【MSE A 2016】Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy
稻飞虱生物学、生态学及其防控技术研究进展
浙江大学学报(农业与生命科学版)48(6):692~700,2022Journal of Zhejiang University (Agric.&Life Sci.)http :///agrE -mail :zdxbnsb @稻飞虱生物学、生态学及其防控技术研究进展蒯鹏,娄永根*(浙江大学农业与生物技术学院昆虫科学研究所,水稻生物学国家重点实验室/农业农村部作物病虫分子生物学重点实验室,杭州310058)摘要稻飞虱是制约我国水稻生产的一类最主要害虫,主要包括褐飞虱、白背飞虱和灰飞虱。
本文重点就稻飞虱重要遗传特性(翅型分化、繁殖力、抗药性)分子基础、水稻-稻飞虱-天敌-其他生物种间互作关系、稻飞虱灾变机制及其防控技术等方面的最新研究成果进行综述,并提出今后应进一步深入剖析稻飞虱灾变的生物学与生态学分子基础,明确集约农业与稻田生态系统抗性在微观层面的协调机制,以在集约农业背景下维持或提高稻田生态系统抗性,实现稻飞虱的可持续治理。
关键词稻飞虱;生物学特性;种间互作关系;灾变机制;可持续治理中图分类号S 435.11文献标志码A引用格式蒯鹏,娄永根.稻飞虱生物学、生态学及其防控技术研究进展[J].浙江大学学报(农业与生命科学版),2022,48(6):692-700.DOI:10.3785/j.issn.1008-9209.2022.08.221KUAI Peng,LOU Yonggen.Research advances in biology,ecology and management of rice planthoppers[J].Journal of Zhejiang University (Agriculture &Life Sciences),2022,48(6):692-700.Research advances in biology,ecology and management of rice planthoppersKUAI Peng,LOU Yonggen *(State Key Laboratory of Rice Biology/Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects,Institute of Insect Sciences,College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310058,China )Abstract Rice planthoppers,mainly including Nilaparvata lugens ,Sogatella furcifera ,and Laodelphaxstriatellus ,are one of the most important insect pests of rice in China.In this review,we summarized the latest research progress on the molecular basis of important genetic characteristics (wing-morph differentiation,fecundity,insecticide resistance)of rice planthoppers,interactions among rice,rice planthoppers,natural enemies of rice planthoppers and other organisms,mechanisms underlying rice planthopper outbreak,and management of rice planthoppers.Finally,we suggest that future studies should further dissect the molecular basis of biology and ecology related to rice planthopper outbreak,and find the coordination mechanisms between intensified agriculture and rice ecosystem resistance at the micro level,so as to maintain or improve the rice ecosystem resistance,and achieve sustainable management of rice planthoppers in the context of intensified agriculture.Key words rice planthoppers;biological characteristics;interspecific interactions;outbreak mechanisms;sustainable management稻飞虱是危害我国和东南亚国家水稻生产的一类主要迁飞性害虫,主要包括褐飞虱(Nilaparvatalugens )、白背飞虱(Sogatella furcifera )和灰飞虱(Laodelphax striatellus ),属于半翅目(Hemiptera )DOI :10.3785/j.issn.1008-9209.2022.08.221基金项目:国家重点研发计划项目(2021YFD1401100);农业农村部现代农业产业技术体系项目(CARS -01-43)。
一道80%的考生都会漏选的GRE阅读多选题
一道80%的考生都会漏选的GRE阅读多选题大家在做gre阅读的多选题的时候常常会有漏选的现象,下面小编就给大家实例讲解一下,告诉大家如何避免漏选的问题!一道80%的考生都会漏选的GRE阅读多选题阅读-正文Astronomers who study planet formation once believed that comets—because they remain mostly in the distant Oort cloud, where temperatures are close to absolute zero—must be pristine relics of the material that formed the outer planets.The conceptual shift away from seeing comets as pristine relics began in the 1970s, when laboratory simulations revealed there was sufficient ultraviolet radiation reaching comets to darken their surfaces and there were sufficient cosmic rays to alter chemical bonds or even molecular structure near the surface.Nevertheless, astronomers still believed that when a comet approached the Sun—where they could study it—the Sun’s intense heat would remove the corrupted surface layer, exposing the interior. About the same time, though, scientists realized comets might contain decaying radioactive isotopes that could have warmed cometary interiors to temperatures that caused the interiors to evolve.Consider each of the choices separately and select all that apply.Q:According to the passage, astronomers recognize which of the following as being liable to cause changes to comets?A. cosmic raysB. radioactive decayC. ultraviolet radiation易错点本题绝大部分同学都能通过定位到第二句,然后选出AC;然后他们会觉得B选项在第四句出现,属于非答案区间,所以不选。
年终盘点:2016年Nature杂志重磅级突破性研究成果
年终盘点:2016年Nature杂志重磅级突破性研究成果小福利:点击上方图片下载生物谷APP轻松获得本文中所有文献原文!年终专题系列——Nature杂志重磅研究时间过得总是很快,2016年已经步入尾声,迎接我们的将是崭新的2017年!在2016年里三大国际著名杂志Cell、Nature和Science(CNS)依然刊登了很多非常耐人寻味的研究成果,本文中谷君就盘点了2016年Nature杂志发表的一些突破性的重磅级研究,分享给大家!【1】Nature:中国首次利用CRISPR–Cas9编辑过的细胞开展人体临床试验doi:10.1038/nature.2016.20988来自中国成都市四川大学华西医院的一个研究人员团队首次将利用CRISPR–Cas9进行过基因编辑的细胞注射到一名病人体内。
《自然》期刊报道这一注射过程是在2016年10月28日发生的,而且迄今为止,这名病人表现得“还不错”。
经过基因修饰的细胞之前已被注射到人体内,但是是利用不同的技术实现的。
CRISPR-Cas9被认为是一种更加高效的方法。
在这项新的努力中,该团队从血液样品中分离出免疫细胞,然后利用CRISPR-Cas9寻找它们中的PD-1蛋白,并且让该蛋白不能发挥功能,而之前的研究已证实这会延缓免疫细胞作出的免疫反应。
人们的看法是让这种蛋白失去功能将允许免疫系统更强地抵抗肿瘤生长。
这些利用CRISPR-Cas9进行过基因编辑的细胞被放置在一个容器中,在那里,它们在体外培养后能够发生增殖---它们随后经收集后被注射到一名肺癌病人体内,其中这名病人已不能够对任何其他的疗法作出反应。
这种CRISPR-Cas9技术涉及利用一种结合特定DNA序列的向导RNA和一种能够在事先选择的位点上切割DNA链的Cas9酶,从而允许移除DNA链,或者加入新的DNA片段。
【2】Nature:实验性疫苗与免疫刺激剂组合使用有望治疗HIV doi:10.1038/nature20583在一项新的研究中,来自美国贝斯以色列女执事医疗中心、沃尔特里德陆军研究院、Janssen疫苗与预防公司(Janssen Vaccines & Prevention B.V.)和吉利德科学公司的研究人员证实将一种实验性疫苗与一种先天性免疫刺激剂结合在一起可能有助导致HIV感染者体内的病毒缓解。
欧李果渣原花青素提取工艺优化及其体外抗氧化和降糖活性评价
张晓冰,张羽师,王雨,等. 欧李果渣原花青素提取工艺优化及其体外抗氧化和降糖活性评价[J]. 食品工业科技,2024,45(1):178−184. doi: 10.13386/j.issn1002-0306.2023030017ZHANG Xiaobing, ZHANG Yushi, WANG Yu, et al. Optimization of Proanthocyanidin Extraction from Cerasus humilis Pomace and Evaluation of Its in Vitro Antioxidant and Hypoglycemic Activity[J]. Science and Technology of Food Industry, 2024, 45(1): 178−184.(in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030017· 工艺技术 ·欧李果渣原花青素提取工艺优化及其体外抗氧化和降糖活性评价张晓冰,张羽师,王 雨,赵锦江,王笑雪,刘舒鹏,李卫东*(北京中医药大学中药学院,北京 102488)摘 要:本研究以欧李果渣为原料,采用单因素结合正交试验对超声波辅助提取欧李果渣原花青素工艺进行优化,采用DPPH 自由基清除实验、ABTS +自由基清除实验、FRAP 法测定铁离子还原能力实验对纯化后的欧李果渣原花青素抗氧化活性进行评价,并采用α-葡萄糖苷酶活性抑制试验对其降糖活性进行评价。
结果表明,各因素对欧李果渣中原花青素提取得率的影响程度排序为:超声温度>料液比>超声时间>乙醇浓度;最佳提取工艺为乙醇浓度70%,超声温度60 ℃,超声时间40 min ,料液比1:30 g/mL ,在此条件下欧李果渣中原花青素得率为15.37 mg/g 。
美国商务部管制清单索引
ALPHABETICAL INDEXTO THE COMMERCE CONTROL LISTThis index is not an exhaustive list of controlled items.Description ECCN Citation Ablative liners, thrust or combustion chambers .................................................................. 9A106.a Abrin ................................................................................................................................. 1C351.d.1 Absettarov (Central European tick-borne encephalitis virus) ..................................... 1C360.a.1.a.1 Absolute reflectance measurement equipment .................................................................... 6B004.a Absorbers of electromagnetic waves ...................................................................................... 1C001 Absorbers, hair type ...............................................................................................1C001.a Note 1.a Absorbers, non-planar & planar ....................................................................... 1C001.a Note 1.b&c Absorption columns ............................................................................................................. 2B350.e Accelerators (electro-magnetic radiation) ............................................................................ 3A101.b Accelerators or coprocessors, graphics .............................................................................. 4A003.d Accelerometer axis align stations .............................................................................. 7B003, 7B101 Accelerometer test station .......................................................................................... 7B003, 7B101 Accelerometers & components therefor ................................................................ 7A101 Accelerometers & accelerometer components ........................................................................ 7A001 Acoustic beacons ........................................................................................................... 6A001.a.1.b Acoustic beam forming software ...................................................................................... 6D003.a.1 Acoustic hydrophone arrays, towed ............................................................................. 6A001.a.2.b Acoustic location & object detection systems ............................................................... 6A001.a.1.b Acoustic, marine, terrestrial equipment .................................................................................. 6A991 Acoustic mounts, noise reduction equipment for vessels .............................................. 8A002.o.3.a Acoustic-optic signal processing devices ......................................................................... 3A001.c.3 Acoustic positioning systems ......................................................................................... 6A001.a.1.d Acoustic projectors ........................................................................................................ 6A001.a.1.c Acoustic seabed survey equipment ................................................................................ 6A001.a.1.a Acoustic systems, diver deterrent ....................................................................................... 8A002.r Acoustic systems, marine ..................................................................................................... 6A001.a Acoustic transducers ...................................................................................................... 6A001.a.2.c Acoustic underwater communications systems ............................................................... 5A001.b.1 Acoustic vibration test equipment .......................................................................................... 9B006 Acoustic wave devices ......................................................................................................... 3A001.c Acoustic-wave device manufacturing equipment and systems .................................. 3B991.b Note Active compensating system rotor clearance control software ............................................ 9D004.d Active flight control system software .................................................................................. 7D003.e Active flight control system technology .............................................................................. 7E004.b Active magnetic bearing systems......................................................................................... 2A001.c Active acoustic systems .................................................................................................... 6A001.a.1 Export Administration Regulations Bureau of Industry and Security January 9, 2012Actively cooled mirrors .................................................................................................... 6A005.e.1 Adaptive control software .................................................................................................... 2D992.a Adaptive control software ................................................................................................. 2D002.b.2 ADCs (analog-to-digital converters).................................................................................... 3A101.a ADCs (analog-to-digital converters)................................................................................. 3A001.a.5 ADCs (analog-to-digital converters).................................................................................... 4A003.e Aero gas turbine engine/assemblies/component test software............................................. 9D004.b Aero gas turbine engines ......................................................................................................... 9A001 Aerodynamic isotope separation plant/element housings ................................................. 0B001.a.3 Aerodynamic separation process systems & components ................................................... 0B001.d Aerosol challenge testing chambers ..................................................................................... 2B352.g Aerosol generating units specially designed for fitting to the systems specified in 2B352.h.1 or h.2 ...................................................................................... 2B352.h.3 Aflatoxins .......................................................................................................................... 1C351.d.2 African horse sickness virus ........................................................................................... 1C352.a.17 African swine fever virus (animal pathogens) .................................................................. 1C352.a.1 Agitators (chemical manufacturing) .................................................................................... 2B350.b AHRS (Attitude Heading Reference Systems), source code .................................................. 7D002 Air traffic control software ............................................................................................... 6D003.h.1 Air independent power systems (for underwater use) ..........................................................8A002.j Air compressors and filtration systems designed for filling air cylinders ............................8A992.l Air Traffic Control software application programs ................................................................ 6D993 Airtight vaults ......................................................................................................................... 0A981 Airborne altimeters ................................................................................................................. 7A006 Airborne altimeters ................................................................................................................. 7A106 Airborne communication equipment ...................................................................................... 7A994 Airborne radar equipment ....................................................................................................... 6A998 Aircraft .................................................................................................................................... 7A994 Aircraft, civil ........................................................................................................................ 9A991.b Aircraft, demilitarized .......................................................................................................... 9A991.a Aircraft, n.e.s........................................................................................................................... 9A991 Aircraft, trainer ....................................................................................................................... 9A018 Aircraft breathing equipment and parts ............................................................................... 9A991.e Aircraft (military) pressurized breathing equipment ........................................................... 9A018.d Aircraft inertial navigation systems & equipment ............................................................... 7A103.a Aircraft inertial navigation systems & equipment .................................................................. 7A003 Aircraft parts and components ............................................................................................. 9A991.d Akabane virus ................................................................................................................ 1C360.b.1.a Alexandrite ........................................................................................................................... 6C005.b Alexandrite lasers........................................................................................................... 