2014鼓楼区初三数学二模参考答案
2014届中考二模数学试题含答案
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
南京市鼓楼区中考二模数学试卷含答案
南京市鼓楼区中考二模数学试卷含答案南京市鼓楼区中考二模数学试卷注意事项:本试卷共8 页.全卷满分120 分.考试时间为 120 分钟.考生答题所有答在答题卡上,答在本试卷上无效.一、选择题(本大题共 6 小题,每题 2 分,共 12 分.在每题所给出的四个选项中,恰有一项为哪一项切合题目要求的,请将正确选项前的字母代号填涂在答题卡相应地点上).......1.以下对于“-1”的说法中,错误的选项是()A .- 1 的相反数是 1 B.- 1 是最小的负整数C.- 1 的绝对值是 1 D.- 1 是最大的负整数2. 16等于A.- 4 B .4 C.±4 D.2563.北京时间 2016 年 2 月 11 日 23 点 30 分,科学家宣告:人类初次直接探测到了引力波,印证了爱因斯坦 100 年前的预知.引力波探测器 LIGO 的主要部分是两个相互垂直的长臂,每个臂长 4000 米,数据4000 用科学计数法表示为A . 0.4 ×103B .0.4 ×104 C. 4×103 D . 4×1044.计算 (- 2xy2)4的结果是A . 8x4y8B .- 8x4y8 C. 16 xy8 D . 16 x4y85.如图,图( 1)是一枚古代钱币,图(2)是近似图( 1)的几何图形,将图( 2)中的图形沿一条对称轴折叠获得图(3),对于图( 3)描绘正确的选项是图( 1)图(2)图(3)A .不过轴对称图形B.不过中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形6.将一块长 a 米,宽 b 米的矩形空地建成一个矩形花园,要求在花园中修两条进口宽均为x 米的小道,此中一条小路两边分别经过矩形一组对角极点,节余的地方栽种花草.现有从左至右三种设计方案以下图,栽种花草的面积分别为为S1、 S2和 S3,则它们的大小关系为x x xA . S 3< S 1< S 2B .S 1< S 3< S 2C . S 2< S 1< S 3D . S 1= S 2=S 3二、填空题(本大题共10 小题,每题2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡相应地点 上).......7.使式子 1存心义的 x 的取值范围是▲.x + 28.计算 48- 27的结果为▲ . 9.把 4x 3- x 分解因式,结果为▲ .k的图像经过点P ( 3,- 2),则 k= _____▲ _____.10.反比率函数 y = x11.如图,把等腰直角三角尺的直角极点放在直尺的一边上,则∠ 1+∠ 2=▲°.12(第 11 题)1+x ≥ 0,12.不等式组 x x+ 1 . 的解集为▲.3 +1> 213. “微信发红包 ”是刚才盛行的一种娱乐方式,为认识所在单位职工春节时期使用微信发红包的情 况,小红随机检查了15 名同事,结果以下表:均匀每个红包的钱数(元)2 5 10 20 50 人数74211则此次检查中均匀每个红包的钱数的众数为▲ 元,中位数为 ▲ 元.14.如图,AB 为⊙ O 的直径, 弦 CD 与 AB 交于点 E ,连结 AD .若∠ C = 80°,∠ CEA =30°,则∠ CDA15.如图,二次函数 y 1= ax 2+ bx +c 与函数 y 2=kx 的图像交于点 A 和原点 O ,点 A 的横坐标为- 4,点 A 和点 B 对于抛物线的对称轴对称,点B 的横坐标为 1,则知足 0< y 1< y 2 的 x 的取值范围是▲.yCAOEB A B D(第 14 题)- 4O1x(第 15 题)16.如图①,四边形 ABCD 中,若 AB = AD ,CB =CD ,则四边形 ABCD 称为筝形.依据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大概地区,并用暗影表示.A四边形BD平行四边形正 矩形方菱形形 C 图①(第 16 题)图②三、解答题(本大题共 11 小题,共 88 分)17.( 10 分)( 1)解方程 1-x = 1 - 2;- -x 2 2 x( 2)计算a - 21 -1) .a 2- 1÷(a - 118.(9 分)为了认识某校 1500 名初中生冬天最喜爱的体育活动,该校随机抽取了校内部分学生进行检查,整理样本数据,获得以下统计图.人数 /人踢毽子8080跳绳20%其余60m依据以上信息回答以下问题:( 1)共抽取了▲名校内学生进行检查,扇形图中m 值为▲.(2)经过计算补全直方图.(3)在各个项目被检查的学生中,男女生人数比比以下表:项目踢毽子跳绳跑步其余男:女1: 3 2: 3 3: 1 4: 1依据此次检查,预计该校初中生中,男生人数是多少?19.(8 分)把甲、乙两张形状、大小相同可是画面不一样的景色图片都按相同的方式剪成相同的 2 段,混淆洗匀.( 1)从这堆图片中随机抽出一张,放回混淆洗匀,再抽出一张.则抽出的这两张图片恰巧是能够拼成同一张景色图片的概率为▲;( 2)从这堆图片中随机抽出两张,求抽出的这两张图片恰巧能够构成甲图片的概率.20.(9 分)已知,如图,PA 与⊙ O 相切于点A,过 A 作 AB⊥OP,交⊙ O 于点 B,垂足为 H.连结 OA、 OB、 PB. A( 1)求证:PB为⊙ O的切线;( 2)若OA=2,PH=4,求OP的长.O H PB(第 20 题)21.( 8 分)在 Rt△ ABC 中,∠ C= 90°. BC=3, CA= 4,矩形 DEFC 的极点 D、 E、F 都在△ ABC 的边上.( 1)设 DE =x,则 AD =▲(用含x的代数式表示);(2)求矩形 DEFC 的最大面积.AD E22.( 8 分)在某大型游玩场,景点A、 B、 C 挨次位于同向来线上(如图),B 处是登高参观电梯的进口.已知 A、C 之间的距离为70 米, EB⊥ AC.电梯匀速运转 10 秒E可从 B 处抵达 D 处,此时可察看到景点C,电梯再次以相同的速度匀速运转 30 秒可抵达 E 处,此时可察看到景点A.在 D 、 E 处罚别测得∠ BDC = 60°,∠ BEA= 30°.