A 点坐标为(2,0),故(2,),(2,)AB m n AD m n =-=--u u u r u u u r,故2222(2)44(1)3m AB AD m n m m ⋅=--=-+--u u u r u u u r 2244343()332m m m =-+=-,又33m -<,故243()[0,743)32m -∈+, 所以AB AD ⋅u u u r u u u r 的取值范围是[0,743)+.【例8】已知圆C 过定点)1,0(A ,圆心C 在抛物线y x 22=上,M 、N 为圆C 与x 轴的交点. (1)当圆心C 是抛物线的顶点时,求抛物线准线被该圆截得的弦长. (2)当圆心C 在抛物线上运动时,MN 是否为一定值?请证明你的结论. (3)当圆心C 在抛物线上运动时,记m AM =,n AN =,求mnn m +的最大值,并求出此时圆C 的方程. 【难度】★★★【答案】(13(2)2MN =是定值;(3)mnn m +取得最大值22,此时圆C 的方程为2)1()2(22=-+±y x【解析】(1)抛物线y x 22=的顶点为)0,0(,准线方程为21-=y ,圆的半径等于1,圆C 的方程为122=+y x .弦长3232)21(122=⨯=- (2)设圆心)21,(2a a C ,则圆C 的半径222)121(-+=a a r , 圆C 的方程是为:222222)121()21()(-+=-+-a a a y a x 令0=y ,得01222=-+-a ax x ,得11-=a x ,12+=a x ,∴212=-=x x MN 是定值.(3)由(2)知,不妨设)0,1(-a M ,)0,1(+a N ,a a a x m 221)1(12221-+=+-=+=,a a a x m 221)1(12222++=++=+=.4412442424222++=++=+=+a a a a mn n m m n n m . 当0=a 时,2=+mnn m . 当0≠a 时,224412441244222424222≤++=++=++=+=+aa a a a a mn n m m n n m .当且仅当2±=a 时,等号成立 所以当2±=a 时,mnn m +取得最大值22,此时圆C 的方程为2)1()2(22=-+±y x .【巩固训练】1.椭圆1422=+y x 上一动点P ,则P 到直线04:=-+y x l 的距离最小值为 .【难度】★★ 【答案】210-242.已知点F 是双曲线221412x y -=的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则PA PF +的最小值为________.【难度】★★ 【答案】9【解析】设1F 是双曲线的右焦点,根据双曲线定义41=-PF PF ,即14PF PF -= 又115PA PF AF +≥=,将14PF PF -=代入,得45PA PF +-≥,即9PA PF +≥,等号当且仅当1,,F P A 三点共线,故PA PF +的最小值为9.故填9.3.已知P 是抛物线x y 22=上的一个动点,F 为焦点.(1)求点P 到点)2,0(的距离与P 到抛物线准线的距离之和的最小值. (2)点)2,3(A ,求PF PA +得最小值.【难度】★★【答案】(1)217;(2)274.P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为( ).A .6B .7C .8D .9【难度】★★ 【答案】D【解析】由已知双曲线的左右焦点12,F F 即为两圆的圆心,先将P 点看成定点,M 、N 看成动点,则111222max min 2,1PM PF r PF PN PF r PF =+=+=-=-.()()()()1212max 2139PM PN PF PF PF PF ⇒-=+--=-+=.5.如图,在直线:90l x y -+=上任意取一点M ,经过M 点且以椭圆221123x y +=的焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出最短长轴为多少? 【难度】★★【答案】M 点坐标)45(,-,此时长轴最短为56 【解析】椭圆的两焦点分别为12(3,0),(3,0)F F -,作1F 关于直线l 的对称点'1F ,则直线'11F F 的方程为3x y +=- 由方程组39x y x y +=-⎧⎨-=-⎩ 得P 的坐标)3,6(-,由中点坐标公式得的'1F 坐标)6,9(-,所以直线'21F F 的方程23x y +=. 解方程组239x y x y +=⎧⎨-=-⎩ 得M 点坐标)45(,-,此时长轴最短为'12180265F F a ===.6.已知椭圆22:12x C y +=的两焦点为1F 、2F ,点()00,P x y 满足2200012x y <+<,则PM yOlF 1 F 2x'1F N12||||PF PF +的取值范围为 .【难度】★★ 【答案】2,22⎡⎣7.已知椭圆1:2222=+by a x C (0>>b a )的焦距为2,且椭圆C 的短轴的一个端点与左、右焦点1F 、2F 构成等边三角形.(1)求椭圆C 的标准方程;(2)设M 为椭圆上C 上任意一点,求12MF MF ⋅u u u u r u u u u r的最大值与最小值;【难度】★★【答案】(1)13422=+y x ;(2)12MF MF ⋅u u u u r u u u u r 的最大值为3,最小值为2 【解析】(1)已知,1=c ,22==c a , 所以3222=-=c a b ,所以椭圆的标准方程为13422=+y x . (2))0,1(1-F ,)0,1(2F ,设),(y x M ,则1(1,)MF x y =---u u u u r ,2(1,)MF x y =--u u u u r,22121MF MF x y ⋅=+-u u u u r u u u u r(22≤≤-x ), 因为13422=+y x ,所以,222221211311244x MF MF x y x x ⎛⎫⋅=+-=+--=+ ⎪⎝⎭u u u u r u u u u r , 由402≤≤x ,得12MF MF ⋅u u u u r u u u u r的最大值为3,最小值为2.8.点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥. (1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.【难度】★★ 【答案】(1)35(3)22;(215. 【解析】(1)由已知可得点()()6,0,4,0A F -.设点P 的坐标是(,)x y ,则()()6,,4,AP x y FP x y =+=-u u u r u u u r .由已知得22213620(6)(4)0⎧+=⎪⎨⎪+-+=⎩x y x x y ,则2329180,2x x x +-==或6x =-.由于0y >,只能3,2x =,于是532y =点P 的坐标是35(3)22. (2)直线AP 的方程是.063=+-y x 设点M 的坐标是(),0m ,则M 到直线AP 的距离是2|6|+m , 于是|6||6|2m m +=-,又66m -≤≤,解得2m =,椭圆上的点),(y x 到点M 的距离d 满足 ,15)29(94952044)2(222222+-=-++-=+-=x x x x y x d由于66,x -≤≤∴当92x =时,d 15.二、联立韦达定理求解最值及参数范围【例9】已知圆⊙8)1(:22=++y x C ,)0,1(-C 动圆与⊙C 相切且过定点)0,1(B ; (1)求动圆圆心的轨迹E 方程;(2)过点),0(t D ,11<<-t 倾斜角为ο45的直线l 与轨迹E 交于N M ,两点,求N M C B ,,,四点围成的四边形面积的最大值。