6A005.c.2.b Align & expose step & repeat equipment (wafer processing) ..........................................3B001.f.1 Alignment equipment for equipment controlled by 7A .......................................................... 7B001 Export Administration Regulations Bureau of Industry and Security January 9, 2012Description ECCN Citation Alkylphenylene ethers or thio-ethers, as lubricating fluids .............................................. 1C006.b.1 Alloy strips, magnetic .......................................................................................................... 1C003.c Alloyed materials production systems and components ......................................................... 1B002 Alloyed metal materials in powder or particulate form ....................................................... 1C002.b Alloyed metal materials in the form of uncomminuted flakes, ribbons, or thin rods .......... 1C002.c Alloys, aluminum ................................................................................................................. 1C202.a Alloys, aluminum ........................................................................................................... 1C002.a.2.d Alloys, magnesium ........................................................................................................ 1C002.a.2.e Alloys, metal powder or particulate form ............................................................................ 1C002.b Alloys, nickel ............................................................................................................... 1C002.a.2.a Alloys, niobium.............................................................................................................. 1C002.a.2.b Alloys, titanium.................................................................................................................... 1C202.b Alpha-emitting radionuclides, compounds, mixtures, products or devices ............................ 1C236 Altimeters, airborne ................................................................................................................ 7A006 Altimeters, radar or laser types ............................................................................................. 7A106 Alumina fibers ......................................................................................................... 1C010.c Note 1 Aluminides ........................................................................................................................ 1C002.a.1 Aluminides, nickel ......................................................................................................... 1C002.a.1.a Aluminides, titanium...................................................................................................... 1C002.a.1.b Aluminum alloys ............................................................................................................ 1C002.a.2.d Aluminum alloy/powder or particulate form ............................................................... 1C002.b.1.d Aluminum alloys as tubes/solid forms/forgings ................................................................. 1C202.a Aluminum electroplating equipment .................................................................................... 2B999.i Aluminum gallium nitride (AlGaN) “substrates”, i ngots, boules, or otherpreforms of those materials ................................................................................................. 3C005 Aluminum nitride (AlN) “substrates”, ingots, boules, or other preforms ofthose materials ..................................................................................................................... 3C005 Aluminum organo-metallic compounds ................................................................................. 3C003 Aluminum oxide powder, fine ................................................................................................ 0C201 Aluminum powder, spherical .......................................................................................... 1C111.a.1 Aluminum powder (spherical) production equipment ............................................................ 1B102 Amalgam electrolysis cells, lithium isotope separation .................................................. 1B233.b.3 Amalgam pumps, lithium and/or mercury ........................................................................ 1B233.b.2 Ammonia, aqueous ................................................................................................................. 1C980 Ammonia crackers ......................................................................................................... 0B004.b.2.d Ammonia distillation towers .......................................................................................... 0B004.b.4.b Ammonia synthesis converters & units .................................................................................. 1B227 Ammonia-hydrogen exchange plant ................................................................................. 0B004.a.2 Ammonia-hydrogen exchange equipment and components ........................................... 0B004.b.2 Ammonium bifluoride ............................................................. see ammonium hydrogen fluoride Ammonium hydrogen fluoride ......................................................................................... 1C350.d.1 Ammonium nitrate, including certain fertilizers containing ammonium nitrate .................... 1C997 Export Administration Regulations Bureau of Industry and Security January 9, 2012Description ECCN Citation Ammunition hand-loading equipment .................................................................................... 0B986 Amorphous alloy strips ........................................................................................................... 1C003 Amplifiers, microwave solid state .................................................................................... 3A001.b.4 Amplifiers, pulse .................................................................................................................. 3A999.d Analog instrumentation tape recorders ............................................................................. 3A002.a.1 Analog computers ................................................................................................................... 4A101 Analog-to-digital converters ................................................................................................ 3A101.a Analog-to-digital converters, integrated circuits .............................................................. 3A001.a.5 Analog-to-digital conversion equipment ............................................................................. 4A003.e Analyzers, network .............................................................................................................. 3A002.e Analyzers, spectrum .......................................................................................................... 3A002.c.1 Andes virus ....................................................................................................................... 1C351.a.1 Angular displacement measuring instruments ..................................................................... 2B206.c Angular measuring instruments ........................................................................................ 2B006.b.2 Angular measuring instruments .............................................................................................. 2B206 Angular-linear inspection equipment (hemishells) ................................................................. 2B206 Angular-linear inspection equipment (hemishells) .............................................................. 2B006.c Angular rate sensors ................................................................................................................ 7A002 Animal pathogens .................................................................................................................. 1C352 Annealing or recrystallizing equipment ...................................................................... 3B991.b.1.c.1 Antennae, for microwave power source ............................................................................ 0B001.i.3 Antennae, phased array ...................................................................................................... 5A001.d Antennae, phased array (for radar) ...................................................................................... 6A008.e Anti-vibration mounts (noise reduction), civil vessels .................................................. 8A002.o.3.a Antimony hydrides.................................................................................................................. 3C004 Aramid fibers & filamentary materials ................................................................................ 1C210.a Aramid fibers & filamentary materials ................................................................................ 1C010.a Arc remelt & casting furnaces ............................................................................................. 2B227.a Argon ion lasers ................................................................................................................... 6A205.a Argon ion lasers ................................................................................................................... 6A005.a Armor body ............................................................................................................................. 1A005 Armor plate drilling machines ............................................................................................. 2B018.a Armor plate planing machines ............................................................................................. 2B018.b Armor plate quenching presses ............................................................................................ 2B018.c Arms machinery, equipment, gear, parts, and accessories ..................................................... 2B018 Arms (small) chambering machines .................................................................................... 2B018.o Arms (small) deep hole drilling machines and drills therefor ............................................. 2B018.p Arms (small) rifling machines ............................................................................................. 2B018.q Arms (small) spill boring machines ......................................................................................2B018.r Aromatic polyimides ......................................................................................................... 1C008.a.3 Aromatic polyamide-imides .............................................................................................. 1C008.a.2 Aromatic polyetherimides ................................................................................................. 1C008.a.4 Export Administration Regulations Bureau of Industry and Security January 9, 2012Description ECCN Citation Array processor microcircuits .................................................................................. 3A001.a.3 Note Array processors/assemblies ................................................................................................. 4A004 Array processors/assemblies ................................................................................................... 4A003 Arrays of aerosol generating units or spray booms, specially designed forfitting to aircraft, “lighter than air vehicles,”or “UAVs”............................................ 2B352.h.2 Arsenic trichloride ............................................................................................................ 1C350.b.1 Arsenic hydrides ..................................................................................................................... 3C004 Asphalt paving mixtures ......................................................................................................... 1C980 Aspheric optical elements .................................................................................................... 6A004.e Assemblies to enhance performance by aggregation of computing elements ..................... 4A994.c Asynchronous transfer mode (ATM) equipment ......................................................... 5A991.c.10.d Asynchronous transfer mode (ATM), technology for the developmentof equipment employing ................................................................................................ 5E001.c.1 Atomic vapor laser isotope separation plant ..................................................................... 0B001.a.6 Atomic vapor laser isotope separation process equipment .................................................. 0B001.g Atomic frequency standards ................................................................................................ 3A002.g Atomic transition solid state lasers ...............................................................................6A005.a or b Attitude Heading Reference Systems (AHRS), source code software ................................... 7D002 Attitude control equipment for missiles .................................................................................. 7A116 Aujeszky’ disease virus (Porcine herpes virus) ................................................................ 1C352.a.6 Austenitic stainless steel plate, valves, piping, tanks and vessels ....................................... 2B999.n Autoclave temperature, pressure or atmosphere regulation technology ................................. 1E103 Autoclaves, ovens and systems ............................................................................................ 0B002.a Automated control systems, submersible vehicles .............................................................. 8A002.b Automatic drug injection systems ........................................................................................... 0A981 Automotive, diesel, and marine engine lubricating oil ........................................................... 1C980 Avian influenza virus ........................................................................................................ 1C352.a.2 Aviation engine lubricating oil ............................................................................................... 1C980 Avionic equipment, parts, and components ............................................................................ 7A994 Avionics EMP/EMI protection technology ............................................................................ 7E102 Bacillus anthracis .............................................................................................................. 1C351.c.1 Bacteria ................................................................................................................................ 1C351.c Bacteria ................................................................................................................................ 1C354.a Bacteria ................................................................................................................................ 1C352.b Baffles .................................................................................................................................. 