求电梯在上涨过程中的运转速度.DA B C(第 22 题)23.( 7 分)“郁郁林间桑葚紫,芒芒水面稻苗青”说的就是味甜汁多、酸甜可口的水果——桑葚. 4 月份,水果店的小李用3000 元购进了一批桑葚,随后的两天他很快以高于进价40% 的价钱卖出150kg.到了第三天,他发现节余的桑葚卖相已不大好,于是坚决地以低于进价20%的价钱将节余的所有售出.小李前后一共赢利750 元,设小李共购进桑葚x kg.( 1)依据题意达成表格填空;(用含 x 的代数式表示)售价(元 /kg )销售数目( kg)前两天▲150第三天▲▲( 2)求 x.24.(8 分)如图,已知点A、点B 和直线l.(保存作图印迹,不写作法)(1)在图(1)中,利用尺规在直线l 上作出点P,使得∠APB =90°;( 2)在图( 2)中,利用尺规在直线 l 上作出点 P,使得∠ CQD = 60°.A CB l D25.( 10 分)如图○1,在 400 米环形跑道上,M、 N 两点相距100 米,.甲、乙两人分别从M、 N 两点同时出发,按逆时针方向跑步.甲每秒跑 5 米,乙每秒跑 4 米.甲每跑200 米停下来歇息10 秒钟,乙每跑 400 米停下来歇息20 秒钟.甲、乙两人各自跑完800 米.设甲出发x 秒时,跑步的行程为y 米.图○2 中的折线OABC 表示甲在跑步过程中y(米)与x(秒)之间的部分函数关系.y( 米)乙甲1000 N M900800700 600 500 400 300(图○1)CA B200100O 20 40 50 60 80 100 120 140 160 180 200 220 240 260x(秒)(图○2)(1)请解说图中点 B 的的实质意义;(2)求线段 BC 所表示的 y 与 x 的函数关系式;(3)甲、乙两人在跑步过程中相遇的时间是__________________________ 秒.26. (11 分)在□ABCD 中,∠ BAD、∠ ABC、∠ BCD 、∠ CDA 均分线分别为AG、 BE、 CE、 DG,BE 与 CE 交于点 E,AG 与 BE 交于点 F,AG 与 DG 交于点 G, CE 与 DG 交于点 H.( 1)如图( 1),已知 AD= 2AB,此时点E、G 分别在边AD、 BC 上 .①四边形EFGH 是 ___________ ;A.平行四边形B. 矩形C. 菱形D. 正方形②请判断EG 与 AB 的地点关系和数目关系,并说明原因;AED F HB G C图( 1)( 2)如图( 2),分别过点E、G 作 EP∥ BC、GQ∥ BC,分别交AG、 BE 于点 P、 Q,连结 PQ、EG.求证:四边形EPQG 为菱形;A DP EF HQ GB C图( 2)( 3)已知 AD = n AB( n≠2),判断 EG 与 AB 的地点关系和数目关系(直接写出结论).数学参照答案及分准明:本分准每出了一种或几种解法供参照,假如考生的解法与本解答不一样,参照本分准的精神分.一、(本大共 6 小,每小 2 分,共 12 分)号 1 2 3 4 5 6答案 B B C D A C二、填空(本大共10 小,每小 2 分,共 20 分)7. x≠- 2;8. 3 9. x( 2x+ 1)( 2x- 1)10.- 6 11. 13512.- 1≤ x< 3 13.2 ,5 14.20 15.- 4< x<- 3.16.四边形平行四边形正矩形方形菱形三、解答(本大共16 题11小,共88 分)17.( 10 分)( 1)解:方程两同乘以x- 2 得: 1- x=- 1- 2( x- 2).⋯⋯⋯⋯⋯⋯⋯⋯⋯2分解个方程,得 x= 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分: x= 2 是增根,原方程无解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)a2-2÷(1- 1)a - 1 a- 1a- 2 1 - a- 1=(a+1)(a-1)÷(a-1 a-1)⋯⋯⋯⋯⋯⋯⋯2 分=a- 2 a-1⋯⋯⋯⋯⋯⋯⋯⋯4 分·(a+1)(a-1) 2-a1=-a+1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分18.(9 分)解:( 1) 200, m =25%. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分( 2)略⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分1 2 3 4分( 3) 1500 ×(20%×+ 25%×+ 40%×+ 15%× ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯84 5 4 5=855(人 )答 :估校初中生中,男生人数855 人⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分19.(8 分)( 1)1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分4( 2)画状或列表,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分一共有 12 种等可能的果,此中抽出的两片恰巧能够成甲片的状况有 2 种,∴抽出的两片恰巧能够成甲片的概率= 2 =112 6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.(9 分)∵ PA 与⊙ O 相切于点A,∴ OA⊥PA,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分即∠ PAO= 90°,∵ OP⊥AB,∴AH=BH ,即 OP 垂直均分AB,∴ PA= PB.在⊙O 中,OA= OB,∵ OP=OP ,∴△ OAP ≌△ OBP,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴∠ PBO =∠ PAO= 90°,即 OB⊥PB .