专题24 解三角形中的最值、范围问题(教师版)

专题24 解三角形中的最值、范围问题(教师版)

专题24 解三角形中的最值、范围问题【热点聚焦与扩展】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:,其中为外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行例如:(1) (2)(恒等式) (3)2、余弦定理:变式: 此公式在已知的情况下,配合均值不等式可得到和的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由利用的是余弦函数单调性,而仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为22,,a c ac a c ++2sin sin sin a b cR A B C===R ABC 222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=22sin sin sin bc B Ca A=2222cos a b c bc A =+-()()2221cos a b c bc A =+-+,a A b c +bc sin sin cos cos a b A B A B A B >⇔>⇔>⇒<cos cos A B A B >⇔<sin sin A B A B >⇔>求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为( )A .4β+4cos β B.4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为=4β+S △POB + S △POA =4β+|OP ||OB |sin (π−β)+|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. APB ∠ABP AOB OAB S S S S =+-△△阴影扇形1212例2.【2018年江苏卷】在?ABC 中,角A,B,C 所对的边分别为a,b,c ,,?ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】9 【解析】 由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则4a +c 的最小值为9.例3.【2020年高考全国Ⅱ卷理数17】ABC △中,222sin sin sin sin sin A B C B C --=. (1)求A ;(2)若3BC =,求ABC △周长的最大值. 【答案】(1)23π;(2)323+ 【思路导引】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭, 解得:23AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为323+【专家解读】本题考查了正弦定理、余弦定理,考查三角形周长最大值的求解问题,考查数学运算、逻辑推理、数学建模等学科素养.解题关键能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.例4.【2020年高考浙江卷18】在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II)32⎤⎥⎝⎦【思路导引】(I )首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B 的大小; (II )结合(1)的结论将含有三个角的三角函数式化简为只含有∠A 的三角函数式,然后由三角形为锐角三角形确定∠A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【解析】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin 2B A A B =∴=,△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-++11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭. 由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,13sin 232A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦,即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【专家解读】本题考查了正弦定理、余弦定理及其应用,考查三角恒等变换在解三角形中的应用,考查数学运算、逻辑推理、数学建模等学科素养.解题关键熟记有关公式,进行合理转化.解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.例5.【2020年高考全国Ⅱ卷理数17】ABC △中,222sin sin sin sin sin A B C B C --=. (1)求A ;(2)若3BC =,求ABC △周长的最大值.【答案】(1)23π;(2)3+ 【思路导引】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【专家解读】本题考查了正弦定理、余弦定理,考查三角形周长最大值的求解问题,考查数学运算、逻辑推理、数学建模等学科素养.解题关键能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.例6.(2020·广西高三三模)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+. (1)求角C ;(2)若ABC 的面积为S =,求ab 的最小值.【答案】(1)2π3;(2) 12. 【解析】(1)由正弦定理及已知可得2sin cos 2sin sin ,C B A B =+()2sin cos 2sin sin C B B C B =++则有,2sin cos sin 0,B C B ∴+=1,sin 0,cos .2B BC ∴≠∴=-为三角形的内角2π,.3C C ∴=又为三角形的内角(2)11sin ,.222S ab C c ab ==∴= 222222cos ,c a b ab C a b ab =+-=++又222234a b a b ab ab ∴=++≥, 12ab ∴≥,当且仅当a b =时等号成立.故ab 的最小值为12.例7.(2020·岳麓·湖南师大附中高三三模)在①22()3a b c ab +=+,②sin cos a A a C =-,③(2)sin (2)sin 2sin a b A b a B c C -+-=,这三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角,,A B C 的对边分别为,,a b c ,c =_____.(1)求C ∠;(2)求ABC 周长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,3C π=;(2)最大值为【解析】(1)选①,把22()3a b c ab +=+,整理得222a b c ab +-=,由余弦定理得2221cos 222a b c ab C ab ab +-===,因为(0,)C π∈,所以3C π=.选②,因为sin cos a A a C =-,由正弦定理,可得sin sin sin cos A C A A C =-,因为(0,)A π∈,则sin 0A ≠cos 1C C -=, 可得1sin 62C π⎛⎫-= ⎪⎝⎭,又0C π<<,所以5666C πππ-<-<,故66C ππ-=,即3C π=. 选③,因为(2)sin (2)sin 2sin a b A b a B c C -+-=,由正弦定理得:2(2)(2)2a b a b a b c -+-=,即222a b c ab +-=,所以222cos 122a b c C ab +-==,因为0C π<<,所以3C π=.(2)由(1)可知,3C π=,在ABC 中,由余弦定理得222cos 3a b ab C +-=,即223a b ab +-=,所以223()()334a b a b ab ++-=≤,当且仅当a b =时取等号,所以a b +≤a b c ++≤即ABC 周长的最大值为例8.(2020·渝中·重庆巴蜀中学高三三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且21cos 2cos 20B C +-=.(1)求sin :sin B C 的值;(2)若a =,且ABC 为锐角三角形,求c 的取值范围.【答案】(1)sin :sin 2B C =;(2c <<【解析】(1)因为21cos 2cos 20B C +-=, 则22cos 4sin 10B C +-=,即224sin sin C B =,因为sin 0B >,sin 0C >,则sin 2sin B C =,sin :sin 2B C =.(2)因为a =,2b c =,且ABC 为锐角三角形,则角C 一定为锐角,因为cos 0A >,所以2220b c a +->,即2515c >,c >又cos 0B >,所以2220a c b +->,2315c <,即c <综上所述,c c <<.【精选精练】1.