0A001.h Baffles (rotor tube), gas centrifuge ................................................................................... 0B001.c.7 Balancing machines ............................................................................................................. 2B119.a Balancing machines ............................................................................................................. 7A104.a Balancing instrumentation ................................................................................................... 7A104.b Balancing machines, centrifugal multiplane ........................................................................... 2B229 Balancing mahcines, centrifugal multiplane ....................................................................... 2B999.m Ball bearings, precision hardened steel and tungsten carbide .............................................. 1C999.a Export Administration Regulations Bureau of Industry and Security January 9, 2012Description ECCN Citation Ball bearings, Radial ............................................................................................................... 2A101 Ball & solid roller bearings .................................................................................................. 2A001.a Band-pass filters, tunable .................................................................................................. 3A001.b.5 Barium metal vapor lasers ................................................................................................... 6A005.b Bartonella quintana ........................................................................................................... 1C351.b.1 Batch mixers .......................................................................................................................... 1B117 Bathymetric survey systems .......................................................................................... 6A001.a.1.b Batons, shock .......................................................................................................................... 0A985 Batons, spiked ......................................................................................................................... 0A983 Bay cable systems .......................................................................................................... 6A001.a.2.e Bay cable systems software ............................................................................................ 6D003.a.3 Bayonets ............................................................................................................................... 0A918.b Beam lead bonders, stored program controlled equipment ........................................... 3B991.b.3.b Beam steering mirrors ....................................................................................................... 6A004.a.4 Beamforming techniques ............................................................................................... 6A001.a.2.c Bearings, ball & solid roller ................................................................................................. 2A001.a Bearings, gas centrifuge .................................................................................................... 0B001.c.4 Bearings, gas centrifuge .................................................................................................... 0B001.c.5 Bearings, high precision/temperature/special ......................................................................... 2A001 Bearings, magnetic (active) ................................................................................................. 2A001.c Bearings, magnetic (suspension) ...................................................................................... 0B001.c.4 Bearings, precision hardened steel and tungsten carbide ..................................................... 1C999.a Bellow valves .................................................................................................................... 0B001.b.1 Bellow valves .................................................................................................................. 0B001.d.6 Bellows forming dies ........................................................................................................... 2B999.b Bellows manufacturing equipment ...................................................................................... 2B999.b Bellows or rings, gas centrifuge........................................................................................ 0B001.c.6 Bellows seal valves ............................................................................................................... 2A226 Bellows seal valves .............................................................................................................. 2B350.g Bellows sealed valves, n.e.s. ................................................................................................. 2A999 Bellows-forming mandrels................................................................................................... 2B228.c Bellows-forming dies ........................................................................................................... 2B228.c Benzilic acid...................................................................................................................... 1C350.b.2 Beryllium metal, alloys, compounds, or manufactures......................................................... 1C230 Beryllium metal particulate......................................................................................... 1C111.a.2.a.4 Beryllium/beryllium substrate blanks .................................................................................. 6C004.d Biological containment facilities, ACDP level 3 or 4 .......................................................... 2B352.a Biological isolators ............................................................................................................2B352.f.2 Biological manufacturing equipment & facilities ................................................................... 2B352 Biological safety cabinets ..................................................................................................2B352.f.2 Bismaleimides ................................................................................................................... 1C008.a.1 Bismuth ................................................................................................................................... 1C229 Export Administration Regulations Bureau of Industry and Security January 9, 2012。
微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展
生态毒理学报Asian Journal of Ecotoxicology第18卷第4期2023年8月V ol.18,No.4Aug.2023㊀㊀基金项目:国家自然科学基金青年项目(82202069)㊀㊀第一作者:孙凡晰(1997 ),女,硕士研究生,研究方向为环境材料与技术,E -mail:*********************㊀㊀*通信作者(Corresponding author ),E -mail:*********************.cn ㊀㊀共同通信作者(Co -corresponding author ),E -mail:****************DOI:10.7524/AJE.1673-5897.20221025001孙凡晰,齐鑫,王靖,等.微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展[J].生态毒理学报,2023,18(4):131-147Sun F X,Qi X,Wang J,et al.Mechanism of toxic effects of microplastics and nano -plastics on gastrointestinal tract and liver:A review [J].Asian Journal of Ecotoxicology,2023,18(4):131-147(in Chinese)微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展孙凡晰,齐鑫,王靖*,纪丽莲#苏州科技大学化学与生命科学学院,苏州215000收稿日期:2022-10-25㊀㊀录用日期:2023-01-20摘要:由于塑料制品的大量生产和使用,其废弃物降解产生的微塑料(microplastics,MPs)作为一种新型的环境污染物近年来逐渐引起全世界的关注㊂持续的老化会使微塑料降解为纳米塑料(nano -plastics,NPs),在进入人体后增加对细胞的危害,因此微塑料和纳米塑料对人体产生的毒性效应及健康危害也日益成为环境领域的研究热点㊂本文基于已有研究,重点阐述了人体内微塑料和纳米塑料沉积对胃肠道产生氧化应激㊁炎症及细胞凋亡相关毒性效应的机制,以及造成肝脏糖脂代谢紊乱的潜在机制,为进一步开展微塑料和纳米塑料的毒性效应机制研究和人体健康风险评估提供理论依据㊂关键词:微塑料;胃肠道;肝脏代谢;肝脏;氧化应激;纳米塑料文章编号:1673-5897(2023)4-131-17㊀㊀中图分类号:X171.5㊀㊀文献标识码:AMechanism of Toxic Effects of Microplastics and Nano-plastics on Gastro-intestinal Tract and Liver :A ReviewSun Fanxi,Qi Xin,Wang Jing *,Ji Lilian #School of Chemistry and Life Sciences,Suzhou University of Science and Technology,Suzhou 215000,ChinaReceived 25October 2022㊀㊀accepted 20January 2023Abstract :In recent years,due to the mass production and use of plastic products,microplastics (MPs)produced by the degradation of their wastes have gradually attracted the world s attention as a new type of environmental pollu -tant.Continuous aging degrades MPs into nano -plastics (NPs),which can increase their damage to cells when they enter the human body.Therefore,the toxic effects and health hazards of MPs and NPs on the human body have in -creasingly become a research hotspot in the environmental field.Based on existing studies,this article focuses on the mechanism related to the toxic effects of MPs and NPs deposition on the gastrointestinal tract (e.g.,oxidative stress,inflammation and apoptosis),and the potential mechanism of glucose and lipid metabolism disorders in the liver.This study provides a theoretical basis for further research on the mechanism of toxic effects of MPs and NPs and human health risk assessment.132㊀生态毒理学报第18卷Keywords:microplastics;gastrointestinal tract;glucolipid metabolism;liver;oxidative stress;nano-plastics㊀㊀随着塑料制品在生产和生活中的广泛使用,中国已经成为全球最大的塑料生产国㊂由于使用的需要,这些塑料制品通常耐高温,耐酸碱,耐腐蚀,目前还没有正确的方式处理塑料垃圾,这些塑料垃圾在自然环境下几乎不会被完全降解,而是通过生物以及非生物途径逐渐降解为微米或纳米级的碎片[1-3],更容易发生转移和扩散,导致微塑料和纳米塑料对环境的污染㊂根据塑料颗粒的粒径不同,可以将其划分为微塑料(microplastics,MPs)(直径纺5mm)[4]和纳米塑料(nano-plastics,NPs),目前有关NPs的粒径划分标准尚存争议,大部分学者将粒径<1μm的塑料颗粒定义为NPs[5-6]㊂随着对人体中MPs和NPs研究的不断深入,研究者们已经在人类血液㊁胎盘和粪便中发现了MPs和NPs[7-9]㊂MPs和NPs主要通过食物㊁水以及空气进入人体[10-11]㊂小鼠暴露实验发现, MPs和NPs进入体内后在胃㊁肠㊁肝脏等器官积累[12-13]㊂从消化道进入的MPs和NPs由于耐腐蚀性高,消化液会改变MPs和NPs颗粒的表面粗糙度和粒径[12],使它们更稳定地停留在消化道内壁,也更易吸附其他有毒物质从而增加毒性[14]㊂实际上,组织内的屏障并不能阻止MPs和NPs的入侵,MPs和NPs进入人体后,小粒径的塑料颗粒可以跨越消化系统的上皮屏障[15-17],从而进入淋巴和血液循环,粒径范围在0.1~10μm的纳米级塑料颗粒甚至可以穿过血脑屏障和胎盘[18-20]㊂饮食饮水摄入的MPs 和NPs颗粒,若其粒径>150μm,通常很难穿过肠道上皮细胞,导致几乎90%的MPs通过粪便排出体外[5],剩下的只能在肠道上皮细胞膜外产生局部影响,而<150μm的纳米级塑料颗粒接触到小肠绒毛时,这些小粒径的塑料颗粒则会穿过小肠上皮细胞[21],进入淋巴系统[22]和血液[18,23],通过毛细血管最终到达门静脉,扩散至全身[24-26]㊂对于<150μm的纳米级塑料颗粒物,其中>10μm的部分塑料颗粒(0.1%)可到达其他器官和细胞膜表面[19],而<5μm 的纳米级颗粒物则会被淋巴细胞吸收[21]㊂随着有关纳米级塑料颗粒进入哺乳动物细胞机制研究的逐渐深入,可以归纳出以下3种纳米级颗粒进入淋巴和血液循环的机制:(1)小粒径的纳米粒子通过细胞间紧密连接旁路,扩散进入血液[27],肠道上皮杯状细胞分泌的黏液是促进其旁路扩散的因素[21];(2)较大一些的纳米粒子(50~200nm)更倾向于通过内吞作用穿过肠道上皮细胞[21],并且可能存在黄金摄入尺寸,例如40nm可能是非吞噬细胞摄取的最佳尺寸[28],而200nm可能是穿过血脑屏障的最佳尺寸[29]㊂体内研究发现,肠道细胞可利用不同的内吞机制,甚至多种内吞机制联合使用,内化纳米级颗粒物,例如吞噬细胞可通过吞噬作用将其内化[30],而非吞噬细胞可以借助网格蛋白或细胞膜内陷介导的内吞作用内化较小的纳米颗粒[27],在这一过程中肌动蛋白发挥重要作用[31]㊂另外,能量依赖性途径也是肠道上皮细胞内吞作用的机制之一[31]㊂最近的研究发现,<3μm的纳米级颗粒可通过非特异性内吞机制内化到非吞噬细胞[31],且可利用内吞作用的微粒粒径上限增加到了5μm[19,21],肠道Peyer斑中丰富的M细胞的内吞作用是粒径上限增加的主要原因[23],此外肠道黏膜的协助也是可能的影响因素之一[32-33];(3)带正电的粒子与质膜的高度结合会增加表面张力并导致膜穿孔或变形[34],从而使纳米级塑料颗粒进入细胞,进而进入血液循环㊂除了被消化道吸收的纳米级塑料颗粒,经呼吸系统进入肺部的MPs和NPs通常会滞留在肺部或者通过毛细血管进入体内循环系统,<2.5μm的塑料颗粒会进入肺部深处或渗透肺泡进入血液循环[35]㊂这些进入血液循环的纳米级塑料颗粒,其中粒径在100nm左右的会被血清白蛋白包围[36],形成多层血清白蛋白冠,可能有助于纳米塑料逃避免疫监视,增加其在血液循环系统的时间,并帮助颗粒到达次级器官并在肝脏㊁肾脏和肠道中积累[36]㊂血清白蛋白与纳米级塑料颗粒的结合导致蛋白质的二级结构发生改变[37],从而增加了塑料颗粒的细胞毒性[27,36]㊂尽管只有小部分纳米级塑料颗粒能够穿透肺泡和胃肠道的上皮屏障,转移到次级组织器官内,但考虑到人类对塑料颗粒的长期接触以及塑料颗粒可能产生积累,这种低比例的内化仍不容忽视,因为它们能够进一步引起一系列毒性效应(图1),包括氧化应激㊁局部炎症㊁细胞凋亡以及肠道菌群的改变[38-41]㊂流行病学调查发现,吸入MPs和NPs会增加对呼吸道刺激的几率,一部分职业性接触MPs和NPs的工人患有间质性肺病,肺组织病理学检查发现,该病是MPs和NPs作为半抗原刺激呼吸道,引发肺泡炎症产生的[42-43]㊂体内研究表明,小鼠摄入MPs后,胃中的幽门螺旋杆菌与MPs相互作用,促进了幽门螺第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展133㊀旋杆菌在胃黏膜上皮细胞的快速定植[12],这种致病菌的大量繁殖导致小鼠胃部炎症的发生㊂肠道菌群的失调也是MPs 产生的毒性效应之一,在多项体外研究中均发现MPs 导致小鼠肠道菌群紊乱,条件致病菌数量增多,同时伴随肠道炎症[44-46]㊂NPs 对肝脏的毒性效应主要表现为糖脂代谢紊乱,NPs 暴露后的小鼠,体内葡萄糖含量升高并伴随糖尿病发生[47],脂肪质量减少,肝脏中甘油三酯和总胆固醇水平下降[48]㊂进入人体的NPs 最终进入并积累在组织内的各种细胞中构成潜在威胁㊂体外研究发现纳米级塑料颗粒可进入细胞,产生毒性效应[10,49]㊂人胃黏膜上皮细胞与NPs 共培养后,发现细胞增殖速率降低,细胞凋亡增加[50]㊂在人肠道细胞中也发现NPs 会导致细胞产生氧化应激[51]㊂尽管目前没有研究证明MPs 和NPs 会通过食物链传递至人体内,但现有的体内外研究已经展现出MPs 和NPs 进入体内产生的不良后果㊂目前MPs 和NPs 积累对人体的毒性效应研究还不深入,因此聚焦于MPs 和NPs 对人体产生的毒性效应机制,对了解MPs 和NPs 对人体健康的影响有重要意义,同时也为今后预防和治疗MPs 和NPs 导致的人体疾病提供科学依据㊂本篇综述将归纳总结MPs 和NPs 对人体胃肠道及肝脏的毒性效应机制,提出目前研究存在的问题和不足以及未来可能的发展方向,为今后研究MPs 和NPs 对人体的毒性效应及机制提供科学依据㊂1㊀引发胃肠道(gastrointestinal tract ,GIT )氧化应激㊁炎症及细胞凋亡的毒性效应机制(Toxic mechanism of oxidative stress ,inflammation andapoptosis in GIT )人体中的MPs 和NPs 经不同的内吞机制进入细胞或吸附聚集在胃肠道组织表面,引起氧化应激和炎症,甚至细胞凋亡,该现象已经在多项体外研究及小鼠的体内研究中得到证实(表1)㊂MPs 和NPs 对人体胃肠道健康的危害日益显现,因此探究MPs 和NPs 对胃肠道的毒性效应机制,为防治MPs 和NPs 引起的胃肠道疾病提供科学依据㊂1.1㊀细胞中的活性氧(reactive oxygen species,ROS)诱导氧化应激的产生(ROS in cells induce the genera -tion of oxidative stress)细胞内拥有一套抗氧化防御系统,可以维持细胞内ROS 的水平,保护重要的生物分子免受自由基的伤害[52-53]㊂细胞中活性氧和氧化应激的增加与抗氧化系统失衡和疾病有关[54]㊂体内外研究表明,MPs 和NPs 暴露后,细胞内ROS 水平升高,一方面是外源颗粒的直接刺激作用诱导细胞内ROS 的产生增加[55];另一方面,MPs 和NPs抑制抗氧化酶转录图1㊀人体中微塑料和纳米塑料的来源㊁分布及影响Fig.1㊀Source,distribution and impact of microplastics and nano -plastics in human body134㊀生态毒理学报第18卷因子的产生或降低抗氧化酶的活性,进而抑制ROS 代谢,使线粒体膜电位增加,导致线粒体通透性和ROS 产生增加,进而加速线粒体中产生的ROS 向胞质转移[17,56]㊂超氧化物歧化酶(SOD)㊁过氧化氢酶(CAT)和谷胱甘肽(GSH)是衡量机体氧化应激程度重要而不可或缺的生物标志物[57]㊂研究发现,聚苯乙烯纳米塑料可导致小鼠十二指肠内过氧化生物标志物水平升高,SOD ㊁CAT 活性和GSH 含量明显降低[58-59];人正常结肠黏膜上皮细胞的体外实验也发现,经NPs 处理的细胞中ROS 水平比未经处理细胞的ROS 水平高[58]㊂因此,MPs 和NPs 可直接促进ROS 产生或通过抑制抗氧化酶活性和谷胱甘肽的产生进而抑制ROS 代谢,间接导致ROS 增加㊂随着MPs 和NPs 与细胞微环境的相互作用,增加的ROS 在MPs 和NPs 颗粒表面沉降,导致细胞产生氧化应激,如果它们不能穿过细胞膜,则会诱导肠道局部炎症[60],如果颗粒足够小,可以穿过肠道上皮细胞,此时位于颗粒表面的ROS 毒性就会增强,介导细胞产生应激反应[61](图2)㊂1.2㊀炎症产生的潜在机制(The underlying mecha -nism of inflammation)胃肠道是MPs 和NPs 经摄入途径进入人体后发生积累的组织器官,MPs 和NPs 带来的机械损伤或刺激很容易造成胃肠道的炎症反应[12,44],炎症反应的产生机制可以分为2个方面:(1)促炎细胞因子释放产生的炎症反应[12];(2)肠道菌群失调,条件致病菌增多,导致免疫失衡以及脂多糖含量增加刺激炎症产生[46,62]㊂MPs 和NPs 可通过2种机制诱导促炎细胞因子释放(图2),一种机制是MPs 和NPs直接刺激产图2㊀引起胃肠道(GIT )氧化应激㊁炎症及细胞凋亡的潜在机制注:微塑料和纳米塑料一方面直接刺激细胞产生ROS ,另一方面调控细胞抗氧化系统抑制ROS 代谢从而导致ROS 激增,诱导氧化应激的产生;微塑料和纳米塑料可直接刺激细胞产生炎症细胞因子或通过氧化应激诱导炎症反应,产生的炎症反应和氧化应激最终导致细胞凋亡㊂Fig.2㊀Potential mechanisms causing oxidative stress,inflammation and apoptosis in the gastrointestinal tract (GIT)Note:On the one hand,microplastics and nano -plastics directly stimulate cells to produce ROS,on the other hand,they regulate cellular antioxidant system to inhibit ROS metabolism and lead to ROS surge,resulting in a surge of ROS and inducing oxidative stress;microplastics and nano -plastics can directly stimulate cells to produce inflammatory cytokines or induce inflammatory response through oxidative stress;the resulting inflammatory response and oxidative stress eventually lead to cell apoptosis.