又∵点 B 在⊙O 上,∴ PB ⊙ O 的切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)∵ AB⊥ OP,∴∠ AHP = 90°,∴∠ APO +∠ PAH= 90°,由( 1)知∠ PAO= 90°,∴∠ OAH +∠ PAH= 90°,∴∠ OAH =∠ APO,又∵∠ AOH=∠ POA,∴△ OAH ∽△ OPA,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分∴OA=OH,∴ OA2= OH3 OP,OP OA∴ 22= (OP- 4)2 OP⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴ OP=2+ 2 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分421.(8 分)( 1)3x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分4分( 2)矩形 DEFC 的面= (4- x) x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43=-4 2x + 4x 3=-4 3 2分(x- ) + 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯63 2∵ 0≤ x≤ 3∴当 x=3,矩形 DEFC 的面有最大,最大是3⋯⋯⋯⋯⋯⋯⋯8分222.(8 分)梯在上涨程中的运转速度xm/s.∵BE⊥ AC,∴∠ ABE=∠ CBE = 90°.在 Rt△ABE 中,∠ ABE= 90°,∠ BEA=30°, E∴tan∠ BEA=AB,∴ tan30 °=AB,BE BE∴3 AB,∴ AB=40 3分=3x.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23 40x D在 Rt△BDC 中,∠ CBD =90°,∠ BDC = 60°,BC BC A B C(第 22 题)∴ tan∠ BDC=BD.∴tan60 °=BD.∴3=BC.∴ BC= 10 3x.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分10x∴ AC= AB+BC =403 70 33 x+ 10 3x= 3 x.由意得 AC= 70,∴70 33 x= 70.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴x= 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴梯在上涨程中的运转速度3m/s.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分南京市鼓楼区中考二模数学试卷含答案3000 300023.( 7 分)( 1)x ?( 1+40%)x ?( 1-20% )x- 150⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分( 2)依据意得3000 3000150? x ?( 1+ 40%)+( x-150) ? x ?( 1- 20%)- 3000=750 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分3000 3000或 150? x ?40%-( x- 150) ? x ?20%=750,解得: x=200,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分x=200 是原方程的解.答:小李共桑葚200kg .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分24.(8 分)(1)ABlP1P2点 P1、P2所要作的点.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分( 2)CDQ1l Q2点 Q1、 Q2所要作的点.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分25. (10 分)(1)点 B意是当甲出50 秒后,所跑行程200 米(且已在此歇息 10 秒 );⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( 2) y BC= kx+ b( k≠0);由像可知: B( 50,200),点 C 的坐 400,∴点 C 的横坐 50+( 400- 200)÷5= 90,即 C( 90, 400).将 B( 50, 200), C( 90, 400)分代入y BC= kx+ b 得50k+ b= 200,解得k=5,90k+ b= 400,b=- 50,∴ y BC= 5x-50;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分( 3) 120、 145、 170 秒.下方方法供参照⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分y(米)1000900800700600500C400300200A B100O 20 40 50 60 80 100 120 140 160 180 200 220 240 260 x(秒 )26.( 11 分)( 1)① B;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分②EG∥ AB, EG= AB.原因:∵ 四形 ABCD 是平行四形,A E D∴ AD∥ BC,∴∠ AEB=∠ EBG . F H∵ BE 均分∠ ABC,∴∠ ABE=∠ EBG,B G C∴ ∠ABE=∠ AEB,∴ AB= AE.同理, BG= AB,∴ AE= BG.∵ AE ∥ BG , AE = BG ,∴四 形 ABGE 是平行四 形 .∴ EG ∥ AB , EG = AB. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分( 2)明:分 延EP 、 GQ ,交 AB 于点 M 、N ,分 延PE 、 QG ,交 CD 于点 M' 、N',∵ 四 形 ABCD 是平行四 形,∴ AB ∥DC ,又∵ PE ∥BC ,∴ 四 形 MBCM' 是平行四 形,∴ MM '= BC , MB = M'C .AD∵ PE ∥BC ,M PE∴ ∠MEB =∠ EBC.M'H∵ BE 均分∠ ABC ,FNN'QG∴ ∠ ABE =∠ EBC ,BC∴ ∠MEB =∠ ABE ,∴ MB = ME .同理, M'E = M'C .∴ ME = M'E .1∴ ME = 2MM ',又∵MM '= BC ,1∴ ME = 2BC.1同理, NG = 2BC.∴ ME = NG.∵ GQ ∥ BC ,∴ ∠DAG =∠ AGN.∵ AG 均分∠ BAD , ∴ ∠DAG =∠ NAG , ∴ ∠NAG =∠ AGN ,∴ AN = NG.∵ MB = ME ,AN =NG , ME = NG ,∴ MB = AN.∴ MB - MN = AN - MN ,即 BN = AM .∵PE∥BC ,∴ ∠DAG=∠ APM ,又∵∠ DAG=∠ BAG,∴ ∠APM=∠ BAG,∴AM= PM .同理, BN= QN.∴PM=QN.∵ME=NG,PM=QN,∴ME- PM =NG- QN,即 PE =QG.∵EP∥BC ,GQ∥ BC,∴EP∥GG.又∵PE= QG ,∴四形 EPQG 是平行四形 .∵AG、 BE 分均分∠ BAD ,∠ ABC ,∴ ∠ BAG=1∠ BAD ,∠ ABG =1∠ ABC.2 21 1 1∴ ∠ BAG+∠ ABG =∠ BAD +∠ ABC=×180 °= 90°,∴∠ AFB = 90°,即 PG⊥ EF .2 2 2∴平行四形 EPQG 是菱形 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)① n> 1 , EG∥ AB 且 EG=( n- 1) AB;②n<1 , EG∥AB 且 EG=( 1- n) AB;③ n=1 ,此四形不存在.(此种状况不写不扣分)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分。
2014年九年级中考第二次模拟数学试卷及答案
2014年初中毕业、升学统一考试模拟考试数学试题(考试形式:闭卷 满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡...相应位置....上) 1.下列各数中,最小的实数是A.B .12- C .2- D .132.下列函数中,自变量x 的取值范围是3x ≥的是A .13y x =- B.y = C .3y x =- D.y =3.下列成语或词语所反映的事件中,可能性大小最小的是A .瓜熟蒂落B .守株待兔C .旭日东升D .夕阳西下 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是A B C D5.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A .(2,1)B .(1,−2)C .(1,2)D .(2,-1)6.下列四个选项中,数轴上的数a ,一定满足2a >-的是 A . B .C .D .7.已知P 是⊙O 内一点,⊙O 的半径为10,P 点到圆心O 的距离为6,则过P 点且长度是整数的弦的条数是 A .3B .4C .5D .68.在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在y 轴上.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 A .(0,34) B .(0,43) C .(0,3) D .(0,4)(第5题)二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 计算:23a a a + ▲ .10.已知某种纸一张的厚度约为0.0089厘米,0.0089用科学计数法表示为 ▲ . 11.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、 16℃、 22℃、 28℃.则这6个城市平均气温的极差是 ▲ ℃.12.若32-=+b a ,21422=-b a ,则12+-b a = ▲ .13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 ▲ . 14.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 ▲ . 15.已知圆锥的底面半径为9cm ,母线长为30cm ,则此圆锥的侧面展开扇形的圆心角度数为▲ .16. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB = ▲ °.17.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ▲ .18.在△ABC 中,∠ABC =30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是 ▲ 个.三、解答题 (本大题共10题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)212cos30()12--+--(2) 解不等式: 122123x x -+-≥20.(本题满分8分)(第16题)(第14题)(第17题)先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程022=-x x 的根.21.(本题满分8分)今年“3.15”期间某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:同一日内,顾客在本商场每消费满200元,就可以在箱子里一次摸出两个球,商场根据两小球所标金额之和返还相应数额的购物券.某顾客刚好消费200元. (1)该顾客至少可得到 ▲ 元购物券,至多可得到 ▲ 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得的购物券金额不低于30元的概率.22.