(2020·安徽庐江·高三三模)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A .2B C .12D .12-【答案】C【解析】2221()2c a b =+,由余弦定理得,222221cos 242a b c a b C ab ab +-+==≥当且仅当a b =时取“=”,cos C∴的最小值为12,选C. 2.(2020·黑龙江爱民·牡丹江一中高三三模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2a =,2B A =,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C【解析】在锐角三角形中, 022A π<<,即04A π<<,且3B A A +=,则32A ππ<<,即63A ππ<<,综上64A ππ<<cos A <<因为2a =,2B A =, 所以由正弦定理得sin sin 2sin cos a b bA B A A==,得4cos b A =,cos A <<,所以4cos A <<所以b <<所以b的取值范围为.故选:C.3.(2020·江苏海陵·泰州中学高三三模)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为,,a b c ,且2sin a b A =,则cos sin A C +的取值范围是( )A. B.3)2C.( D.3(2【答案】B【解析】依题意2sin a b A =,由正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由于三角形ABC 是锐角三角形,所以6B π=.由23202A B A A ππππ⎧+>⎪⎪⇒<<⎨⎪<<⎪⎩. 所以5cos sin cos sin 6A C A A π⎛⎫+=+- ⎪⎝⎭13cos cos cos 22A A A A A =++=3A π⎛⎫=+ ⎪⎝⎭,由于25336A πππ<+<,所以1sin 32A π⎛⎛⎫+∈ ⎪ ⎝⎭⎝⎭,3322A π⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故选:B4.(2020·河南高三三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c,已知a =sin sin sin sin b B c C a A c B +=+,则ABC 的周长的最大值是( )A.B.3C. D.4+【答案】A 【解析】sin sin sin sin b B c C a A c B +=+,∴由正弦定理得222b c a bc +=+,所以()()()222223324b c b c a b c bc b c ++⎛⎫=+-≥+-=⎪⎝⎭,又a =b c +≤,当且仅当b c ==所以ABC 的周长的最大值是故选:A5.(2020·沙坪坝·重庆八中高三三模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为4,cos C 是方程22530x x +-=的一个根,则2c 的最小值为( )A .BC .3D 【答案】D【解析】因为22530x x +-=,所以12x =或3x =-.因为()cos 1,1C ∈-,所以1cos 2C =,所以sin C =. 因为ABC 的面积为4,所以sin 8ab C =,所以8sin ab C =,所以3ab =, 由余弦定理得222c a b ab ab =+-≥(当且仅当a b =时,等号成立).所以2c 的最小值为3.故选:D 6.(2020·福建莆田一中高三三模)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A B C .2D .32【答案】B【解析】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=, 即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=, ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯,当且仅当tan B 时等号成立. 故选:B .7.(2020·重庆高三三模)已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC 的面积为( )A. B .C D .【答案】A【解析】设AC 中点为D ,则()BO AC BD DO AC ⋅=+⋅ BD AC =⋅ ()()12BC BA BC BA =+⋅- 221122BC BA =-,22111522a c ∴-=,即c = 由c a <知角C 为锐角,故222cos 2a b cC ab+-=2301301212b b b b +⎛⎫==+ ⎪⎝⎭ 130302126b ⨯=,当且仅当30b b =,即b =cos C 最小,又cos y x =在0,2π⎛⎫⎪⎝⎭递减,故C 最大.此时,恰有222a b c =+,即ABC 为直角三角形,ABC12Sbc ==,故选A . 8.(2020·四川省绵阳南山中学高三三模)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,()()sin sin sin sin a c A C b B a B +-+=,24b a +=,点D 在边AB 上,且2AD DB =,则线段CD 长度的最小值为( )A B C .3 D .2【答案】A【解析】由()()sin sin sin sin a c A C b B a B +-+=及正弦定理,得()()2a c a cb ab +-+=,即222a b c ab +-=,由余弦定理得,222cos 122a b c C ab +-==,∵()0,C π∈,∴3C π=. 由于2AD DB =,∴()2212++++3333CD CA AD CA AB CA AC CB CA CB ====+,两边平方,得 ()()2222222214414212112cos 2299999999992b a CD b a ab C b a ab b a ab b a +⎛⎫=++=++=+-≥+- ⎪⎝⎭,当且仅当22b a ==时取等号,即()22142123CD b a ≥+=,∴线段CD . 故选:A.9.(2020·河南商丘·高三三模)在ABC ∠中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos sin C c B =-.(1)求B ;(2)若b =AD 为BC 边上的中线,当ABC 的面积取得最大值时,求AD 的长.【答案】(1)23π;(2.【解析】(1cos sin sin A B C C B =-,结合()sin sin A B C =+,sin sin sin B C C B =-,因为sin 0C ≠,所以tan B =由()0,πB ∈,得2π3B =.(2)在ABC 中,由余弦定得2212a c ac =++,因为223a c ac ac ++≥,所以4ac ≤,当且仅当2a c ==时,ABC 的面积取得最大值,此时π6C =.在ACD △中,由余弦定理得222π2cos 1212176AD CA CD CA CD =+-⋅⋅⋅=+-⋅⋅=⎝⎭.即AD =10.(2020·渝中·重庆巴蜀中学三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且21cos 2cos 20B C +-=.(1)求sin :sin B C 的值;(2)若a =,且ABC 为锐角三角形,求c 的取值范围.【答案】(1)sin :sin 2B C =;(2c <<【解析】(1)因为21cos 2cos 20B C +-=, 则22cos 4sin 10B C +-=,即224sin sin C B =,因为sin 0B >,sin 0C >,则sin 2sin B C =,sin :sin 2B C =.(2)因为a =,2b c =,且ABC 为锐角三角形,则角C 一定为锐角,因为cos 0A >,所以2220b c a +->,即2515c >,c >又cos 0B >,所以2220a c b +->,2315c <,即c <综上所述,c c <<.11.(2020·浙江高三三模)已知()sin (sin )f x x x x =-,ABC 中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若()32f A =,2a =,求ABC 周长的取值范围.【答案】(1)2[,]63k k ππππ++,k Z ∈;(2)(4,23+【解析】(1)()2111sin cos (cos22)sin(2)2226f x x x x x x x π==-=-+, ∴()f x 在3222262k x k πππππ+≤+≤+上单调递增,∴2[,]63x k k ππππ∈++,k Z ∈(2)()13sin(2)262f A A π=-+=,得32262A k k Z πππ+=+∈,,即23A k ππ=+,0A π<<,则23A π=,而2a =,由余弦定理知:2222cos 4a b c bc A =+-=,有22()()444b c b c bc ++=+≤+,所以0b c <+≤b c =时等号成立,而在ABC 中2b c +>, ∵周长2l a b c b c =++=++,∴42l <≤+12.(2020·辽河油田第二高级中学高三三模)ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c .已知sinsin()2A Ca b B C +=+. (1) 求B ;(2) 若ABC ∆为锐角三角形,且2c =,求ABC ∆面积的取值范围。