第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展135㊀表1㊀微塑料和纳米塑料对胃肠道及肝脏产生的毒性效应及机制T a b l e 1㊀T o x i c e f f e c t s a n d m e c h a n i s m o f m i c r o p l a s t i c s a n d n a n o -p l a s t i c s o n h u m a n b o d y器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e毒性效应T o x i c i t y e f f e c t 产生机制G e n e r a t i o n m e c h a n i s m体内研究(小鼠)I n v i v o s t u d i e s (m i c e )肝脏㊁结肠㊁回肠和盲肠内容物[13]L i v e r ,c o l o n ,i l e u m a n dc e c u m c o n t e n t s[13]P S100,1000μg ㊃L -1脂质代谢紊乱D i s o r d e r o f l i p i d m e t a b o l i s m肠道屏蔽功能障碍I n t e s t i n a l s h i e l d i n g d y s f u n c t i o n肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a胃[12]S t o m a c h [12]P E100μg ㊃m L -1促进幽门螺旋杆菌在胃黏膜上皮细胞快速定植P r o m o t e t h e r a p i d c o l o n i z a t i o n o f H e l i c o b a c t e rp y l o r i i n g a s t r i c m u c o s a l e p i t h e l i a l c e l l s胃部损伤及炎症G a s t r i c i n j u r y a n d i n f l a m m a t i o n髓过氧化物酶表达增加I n c r e a s e d e x p r e s s i o n o fm y e l o p e r o x i d a s eI L -6和T N F -α表达上调U p -r e g u l a t i o n o f I L -6a n d T N F -α结肠和十二指肠[44]C o l o n a n d d u o d e n u m [44]P E6,60,600μg ㊃d -1肠道炎症I n t e s t i n a l i n f l a m m a t i o n I L -1α表达上调U p -r e g u l a t i o n o f I L -1α肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a免疫失衡I m m u n e i m b a l a n c eT L R 4㊁A P -1和I R F 5表达上调U p -r e g u l a t i o n o f T L R 4,A P -1a n d I R F 5结肠[45]C o l o n [45]P S500μg ㊃L -1肠道屏障受损和肠道炎症I m p a i r e d i n t e s t i n a l b a r r i e r a n d i n t e s t i n a l i n f l a m m a t i o n肠道致病菌增加I n c r e a s e d i n t e s t i n a l p a t h o g e n i c b a c t e r i a干扰肠道微生物代谢I n t e r f e r e n c e w i t h i n t e s t i n a l m i c r o b i a l m e t a b o l i s m免疫失衡I m m u n e i m b a l a n c e肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a炎症因子(T N F -α㊁I L -1β和I F N -γ)表达上调U p -r e g u l a t i o n o f i n f l a m m a t o r y f a c t o r s(T N F -α,I L -1βa n d I F N -γ)136㊀生态毒理学报第18卷续表1器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e毒性效应T o x i c i t y e f f e c t产生机制G e n e r a t i o n m e c h a n i s m 小肠和盲肠[46]S m a l l i n t e s t i n e s a n d c e c u m[46]P E5.25ˑ104p a r t i c l e s ㊃d -1肠道通透性增加I n c r e a s e d i n t e s t i n a l p e r m e a b i l i t y肠道炎症I n t e s t i n a l i n f l a m m a t i o n代谢紊乱M e t a b o l i c d i s o r d e r s改变肠道菌群组成C h a n g e s i n t h e c o m p o s i t i o n o f i n t e s t i n a l f l o r a能量代谢和免疫功能相关细菌相对丰度减少R e d u c i n g t h e r e l a t i v e a b u n d a n c e o f b a c t e r i a r e l a t e d t oe n e r g y m e t a b o l i s m a n d i m m u n ef u n c t i o n氧化应激㊁免疫应答和脂质代谢相关基因表达下调D o w n -r e g u l a t i o n o f g e n e s r e l a t e d t oo x i d a t i v e s t r e s s ,i m m u n e r e s p o n s e a n d l i p i d m e t a b o l i s m肝㊁结肠㊁盲肠内容物㊁回肠[48]L i v e r ,c o l o n ,c e c u m c o n t e n t s a n d i l e u m[48]P S100,1000μg ㊃L -1减少肠道黏液分泌D e c r e a s e d s e c r e t i o n o f i n t e s t i n a l m u c u s损害肠道屏障功能D a m a g e t o i n t e s t i n a l b a r r i e r f u n c t i o n肠道微生物群失调和代谢紊乱D y s b i o s i s o f t h e g u t m i c r o b i o m e a n d m e t a b o l i c d i s o r d e r s/小肠和结肠[68]S m a l l i n t e s t i n e s a n d c o l o n[68]P S0.2m g ㊃k g -1肠道屏障功能损伤I n t e s t i n a l b a r r i e r d y s f u n c t i o n条件致病菌增多,紧密连接促进功能微生物减少I n c r e a s e d o p p o r t u n i s t i c p a t h o g e n s a n d d e c r e a s e dt i g h t j u n c t i o n p r o m o t i n g f u n c t i o n a l m i c r o o r g a n i s m s紧密连接蛋白表达下调D o w n -r e g u l a t i o n o f t i g h t j u n c t i o n p r o t e i n e x p r e s s i o n肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a肝脏和小肠[47]L i v e r a n d s m a l l i n t e s t i n e s [47]P S55μg ㊃d -1胰岛素抵抗I n s u l i n r e s i s t a n c e糖尿病D i a b e t e s m e l l i t u s肠-肝轴代谢串扰M e t a b o l i c c r o s s t a l k o f g u t -l i v e r a x i s肝脏和盲肠[69]L i v e r a n d c e c u m [69]P S100,1000μg ㊃L -1肝脏质量减少R e d u c e d l i v e r w e i g h t肠道黏液分泌减少D e c r e a s e d s e c r e t i o n o f i n t e s t i n a l m u c u s肝脏中甘油三酯和总胆固醇水平下降,脂质紊乱D e c r e a s e d t r i g l y c e r i d e a n d t o t a l c h o l e s t e r o l l e v e l s a n dl i p i d d i s o r d e r s i n t h e l i v e r肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a肝脏中合成脂肪和甘油三酯的相关基因的相对m R N A 水平下降D e c r e a s e d r e l a t i v e m R N A l e v e l s o fg e n e s i n v o l v e d i n t h e s y n t h e s i s o f f a t s a n d t r i g l y c e r i d e s i n t h e l i v e r第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展137㊀续表1器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e 毒性效应T o x i c i t y e f f e c t 产生机制G e n e r a t i o n m e c h a n i s m肝脏[70]L i v e r [70]P S 0.5m g ㊃d-1影响肝脏免疫微环境A f f e c t t h e l i v e r i m m u n e m i c r o e n v i r o n m e n t肝脏局部组织炎症L o c a l t i s s u e i n f l a m m a t i o n i n t h e l i v e r增加N K 细胞和巨噬细胞的免疫浸润,减少B 细胞的免疫浸润I n c r e a s e d i m m u n e i n f i l t r a t i o n o f N K c e l l s a n d m a c r o p h a g e sa n d d e c r e a s e d i m m u n e i n f i l t r a t i o n o f B c e l l s谷丙转氨酶和谷草转氨酶表达增加I n c r e a s e d e x p r e s s i o n o f a l a n i n e a m i n o t r a n s f e r a s ea n d a s p a r t a t e a m i n o t r a n s f e r a s e激活N F -κB 信号通路A c t i v a t i o n o f t h e N F -κB s i g n a l i n g p a t h w a y体外研究I n v i t r o s t u d i e s人胃腺癌细胞[64]H u m a n g a s t r i c a d e n o c a r c i n o m a c e l l s [64]P S2~30μg ㊃m L -1影响细胞活力和形态D e c r e a s e d c e l l v i a b i l i t y a n d m o r p h o l o g y炎症I n f l a m m a t i o nI L -6和I L -8表达上调U p r e g u l a t i o n o f I L -6a n d I L -8人胃黏膜上皮细胞[50]H u m a n g a s t r i c m u c o s a l e p i t h e l i a l c e l l s[50]P S50μg ㊃m L -1细胞增殖速率降低D e c r e a s e d c e l l p r o l i f e r a t i o n r a t e细胞凋亡增加I n c r e a s e d c e l l a p o p t o s i s/人结肠腺癌细胞[17,56]H u m a n c o l o n a d e n o c a r c i n o m a c e l l s [17,56]P S0~200μg ㊃m L -1,0.01~100μg ㊃m L -1降低细胞活力氧化应激和炎症D e c r e a s e d c e l l v i a b i l i t y ;o x i d a t i v e s t r e s s a n d i n f l a m m a t i o n线粒体凋亡M i t o c h o n d r i a l a p o p t o s i sH S P 70㊁H O 1表达上调,I L -1β表达上调T h e e x p r e s s i o n o f H S P 70a n d H O 1w a s u p -r e g u l a t e d ,a n d t h e e x p r e s s i o n o f I L -1βw a s u p -r e g u l a t e d线粒体膜电位增加T h e m i t o c h o n d r i a l m e m b r a n e p o t e n t i a l i n c r e a s e d138㊀生态毒理学报第18卷续表1器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e毒性效应T o x i c i t y e f f e c t 产生机制G e n e r a t i o n m e c h a n i s m 人胃癌细胞株[66]H u m a n g a s t r i c c a r c i n o m a c e l l l i n e [66]P S0.1~100μg ㊃m L -1降低细胞活力D e c r e a s e d c e l l v i a b i l i t y诱导细胞凋亡或坏死A p o p t o s i s o r n e c r o s i s w a s i n d u c e d破坏细胞膜完整性D i s r u p t i o n o f c e l l m e m b r a n e i n t e g r i t y ;b a x 表达上调U p -r e g u l a t i o n o f b a x e x p r e s s i o nC a s p a s e -3和C a s p a s e -8蛋白酶表达增加T h e e x p r e s s i o n o f C a s p a s e -3a n dC a s p a s e -8p r o t e a s e w a s i n c r e a s e d人结肠腺癌细胞[51]H u m a n c o l o n a d e n o c a r c i n o m a c e l l s [51]P S100μg ㊃m L -1氧化应激O x i d a t i v e s t r e s s改变氧化应激相关基因表达A l t e r e d e x p r e s s i o n o f o x i d a t i v e s t r e s s -r e l a t e d g e n e sH O 1和S O D 2转录水平显著增加H O 1a n d S O D 2t r a n s c r i p t l e v e l s w e r e s i g n i f i c a n t l y i n c r e a s e d人多能干细胞产生的肝脏类器官[40]L i v e r o r g a n o i d s [40]P S0.25~25μg ㊃m L -1破坏代谢酶的功能,增加脂质积累D i s r u p t t h e f u n c t i o n o f m e t a b o l i ce n z y m e s ;i n c r e a s e d l i p i d a c c u m u l a t i o nR O S 生成㊁氧化应激和炎症反应R O S p r o d u c t i o n ;o x i d a t i v e s t r e s sa n d i n f l a m m a t o r y r e s p o n s e肝细胞毒性H e p a t o t o x i c i t yA S L 和A L T 释放增加T h e r e l e a s e o f A S L a n d A L T i n c r e a s e d破坏肝功能相关基因表达D i s r u p t i o n o f g e n e e x p r e s s i o n r e l a t e d t o l i v e r f u n c t i o nH N F 4A 和C Y P 2E 1表达上调T h e e x p r e s s i o n o f H N F 4A a n d C Y P 2E 1w a s u p -r e g u l a t e dI L -6和C O L 1A 1表达上调U p -r e g u l a t e d e x p r e s s i o n o f I L -6a n d C O L 1A 1注:P S 表示聚苯乙烯;P E 表示聚乙烯;R O S 表示活性氧自由基;A S L 表示精氨琥珀酸裂解酶;A L T 表示谷丙转氨酶;I L -6表示白细胞介素6;I L -8表示白细胞介素8;I L -1β表示白细胞介素1β;I L -1α表示白细胞介素1α;T N F -α表示肿瘤坏死因子α;I F N -γ表示γ干扰素㊂N o t e :P S m e a n s p o l y s t y r e n e ;P E m e a n s p o l y e t h y l e n e ;R O S m e a n s r e a c t i v e o x i d e s p e c i e s ;A S L m e a n s a r g i n i n o s u c c i n a t e l y a s e ;A L T m e a n s a l a n i n e t r a n s a m i n a s e ;I L -6m e a n s i n t e r l e u k i n -6;I L -8m e a n s i n t e r l e u k i n -8;I L -1βm e a n s i n t e r l e u k i n -1β;I L -1αm e a n s i n t e r l e u k i n -1α;T N F -αm e a n s t u m o r n e c r o s i s f a c t o r α;I F N -γm e a n s i n t e r f e r o n -γ.第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展139㊀生促炎细胞因子㊂在小鼠体内实验中,IL-6和TNF-α升高促进小鼠胃部损伤及炎症[12]㊂在体外研究中,MPs和NPs处理后的胃上皮细胞和小肠上皮细胞均发现促炎反应相关基因(如IL-1β㊁IL-6㊁IL-8)发生不同程度的基因表达上调[63-64],导致促炎细胞因子释放增多㊂另一种机制是氧化应激促进炎症发生,通过氧化应激激活NF-κB㊁p53㊁PPAR-γ和Nrf2等多种转录因子,而这些转录因子可以调控炎症细胞因子的表达[65],从而增加促炎细胞因子的释放㊂体内研究表明,MPs和NPs会导致小鼠胃肠道菌群紊乱㊂MPs和NPs通过与幽门螺旋杆菌相互作用促进其在胃黏膜上皮细胞表面快速定植[12],提高NPs进入组织的效率,促进炎症发生[12]㊂MPs和NPs引起肠道菌群失调,特别是免疫功能相关的细菌相对丰度显著减少[46],致病菌的菌群数量增加,降低CD4+细胞的Th17/Treg细胞百分比,导致免疫失衡,同时血浆脂多糖含量增加[62],刺激肠道炎症产生[45],还有研究发现,肠道菌群失调后,小鼠体内TLR4㊁AP-1和IRF5基因表达上调,以此介导肠道炎症反应[44]㊂1.3㊀细胞凋亡产生的潜在机制(Potential mecha-nisms of apoptosis)内源性和外源性因子均可导致DNA损伤,已有研究发现粒径足够小的NPs可穿过核膜直接造成DNA损伤㊂另外MPs和NPs导致细胞内ROS 水平激增引起的氧化应激也是导致DNA损伤的原因,若DNA损伤修复不及时则诱导细胞凋亡的发生㊂在体外实验中经常可以观察到由氧化应激引起的细胞凋亡[63,66],氧化应激引起细胞凋亡的同时还伴随线粒体膜电位的升高㊂一项以HaCaT细胞为模型的研究发现,在体外模拟氧化应激的条件下,细胞内INF2表达增加,导致线粒体中的ROS超负荷,打破细胞氧化还原平衡,改变线粒体膜电位,引起线粒体应激,同时抑制HIF-1信号通路介导细胞凋亡[67]㊂Bcl-2相关X蛋白(Bcl2-associated X,Bax)是Bcl-2蛋白家族的成员,它可以调节凋亡诱导因子的释放,bax的过表达可能是细胞凋亡发生的另一个原因[66]㊂此外,Bax还可调节线粒体外膜的透化作用,其表达的增加使线粒体膜通透性增加,从而促使凋亡因子从线粒体释放到细胞质中,激活半胱天冬酶,导致细胞凋亡㊂事实上,Bax的N端乙酰化参与了其线粒体靶向作用,因此bax基因表达的上调导致线粒体膜通透性增加,使线粒体内ROS外溢,导致细胞中ROS激增进而引发凋亡㊂另外,MPs和NPs导致的炎症反应最终也会引发细胞凋亡㊂综上所述,MPs和NPs引起氧化应激㊁炎症及细胞凋亡的机制为:ROS产生增加或ROS代谢减少造成细胞内ROS激增,引起DNA损伤和氧化应激;胃肠道菌群失调引起的免疫失衡以及炎症相关细胞因子表达上调导致炎症反应发生;氧化应激和炎症反应最终会导致细胞凋亡,此外MPs和NPs还可使促凋亡相关基因过表达直接导致细胞凋亡(图2)㊂2㊀引发肝脏糖脂代谢紊乱的毒性效应机制(Toxic effect mechanism of liver glucose and lipid metabo-lism disorder)肝脏是人体重要的排毒解毒器官,MPs和NPs 经食物进入人体后聚集在胃肠道上皮细胞表面,纳米级塑料颗粒则被上皮细胞吸收进入淋巴和血液循环,最终经门静脉到达肝脏[11],相关研究还发现NPs 富集后,会扰乱肝脏组织的糖脂代谢[47,69],在人类肝脏类器官的体外研究中也发现了类似的毒性效应(表1)㊂目前,越来越多的研究聚焦于NPs造成肝脏组织糖脂代谢紊乱的毒性机制[13,47,62],主要是从生化和转录组学方面展开分析,发现NPs会从生化和转录水平影响糖脂代谢,其机制大致可以总结为以下2点:(1)在生化水平上影响糖代谢中间代谢物的产生(图3);(2)在转录水平上影响糖脂代谢中关键/限速酶的产生(图4)㊂2.1㊀在生化水平上影响糖脂代谢中间代谢物的产生(Affecting the production of intermediate metabolites for glycolipid metabolism at the biochemical level) NPs会通过影响中间代谢物的产量继而对糖脂代谢造成影响㊂丙酮酸是糖酵解途径的重要中间代谢物,也是连接糖脂代谢的重要枢纽,其产量的增加可能是丙酮酸激酶(PK)和磷酸烯醇丙酮酸羧激酶(PEPckc)的水平升高所致[69,71-72],可促进糖代谢向脂质代谢的转化,导致脂肪酸产生增加;肝脏内葡萄糖和胆固醇水平的升高,则可能增加人体罹患Ⅱ型糖尿病㊁高血脂和脂肪肝的风险[71]㊂研究发现,摄入NPs后,肝脏组织内参与糖代谢调控的重要因子和催化酶的生化水平会发生改变,小鼠在摄入NPs后其肝脏细胞中碳水化合物调节元件结合蛋白(ChREBP)的表达量显著降低[69],该蛋白通过抑制PK 和A TP-柠檬酸裂解酶(ACL)的产生,阻碍葡萄糖转化为乙酰辅酶A,使肝脏中的糖原不断积累,增加人体罹患Ⅱ型糖尿病的风险[73]㊂此外ChREBP合成的减少140㊀生态毒理学报第18卷还会导致棕榈酸-5-羟基硬脂酸的合成量减少,研究表明棕榈酸-5-羟基硬脂酸可以增加脂肪组织中胰岛素的敏感性[74],还可以通过激活G 蛋白偶联受体40(GPR40)增加胰岛素的分泌[75],因此NPs 直接导致ChREBP 表达降低后,间接抑制了胰岛素的敏感性和分泌量,进而阻碍糖酵解途径,导致糖代谢紊乱[76],还有研究发现,NPs 可增加组织中乳酸脱氢酶(LDH)和柠檬酸合酶(CS)的活性,这2种酶是参与糖酵解和糖异生的关键酶,其活性增加导致糖代谢紊乱,但目前关于NPs 影响酶活性的具体机制尚不明确[77]㊂在影响脂质代谢方面,NPs 造成ChREBP 表达量的降低导致肝细胞中成纤维细胞生长因子21(FGF21)的合成量下降,从而抑制了FGF21通过加速脂肪组织中脂蛋白分解降低血浆甘油三酯的功能,因此血浆中甘油三酯堆积,导致人体患高血脂的风险增加[78-79]㊂血液中的游离脂肪酸进入肝细胞后帮助肝脏组织内脂肪酸的合成,但有研究发现,NPs处理肝细胞后,脂肪酸转运蛋白2(FATP2)和脂肪酸转运体(FAT)合成量降低[69],因此阻碍了血液中的脂肪酸向肝脏运输,间接阻碍了肝脏脂肪酸的合成;同时还有研究发现,NPs 处理肝细胞后,载脂蛋白和脂肪酸结合蛋白6(FABP6)的合成量显著升高,这2个蛋白参与脂肪酸的转运出胞过程,因此肝脏脂肪酸的水平降低使得甘油三酯的合成不足,间接影响脂图3㊀在生化水平影响糖脂代谢的潜在机制注:在生化水平,纳米塑料通过抑制ChREBP 的合成进而抑制丙酮酸激酶㊁ATP 柠檬酸裂解酶㊁棕榈酸-5-羟基硬脂酸产生,阻碍了乙酰辅酶A 的合成,发生胰岛素抵抗,导致葡萄糖含量升高,最终导致Ⅱ型糖尿病风险增加;ChREBP 的合成减少还会抑制成纤维细胞因子21的合成,减少脂蛋白分解,从而增加血浆中甘油三酯的含量,最终导致高血脂;纳米塑料还通过抑制脂肪酸转运体和脂肪酸转运蛋白2的合成,激活载脂蛋白和脂肪酸结合蛋白6的合成,使肝细胞中脂肪酸合成减少㊁转出增多,导致脂肪储存减少,最终增加脂肪营养不良综合征的风险;ChREBP 表示碳水化合物调节元件结合蛋白㊂Fig.3㊀Potential mechanisms affecting glucose and lipid metabolism at the biochemical levelNote:At the biochemical level,nano -plastics inhibit the synthesis of ChREBP and then inhibit the production of pyruvate kinase,ATP citrate lyase,and palmitic acid -5-hydroxystearic acid,which hinder the synthesis of acetyl -CoA and lead to insulin resistance,leading to the increase of glucose content,and ultimately leading to the increased risk of type 2diabetes;the decreased synthesis of ChREBP can also inhibit the synthesis of fibroblastfactor 21and reduce the decomposition of lipoproteins,thereby increasing the content of triglyceride in plasma and eventually leading to hyperlipidemia;nano -plastics also inhibit the synthesis of fatty acid transporter and fatty acid transporter 2,activate the synthesis of apolipoprotein and fatty acid binding protein 6,reduce the synthesis of fatty acid and increase the export of fatty acid in hepatocytes,resulting in the reduction of fatstorage and ultimately increasing the risk of lipodystrophy syndrome;ChREBP means carbohydrate regulatory element -binding proteins.。
银杏肽锌螯合物的制备、体外消化及抗氧化活性分析
郑义,李诗颖,李闯,等. 银杏肽锌螯合物的制备、体外消化及抗氧化活性分析[J]. 食品工业科技,2023,44(17):420−427. doi:10.13386/j.issn1002-0306.2022110135ZHENG Yi, LI Shiying, LI Chuang, et al. Preparation, in Vitro Gastrointestinal Digestion and Antioxidant Activity of Ginkgo biloba Peptides-Zinc Chelate[J]. Science and Technology of Food Industry, 2023, 44(17): 420−427. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022110135· 营养与保健 ·银杏肽锌螯合物的制备、体外消化及抗氧化活性分析郑 义1,2,李诗颖1,李 闯1,周小芮1,陈亚楠1,张秀芸1,张银雨1(1.徐州工程学院食品与生物工程学院,江苏徐州 221018;2.江苏省食品资源开发与质量安全重点建设实验室,江苏徐州 221018)摘 要:本文优化了银杏肽锌螯合物(Ginkgo biloba peptides-zinc chelate, Zn-GBP )的制备工艺,分析了Zn-GBP 的体外消化特性及抗氧化活性。
采用单因素实验及响应面法优化了Zn-GBP 的制备工艺;采用体外模拟胃肠道消化测定了Zn-GBP 中锌离子的生物利用率;以DPPH 自由基清除能力、ABTS +自由基清除能力、还原能力为指标,评价了Zn-GBP 的体外抗氧化活性。
结果表明,Zn-GBP 的最佳制备工艺条件为:银杏肽与锌质量比3:1、螯合pH 8.2、螯合温度70 ℃、螯合时间2 h ;在此条件下,螯合率为49.23%±0.35% ,螯合物得率为42.34%±0.45%。
参考文献——精选推荐
参考⽂献[1] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163.[2] 聂建荣, 朱铭⽴, 连槿, 等. ⾼效液相⾊谱-串联质谱法检测动物尿液中的15 种β-受体激动剂. ⾊谱,2010, 28(8): 759-764.[3] Traynor I., Crooks S., Bowers J., et al. Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor. Analytica Chimica Acta,2003, 483(1): 187-191. [4] Kuiper H., Noordam M., van Dooren-Flipsen M., et al. Illegal use of beta-adrenergic agonists: European Community. Journal of Animal Science,1998, 76(1): 195-207.[5] Watkins L., Jones D., Mowrey D., et al. The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine. Journal of Animal Science,1990, 68(11): 3588-3595.[6] Parr M. K., Opfermann G., Sch?nzer W. Analytical methods for the detection of clenbuterol. Bioanalysis,2009, 1(2): 437-450.[7] López-Mu?oz F., Alamo C., Rubio G., et al. Half a century since the clinical introduction of chlorpromazine and the birth of modern psychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry,2004, 28(1): 205-208.[8] Goodman L., Gilman A. The pharmacological basis of therapeutics, 7th edn Macmillan. New York,1980: 1054-1105.[9] 王春燕. ⽑细管电泳—电化学发光检测吩噻嗪类药物的研究. 长春理⼯⼤学, 2006.[10] 孙雷, 张骊, 徐倩, et al. 超⾼效液相⾊谱-串联质谱法检测猪⾁和猪肾中残留的10 种镇静剂类药物. ⾊谱,2010, 28(1): 38-42.[11] 顾华兵, 谢洁, 彭涛, et al. 鸡⾁组织中氯丙嗪残留的HPLC-MS/MS 检测⽅法的建⽴. 中国家禽,2014, 36(15): 33-36.[12] Mitchell G., Dunnavan G. Illegal use of beta-adrenergic agonists in the United States. Journal of Animal Science,1998, 76(1): 208-211.[13] Directive C. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions89/187/EEC and 91/664/EEC. Official Journal L125,1996, 23(5): 10-32.[14] 农业部, 卫⽣部. 禁⽌在饲料和动物饮⽤⽔中使⽤的药物品种⽬录[Z] 农业部公告[2002] 176 号. 2002.[15] Damasceno L., Ventura R., Cardoso J., et al. Diagnostic evidence for the presence of β-agonists using two consecutive derivatization procedures and gas chromatography–mass spectrometric analysis. Journal of Chromatography B,2002,780(1): 61-71.[16] 王培龙. β-受体激动剂及其检测技术研究. 农产品质量与安全,2014, 1): 44-52.[17] Wang L.-Q., Zeng Z.-L., Su Y.-J., et al. Matrix effects in analysis of β-agonists with LC-MS/MS: influence of analyte concentration, sample source, and SPE type. Journal of Agricultural and Food Chemistry,2012, 60(25): 6359-6363.[18] Shao B., Jia X., Zhang J., et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chemistry,2009, 114(3): 1115-1121.[19] Josefsson M., Sabanovic A. Sample preparation on polymeric solid phase extraction sorbents for liquid chromatographic-tandem mass spectrometric analysis of human whole blood--a study on a number of beta-agonists and beta-antagonists. Journal of Chromatography A 2006, 1120(1-2):1-12.[20] Zhang Z., Yan H., Cui F., et al. Analysis of Multiple β-Agonist and β-Blocker Residues in Porcine Muscle Using Improved QuEChERS Method and UHPLC-LTQ Orbitrap Mass Spectrometry. Food Analytical Methods,2015: 1-10. [21] Wang P., Liu X., Su X., et al. Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection. Food chemistry,2015, 184(72-79.[22] Li T., Cao J., Li Z., et al. Broad screening and identification of beta-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Food Chem,2016, 192(188-196.