(本题满分8分)如图,在平行四边形ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. (1)找出图中一对全等的三角形,并证明; (2)求证:四边形ABCD 是矩形.23.(本题满分10分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;A BCDEF(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?24.(本题满分10分)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:(1)求营业员的月基本工资和销售每件的奖金;(2)营业员丙哥希望本月总收入不低于1800元,则丙哥本月至少要卖服装多少件?25.(本题满分10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到文昌路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.(1)求A、B1.41≈,1.73≈)(2)请判断此车是否超过了文昌路每小时70千米的限制速度?26.(本题满分10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且CBFCAB∠=∠2.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求CBF∠tan.OPBA万丰文昌路。
2014年九年级中考二模考试数学试题参考答案及评分建议
2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
精选南京市鼓楼区中考数学二模试卷(2)(有详细答案)
江苏省南京市鼓楼区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣4.(2分)使式子有意义的x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≥15.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是,的倒数是.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:.9.(2分)把4x2﹣16因式分解的结果是.10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= .11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= °.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH 的面积是.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是°时,CD∥AB.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是.16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.19.(6分)QQ运动记录的小莉爸爸2017年2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:;(2)请你按照小莉的思路完成命题的证明.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为 km/h,慢车的速度为km/h,甲乙两地的距离为km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y 轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:;定理2:;定理3:.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元【解答】解:将32800万用科学记数法表示为:3.28×108,故选:C.2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣【解答】解:3﹣2=,故选:C.4.(2分)使式子有意义的x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≥1【解答】解:根据题意,得2x﹣2≥0,解得,x≥1.故选:D.5.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.【解答】解:设这个长方形菜园的长为x米,宽为y米,根据题意,得.故选:B.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大【解答】解:A、正确.正方形有且只有一个内切圆;B、错误.正方形有且只有一个外接圆;C、错误.对角线相等且垂直的四边形不一定是正方形;D、错误.用一根绳子围成一个平面图形,圆形的面积最大;故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是﹣,的倒数是.【解答】解:的相反数是﹣,倒数是.故答案为﹣,.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等.【解答】解:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等;故答案为:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等.9.(2分)把4x2﹣16因式分解的结果是4(x+2)(x﹣2).【解答】解:原式=4(x2﹣4)=4(x+2)(x﹣2)故答案为:4(x+2)(x﹣2)10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= 16 .