2020版高考数学第8章平面解析几何第9节圆锥曲线中的定点、定值、范围、最值问题教学案理北师大版

2020版高考数学第8章平面解析几何第9节圆锥曲线中的定点、定值、范围、最值问题教学案理北师大版

第九节 圆锥曲线中的定点、定值、范围、最值问题[考纲传真] 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.定点问题【例1】 已知椭圆E :x 29+y 2b2=1(b >0)的一个焦点与抛物线Γ:y 2=2px (p >0)的焦点F 相同,如图,作直线AF 与x 轴垂直,与抛物线在第一象限交于A 点,与椭圆E 相交于C ,D 两点,且|CD |=103.(1)求抛物线Γ的标准方程;(2)设直线l 不经过A 点且与抛物线Γ相交于N ,M 两点,若直线AN ,AM 的斜率之积为1,证明l 过定点.[解] (1)由椭圆E :x 29+y 2b2=1(b >0),得b 2=9-c 2,由题可知F (c,0),p =2c ,把x =c 代入椭圆E 的方程,得y 2C =b 2⎝ ⎛⎭⎪⎫1-c 29, ∴y C =9-c 23.∴|CD |=103=-c 23,解得c =2.∴抛物线Γ的标准方程为y 2=4cx ,即y 2=8x . (2)证明:由(1)得A (2,4),设M ⎝ ⎛⎭⎪⎫y 218,y 1,N ⎝ ⎛⎭⎪⎫y 228,y 2, ∴k MA =y 1-4y 218-2=8y 1+4,k NA =8y 2+4, 由k MA ·k NA =8y 1+4·8y 2+4=1, 得y 1y 2+4(y 1+y 2)-48=0.(*)设直线l 的方程为x =my +t ,由⎩⎪⎨⎪⎧y 2=8x ,x =my +t ,得y 2-8my -8t =0,∴y 1+y 2=8m ,y 1y 2=-8t , 代入(*)式得t =4m -6,∴直线l 的方程为x =my +4m -6=m (y +4)-6, ∴直线l 过定点(-6,-4).过抛物线:=4的焦点且斜率为的直线交抛物线于,两点,且|AB |=8.(1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. [解] (1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线的定义知|AB |=x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1, ∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, ∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0,恒过点(-1,0). 定值问题【例2】 已知动圆P 经过点N (1,0),并且与圆M :(x +1)2+y 2=16相切. (1)求点P 的轨迹C 的方程;(2)设G (m,0) 为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A ,B 两点,当k 为何值时,ω=|GA |2+|GB |2是与m 无关的定值?并求出该定值.[解] (1)由题意,设动圆P 的半径为r ,则|PM |=4-r ,|PN |=r ,可得|PM |+|PN |=4-r +r =4,∴点P 的轨迹C 是以M ,N 为焦点的椭圆,∴2a =4,2c =2,∴b =a 2-c 2=3,∴椭圆的方程为x 24+y 23=1.即点P 的轨迹C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知-2<m <2,直线l :y =k (x -m ),由⎩⎪⎨⎪⎧y =k x -m ,x 24+y23=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0,∴x 1+x 2=8mk 24k 2+3,x 1x 2=4m 2k 2-124k 2+3, ∴y 1+y 2=k (x 1-m )+k (x 2-m )=k (x 1+x 2)-2km =-6mk4k 2+3,y 1y 2=k 2(x 1-m )(x 2-m )=k 2x 1x 2-k 2m (x 1+x 2)+k 2m 2=3k2m 2-4k 2+3,∴|GA |2+|GB |2=(x 1-m )2+y 21+(x 2-m )2+y 22=(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2+(y 1+y 2)2-2y 1y 2=(k 2+1)[-6m2k 2-++4k2k 2+2.要使ω=|GA |2+|GB |2的值与m 无关,需使4k 2-3=0, 解得k =±32,此时ω=|GA |2+|GB |2=7.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交椭圆于A ,B 两点,△ABF 1的周长为8,且△AF 1F 2的面积的最大时,△AF 1F 2为正三角形.(1)求椭圆C 的方程;(2)若MN 是椭圆C 经过原点的弦,MN ∥AB ,求证:|MN |2AB为定值.[解] (1)由已知A ,B 在椭圆上,可得|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 又△ABF 1的周长为8,所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8,即a =2.由椭圆的对称性可得,△AF 1F 2为正三角形当且仅当A 为椭圆短轴顶点, 则a =2c ,即c =1,b 2=a 2-c 2=3, 则椭圆C 的方程为x 24+y 23=1.(2)证明:若直线l 的斜率不存在,即l :x =1,求得|AB |=3,|MN |=23,可得|MN |2AB=4.若直线l 的斜率存在, 设直线l :y =k (x -1),设A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (x 4,y 4),由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 有x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=1+k 2·x 1+x 22-4x 1x 2=+k 23+4k2,由y =kx 代入椭圆方程,可得x =±233+4k2,|MN |=21+k 2·233+4k2=4+k23+4k2, 即有|MN |2AB=4.综上可得,|MN |2AB为定值4.范围问题【例3】 已知m >1,直线l :x -my -m 22=0,椭圆C :x 2m2+y 2=1,F 1,F 2分别为椭圆C的左、右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2,△BF 1F 2的重心分别为G ,H ,若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.[解] (1)因为直线l :x -my -m 22=0经过F 2(m 2-1,0),所以m 2-1=m 22,得m 2=2.又因为m >1,所以m =2, 故直线l 的方程为x -2y -1=0. (2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +m 22,x 2m 2+y 2=1,消去x ,得2y 2+my +m 24-1=0,则由Δ=m 2-8⎝ ⎛⎭⎪⎫m 24-1=-m 2+8>0,知m 2<8,且有y 1+y 2=-m 2,y 1y 2=m 28-12.由于F 1(-c,0),F 2(c,0),可知G ⎝ ⎛⎭⎪⎫x 13,y 13,H ⎝ ⎛⎭⎪⎫x 23,y 23.因为原点O 在以线段GH 为直径的圆内, 所以OH →·OG →<0, 即x 1x 2+y 1y 2<0.所以x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my 1+m 22⎝ ⎛⎭⎪⎫my 2+m 22+y 1y 2=(m 2+1)·⎝ ⎛⎭⎪⎫m 28-12<0.解得m 2<4(满足m 2<8).又因为m >1,所以实数m 的取值范围是(1,2).(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.[解] (1)由题意知2b =2,∴b =1.∵e =c a =32,a 2=b 2+c 2,∴a =2. 椭圆的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx+4m 2-4=0,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1 ①,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·m 2-4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54 ②,由①②得0≤m 2<65,120<k 2≤54.∵原点O 到直线l 的距离d =|m |1+k2,∴d 2=m 21+k 2=54-k 21+k2=-1+9+k2.又120<k 2≤54,∴0≤d 2<87,∴0≤d <2147. ∴原点O 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫0,2147.最值问题【例4】 (2019·太原模拟)已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A , B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3,所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|=2x 1+x 22-4x 1x 2=247. (2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k2, 因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3.(2017·浙江高考)如图,已知抛物线x =y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.[解](1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +3k 2+.因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上递增,⎝⎛⎭⎪⎫12,1上递减,因此当k =12时,|PA |·|PQ |取得最大值2716.1.(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2013·全国卷Ⅰ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ABCD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. [解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2x 2+x 1a 2y 2+y 1=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎪⎨⎪⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±-n 23.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=43 9-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2, 当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.。