[23] Xiong L., Gao Y.-Q., Li W.-H., et al. A method for multiple identification of four β2-Agonists in goat muscle and beefmuscle meats using LC-MS/MS based on deproteinization by adjusting pH and SPE for sample cleanup. Food Science and Biotechnology,2015, 24(5): 1629-1635.[24] Zhang Y., Zhang Z., Sun Y., et al. Development of an Analytical Method for the Determination of β2-Agonist Residues in Animal Tissues by High-Performance Liquid Chromatography with On-line Electrogenerated [Cu (HIO6) 2] 5--Luminol Chemiluminescence Detection. Journal of Agricultural and Food chemistry,2007, 55(13): 4949-4956.[25] Liu W., Zhang L., Wei Z., et al. Analysis of beta-agonists and beta-blockers in urine using hollow fibre-protected liquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry. Journal of Chromatography A 2009, 1216(28): 5340-5346. [26] Caban M., Mioduszewska K., Stepnowski P., et al. Dimethyl(3,3,3-trifluoropropyl)silyldiethylamine--a new silylating agent for the derivatization of beta-blockers and beta-agonists in environmental samples. Analytica Chimica Acta,2013, 782(75-88.[27] Caban M., Stepnowski P., Kwiatkowski M., et al. Comparison of the Usefulness of SPE Cartridges for the Determination of β-Blockers and β-Agonists (Basic Drugs) in Environmental Aqueous Samples. Journal of Chemistry,2015, 2015([28] Zhang Y., Wang F., Fang L., et al. Rapid determination of ractopamine residues in edible animal products by enzyme-linked immunosorbent assay: development and investigation of matrix effects. J Biomed Biotechnol,2009, 2009(579175.[29] Roda A., Manetta A. C., Piazza F., et al. A rapid and sensitive 384-microtiter wells format chemiluminescent enzyme immunoassay for clenbuterol. Talanta,2000, 52(2): 311-318.[30] Bacigalupo M., Meroni G., Secundo F., et al. Antibodies conjugated with new highly luminescent Eu 3+ and Tb 3+ chelates as markers for time resolved immunoassays. Application to simultaneous determination of clenbuterol and free cortisol in horse urine. Talanta,2009, 80(2): 954-958.[31] He Y., Li X., Tong P., et al. An online field-amplification sample stacking method for the determination of β 2-agonists in human urine by CE-ESI/MS. Talanta,2013, 104(97-102.[32] Li Y., Niu W., Lu J. Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol–KMnO 4 system. Talanta,2007, 71(3): 1124-1129.[33] Saar E., Beyer J., Gerostamoulos D., et al. The analysis of antipsychotic drugs in humanmatrices using LC‐MS (/MS). Drug testing and analysis,2012, 4(6): 376-394.[34] Mallet E., Bounoure F., Skiba M., et al. Pharmacokinetic study of metopimazine by oral route in children. Pharmacol Res Perspect,2015, 3(3): e00130.[35] Thakkar R., Saravaia H., Shah A. Determination of Antipsychotic Drugs Known for Narcotic Action by Ultra Performance Liquid Chromatography. Analytical Chemistry Letters,2015, 5(1): 1-11.[36] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography–mass spectrometry. Journal of Chromatography A,2011, 1218(18): 2521-2527.[37] Flieger J., Swieboda R. Application of chaotropic effect in reversed-phase liquid chromatography of structurally related phenothiazine and thioxanthene derivatives. J Chromatogr A,2008, 1192(2): 218-224.[38] Tu Y. Y., Hsieh M. M., Chang S. Y. Sensitive detection of piperazinyl phenothiazine drugs by field‐amplified sample stacking in capillary electrophoresis with dispersive liquid–liquid microextraction. Electrophoresis,2015, 36(21-22): 2828-2836.[39] Geiser L., Veuthey J. L. Nonaqueous capillary electrophoresis in pharmaceutical analysis. Electrophoresis,2007, 28(1‐2): 45-57.[40] Lara F. J., García‐Campa?a A. M., Gámiz‐Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[41] Lee H. B., Sarafin K., Peart T. E. Determination of beta-blockers and beta2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A,2007, 1148(2): 158-167.[42] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163-1167. [43] Yang F., Liu Z., Lin Y., et al. Development an UHPLC-MS/MS Method for Detection of β-Agonist Residues in Milk. Food Analytical Methods,2011, 5(1): 138-147.[44] Quintana M., Blanco M., Lacal J., et al. Analysis of promazines in bovine livers by high performance liquid chromatography with ultraviolet and fluorimetric detection. Talanta,2003, 59(2): 417-422.[45] Tanaka E., Nakamura T., Terada M., et al. Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci,2007, 854(1-2): 116-120.[46] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry. J ChromatogrA,2011, 1218(18): 2521-2527.[47] Qian J. X., Chen Z. G. A novel electromagnetic induction detector with a coaxial coil for capillary electrophoresis. Chinese Chemical Letters,2012, 23(2): 201-204.[48] Baciu T., Botello I., Borrull F., et al. Capillary electrophoresis and related techniques in the determination of drugs of abuse and their metabolites. TrAC Trends in Analytical Chemistry,2015, 74(89-108.[49] Sirichai S., Khanatharana P. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis. Talanta,2008, 76(5):1194-1198.[50] Toussaint B., Palmer M., Chiap P., et al. On‐line coupling of partial filling‐capillary zone electrophoresis with mass spectrometry for the separation of clenbuterol enantiomers. Electrophoresis,2001, 22(7): 1363-1372.[51] Redman E. A., Mellors J. S., Starkey J. A., et al. Characterization of Intact Antibody Drug Conjugate Variants using Microfluidic CE-MS. Analytical chemistry,2016.[52] Ji X., He Z., Ai X., et al. Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection. Talanta,2006, 70(2): 353-357.[53] Li L., Du H., Yu H., et al. Application of ionic liquid as additive in determination of three beta-agonists by capillary electrophoresis with amperometric detection. Electrophoresis,2013, 34(2): 277-283.[54] 张维冰. ⽑细管电⾊谱理论基础. 北京:科学出版社,2006.[55] Anurukvorakun O., Suntornsuk W., Suntornsuk L. Factorial design applied to a non-aqueous capillary electrophoresis method for the separation of beta-agonists. J Chromatogr A,2006, 1134(1-2): 326-332.[56] Shi Y., Huang Y., Duan J., et al. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis. J Chromatogr A,2006, 1125(1): 124-128.[57] Chevolleau S., Tulliez J. Optimization of the separation of β-agonists by capillary electrophoresis on untreated and C 18 bonded silica capillaries. Journal of Chromatography A,1995, 715(2): 345-354.[58] Wang W., Zhang Y., Wang J., et al. Determination of beta-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci,2010, 85(2): 302-305.[59] Lin C. E., Liao W. S., Chen K. H., et al. Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis. Electrophoresis,2003, 24(18): 3154-3159.[60] Muijselaar P., Claessens H., Cramers C. Determination of structurally related phenothiazines by capillary zone electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography A,1996, 735(1): 395-402.[61] Wang R., Lu X., Xin H., et al. Separation of phenothiazines in aqueous and non-aqueous capillary electrophoresis. Chromatographia,2000, 51(1-2): 29-36.[62] Chen K.-H., Lin C.-E., Liao W.-S., et al. Separation and migration behavior of structurally related phenothiazines in cyclodextrin-modified capillary zone electrophoresis. Journal of Chromatography A,2002, 979(1): 399-408.[63] Lara F. J., Garcia-Campana A. M., Ales-Barrero F., et al. Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogram per milliliter concentration range using field-amplified sample injection. Electrophoresis,2005, 26(12): 2418-2429.[64] Lara F. J., Garcia-Campana A. M., Gamiz-Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[65] Yu P. L., Tu Y. Y., Hsieh M. M. Combination of poly(diallyldimethylammonium chloride) and hydroxypropyl-gamma-cyclodextrin for high-speed enantioseparation of phenothiazines bycapillary electrophoresis. Talanta,2015, 131(330-334.[66] Kakiuchi T. Mutual solubility of hydrophobic ionic liquids and water in liquid-liquid two-phase systems for analytical chemistry. Analytical Sciences,2008, 24(10): 1221-1230.[67] 陈志涛. 基于离⼦液体相互作⽤⽑细管电泳新⽅法. 万⽅数据资源系统, 2011.[68] Liu J.-f., Jiang G.-b., J?nsson J. ?. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry,2005, 24(1): 20-27.[69] YauáLi S. F. Electrophoresis of DNA in ionic liquid coated capillary. Analyst,2003, 128(1): 37-41.[70] Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(426-430.[71] Xu Y., Gao Y., Li T., et al. Highly Efficient Electrochemiluminescence of Functionalized Tris (2, 2′‐bipyridyl) ruthenium (II) and Selective Concentration Enrichment of Its Coreactants. Advanced Functional Materials,2007, 17(6): 1003-1009.[72] Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta,2006, 556(1): 38-45.[73] Koel M. Ionic Liquids in Chemical Analysis. Critical Reviews in Analytical Chemistry,2005, 35(3): 177-192.[74] Yanes E. G., Gratz S. R., Baldwin M. J., et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry,2001, 73(16): 3838-3844.[75] Qi S., Cui S., Chen X., et al. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with β-cyclodextrin as modifier in capillary zone electrophoresis. Journal of Chromatography A,2004, 1059(1-2): 191-198.[76] Jiang T.-F., Gu Y.-L., Liang B., et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica Chimica Acta,2003, 479(2): 249-254.[77] Jiang T. F., Wang Y. H., Lv Z. H. Dynamic coating of a capillary with room-temperature ionic liquids for the separation of amino acids and acid drugs by capillary electrophoresis. Journal of Analytical Chemistry,2006, 61(11): 1108-1112.[78] Qi S., Cui S., Cheng Y., et al. Rapid separation and determination of aconitine alkaloids in traditional Chinese herbs by capillary electrophoresis using 1-butyl-3-methylimidazoium-based ionic liquid as running electrolyte. Biomed Chromatogr,2006, 20(3): 294-300.[79] Wu X., Wei W., Su Q., et al. Simultaneous separation of basic and acidic proteins using 1-butyl-3-methylimidazolium-based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis,2008, 29(11): 2356-2362.[80] Guo X. F., Chen H. Y., Zhou X. H., et al. N-methyl-2-pyrrolidonium methyl sulfonate acidic ionic liquid as a new dynamic coating for separation of basic proteins by capillary electrophoresis. Electrophoresis,2013, 34(24): 3287-3292.[81] Mo H., Zhu L., Xu W. Use of 1-alkyl-3-methylimidazolium-based ionic liquids as background electrolytes in capillary electrophoresis for the analysis of inorganic anions. J Sep Sci,2008, 31(13): 2470-2475.[82] Yu L., Qin W., Li S. F. Y. Ionic liquids as additives for separation of benzoic acid and chlorophenoxy acid herbicides by capillary electrophoresis. Analytica Chimica Acta,2005, 547(2): 165-171.[83] Marszall M. P., Markuszewski M. J., Kaliszan R. Separation of nicotinic acid and itsstructural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis. J Pharm Biomed Anal,2006, 41(1): 329-332.[84] Gao Y., Xu Y., Han B., et al. Sensitive determination of verticine and verticinone in Bulbus Fritillariae by ionic liquid assisted capillary electrophoresis-electrochemiluminescence system. Talanta,2009, 80(2): 448-453.[85] Li J., Han H., Wang Q., et al. Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Anal Chim Acta,2010, 674(2): 243-248.[86] Su H. L., Kao W. C., Lin K. W., et al. 1-Butyl-3-methylimidazolium-based ionic liquids and an anionic surfactant: excellentbackground electrolyte modifiers for the analysis of benzodiazepines through capillary electrophoresis. J ChromatogrA,2010, 1217(17): 2973-2979.[87] Huang L., Lin J. M., Yu L., et al. Improved simultaneous enantioseparation of beta-agonists in CE using beta-CD and ionic liquids. Electrophoresis,2009, 30(6): 1030-1036.[88] Laamanen P. L., Busi S., Lahtinen M., et al. A new ionic liquid dimethyldinonylammonium bromide as a flow modifier for the simultaneous determination of eight carboxylates by capillary electrophoresis. J Chromatogr A,2005, 1095(1-2): 164-171.[89] Yue M.-E., Shi Y.-P. Application of 1-alkyl-3-methylimidazolium-based ionic liquids in separation of bioactive flavonoids by capillary zone electrophoresis. Journal of Separation Science,2006, 29(2): 272-276.[90] Liu C.-Y., Ho Y.-W., Pai Y.-F. Preparation and evaluation of an imidazole-coated capillary column for the electrophoretic separation of aromatic acids. Journal of Chromatography A,2000, 897(1): 383-392.[91] Qin W., Li S. F. An ionic liquid coating for determination of sildenafil and UK‐103,320 in human serum by capillary zone electrophoresis‐ion trap mass spectrometry. Electrophoresis,2002, 23(24): 4110-4116.[92] Qin W., Li S. F. Y. Determination of ammonium and metal ions by capillary electrophoresis–potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent. Journal of Chromatography A,2004, 1048(2): 253-256.[93] Borissova M., Vaher M., Koel M., et al. Capillary zone electrophoresis on chemically bonded imidazolium based salts. J Chromatogr A,2007, 1160(1-2): 320-325.[94] Vaher M., Koel M., Kaljurand M. Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes. Chromatographia,2000, 53(1): S302-S306.[95] Vaher M., Koel M., Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(3): 426.[96] Vaher M., Koel M. Separation of polyphenolic compounds extracted from plant matrices using capillary electrophoresis. Journal of Chromatography A,2003, 990(1-2): 225-230.[97] Francois Y., Varenne A., Juillerat E., et al. Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid. A chemometric approach. J Chromatogr A,2007, 1138(1-2): 268-275.[98] Lamoree M., Reinhoud N., Tjaden U., et al. On‐capillary isotachophoresis for loadability enhancement in capillary zone electrophoresis/mass spectrometry of β‐agonists. Biological mass spectrometry,1994, 23(6): 339-345.[99] Huang P., Jin X., Chen Y., et al. Use of a mixed-mode packing and voltage tuning for peptide mixture separation in pressurized capillary electrochromatography with an ion trap storage/reflectron time-of-flight mass spectrometer detector. Analytical chemistry,1999, 71(9):1786-1791.[100] Le D. C., Morin C. J., Beljean M., et al. Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. Journal of Chromatography A,2005, 1063(1-2): 235-240.。
可用于分析微生物与代谢产物之间相互作用的人工神经网络
可⽤于分析微⽣物与代谢产物之间相互作⽤的⼈⼯神经⽹络国际顶级⽅法学期刊《Nature Methods》发表了由加利福尼亚⼤学圣地亚哥分校⼉科、加州⼤学计算机科学与⼯程系 、加州⼤学合作质谱创新中⼼以及加利福尼亚⼤学圣地亚哥分校微⽣物群创新中⼼ 多学科合作研究的最新成果:“Learning representations of microbe–metaboliteInteractions(可⽤于分析微⽣物与代谢产物之间相互作⽤的⼈⼯神经⽹络)”,此项研究恢复微⽣物与代谢物之间关系的能⼒,并证明了该⽅法如何发现微⽣物产⽣的代谢产物与炎症性肠病之间的关系。
摘要研究⼈员表⽰,整合多组学数据集对于微⽣物组研究⾄关重要。
但是,推断整个组学数据集之间的交互具有多种统计学上的挑战。
⽂章中通过使⽤神经⽹络(https:///biocore/mmvec)来解决了此问题,其能够在存在特定微⽣物的情况下估算每个分⼦存在的条件概率。
研究⼈员以已知的环境(沙漠⼟壤湿润⽣物结壳)和临床(囊性纤维化肺)实例为例,展⽰了这⼀⽅法恢复微⽣物与代谢物之间关系的能⼒,并证明了该⽅法如何发现微⽣物产⽣的代谢产物与炎症性肠病之间的关系。
背景虽然已经有⼴泛的努⼒来开发整合多组学数据的⽅法,但⼀些概念上的挑战限制了整合不同组学数据的技术,例如,将微⽣物测序和⾮靶向质谱联系起来。
因此,需要新的⽅法来处理不同的数据类型。
为此,研究⼈员提出了“mmvec”(微⽣物-代谢物载体),⼀种神经⽹络,可以从单个微⽣物序列预测整个代谢物丰度曲线。
通过迭代训练,mmvec可以学习微⽣物和代谢物之间的共现概率。
微⽣物-代谢物相互作⽤可以通过标准的降维界⾯进⾏排序和可视化,从⽽产⽣可解释的结果。
主要结果1.使⽤模拟囊性纤维化⽣物膜的数据集,将mmvec与Pearson’s、Spearman’s、SPIEC-EASI、SparCC和proportionality⽅法进⾏基准⽐较。
硒(Ⅳ)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响