【解答】解:根据题意得x1+x2=﹣1,x1x2=﹣5,所以x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=(﹣1)2﹣3×(﹣5)=16.故答案为16.11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是2(答案不唯一).【解答】解:∵y=的图象位于一三象限,点A在第一象限,∴y1>0,y随x的增大而减小.∵当m<0时,点B位于第三象限,∴y2<0.故假设不成立.当m>0时,点B位于第一象限,∴y2>0.又∵y1<y2,∴m<3.∴0<m<3.所以m的值可为2.故答案为:2.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= 220 °.【解答】解:如图,∵直线b平移后得到直线a,∴a∥b,∴∠1+∠4=180°,即∠4=180°﹣∠1,∵∠5=∠3=40°,∴∠2=∠4+∠5=180°﹣∠1+40°,∴∠1+∠2=220°.故答案为220.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH 的面积是ab .【解答】解:∵点E、F分别是菱形AB、BC边上的中点,∴EF是△ABC的中位线,∴EF=AC,且EF∥AC.同理,HG=AC,且HG∥AC,∴EF=HG,且EF∥HG.∴四边形EFGH是平行四边形.∴EH∥FG,EH=FG=BD.又∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积=EF•EH=a•b=ab.故答案是: ab.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是100或280 °时,CD∥AB.【解答】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,综上所述,当旋转角为100°或280°时,边CD恰好与边AB平行.故答案为:100或280.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是(,).【解答】解:如图,∵原点O关于直线y=﹣x+4对称点O1,∴OO1⊥AB,设O1O与直线y=﹣x+4的交点为D,作O1E⊥x轴于E,由直线y=﹣x+4可知A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∵S△AOB=OA•OB=AB•OD,∴OD==,∴OO1=,∵∠ADO=∠O1EO=90°,∠AOD=∠EOO1,∴△AOD∽△O1OE,∴=,即=,∴OE=,∴O1E==,∴点O的坐标是(,),1故答案为(,).16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是 5 .【解答】解:∵PC、PB是⊙O的切线,∴∠PCO=∠PBO=90°,∴点C、B在以OP为直径的圆上,∵BC是这个圆的弦,∴当BC=OP=5时,BC的值最大(直径是圆中最长的弦).故答案为5.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.【解答】解:原式=+•=+1=,当x=3时,原式==2.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是﹣4<a≤﹣3 .【解答】解:(1)∵2x﹣3(x﹣1)≤6,∴2x﹣3x+3≤6,解得x≥﹣3,这个不等式的解集在数轴上表示如下:.(2)∵关于x的一元一次不等式x≥a只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.故答案为:﹣4<a≤﹣3.19.(6分)QQ运动记录的小莉爸爸2017年2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.【解答】解:(1)用折线统计图表示小莉爸爸这7天内步行的步数如下:;(2)小莉爸爸这7天内每天步行的平均步数为:=×(2.1+1.7+1.8+1.9+2.0+1.8+2.0)=1.9(万步).(3)小莉爸爸2月份步行的步数约为:1.9×28=53.2(万步).20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.【解答】解:由图得:白色扇形的圆心角为120°,故转动一次,指针指向白色区域的概率为: =,则转动一次,指针指向阴影区域的概率为:,故让转盘自由转动两次.指针一次落在黑色区域,另一次落在白色区域的概率是:2××=.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.【解答】解:设小莉房间窗户的宽度为xm,则高度为(x+0.5)m.根据题意,得(2﹣1.5)x(x+0.5)×120=180,解得 x1=﹣2,x2=1.5.所以x=1.5,x+0.5=2.答:小莉房间窗户的宽度为1.5m,则高度为2m.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)【解答】解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,则PE=(x﹣1.6)m,PF=(x﹣1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴CF=.∵AE+CF=BD.∴+=200.解,得x=.答:气球的高度是m.23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:AAS ;(2)请你按照小莉的思路完成命题的证明.【解答】解:(1)△ABD≌△ACD的理由是AAS,故答案为AAS.(2)证明:过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.∴△BDE≌△CDF(AAS).∴BE=CF,DE=DF.在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.∵AD=AD,DE=DF,∴Rt△AED≌Rt△AFD.∴AE=AF.∴AE+BE=AF+CF.即AB=AC.