高考数学《解析几何中的参数取值范围问题》

高考数学《解析几何中的参数取值范围问题》

高考数学 解析几何中的参数取值范围问题
6. 已知椭圆ax22+by22=1(a>b>0)的离心率为 22,且过点(2, 2). (1) 求椭圆 C 的标准方程; (2) 设 A,B 为椭圆 C 的左、右顶点,过 C 的右焦点 F 作直线 l 交椭圆于 M, N 两 点,分别记△ABM,△ABN 的面积为 S1,S2,求|S1-S2|的最大值.
高考数学 解析几何中的参数取值范围问题
2. 已知 F1,F2 是椭圆的两个焦点,满足M→F1·M→F2=0 的点 M 总在椭圆内部,则椭
圆离心率的取值范围是________________.
0,
2 2
解析:满足M→F1·M→F2=0 的点 M 在圆 x2+y2=c2 上,由题意知方程组
x2+y2=c2, ax22+by22=1
高考数学 解析几何中的参数取值范围问题
解析:(1) 由题意知,e=ac=12,CD=7-2a,
所以 a2=4c2,b2=3c2.
7-4c2
因为点c,7-24c在椭圆上,即4cc22+
2 3c2
=1,
所以 c=1.
高考数学 解析几何中的参数取值范围问题
【思维变式题组训练】 1. 已知椭圆2x52 +1y62 =1,F 为椭圆的右焦点,点 A(1,2),P 为椭圆上任意一点,则 5PF+3PA 的最小值为________. 22 解析:过点 P 作右准线的垂线,垂足为 P1.根据统一定义PPPF1=35,5PF+3PA =3(PA+PP1)≥3235-1=22.
(2) 求△PCD 面积的最大值.
高考数学 解析几何中的参数取值范围问题
a32+41b2=1, 解析:(1) 由题意得ac= 23,
a2=b2+c2, 故椭圆 C 的标准方程为x42+y2=1.

第11讲 平面向量中的最值范围问题(教师版)

第11讲  平面向量中的最值范围问题(教师版)

第11讲 平面向量中的最值范围问题题型一 利用平面向量基本定理确定参数的值、取值范围问题平面向量基本定理是向量坐标的理论基础,通过建立平面直角坐标系,将点用坐标表示,利用坐标相等列方程,寻找变量的等量关系,进而表示目标函数,转化为函数的最值问题. 【例1】已知1,60,OA OB AOB OC OA OB λμ==∠=︒=+,其中实数,λμ满足12λμ≤+≤,0,0λμ≥≥,则点C 所形成的平面区域的面积为( )A B C .D 【答案】B 【解析】 由题:1,60,OA OB AOB OC OA OB λμ==∠=︒=+,作2,2OP OA OQ OB ==,OC 与线段AB 交于D ,设OCxOD =,如图:OC OA OB λμ=+,0,0λμ≥≥,所以点C 在图形QOP ∠内部区域,根据平面向量共线定理有,1ODmOA nOB m n =++=,,1OC xOD xmOA xnOB m n ==++=,OC OA OB λμ=+,所以,xm u xn λ==,12λμ≤+≤,即12xm xn ≤+≤,即12x ≤≤,OC xOD =,所以点C 所在区域为梯形APQB 区域,其面积1122sin 6011sin 6022APQB OPQ OAB S S S ︒︒∆∆=-=⨯⨯⨯-⨯⨯⨯=,故选:B 【玩转跟踪】1.已知RtABC ,3AB =,4BC =,5CA =,P 为ABC △外接圆上的一动点,且AP xAB y AC =+,则x y+的最大值是( )A .54B .43C .D .53【答案】B 【解析】解:以AC 的中点为原点,以AC 为x 轴,建立如图所示的平面直角坐标系,则ABC △外接圆的方程为2225()2xy +=,设P 的坐标为55cos ,sin 22θθ⎛⎫⎪⎝⎭,过点B 作BD 垂直x 轴,∵4sin 5A =,3AB = ∴12sin 5BD AB A ==,39cos 355AD AB A =⋅=⨯=,∴5972510OD AO AD =-=-=,∴712,105B ⎛⎫-⎪⎝⎭,∵5,02A ⎛⎫- ⎪⎝⎭,5,02C ⎛⎫⎪⎝⎭∴912,55AB ⎛⎫= ⎪⎝⎭,()5,0AC =,555cos ,sin 222AP θθ⎛⎫=+ ⎪⎝⎭∵AP xAB y AC =+∴555912cos ,sin ,22255x θθ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭ ()9125,05,55y x y x ⎛⎫+=+ ⎪⎝⎭∴559cos 