硒(Ⅳ)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响高阿祥;周鑫斌;张城铭【摘要】[Objective] Iron plaque on root adsorbs heavy metal elements in the soil,thus reducing the content of heavy metals in the environment the plant grows in,while selenium is antagonistic to heavy metal elements in plant roots,thus inhibiting the transfer of Cd,As,Mn and some other heavy metals in the roots of rice seedlings as was found in the researches.In the presence of a proper amount of iron plaque,selenium reacts withCd,As,Mn,and so on to form insoluble compounds that accumulate in the iron plaque,thus reducing toxicity of these heavy metals to the plants.In this study,a hydroponic experiment was conducted to explore effects of the iron plaque on the surface of the roots of rice seedlings on absorption and transport of mercury by the plants treated with selenium.[Method] Having been disinfected and washed clean,rice seeds were sown in Hoagland culture medium for germination.Out of the seedlings,24 consistent in growth were selected and transplanted into two groups of vessels with Hogland culture medium,one treated without selenium (Se0) and the other with selenium (Se0.5,0.5 mg L-1 in the form of Na2SeO3),for cultivation for 2 weeks.Then the rice plants were moved into Fe2+ (FeSO4) solutions (pH=5.5),0,25,50 and 100 mg L-1 in concentration,or Treatment Fe0,Fe25,Fe50 and Fe100,separately,for 24 h,to let iron plaque form on root surface.And then the rice plants were then transferred into HgCl2 solution,0.3 mg L-1 in concentration for 72 h of cultivation.Each treatmenthad three replicates.[Result] No significant effect of the iron plaque was found on growth of the rice seedlings,but selenium was to be able to increase the plants in biomass.With rising Fe concentration in the solution,iron contents in the shoots and roots of the plants and in the dithionite-citrate-bicarbonate (DCB) solution all increased.The iron content in the DCB solution (extraction of root surface iron plaque) reached57.3%~ 96.2%,significantly higher than that (1.1%~ 17.5%) in the shoot and (2.7%~ 25.9%) in the root of the rice seedlings,Most of the iron in the seedling plants were accumulated in the iron plaque or DCB extract.With the rising amount of iron plaque on the root surface,the content of mercury in the roots and shoots of the plants decreased significantly.The addition of selenium did not affect much the content of mercury in the shoots and roots of the plants in Treatments Fe0 andFe25,but it did reduce the content of mercury significantly in Treatments FeS0 and Fel00.With the formation of iron plaque on the root surface,the content of mercury in the shoots and roots reduced because the iron plaque adsorbed much mercury and the addition of Se (Ⅳ) enabled the iron plaque to adsorb more mercury,thus increasing the proportion of mercury in the iron plaque and consequently reducing that in the shoots of the plans.Quite obviously,Se significantly enhances Hg fixation capacity of the iron plaque on the root surface of rice seedlings.[Conclusion] Under hydroponic conditions,iron deposits on the root surface to form iron plaque,which inhibits Hg adsorption by rice roots and upward transfer of Hg in the plant.With the forming of more iron plaque,Hg fixation capacityof the coating increases significantly,too,thus markedly reducing Hg accumulati on in the rice seedling.Se (Ⅳ) can alleviate the effect of mercury stress on rice,inhibit Hg transfer from roots to shoots and reduce Hg accumulation in the shoots,thus playing a role in protecting rice from mercury toxication.This study has certain practical significance in improving the quality of rice in mercury contaminated area and eusuring food safety.%采用水培试验的方法研究硒(Se,Ⅳ)预处理下,根表铁膜对水稻幼苗吸收和转运汞(Hg)的影响.将水稻幼苗置于Se0和Se0.5 (mg L-1)培养液中培养2周,再用4种不同浓度的Fe2+溶液(0、25、50和100 mg L-1即Fe0、Fe25、Fe50、Fe100)诱导水稻根表形成不同数量的铁膜,随后置于0.3 mg L-1的HgCl2培养液中继续培养72 h.结果表明,根表铁膜对水稻幼苗生长无显著影响,但硒可以增加其生物量.碳酸氢钠—柠檬酸三钠—连二亚硫酸钠(DCB)提取液(即根表铁膜)中含铁比例(57.3%~96.2%)显著高于水稻幼苗地上部(1.1%~17.5%)和根部(2.7%~25.9%),水稻幼苗的大部分铁被积累至DCB提取液中.随着根表铁膜数量的增加,根和地上部汞含量均显著降低.在Fe50和Fe100处理中,硒的加入显著减少了地上部和根部的汞含量,也显著降低了汞的分配系数,Se(Ⅳ)预处理能明显提高铁膜固持汞的量.综上所述,Se(Ⅳ)预处理和根表铁膜均能阻碍水稻幼苗对汞的吸收和向地上部的转运,减轻水稻汞胁迫,从而起到保护水稻避免汞毒害的作用.本研究对于提高汞污染区稻米质量和保证粮食安全具有一定的现实意义.【期刊名称】《土壤学报》【年(卷),期】2017(054)004【总页数】10页(P989-998)【关键词】铁膜;水稻幼苗;硒;汞【作者】高阿祥;周鑫斌;张城铭【作者单位】西南大学资源环境学院,重庆400716;西南大学资源环境学院,重庆400716;西南大学资源环境学院,重庆400716【正文语种】中文【中图分类】S143.7+1汞是一种毒性很强的污染物,并通过食物链在人和动物体内富集,因其在环境中具有持久性、生物累积性和强毒性被国际组织列为优先控制污染物[1]。
土壤微塑料影响植物生长的因素与机制研究进展
塑料作为一种被广泛应用的有机合成聚合物材料,在为我们生活提供便利的同时,也带来了后续的环境问题。
据估算,到2050年,将有大约12000万t 塑料垃圾被埋入垃圾填埋场或自然环境中[1],塑料垃圾进入到环境后会逐渐破碎变成微塑料(<5mm ),导致其在土壤和水体中的丰度逐年递增[2-3]。
2015年的第二届联合国环境大会已将微塑料污染列为环境与生态领域的第二大科学问题[3]。
目前,人们对水体中微塑料的认识已较为系统[4-6],土壤微塑料逐步成为新的研究热点[7-8]。
2012年Rillig [9]首次提出微塑料会影响土壤理化性质,这引起了人们对土壤微塑料的关注,后续研究表明微塑料可被植物吸收并积累[10-11],最终通过食物链进入人体。
厘清微塑料对植物生长的影响及其机制,有助于系统掌握其在土壤-植物体陈欣,郭薇,李济之,等.土壤微塑料影响植物生长的因素与机制研究进展[J].农业环境科学学报,2024,43(3):488-495.CHEN X,GUO W,LI J Z,et al.Research progress on the influencing factors and mechanisms of soil microplastics on plant growth[J].Journal of Agro-Environment Science ,2024,43(3):488-495.土壤微塑料影响植物生长的因素与机制研究进展陈欣1,郭薇1,2,李济之1,2,迟光宇1*(1.中国科学院沈阳应用生态研究所,污染生态与环境工程重点实验室,沈阳110016;2.中国科学院大学,北京100049)Research progress on the influencing factors and mechanisms of soil microplastics on plant growthCHEN Xin 1,GUO Wei 1,2,LI Jizhi 1,2,CHI Guangyu 1*(1.Key Laboratory of Pollution Ecology and Environmental Engineering,Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang 110016,China ;2.University of Chinese Academy of Sciences,Beijing 100049,China )Abstract :Microplastics in soil can affect plant growth in a variety of ways,accumulate in plants,and eventually enter the human body via the food chain.Clarifying the mechanisms and main factors whereby microplastics influence plant growth can contribute to a systematic understanding of their environmental behavior in soil-plant systems.Both the occurrence state and physicochemical characteristics of microplastics can influence their effects on plants.In this paper,from the perspectives of particle size,shape,concentration,and type,plastic additives,and aging degree of microplastics,we review the main factors and mechanisms underlying the effects of soil microplastics on plant growth.The key direction of future research is proposed,which will provide a reference for further clarifying the impact of microplastics on soil ecosystems.Keywords :soil;microplastics;plant;influencing factor;mechanism of action收稿日期:2023-04-13录用日期:2023-06-19作者简介:陈欣(1968—),男,辽宁沈阳人,博士,研究员,研究方向为农业生态。
宽带大色散延时硅基光子集成芯片说明书
第 50 卷第 7 期红外与激光工程2021 年 7 月Vol.50 No.7Infrared and Laser Engineering Jul. 2021硅基光子集成宽带大色散延时芯片(特邀)陈宏伟1,2,杜振民1,2,符庭钊1,2,杨四刚1,2,陈明华1,2(1. 清华大学 电子工程系,北京 100084;2. 北京信息科学与技术国家研究中心,北京 100084)摘 要:集成、宽带、大色散延时的器件在微波光子滤波、真延时相控阵天线等领域有着重要的应用,可以有效地降低系统尺寸和功耗。
文中提出并实现了一种基于硅基光子集成的宽带大色散延时芯片,通过采用超低损耗波导结构和侧壁法向量调制结构实现了片上集成大色散波导光栅,色散值超过250 ps/nm, 最大群延时达到2 440 ps,带宽大于9.4 nm,该芯片有望用于微波光子学、高速光纤通信系统等领域。
关键词:集成光子学; 啁啾布拉格光栅; 色散补偿中图分类号:O436 文献标志码:A DOI:10.3788/IRLA20211045Wideband large dispersion group delay chip based onsilicon photonics integration (Invited)Chen Hongwei1,2,Du Zhenmin1,2,Fu Tingzhao1,2,Yang Sigang1,2,Chen Minghua1,2(1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;2. Beijing National Research Center for Information Science and Technology, Beijing 100084, China)Abstract: Content integrated, broadband, large group delay devices have important applications in microwave photonic filtering, true delay phased array antenna and other fields, which can effectively reduce the system size and power consumption. In this paper, a broadband large dispersion delay chip based on silicon-based photonic integration was proposed and implemented. By using ultra-low loss waveguide structure and side wall normal vector modulation structure, on-chip integration of large dispersion waveguide grating was realized. The dispersion was about 250 ps/nm, maximum group delay was 2 440 ps and the bandwidth was more than 9.4 nm.The chip is expected to be used in microwave photonics, high-speed fiber communication system and other fields.Key words: integrated photonics; chirped Bragg grating; dispersion compensation收稿日期:2021−04−06; 修订日期:2021−05−22基金项目:国家重点研发计划(2019YFB1803500);国家自然科学基金(61171284)作者简介:陈宏伟,教授,博士,主要从事微波光子学、硅基光子学和光子智能系统等方面的研究。
效应子及其与小麦条锈菌致病性的关系
效应子及其与小麦条锈菌致病性的关系刘秀峰;袁文娅;孙振宇;梁丹;时晓伟【摘要】The complex molecules called effectors are secreted during the process of competition and evolution between pathogens and host plants,and they escape or subvert hosts defense responses,as well as interfere with various physiological processes of the host, subsequently,which is beneficial to increase the pathogen's capacity of fitness,propagation and long-distance migration. Over two thousands of candidate effectors were predicted in Puccinia striiformis f. sp.tritici(Pst)based on the genome or transcriptome sequences,however, few have been analyzed for their effector function because of lacking an efficient and reliable system for stable transformation. In this paper, we summarized the current knowledge of effectors for its classification and structure characterization,and explained the molecular basis of interaction between Pst and host,along with technological methods suitable for function analysis in Pst. Also we considered the relationship between the targeted subcellular compartments of hosts and pathogenesis. These progresses may help comprehensively understand the biology of the effectors,and may be beneficial to offer further insights into the pathogenesis in Pst and to contribute new strategies for durably controlling this disease.%植物病原菌和寄主植物竞争进化过程中分泌称为效应子(Effectors)的复杂的分子,其逃避或抑制寄主的免疫反应,干扰寄主的各种生理过程,从而有利于提高病原菌寄生适合度、定殖能力和传播能力.利用基因组序列和转录组测序数据预测小麦条锈菌中含有两千多个候选效应子,但由于小麦条锈菌缺乏有效的遗传转化体系,目前对其效应子功能的研究进展缓慢.在介绍效应子分类及其特征基础上,结合可运用于小麦条锈菌效应子功能研究的方法,从分子水平上阐释小麦条锈菌与寄主植物互作取得的进展,关注效应子靶定的寄主亚细胞成分及其与致病性的关系.这些进展有利于深入认识小麦条锈菌效应子的生物学功能,并为深入探讨小麦条锈菌的致病机制,制定新的防治策略提供方向.【期刊名称】《生物技术通报》【年(卷),期】2018(034)002【总页数】9页(P112-120)【关键词】小麦条锈病;效应子;致病机理【作者】刘秀峰;袁文娅;孙振宇;梁丹;时晓伟【作者单位】天津市农作物研究所,天津 300381;天津市农作物研究所,天津300381;甘肃省农业科学院植物保护研究所,兰州 730070;天津市农作物研究所,天津 300381;天津市农作物研究所,天津 300381【正文语种】中文植物与病原菌共同进化过程中发展出不同层次的免疫防卫体系。
干细胞的诱导分化方法及各类诱导试剂的配置
干细胞诱导分化的方法及各类诱导试剂的配置YAO Xiang由于易分离获得、免疫原性低且具有多向诱导分化潜能,骨髓基质干细胞(Bone marrow stroma stem cells,MSCs)成为了组织工程与再生医学中理想的种子细胞。
正是由于上述原因,骨髓基质干细胞成为了很多研究者关注并使用的模型细胞。
本文将着重于骨髓基质干细胞的成骨诱导分化、成软骨诱导分化和成脂诱导分化三个方向加以介绍,相关内容有利于实验研究者快速而有效地配制上述各类诱导分化试剂,进而极大缩短前期探索实验和文献搜索整合所耗费的大量时间。
本文主要内容涵盖:1.成骨诱导分化中诱导液的添加方案(包含换液周期及诱导试剂浓度)2.成骨诱导分化中各类诱导试剂的产品信息及母液配置方案3.成脂诱导分化中诱导液的添加方案(包含换液周期及诱导试剂浓度)4.成脂诱导分化中各类诱导试剂的产品信息及母液配置方案5.成骨与成脂共诱导液的添加方案(包含换液周期及诱导试剂浓度)6.成骨与成脂共诱导试剂的产品信息及母液配置方案7.成软骨诱导分化中诱导液的添加方案(包含换液周期及诱导试剂浓度)8.成软骨诱导分化中各类诱导试剂的产品信息及母液配置方案注:下述诱导方案经多次实验验证是行之有效的,笔者利用相关方案参与发表的部分参考文献如下:1. Yao X, Peng R, Ding JD*. Cell-material interactions revealed via material techniques of surface patterning. Advanced Materials, 2013;25:5257-86. (材料领域TOP期刊)2. Yao X, Hu YW, Cao B, Peng R, Ding JD*. Effects of surface molecular chirality on adhesion and differentiation of stem cells. Biomaterials, 2013;34:9001-9. (生物材料领域TOP期刊)3. Yao X, Peng R, Ding JD*. Effects of aspect ratios of stem cells on lineage commitments with and without induction media. Biomaterials, 2013;34:930-9.4. Peng R, Yao X, Cao B, Tang J, Ding JD*. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces. Biomaterials, 2012;33:6008-19. (IF:8.39)5. Peng R, Yao X, Ding JD*. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials, 2011;32:8048-57.首先需要说明的是骨髓基质干细胞正常传代培养所需的培养基为“基础培养液”,一般2-3天更换一次新的培养液。
Effect of annealing temperature on microstructural evolution and mechanical property of Ti alloy
Short CommunicationEffect of the annealing temperature on the microstructural evolution and mechanical properties of TiZrAlValloyR.Jing a ,⇑,S.X.Liang a ,b ,C.Y.Liu a ,M.Z.Ma a ,R.P.Liu a ,⇑a State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China bCollege of Equipment Manufacture,Hebei University of Engineering,Handan 056038,Chinaa r t i c l e i n f o Article history:Received 13December 2012Accepted 15June 2013Available online 27June 2013a b s t r a c tThis study aimed to evaluate the effects of the annealing temperature on the structural evolution and mechanical properties of TiZrAlV alloy.The microstructural evolution and mechanical properties of the alloy were investigated by X-ray diffraction,metallographic analysis,tensile testing,and microhardness testing.The results showed that the thickness of the a phase that precipitated from the parent phase was sensitive to the annealing temperature.With increased annealing temperature,the a -phase tended to exhibit equiaxed grains,except for the specimen annealed at 1050°C.The tensile strength of the equi-axed a grains were also demonstrated to have higher tensile strength than those of the lamellar a phase.The optimal mechanical properties of the alloy was obtained after annealing at 850°C,i.e.,r b =1245MPa,r 0.2=1006MPa,and e =16.89%.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionTitanium-based alloys are increasingly being used as structural materials in the aerospace and automotive industries because of their remarkable advantages,such as exceptional strength-to-weight ratio,good hardenability,good elevated temperature performance,excellent fatigue/crack-propagation behavior,and corrosion resistance [1,2].Compared with other conventional stainless steel or structural materials,the mechanical properties of Ti alloys enable their weight to be reduced to about 40%in aerospace and automotive applications [3,4].Currently,the main-stream Ti structural material is the a +b phase Ti–6Al–4V alloy because of its better physical and mechanical properties than com-mercial-purity Ti and other Ti alloys.The a +b phase Ti–6Al–4V alloy is often used in aerospace applications,pressure vessels,blades and discs of aircraft turbines and compressors,surgical implants,etc.[5–8].The mechanical properties of dual-phase Ti alloys are closely related to their microstructure.The metallurgical processes such as thermo-mechanical processing and different heat treatment methods,which bring modifications in the micro-structure,can strongly influence their mechanical properties of these alloys [9].The majority of commercially used dual-phase Ti alloys are usually thermo-mechanically processed and subjected to different heat treatments to obtain the ideal microstructure for the desired application.In general,these alloys exist as two typical microstructures,namely,Widmanstätten lath precipitateof the hexagonal close-packed a phase distributed in a matrix of body-centered cubic b phase,and the combination of some equi-axed a -phase grains distributed in a transformed b phase.In general,Ti alloys have low hardness (HV 300–320)and yield strength (880–900MPa)[10].Previous studies [11]have used zir-conium,which has similar chemical properties to Ti,as an alloying element to strengthen Ti–6Al–4V alloy,even though zirconium is considered a neutral element [12,13].The addition of 20%(by mass)Zr to Ti–6Al–4V alloy has been experimentally found to in-crease the alloy strength and microhardness with acceptable elon-gation.In this work,different microstructures of the alloy were obtained by controlling the annealing process.The mechanical properties of the alloy were found to be very sensitive to the annealing temperature.2.Experimental procedureThe alloy used for this study is prepared by electromagnetic induction melting the mixture of sponge Ti (99.7wt%),sponge Zr (Zr +Hf P 99.5wt%),industrially pure Al (99.5wt%)and V (99.9wt%)under an argon atmosphere.Table 1shows the chemical composition of the studied alloy.The alloy was then flipped and re-melted three times to ensure a homogeneous chemical compo-sition.The ingot used in the experiment was homogenized at 1000°C for 12h,followed by cooling to room temperature.Then the ingot underwent multiple breakdowns after being held at 1000°C above the b transus temperature for 90min to completely break the coarse grains.The ingot was held at 900°C for 90min and then subjected to the final heat forging in the a +b phase0261-3069/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.matdes.2013.06.039Corresponding authors.Tel.:+863358074723;fax:+863358074545.E-mail addresses:qwe_jr@ (R.Jing),riping@ (R.P.Liu).982R.Jing et al./Materials and