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.【解答】解:(1)如图,⊙O是所求作的图形.(2)如图,作⊙O的直径AE,连接BE.∵AE是直径,∴∠ABE=90°.∵∠ADC=∠ABE=90°,∠C=∠E,∴△ABE∽△ADC,∴=.即=,解得AE=.∴⊙O的半径为.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为 km/h,慢车的速度为150 km/h,甲乙两地的距离为50 km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.【解答】解:(1)快车的速度为300÷2=150km/h,慢车的速度为:300÷6=50km/h,甲乙两地的距离为300km,故答案为:150,50,300;(2)快车在行驶过程中离A地的路程y1与时间x的函数关系式:当0≤x<2时,y1=150x,当2≤x≤4时,y1=300﹣150(x﹣2),即y1=600﹣150x.慢车在行驶过程中离A地的路程y2与时间x的函数关系式:当0≤x≤6时,y2=50x,由题意,得①当0≤x<2时,y1﹣y2=100,150x﹣50x=100,解得x=1;②当2≤x<3时,y1﹣y2=100,600﹣150x﹣50x=100,解得x=2.5;③当3≤x<4时,y2﹣y1=100,50x﹣(600﹣150x)=100,解得x=3.5;④当4≤x≤6时,两车相距大于100km.答:出发1 h或2.5h或3.5h后,两车相距100km;(3)s与x的函数图象如图所示:26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y 轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.【解答】(1)由题意知:,解得.∴该二次函数的表达式为y=x2﹣3x﹣4;(2)①∵当x=0时,y=﹣4.∴抛物线与y轴交点D的坐标为(0,﹣4).∵在△BOD中,∠BOD=90°,OB=4,OD=4,∴BD==8,即BD=2OB,∴∠ODB=30°.∴∠OBD=60°;②过点P作PE⊥x轴于点E,过点C作CF⊥BD于点F,∵x=3时,m=﹣4.∴点C的坐标为(3,﹣4).∵CD∥x轴,∴CD=3,∠CDB=60°,∠DCF=30°.∴DF=CD=,CF==,∵BD=8,∴BF=8﹣=, 设点P 的坐标为(x ,x 2﹣3x ﹣4). 则PE=﹣x 2+3x+4,BE=4﹣x ,∵∠CBP=∠OBD=60°,∴∠CBF=∠PBE .∵∠CFB=∠PEB=90°.∴△CBF ∽△PBE . ∴=. ∴=.解得:x 1=4(舍去),x 2=﹣. ∵当x=﹣时,y=﹣.∴点P 的坐标为(﹣,﹣).27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD 中,我们用符号语言表示出所有的8个条件:①A B=CD;②AD=BC;③AB∥CD;④AD∥BC;⑤∠BAD=∠BCD;⑥∠ABC=∠ADC;⑦OA=OC;⑧OB=OD.【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:两组对边分别相等的四边形是平行四边形;定理2:一组对边平行且相等的四边形是平行四边形;定理3:对角线互相平分的四边形是平行四边形.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.【解答】(1)解:Ⅱ关于对角的2个条件可分为“⑤⑥”共1种情形;Ⅲ关于对角线的2个条件可分为“⑦⑧”共1种情形;Ⅳ关于边的条件与角的条件各1个可分为“①⑤,③⑤”共2种情形;Ⅴ关于边的条件与对角线的条件各1个可分为“①⑦,③⑦”共2种情形;Ⅵ关于角的条件与对角线的条件各1个可分为“⑤⑦,⑥⑦”共2种情形.(2)解:定理2:两组对边分别相等的四边形是平行四边形;定理3:一组对边平行且相等的四边形是平行四边形;定理4:对角线互相平分的四边形是平行四边形.故答案为:两组对边分别相等的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形(3)证明:∵∠BAD+∠ABC+∠BCD+∠ADC=360°,∠BAD=∠BCD,∠ABC=∠ADC,∴2∠BAD+2∠ABC=360°,2∠ABC+2∠BCD=360°.∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°.∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形.真命题2:四边形ABCD中,若AB∥CD,∠BAD=∠BCD,则四边形ABCD是平行四边形;真命题3:四边形ABCD中,若AB∥CD,OA=OC,则四边形ABCD是平行四边形;真命题4:四边形ABCD中,若∠ABC=∠AD C,OA=OC,则四边形ABCD是平行四边形;(4)解:假命题2:四边形ABCD中,若AB=CD,∠BAD=∠BCD,则四边形ABCD不一定是平行四边形.反例如下:如图△ABC中,AB=AC,在BC上取一点D,连接AD,把△ADC翻转得如图所示的四边形ABDC,∵AB=AC,∴∠B=∠C.在四边形ABDC中,AB=CD,∠B=∠C,显然,四边形ABDC不是平行四边形.假命题3:四边形ABCD中,若AB=CD,OA=OC,则四边形ABCD不一定是平行四边形.反例如下:如图,OA=OC,直线l经过点O,分别以A、C为圆心,一定的长为半径画弧交直线l于点B、D,得如图所示的四边形ABCD,在四边形ABCD中,AB=CD,OA=OC,显然,四边形ABDC不是平行四边形.假命题4:四边形ABCD中,若∠BAD=∠BCD,OA=OC,则四边形ABC D不一定是平行四边形.反例如下:如图,筝形ABCD中,∠BAD=∠BCD,OA=OC,显然四边形ABCD不是平行四边形.。
初中数学 南京市鼓楼区中考模拟二模数学考试卷及答案(word版)