5225x y θ+=+,512sin 25x θ=,∴131cos sin 282y θθ=-+,25sin 24x θ=, ∴()12151cos sin sin 23262x y θθθϕ+=++=++,其中3sin 5ϕ=,4cos 5ϕ=,当()sin 1θϕ+=时,x y +有最大值,最大值为514623+=,故选:B .2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .2CD .2【答案】A【解析】,如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r=,即圆C 的方程是()22425x y -+=, ()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x zy =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,点C 是半径为1的扇形圆弧AB 上一点,0OA OB ⋅=,1OA OB ==,若OC OA OB x y =+,则2x y+的最小值是( )A.B .1 C .2D【答案】B 【解析】 由题:OC OA OB x y =+,点C 是半径为1的扇形圆弧AB 上一点,则0,0x y >>,则()22OC xOA yOB=+,即()()2222OC xOA yOBxyOA OB =++⋅,0OA OB ⋅=,1OA OB ==化简得:221xy +=,令cos ,sin ,[0,]2x y θθθπ==∈,2sin 2cos ),sin [0,]2x y θθθϕϕϕϕπ+=+=+==∈因为[0,]2πθ∈,[0,]2πϕ∈,2πϕθϕϕ≤+≤+,sin()θϕ+先增大后减小,所以sin()θϕ+的最小值为sin ,sin()2πϕϕ+较小值,sin()cos 2πϕϕ+==即sin()θϕ+,所以2)x y θϕ+=+的最小值为1.故选:B题型二 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例2】【2018年天津理科08】如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则的最小值为( )A .B .C .D .3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=AB cos60°,BN=AB sin60°,∴DN=1,∴BM,∴CM=MB tan30°,∴DC=DM+MC,∴A(1,0),B(,),C(0,),设E(0,m),∴(﹣1,m),(,m),0≤m,∴m2m=(m)2(m)2,当m时,取得最小值为.故选:A.【玩转跟踪】1.【2017年新课标2理科12】已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•()的最小值是()A.﹣2 B.C.D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P (x ,y ),则(﹣x ,y ),(﹣1﹣x ,﹣y ),(1﹣x ,﹣y ),则•()=2x 2﹣2y +2y 2=2[x 2+(y )2]∴当x =0,y 时,取得最小值2×(),故选:B .2.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24-B .24+C .48-D .48+【答案】C【解析】以,CA CB 为,x y 轴建立平面直角坐标系,则(0,0),(2,0),(0,2),(1,1)C A B M ,设(,)P x y ,则(2,),(,2)PA x y PB x y =--=--,(,),(1,1)PC x y PM x y =--=--,(2)(2)PA PB x x y y ⋅=----2222x x y y =-+-,PC PM ⋅=22(1)(1)x x y y x x y y ----=-+-,∵2PC =,∴224x y +=,设2cos ,2sin xy θθ==,则2cos 2sin )4x y πθθθ+=+=+,∴x y -≤+≤()()4PA PB PC PM ⋅+⋅⋅2(4224)(4)2(4)x y x y x y =--+--=+-,∴x y +=()()4PA PB PC PM ⋅+⋅⋅取得最小值24)48=-故选:C 。