Design52(2013)981–986Fig.1.DSC curve of TiZrAlV alloy.region,and the ingot was lathed into bar40mm in diameter.Thesamples(approximately10mmÂ10mmÂ70cm)were cut fromthe bar using wire-electrode cutting and used for subsequentannealing trials.Differential scanning calorimetry(DSC)was used to determinethe phase transition temperatures with a heating rate°C/min which was adopted the standard of ASTM:F2004–05(2010).The nominal a?a+b transus temperature andb?b transus temperature for TiZrAlV alloy are about789and946°C,respectively,as shown in Fig.1.Heat treatment wasperformed in a tubular vacuum furnace under a protective argonpatterns of TiZrAlV alloy:(a)forging,(b)annealing treatment at different temperatures,and(c)detail of33–43°of forging and annealingsignified that the alloy only formed the solid solution phase and that no other intermetallic compound and/or phase existed (Fig.2a).A comparison of the XRD patterns at different annealing temperatures (Fig.2b)revealed that the phase composition of all annealed alloys consisted of a and b phases.With increased annealing temperature,the b phase (110)reflection peak near 38°gradually broadened and the intensity of the (110)diffraction peak increased.However,at 1050°C annealing temperature,the b phase (200)peak disappeared.The XRD patterns also showed that the proportion of a and b phases evidently changed with the chan-ged in annealing temperature.This phenomenon may be caused by the difference of the migration rate of the atom under the high temperature.Generally,with the temperature increasing,the fre-quencies of the atoms migration are also increased gradually.In the insulation process,the moving distancesof Al atom (which is a -stabilized element)and V atom (which is b -stabilized element)were different,and in the subsequent cooling process,the b phase transformed into the a phase which caused the Al atom enriched in the b phase lattice and changed the b phase lattice parameters.Therefore,it may make the intensity of the b phase (110)reflection peak increase and the (002)reflection peak decrease when the annealing temperature was heated to 1050°C.Furthermore,the annealing holding time was shorter (30min),in this process,the a phase transformed into the b phase may be incomplete at an-nealed treatment at 1000°C,while annealed temperature was in-creased to 1050°C,the a phase may be completely transformed into the b phase,therefore,in the specimen annealed at 1000°C the initial a phase was also existed,but the specimen which was annealed at 1050°C did not exist the initial a phase.This may re-sult that the differences of a phase between 1000°C and 1050°C is obviously.Fig.3shows the microstructure of the annealing temperatures.The specimens ited Widmanstätten morphology (Fig.3a),i.e.,chaotic arrangement of slender a lath and b annealing temperature to 1000°C,the b peared and the a lath gradually (Fig.3b–e).In this process,the alloy axed trend with increased annealing have caused the increased equiaxed a phase the annealing process.First,the lamellar a ‘‘interleaved,’’which restricts the other a longitudinal direction.Consequently,a only along the transverse direction,which promotes the thickening of the a lamellar.Second,the new a phase that precipitates from the parent phase grows along a specific habit plane and has a cer-tain orientation relationship with the primary a phase.Thus,the new precipitated a phase growing along the longitudinal direction is hindered such that the equiaxed degree is increased.Obasi [14]also indicated that the phase transformation in Ti alloys during heating (a ?b )and cooling (b ?a )is governed by the so-called Burgers orientation relationship {0002}a ||{110}b and h 11À20i a ||h 111i b with 6possible b -orientations during the a ?b phase transformation and 12possible a orientations that can transform from a single parent b grain during b ?a phase transformation.However,when the annealing temperature reached 1050°C,the alloy revealed the typical basketweave mor-phology (Fig.3f),i.e.,a crisscross slender a lath.b grain boundaries and some parallel lamellar the grain boundaries (the Widmanstätten microstructure)observed in this process.In most diffusion phase and precipitation processes,the nucleations of the heterogeneously occurs at some preferential nucleation the matrix such as the grain boundary,dislocation,phase [15].When the annealing temperature (e.g.,Optical microstructure of TiZrAlV alloy under different annealing temperature:(a)800°C,(b)850°C,(c)900°C,(d)950°C,(e)1000°C,and Fig.4.True stress–strain curve of the studied alloy under different conditions.the thickness of the a lath became limited.Therefore,the thicknessof the new precipitated a phase after annealing at1050°C was smaller than that after annealing at1000°C.The mechanical properties of the alloy were evaluated through uniaxial tensile tests.Fig.4and Table2show the true stress–strain curves and mechanical properties of the specimens at different annealing temperatures.The mechanical properties of the ZrTiAlV alloy evidently depended on the annealing temperature and micro-structure.When the annealing temperatures were between800 and1000°C,the yield strength r0.2and ultimate strength r b de-creased from1009and1290MPa to978and1181MPa,respec-tively.The elongation only slightly changed after annealing at of the residual b phase during the annealing process as well as the thickness of the a lath.The main factors influencing the mechanical properties of an-nealed samples in which only the a and b phases exist are the phase content,size,and morphology of the a phase[16–18].Because of the limited number of independent slips modes,the hcp structure of Ti exhibits a vary strong grain-boundary,or Hall–Petch strength-ening at room temperature.The thickness of the a grain boundary directly influences the strength mismatch between the a+b matrix and the grain boundary[19].Consider the case of b processed microstructures.Some of the microstructural features involved with progressively increasing length scales are width of the a-laths, the colony size,and the b grain size(feature sizes may range from sub-micron to millimeters).Depending on the thermo-mechanical treatment the alloy is subjected to,such as cooling rates from +b dual phase region or above the b-transus,these features can vary significantly.Quantifying them over the diverse range length scales involved becomes rather important.Thus,to investi-gate the effect of the annealing temperature on the microstructure and mechanical properties,the specimens prepared at different annealing temperatures were subjected to SEM analysis,as shown Fig.6.The measured thicknesses of the a lath from the SEM images are shown in Fig.7a.With increased annealing temperature Fig.5.Microhardness of annealed specimens under different conditions.SEM images of TiZrAlV alloy under different annealing temperature:(a)800°C,(b)850°C,(c)900°C,(d)950°C,(e)1000°C,and(f)from 800°C to 1000°C,the thickness of the a lath in the annealed samples increased from 1.07l m to 4.22l m.When the annealing temperature reached 1050°C,the thickness was reduced to 1.12l m.According to the Hall–Petch equation,(i.e.,r =r 0+kd À1/2,where d is the thickness of the a lath),the strength of an annealed alloy is related to the a lath thickness,as shown in Fig.7b.On one hand,the change of the a lath thickness moved the distance of dis-location to the phase boundary,which resulted in increased num-ber of dislocations piling up such that the stress concentration was more severe.On the other hand,reducing the a lath thickness increased the density of the phase boundary in the same cross-sectional area.Consequently,the movement of the dislocation obstacle increased.Thus,based on the OM images,SEM images,and true stress–strain curve,the slender a lath obtained at 800°C and 1050°C increased the strength of the specimens and made dis-location movement difficultly.Moreover,with increased equiaxed a -phase degree,the strength of the annealed specimens gradually decreased.This result implied that the strength of the processed alloy lamellar a phase microstructure was higher than that of processed equiaxed a -phase microstructure.The magnitude of the titanium alloy tensile elongation is con-nected with the non-uniform degree of the tensile micro deforma-tion zone,as well as the length and the spacing of slip bands.With the spacing of slip bands decreasing,the plastic deformability in-crease before the material fracture [20].Compared with the lamel-lae microstructure,the slip bands spacing of the duplex microstructure is smaller,thus this microstructure possess a high-er ability of deformation.When sample was annealed at 850°C,the feature of microstructure presented the duplex microstructure (Fig.3b),therefore,the elongation reached the largest value in this experiment i.e.16.89%.4.ConclusionThe phase transition,microstructure evolution,and their effects on the mechanical properties of TiZrAlV alloy were investigated.The conclusions were as follows:(1)TiZrAlV alloy exhibited an a +b phase after high-tempera-ture annealing.The intensity of the b (110)diffraction peak increased with increased annealing temperature.However,the intensity of the b (200)diffraction peak gradually decreased with increased annealing temperature.When the temperature reached 1050°C,the b (200)diffraction peak completely disappeared.(2)The thickness of the a phase was sensitive to the annealingtemperature.With increased annealing temperature,the a phase tended to exhibit equiaxed grains,except for speci-mens annealed at 1050°C.After annealing at 1000°C,the maximum thickness was 4.22l m.(3)The mechanical properties of the annealed specimens weresensitive to the morphology of the precipitated a phase and yo the annealing temperature.The optimal mechanical properties of the alloy were obtained after annealing at 850°C,i.e.,r b =1245MPa,r 0.2=1006MPa,and e =16.89%.AcknowledgmentsThis work was supported by the SKPBRC (Grant No.2010CB731600),NSFC (Grant No.51121061/51171160/51171163).References[1]Eylon D,Vassel A,Combres Y,Boyer RR,Bania PJ,Schutz RW.Issues in thedevelopment of beta titanium alloys.JOM 1994;46:14–5.[2]Ivasishin OM,Markovsky PE,Matviychuk YuV,Semiatin SL.Precipitation andrecrystallization behavior of beta titanium alloys during continuous heat treatment.Metall Mater Trans A 2003;34(1):147–58.[3]Lütjering G,Williams JC.Titanium,Springer,B.Derby,Ed.,Springer-Verlag,Berlin,Heidelberg,Germany,2003,p.27–260.[4]Schauerte O.Titanium in automotive production.Adv Eng Mater2003;6:411–8.[5]Okazaki Y,Rao S,Ito Y,Tateishi T.Corrosion resistance,mechanical properties,corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.Biomaterials 1998;19:1197.[6]Schutz RW,Watkins HB.Recent developments in titanium alloy application inthe energy industry.Mater Sci Eng A 1998;243:305–15.[7]Gorynin IV.Modeling of the motion of particles in a rotary crusher.Mater SciEng A 1999;263:112.[8]Cheng WW,Chern Lin JH,Ju CP.Bismuth effect on castability and mechanicalproperties of Ti–6Al–4V alloy cast in copper mold.Mater Lett 2003;57(16–17):2591–6.[9]Sieniawski J,Filip R,Ziaja W.The effect of microstructure on the mechanicalproperties of two-phase titanium alloys.Mater Des 1997;18:361–3.[10]Polmear JJ.Light alloys.London:Edward Arnold Publications;1981.[11]Jing R,Liang SX,Liu CY,Ma MZ,Liu RP.Aging effects on the microstructuresand mechanical properties of the Ti–20Zr–6.5Al–4V alloy.Mater Sci Eng A 2013;559:474–9.[12]Bania PJ.Beta titanium alloys and their role in the titanium industry.JOM1994;46:16–9.[13]Dobromyslov AV,Elkin VA.Martensitic transformation and metastable b -phase in binary titanium alloys with d-metals of 4–6periods.Scripta Mater 2001;44:905–10.[14]Obasi GC,Birosca S,Quinta da Fonseca J,Preuss M.Effect of b grain growth onvariant selection and texture memory effect during a ?b ?a phase transformation in Ti–6Al–4V.Acta Mater 2012;60:1048–58.Thickness of the a lamellar under different annealing temperature,and (b)the room temperature strength of TiZrAlV alloy plotted according to the a lamellar structure.[15]Furuhara T,Maki T.Variant selection in heterogeneous nucleation on defectsin diffusional phase transformation and precipitation.Mater Sci Eng A 2001;312:145–54.[16]Tiley J,Searles T,Lee E,Kar S,Banerjee R,Russ JC,et al.Quantification ofmicrostructural features in a/b titanium alloys.Mater Sci Eng A 2004;372:191–8.[17]Kong FT,Chen Y,Yang F.Effect of heat treatment on microstructures andtensile properties of as-forged Ti–45Al–5Nb–0.3Y alloy.Intermetallics 2011;19(2):212–6.[18]Rack HJ,Qazi JI.Titanium alloys for biomedical applications.Mater Sci Eng C2006;26(8):1269–77.[19]Lütjering G,Albrecht J.Influence of cooling rate and b grain size on the tensileproperties of(a+b)Ti alloys.In:Proceedings of the8th world titanium conference;1995.[20]Terlinde G,Luetjering G.Influence of grain size and age hardening ondislocation pile-ups and tensile fracture for a Ti–Al alloy.Metall Trans 1982;13(7):1283–92.986R.Jing et al./Materials and Design52(2013)981–986。
科学故事蛋白质化学
第一章氨基酸科学故事:第二十二种标准氨基酸生物学家因发现新的氨基酸带来的喜悦不亚于物理学家发现了新的粒子或化学家发现了新的元素。
1986年以前,人们一直认为,出现在蛋白质分子中的由遗传密码编码的标准氨基酸残基只有20种。
到了1986年,科学家们终于在含硒蛋白中发现第二十一种标准氨基酸——含硒半胱氨酸。
时隔16年之后,来自美国俄亥俄州立大学的两个研究小组在产甲烷细菌里发现了第二十二种标准氨基酸——吡咯赖氨酸。
俄亥俄州立大学由Joseph A. Krzycki领导的研究小组一直在研究一种属于古细菌的产甲烷微生物——巴氏甲烷八叠球菌(Methanosarcina barkeri)。
此微生物能够将单甲胺(monomethylamine)、二甲胺(dimethylamine)和三甲胺(trimethylamine)转变成甲烷。
1995年,Krzycki的研究小组分离得到一些与甲烷生成有关的特殊蛋白质。
两年以后,他们分离得到编码其中一个蛋白质的基因,并测定出了它的核苷酸序列。
1998年,他们发表了这个基因的全序列,结果显示其阅读框架内含有一个反常的琥珀型终止密码子(amber codon)。
密码子是决定氨基酸的三字母核苷酸序列(参看“第三十八章蛋白质的生物合成与细胞内降解”),琥珀型终止密码子的核苷酸序列是TGA,它通常不决定任何氨基酸,它的出现一般是多肽链合成结束的标志。
然而,让Krzycki吃惊的是,该终止密码子竟然编码一种氨基酸,而且这种奇怪的现象还出现在其他几种与甲烷产生有关的基因上。
与此同时,由Michael Chan领导的研究小组开始研究由琥珀密码子编码的氨基酸的结构。
他们意识到这个古怪的密码子也许编码一种新的氨基酸,但也有其他的可能性。
Krzycki及其同事决定测定原来蛋白质的氨基酸序列。
当得到蛋白质的氨基酸序列以后,他们发现由琥珀密码子决定的氨基酸似乎仅仅是一个赖氨酸。
但是,Krzycki仍然要求Chan和他的一个博士研究生Bing Hao对含有这个氨基酸的蛋白质晶体结构进行研究以确定那个氨基酸的性质。
华人学者顶级期刊:单细胞葡萄糖摄取活性成像
华人学者顶级期刊:单细胞葡萄糖摄取活性成像最近,哥伦比亚大学的研究人员报道了一种新方法,通过具有最小干扰的光学显微镜,来观察单细胞内的葡萄糖摄取活性。
相关研究结果发表在七月十六日的国际化学顶级期刊《德国应用化学》(Angewandte Chemie International Edition)。
这项研究是在闵玮(Wei Min)教授带领下完成的,其研究小组开发出一种新的葡萄糖类似物,可以模仿天然葡萄糖,并在单细胞水平上,对活的癌细胞、神经元和组织吸收葡萄糖作为能量来源的过程,进行了影像。
闵玮博士2003年毕业于北京大学化学专业,2008年在哈佛大学获化学博士学位,导师为美国科学院院士谢晓亮教授,之后在其课题组从事博士后研究。
2010年,闵玮成为哥伦比亚大学化学系助理教授,2011年他加入哥伦比亚大学Kavli脑科学研究所,其研究成果多次发表在ACS Chem. Biol、J. Am. Chem. Soc、Nature Method、PNAS 等国际学术期刊,因其科学贡献获得过很多奖项,其中包括2013年的斯隆研究奖。
葡萄糖作为一种能量来源,被几乎所有生命形态(从细菌到人)所消耗。
细胞对葡萄糖的摄取,密切地反映了细胞的能量需求,并在许多病理条件下变得调节不佳,如肥胖、糖尿病和癌症。
为了可视化这个重要的过程,在过去的几十年里,研究人员已经发展出几种杰出的技术。
放射性氟-18标记的葡萄糖,被广泛应用于临床癌症诊断,使用正电子发射断层扫描(PET)定位人体中的代谢热点。
最近有研究使用磁共振成像(MRI)在小鼠肿瘤中进行葡萄糖显像。
虽然这两种方法都能很好地应用于临床应用,但它们没有足够的空间分辨率,不能在单细胞水平上可视化葡萄糖的摄取过程。
为了在细胞水平上可视化葡萄糖摄取活性,已有研究开发出具有荧光染料标记的葡萄糖类似物。
遗憾的是,在葡萄糖上标记荧光,会改变其化学性质。
此外,荧光染料总是比葡萄糖本身更大。
欧洲药典7.5版
INDEX
To aid users the index includes a reference to the supplement in which the latest version of a text can be found. For example : Amikacin sulfate...............................................7.5-4579 means the monograph Amikacin sulfate can be found on page 4579 of Supplement 7.5. Note that where no reference to a supplement is made, the text can be found in the principal volume.
English index ........................................................................ 4707
Latin index ................................................................................. 4739
EUROPEAN PHARMACOPபைடு நூலகம்EIA 7.5
Index
Numerics 1. General notices ................................................................... 7.5-4453 2.1.1. Droppers...................