解析几何中范围和最值问题的解法研究

解析几何中范围和最值问题的解法研究


l O
’ 、
由 D在 AB上 ,  ̄ ' l f X o +2 k x o =2 , 得 知 一
所 以 一 一 1 0

题意 Y , Y 2 不 同时为 0 ,

. .
上述条件等价 于 Y 一 2 ∞z ; 一z ; ∞( 1 + ) ( z l z ≠z 2 , . . 上述条件等价 于 z 1 + 2 - - 0 .
设 AB的中点 N 的坐标为( X o , y o ) , 则
X o 一
】 ,
( xl 十 2 ) 一 一百 , Y o 一 一 X O 十 m・





由N E l , 得 志+ 一 一 寺+ 6 , 于 是6 一 素+ 优 ・

。 >一1

3 2 . 6 > 熹一 1 一 ,

间 的等量关 系实现 变量之 间的相互 转化 , 从 而构造 关于 未知变量 的不等式 , 即可求变量 的取值 范围或最 值.
这就是说 , 可 以用 函数 的观点 、 方程 的观点 、 不 等式
的方程 分别 为 z+2 y =2 , 一尼 z ) .
即得 z 在 Y轴 上截距 的取值 范围是( , +。 。 ) .
评析 : 第( 2 ) 题解 法 的 实质 是 建立 关 于纵截 距 b的
函数 , 从 而将 问题 转 化 为 求 函数 的值 域 .
即相 应变量之间的等量关系与不等量关系. 若将 变量间的等量关系看 成 函数 关系 , 则 可 以将 等 量关 系式转换成 函数关系式 , 然后 可 以用求 函数 的值 域


故 =- -X l -

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一讲 解析几何范围最值问题解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值.[满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以+=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12, 解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·(-2)-(-2)-2|22+(-1)2=45=4 55.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2· (x 1+x 2)2-4x 1x 2=1+22·(-4)2-4·(-4)=4 10.于是,△ABP 面积的最大值为12×4 10×4 55=8 2.二、函数法求最值【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.(1)由e =ca=a 2-b 2a 2= 23,得a =3b ,椭圆C :x 23b 2+y 2b2=1,即x 2+3y 2=3b 2, 设P (x ,y )为C 上任意一点,则|PQ |= x 2+(y -2)2=-2(y +1)2+3b 2+6,-b ≤y ≤b .若b <1,则-b >-1,当y =-b 时,|PQ |max = -2(-b +1)2+3b 2+6=3,又b >0,得b =1(舍去), 若b ≥1,则-b ≤-1,当y =-1时,|PQ |max = -2(-1+1)2+3b 2+6=3,得b =1.∴椭圆C 的方程为x 23+y 2=1.(2)法一 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤ 3.由题意可得S△AOB=12|OA |·|OB |sin ∠AOB =12sin ∠AOB ≤12, 当∠AOB =90°时取等号,这时△AOB 为等腰直角三角形, 此时圆心(0,0)到直线mx +ny =1的距离为22, 则1m 2+n 2=22,得m 2+n 2=2,又m 23+n 2=1,解得m 2=32,n 2=12,即存点M 的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22满足题意,且△AOB 的最大面积为12.(12分)法二 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤3,又设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧mx +ny =1x 2+y 2=1,消去y 得(m 2+n 2)x 2-2mx +1-n 2=0,①把n 2=1-m 23代入①整理得(3+2m 2)x 2-6mx+m 2=0,则Δ=8m 2(3-m 2)≥0,∴⎩⎨⎧x 1+x 2=6m3+2m 2,x 1x 2=m23+2m2,②而S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ,当∠AOB =90°,S △AOB 取得最大值12,此时·=x 1x 2+y 1y 2=0,又y 1y 2=1-mx 1n ·1-mx 2n =3-3m (x 1+x 2)+3m 2x 1x 23-m 2,∴x 1x 2+3-3m (x 1+x 2)+3m 2x 1x 23-m 2=0,即3-3m (x 1+x 2)+(3+2m 2)·x 1x 2=0, 把②代入上式整理得2m 4-9m 2+9=0,解得m 2=32或m 2=3(舍去),∴m =±62,n =±1-m 23=±22,∴M 点的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22,使得S △AOB 取得最大值12.老师叮咛:当所求的最值可以表示成某个变量的函数关系式时,我们常常先建立对应的函数关系式,然后利用函数方法求出对应的最值,称这种方法为函数法,这是解析几何问题中求最值的常用方法.函数法是研究数学问题的一种最重要的方法,用这种方法求解圆锥曲线的最值问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.三.定义法求最值在求解有关圆锥曲线的最值问题时, 通常是利用函数的观点, 建立函数表达式进行求解。

但是, 一味的强调函数观点, 有时会使思维陷入僵局。

这时, 若能考虑用圆锥曲线的定义来求解, 问题就显得特别的简单。

例1、如图,M 是以A 、B 为焦点的双曲线222x y -=右支上任一点,若点M 到点C (3,1)与点B 的距离之和为S ,则S 的取值范围是( )A 、)++∞ B 、)+∞C 、-D 、)+∞分析:此题的得分率很低,用函数观点求解困难重重。

若能利用双曲线的第一定义,则势如破竹。

解法如下:连结MA ,由双曲线的第一定义可得:2MB MC MA a MC +=-+MA MC AC =+-≥-= 当且仅当A 、M 、C 三点共线时取得最小值。

如果此题就到此为止,未免太可惜了!于是笔者进一步引导学生作如下的探究:(1)如果M 点在左支上,则点M 到点C (3,1)与点B 的距离之和为S ,则S 的取值范围是多少?(2)如果M 是以A 、B 为焦点的椭圆22143x y +=上任一点,若点M 到点1,12C ⎛⎫⎪⎝⎭与点B 的距离之差为S ,则S的最大值是多少?(3)如果M 是以A 、B 为焦点的椭圆22143x y +=上任一点,若点M 到点1,12C ⎛⎫⎪⎝⎭与点B 的距离之和为S ,则S的取值范围是多少?分析:连结MA ,由椭圆的第一定义可得:()22MB MC a MA MC a MA MC +=-+=--,当且仅当A 、M 、C 三点共线时取得最大、最小值,如上图所示。

对于抛物线,也有类似的结论,由于较简单,在此就不一一列举了。

练习1、如图,椭圆C 的方程为2222 1 (0)y x a b a b+=>>,A 是椭圆C 的短轴左顶点,过A 点作斜率为-1的直线交椭圆于B 点,点P (1,0), 且BP ∥y 轴,△APB 的面积为92. (1)求椭圆C 的方程;(2)在直线AB 上求一点M ,使得以椭圆C 的焦点为焦点,且过M 的双曲线E 的实轴最长,并求此双曲线E 的方程.分析:同样, 此题若采用函数观点, 问题(2)将变得复杂化!若能利用双曲线的第一定义,则解答就容解易得多了。

简解:(1) ,2921=⋅=∆PB AP S APB 又∠PAB =45°, AP =PB ,故AP =BP =3.∵P (1,0),A (-2,0),B (1,-3)∴ b=2,将B (1,-3)代入椭圆得:222191b b a =⎧⎪⎨+=⎪⎩ 得 212a =,所求椭圆方程为221 124y x +=(2)设椭圆C 的焦点为F 1,F 2,则易知F 1(0,-F 2(0,),直线AB 的方程为:20x y ++=,因为M 在双曲线E 上,要双曲线E 的实轴最大, 只须||MF 1|-|MF 2||最大,设F 1(0,-)关于直线AB 的对称点为1'F(-2,-2),则直线'12F F 与直线的交点为所求M , 因为'12F F的方程为:(30y x ++-=,联立(3020y x x y ⎧++-=⎪⎨++=⎪⎩ 得M (1,3-)又'2a =||MF 1|-|MF 2||=||M 1'F |-|MF 2||21|'|F F ≤=,故2,6''max ==b a ,故所求双曲线方程为:22 1 62y x -=2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162=的焦点P 为其一个焦点,以双曲线191622=-y x 的焦点Q 为顶点。

(1)求椭圆的标准方程;(2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ⋅的取值范围。

解:(1)抛物线x y 162=的焦点P 为(4,0),双曲线191622=-y x 的焦点Q 为(5,0)∴可设椭圆的标准方程为12222=+by a x ,由已知有a>b>0,且a=5,c=4 916252=-=∴b ,∴椭圆的标准方程为192522=+y x (2)设),(00y x M ,线段CD 方程为135=+yx ,即353+-=x y )50(≤≤x点M 是线段CD 上,∴35300+-=x y )50(0≤≤x),1(00y x AM +=,),1(00y x BM -=,12020-+=⋅∴y x AM ,将35300+-=x y )50(0≤≤x 代入得BM ⋅1)353(2020-+-+=x x BM AM ⋅⇒85182534020+-=x x 34191)3445(253420+-=x 500≤≤x ,BM AM ⋅∴的最大值为24,BM AM ⋅的最小值为34191。

相关文档
最新文档