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Effect of aging on microstructures and properties of Mo-alloyedFe–36Ni invar alloyHongwang Liu a,Zhonghua Sun b,n,Gongkai Wang a,Xiaoran Sun b,Jianxin Li b,Feng Xue b,Huifen Peng a,n,Yunfei Zhang ba School of Materials Science and Engineering,Hebei University of Technology,Tianjin300130,Chinab Hebei Iron and Steel Technology Research Institute,Hebei Iron and Steel Group,Shijiazhuang052165,Chinaa r t i c l e i n f oArticle history:Received23July2015Received in revised form5December2015Accepted11December2015Available online12December2015Keywords:Invar alloyMo alloyingStrengtheningThermal expansionAginga b s t r a c tThe Mo-alloyed invar alloy was prepared and its microstructures,mechanical properties,and thermalexpansion behavior were investigated.It was found that precipitation of the Mo2C secondary phase couldbe tailored by adjusting the aging processes,accordingly,the highest strength of820MPa and goodelongation of35%,together with a low coefficient of thermal expansion(CTE)value of3.37Â10À6/°Cwere obtained upon solution-treated at1050°C for1h and then aged at525°C for3h.The aggregationand growth of the Mo2C secondary phase at the grain or sub-grain boundaries of the austenite could beobserved with the increase of the aging time,resulting in deterioration in strength and thermal ex-pansion of the materials.&2015Elsevier B.V.All rights reserved.1.IntroductionFe–Ni binary alloy with the nickel content around36wt%istermed as Invar alloy,which is well known as its extremely lowcoefficient of thermal expansion(CTE,α25$100°C r1.5Â10À6/°C)below Curie temperature(T c$230°C).The invar alloy plays an in-dispensable role in a wide range offields such as precision instru-ments,TV kinescope,large electronic telescope base positioningdevices,core wires of long-distance power cables,etc.[1–4].In therecent years,it is necessary to develop high mechanical strengthinvar alloys together with a low CTE value to meet the rapidgrowing demand for applications of high-capacity power trans-mission wires,containers of liquid natural gas(LNG)and aeronauticcomposite-material moulds.As strategically rising materials,thestudy of the invar alloys has attracted striking attention[5–9].Conventional strengthening methods,such as solid-solutionstrengthening[10],grain refinement[5],work hardening[8,11]and precipitation hardening[12–16],have been developed in invaralloys,e.g.Fe–36Ni[5,11],Fe–Ni–Co[12,17,18],Fe–Ni–Ti[19]andFe–Ni–Mo[10,16],etc.Vinogradov et al.[5]reported that thetensile strength of the base Fe–36Ni alloy can be increased up to912MPa when its mean grain size was refined to0.18μm by theequal-channel angular pressing(ECAP).Additionally,Morikawaet al.[11]found that the base Fe–36Ni invar alloy cold-rolled atliquid nitrogen temperature can be greatly strengthened,the cor-responding tensile strength was about1200MPa owing to therefinement of austenite grains caused by formation of the de-formation twins.However,it is really hard to realize by this kind ofgrain refinement technique in the current industrial enterprises.Therefore,the precipitation strengthening integrated with thework hardening is suggested in order to obtain high-strength invaralloy.The Fe–36Ni–6.5Co–2.5Ti–1.0Al alloy exhibited the highesttensile strength of1500MPa by means of precipitation of inter-metallics such asγ′-Ni3(Al,Ti),coupled with the subsequent colddeformation[19].It is notable that the precipitation of inter-metallics could result in an undesirable increase in its CTE value[12].This drawback can be offset by introduction of more Co al-loying elements,which apparently will increase the productioncost of the materials.On the other hand,the Co-free invar alloy has recently beenpaid much attention by means of carbide precipitates,e.g.VC,NbCand Mo2C[13,14,20].Nakama et al.[13]reported that the invaralloy through precipitation of VC and TiC particles in the austenitematrix,together with subsequent50%cold deformation presentedthe highest tensile strength of1100MPa,which is two times largerthan that of the base Fe–36Ni alloy.Meanwhile,this alloy shows alow CTE value of3Â10À6/°C in the temperature range of30–150°C.Zhang et al.[10]and Lu et al.[16]studied the effect ofsolid-solution treatment and carbide precipitates on mechanicalContents lists available at ScienceDirectjournal homepage:/locate/mseaMaterials Science&Engineering A/10.1016/j.msea.2015.12.0180921-5093/&2015Elsevier B.V.All rightsreserved.n Corresponding authors.E-mail addresses:sunzhonghua@(Z.Sun),peng@(H.Peng).Materials Science&Engineering A654(2016)107–112properties of the Fe–Ni–Mo–C and Fe–Ni–Mo–V–C invar alloys, respectively.However,little information on size,morphology and distribution of the precipitates during aging was reported.In this paper,effect of aging on microstructures and properties of the Mo-alloyed invar alloy was studied.Specially,variation in size,mor-phology and distribution of the Mo2C precipitates during aging and the correlation with the mechanical properties and the ther-mal expansion ones were also investigated.2.Experimental procedureA40kg ingot of Fe–36.7wt%Ni–4.41wt%Mo–0.26wt%C invar alloy was prepared by vacuum induction melting furnace(DDVIF-50-100-2.5)under the protection of argon.After homogenizing at 1250°C for1h,the ingot was hot-rolled to plate of6mm in thickness,then cooled to room temperature.The hot-rolled plate was solution treated at1050°C for1h to dissolve the primary carbides into austenite matrix,then aged at the temperature of 475–575°C for1–9h for the purpose of precipitation strengthening.X-ray diffraction was conducted at room temperature with a Rigaku Dmax2500PC diffractometer operated at40kV and150mA using a Cu-Kαradiation.The XRD patterns were recorded at a scanning rate of1°minÀ1in the2θrange of30–95°.Samples wereetched in the FeCl3supersaturated solution.Their microstructures were observed under OLYMPUS-BH metalloscope,and grain size of the austenite was measured by Nano Measurer1.2software.Fur-ther microstructure observation was conducted in ZEISS ULTRA-55 FE-SEM at30KV and in PHILIPS Tecnai G2F20HRTEM at200KV. Chemical compositions of the phases were measured by the at-tached EDX apparatus.Hardness of the samples was measured on HXD-1000Vickers tester at a load of100g.Measurements on mechanical properties were conducted on SHT-5305material testing machine at a load-ing rate of2mm/min.Thermal expansion of the alloys was mea-sured in the temperature range ofÀ196°C to300°C by a modified Leica J11dilatometer,and the linear CTE was calculated by the Eq.(1).α=Δ⋅Δ() LL T11 0whereαis the mean CTE,ΔL/L0is the relative change in length of the samples,L0is the original length of the samples,ΔT is the temperature variation.3.Results3.1.Mechanical behaviors of invar alloy under different agingconditionsFig.1a shows the variation of hardness for the present samplesunder different processes.Thefitted curves show the same char-acteristics that the hardness climbs gradually and reaches a peakvalue then declines with an increase in either aging temperatureor aging time.The highest hardness of280HV could be obtainedfor the sample treated at525°C for5h,which is60.9%larger thanthat of the solution treated one.Stress–strain curves in Fig.1bindicate that the hot-rolled sample presents the tensile strength of690MPa,which is almost200MPa higher than that of the baseinvar alloy without any Mo addition[5,6].This result suggests thatthe Mo alloying plays an important role in enhancing strength ofthe invar alloy.Solution treatment at1050°C results in a decreasein strength,this phenomenon should be related to the dissolutionof the primary carbides into the austenite matrix during heating[10].Aging at525°C produces an apparent increase in strength,and the sample aged for3h exhibits the highest strength of827MPa.This value is about39%higher than that of the solutiontreated one,which is similar to what is observed in Fig.1a.Dif-ferent from the variation in hardness,further prolongation inaging time leads to a decrease in strength.3.2.Microstructural analysis of Invar alloy under different agingconditionsIn order to check the variation in the abovementioned me-chanical properties,the microstructures of the samples in Fig.1were observed by metallographic microscopefirstly.The hot-rol-led sample consists of thefine austenite with grain size in a rangeof10–40μm and a few number of primary secondary phases uniformly distributed in the austenite matrix(Fig.2a).Solid-so-lution treatment at1050°C causes most of the secondary phasesdissolving into the austenite(Fig.2b).Therefore,an abrupt growthin the austenite grain size after the solid-solution treatment isobserved due to the weakness of the pinning effect by the pre-cipitates[21],concomitant with an apparent decrease in hardness.Aging at525°C leads to re-precipitation of the secondary phases.However,only a littlefine precipitates are observed in some aus-tenite grains of the3h-aged sample(Fig.2c).It means that thesecondary phases withfine particle size precipitated during ashort aging time are difficult to be noticed just through theoptical Fig.1.Variation in mechanical behaviors of the samples treated at different processes,(a)hardness,(b)stress–strain curves.H.Liu et al./Materials Science&Engineering A654(2016)107–112108microscope.Further prolongation in aging time results in an ap-parent increase in the amount and size of the precipitates,which are easy to be observed and almost uniformly disperse in the matrix,indicated by circles in Fig.2d,for the 5h-aged sample.Those results suggest that both nucleation sites and size of the precipitates increase with an increase in the aging time.It is no-teworthy that much bigger precipitates are observed in grain boundaries or sub-grain boundaries,as indicated by arrows in Fig.2e,concomitant with the disappearance of some precipitates in grains.It reveals that aggregation of the precipitates occurs during long aging time.3.3.Thermal expansion behaviors of invar alloy under different aging conditionsThermal expansion curves of the samples under different processes are shown in Fig.3.The hot-rolled sample shows the lowest CTE value of α¼1.54Â10À6/°C,almost the same as that of the base Fe –36Ni alloy [2],in the temperature range of À100to 100°C.However,the CTEs for the solid-solution treated and aged samples are approximately two times larger than that of the hot-rolled sample.The CTE value is about α¼4.01Â10À6/°C for the solid-solution treated sample.Aging at 525°C results in a slight decrease in the CTEs,which are about 3.37Â10À6/°C and 3.48Â10À6/°C,respectively,for 3h and 5h-aged samples.The variation in CTEs is closely related to the changes in micro-structures observed in Fig.2.Maximum CTE should be derived from the dissolution of the secondary phases during solid-solution treatment,whereas a concomitant decrease in the CTE is observed in the aged sample due to re-precipitation of the secondaryphases.Fig.2.Microstructures of the samples under (a)hot-rolling,(b)solid-solution treatment at 1050°C and aging at 525°C for (c)3h,(d)5h (circles)and (e)7h (arrows).H.Liu et al./Materials Science &Engineering A 654(2016)107–1121094.Discussion4.1.X-ray diffraction and TEM analysis of invar alloy under different aging conditionsIn order to further investigate the abovementioned variation in microstructures and properties of the samples under different processes,the XRD patterns were measured accordingly,which are shown in Fig.4.The samples without aging are primarily com-posed of austenite-single phase.And secondary phase like Mo 2C,in additional to the austenite,is observed in samples with the aging time longer than 3h.Enhancement in intensity of the Mo 2C peaks indicates the increase in the amount of Mo 2C precipitates with the increase in the aging time.TEM results shown in Fig.5further demonstrate that the particles located at intersections of the grain boundaries are the Mo 2C phase that presenting the h.c.p.structure with the lattice constants of a ¼0.3012nm and c ¼0.4735nm.4.2.SEM analysis of invar alloy under different aging conditions Additionally,the characteristic of precipitates does not change with the change of aging,the variation in properties of the ma-terials shown in Figs.1and 3should be attributed to the dis-tribution and size of the secondary phases precipitated during aging.Due to the limit information of the variation in precipitate obtained from the metallographic microstructure shown in Fig.2,we double checked the microstructures of the samples through SEM accordingly.Some residual precipitates,indicated by arrows in Fig.6a,are observed in the matrix,probably due to the in-complete dissolution of the Mo 2C particles during heating [10].However,three kinds of the Mo 2C particles with the size of 50–170nm,150–390nm and 350–500nm,respectively,are observed in austenite interior as shown in Fig.6b.The very finer Mo 2C particles should be attributable to those precipitated in austenite interior,the intermediate ones mainly exist along sub-grain boundaries of the austenite,and the largest ones are along the austenite grain boundaries.According to distribution of the Mo 2C particles,it is deduced that those particles are inclined to migrate from sub-grain boundaries to grain boundaries of the austenite,where the Mo 2C particles aggregate and grow.As a result of par-ticle growth,several large-sized Mo 2C particles ($0.9μm)are found at austenite grain boundaries,indicated by circles in Fig.6b,simultaneously,some Mo 2C particles in a size of 160–290nm are observed to precipitate along the austenite grain boundaries,in-dicated by arrows also in this figure.Longer aging time of 5h re-sults in a remarkable increase in the amount of the Mo 2C particles aggregating at grain boundaries (Fig.6c),consequently,the Mo 2C particles exhibit an average grain size larger than 0.8μm.It is the aggregation of the Mo 2C particles along the austenite grain-boundaries that causes the weakening of the pinning effect on the sub-grain boundaries by the secondary phases,concomitant with a sharp decrease in the number of sub-grain boundaries.Accord-ingly,the Mo 2C particles that have not enough sites to precipitate along the sub-grain boundaries begin to aggregate in the austenite interior and prefer to re-unite in the form of “chains ”,indicated by arrows in Fig.6c,larger than 4.5μm in length.The EDS result in Fig.4d indicates that the precipitate consists of only Mo and C elements.Based on the SEM results,we carefully analyze the character-istic of the Mo 2C particles for the samples aging at different stages.Various parameters of those particles,together with hardness,tensile strength and CTE value for the corresponding samples are listed in Table 1.The results clearly indicate that the 3h-aged sample with more fine Mo 2C particles distributing in grain interior and sub-boundaries of the austenite presents the maximum ten-sile strength of 827MPa.Shifting of the Mo 2C particles from the grain interior or sub-boundaries to grain boundary,concomitant with a increase in the sizes,results in an unexpected decrease in tensile strength,even though the maximum hardness for the 5h-aged sample was obtained.Generally,hardness linearly correlates with tensile strength of the metal materials,the former measures the resistance of a sample to material deformation at a constant compression and the latter is the maximum stress that a material can withstand while being stretched or pulled before failing or breaking.Accordingly,the hardness peak is observed in the longer aged sample with the bigger Mo 2C particles presenting high deformation resistances,while the tensile strength peak is observed in the shorter aged sample with the smaller ones exhibiting high adhesive strength between the Mo 2C and the austenite matrix.The CTE value of Mo 2C is about 7.8Â10À6/°C reported in the literature,which is much higher than that of the austenite.Ac-cordingly,more large Mo 2C particles dispersing along grain boundaries of the austenite should be responsible for theincreaseFig.3.Thermal expansion curves of the samples under differentprocesses.Fig.4.XRD patterns of the samples treated under different processes,(a)hot-rolling,(b)solid-solution treatment at 1050°C,and then aging at 525°C for (c)3h,(d)5h and (e)7h,respectively.H.Liu et al./Materials Science &Engineering A 654(2016)107–112110in the CTE value when aging time from 3h to 5h,as indicated in Table 1.Additionally,the solid-solution treated sample with the largest CTE (α¼4.01Â10À6/°C)mainly results from the Mo and C atoms occupying at the positions of lattices and vacancies,re-spectively,concomitant with the dissolution of the Mo 2C particles.The magneto-lattice effect from the magneticmomentFig.5.TEM morphology of the Mo 2C particle after aging at 525°C for 3h (a),SAD pattern and the indexing (b)and EDS result(c).Fig.6.SEM morphologies of the samples under solution treatment at 1050°C for 1h (a)and then aging at 525°C for 3h (b),5h (c).EDS result of the precipitate (d).H.Liu et al./Materials Science &Engineering A 654(2016)107–112111interactions between Fe and Ni atoms in the lattices is partially destroyed by the introduction of Mo and C atoms [4].Accordingly,the temperature dependence of thermal expansion or contraction can be hardly compensated by the corresponding contraction or expansion originated from the magneto-lattice effect [22,23].5.ConclusionsEffect of aging on microstructures and properties of the Mo-alloyed invar alloys was investigated.It was found that the amount,size,morphology and distribution of the Mo 2C secondary phase could be tailored by adjusting aging processes.The highest strength of 820MPa and good elongation of 35%,together with low CTE value of 3.37Â10À6/°C,was obtained after solution treatment at 1050°C for 1h and then aging at 525°C for 3h.This process produced a uniformly distributed fine Mo 2C secondary phase in the austenite matrix.The aggregation and growth of the Mo 2C secondary phase at the grain or sub-grain boundaries of the austenite could be observed with the increase of the aging time,resulting in deterioration in strength and thermal expansion of the materials.AcknowledgmentsThis work was financially supported by Hebei Natural Science Foundation –Iron and Steel Joint Funds (No.E2014318003)and the Open Project of Key Laboratory of Cryogenics,Technical In-stitute of Physics and Chemistry (TIPC),Chinese Academy of Sci-ences (CAS)(No.CRYO 201503).References[1]M.Inaba,K.Teshima,E.Higashinakagawa,Y.Ohtake,IEEE T.Electron Dev.35(1988)1721–1729.[2]M.Shiga,Curr.Opin.Solid State Mater.Sci.1(1996)340–348.[3]M.V.Schilfgaarde,I.A.Abrikosov,B.Johansson,Nature 400(1999)46–48.[4]M.Mstsushita,S.Endo,K.Miura,J.Magn.Magn.Mater.265(2003)352–356.[5]A.Vinogradov,S.Hashimoto,V.I.Kopylov,Mater.Sci.Eng.A 355(2003)277–285.[6]X.Wang,J.F.Zhang,Y.H.Zhang,L.S.Fu,J.L.Zhang,X.L.Wang,Chin.J.Rare Met.33(2009)670–674.[7]K.Hamada,Y.Yamaoka,H.Tsabono,Y.Kawabata,Wire J.Int.21(1988)84–86.[8]L.Chen,J.F.Zhang,L.Zhang,L.Meng,Int.J.Min.Met.Mater.16(2009)667–671.[9]C.D.Wang,Res.Met.Mater.21(1995)33–36(in Chinese).[10]J.F.Zhang,Y.F.Tu,J.Xu,J.S.Zhang,J.L.Zhang,J.Iron Steel Res.Int.15(2008)75–78.[11]T.Morikawa,T.Moronaga,K.Higashida,Mater.Sci.Forum 503–504(2006)895–900.[12]K.Sridharan,F.J.Worzala,R.A.Dodd,Mater.Character.29(1992)321–327.[13]K.Nakama,S.Furuya,K.Sugita,Y.Shirai,Tetsu-to-Hagané99(2013)380–389.[14]K.Nakama,S.Tatsutani,K.Sugita,Y.Shirai,J.Jpn.Inst.Met.Mater.78(2014)37–44.[15]C.Wang,S.Q.Yuan,C.G.Yao,Z.P.Feng,Adv.Mater.Res.690–693(2013)290–293.[16]J.S.Lu,P.L.Mao,H.Y.Ni,L.M.Shen,Y.Hua,Baosteel Techno.5(2005)30–33(inChinese).[17]J.S.Lu,X.J.Chen,J.Huang,P.L.Mao,H.Y.Ni,L.M.Shen,F.Tang,L.Q.Zhao,S.H.Feng,Z.H.Xie,Chinese Patent,ZL 200510029930.[18]E.S.Gorkunov,A.I.Uvarov,V.M.Somova,V.A.Kazantsev,E.I.Anufrieva,T.P.Tsar′kova,S.Y.Mitropol ′skaya,J.Rus.,Nondestruct.Test.41(2005)802–808.[19]J.S.Lu,H.Y.Ni,L.M.Shen,J.Shanghai Iron Steel Res.2(2006)31–34(inChinese).[20]K.Nakama,Sanyo Tech.Rep.21(2014)38–46.[21]D.Y.Cai,M.Yao,P.L.Nie,W.C.Liu,Mater.Lett.57(2003)3805–3809.[22]S.Khmelevskyi,P.Mohn,Phys.Rev.B 69(2004)140404(R).[23]A.V.Ruban,M.I.Katsnelson,W.Olovsson,S.I.Simak,I.A.Abrikosov,Phys.Rev.B 71(2005)054402.Table 1Parameters of the Mo 2C particles in the invar alloys under different processes,and their corresponding properties.Mo 2C particles HVTensile strength /MPaCTE/10À6K À1Average size /nmSitesNumber Hot-rolled ///189.8690 1.54Solid-solution ///170.6595 4.01Aging for 3h50–170Grain interiorMore 254.68273.37150–390Sub-grain boundaries More 350–700Grain boundaries A little $900Grain boundaries Less Aging for 5h 4800Grain boundaries More 280.8789 3.4844500ChainsA littleAging for 7h/Grain boundariesMuch more277.4//H.Liu et al./Materials Science &Engineering A 654(2016)107–112112。