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是试题2:下列算式结果为-3的是A.-│-3│B.(-3)0 C.-(-3)D.(-3)-1试题3:使分式有意义的x的取值范围是A.x>2 B.x<2 C.x≠2 D.x≥2试题4:下列从左边到右边的变形,是因式分解的是A.(a-1)(a-2)=a2-3a+2 B.a2-3a+2=(a-1)(a-2)C.(a-1)2+(a-1)=a2-a D.a2-3a+2=(a-1)2-(a-1)试题5:下列命题中,假命题的是A.两组对边分别相等的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边相等,一组对角相等的四边形是平行四边形试题6:对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠0.正确的是A.①② B.①③ C.②③ D.①②③试题7:9的平方根是.试题8:一个多边形的每个外角都等于72°,则这个多边形的边数是.试题9:已知方程组的解为则一次函数y=-x+1和y=2x-2的图象的交点坐标为.试题10:计算(-)×的结果是.试题11:已知x1、x2是一元二次方程x2+x=1的两个根,则x1x2=.试题12:如果代数式2x+y的值是3,那么代数式7-6x-3y的值是.1试题13:已知点A(2,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.试题14:如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=°.试题15:如图,△ABC中,AB=AC=13 cm,BC=10 cm.则△ABC内切圆的半径是cm.试题16:如图,方格纸中有三个格点A、B、C,则sin∠ABC=.试题17:解方程组试题18:解不等式2x-1≥,并把它的解集在数轴上表示出来.试题19:某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据.(单位:个)1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?试题20:如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)请用合适的方式表示加油过程中变量之间的关系.试题21:在一个不透明的袋子中,放入除颜色外其余都相同的1个白球、2个黑球、3个红球.搅匀后,从中随机摸出2个球.(1)请列出所有可能的结果:(2)求每一种不同结果的概率.试题22:某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+b(a≠0);②y=a(x-h)2+k(a≠0);③y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?试题23:三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ABC中,AB=,∠B=45°,BC=1+,解△ABC.试题24:如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,根据旋转的性质用符号语言写出2条不同类型的正确结论;(3)针对第(2)问中的图形,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长用a、b、c…表示,角的度数用α、β、γ…表示).你添加的条件是,线段AB扫过的面积是.试题25:如图,OA、OB是⊙O的半径且OA⊥OB,作OA的垂直平分线交⊙O于点C、D,连接CB、AB.求证:∠ABC=2∠CBO.试题26:小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6 m,已知小明和小莉的平均速度分别为x m/s、y m/s.(1)如果两人重新开始比赛,小明从起点向后退6 m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.试题27:(1)已知:如图,E、F、G、H分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.求证:四边形EFGH是矩形.(2)已知: E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD上与顶点均不重合的点,且四边形EFGH是矩形.AE与AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明.试题28:△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.①求y与x的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.试题1答案:D试题2答案:A试题3答案:C试题4答案: B试题5答案:D试题6答案:A试题7答案:±3试题8答案:5试题9答案:(1,0)试题10答案:2试题11答案:-1试题12答案:-2试题13答案:答案不唯一,如1等试题14答案:110试题15答案:试题16答案:试题17答案:解方程组解法一:由①,得x=6-2y③,将③代入②,得3(6-2y)-2y=2,解这个一元一次方程,得y=2,将y=2代入③,得x=2,所以原方程组的解是解法二:①+②,得4x=8解这个一元一次方程,得x=2,将x=2代入①,得y=2,所以原方程组的解是试题18答案:解:去分母,得 2(2x-1)≥3x-1.去括号,得 4x-2≥3x-1.移项、合并同类项,得x≥1.这个不等式的解集在数轴上表示如下:试题19答案:解:甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100个;=100,=100,s=,s=.甲班的优秀率为:2÷5=0.4=40%,乙班的优秀率为:3÷5=0.6=60%;乙班定为冠军.因为乙班5名学生的比赛成绩的中位数比甲班大,方差比甲班小,优秀率比甲班高,综合评定乙班踢毽子水平较好.试题20答案:(1)单价,数量、金额;(2)设加油数量是x升,金额是y元,则y=6.80x试题21答案:解:(1)搅匀后,从中随机摸出2个球,所有可能的结果有15个,即:(白,黑1),(白,黑2),(白,红1),(白,红2),(白,红3),(黑1,黑2),(黑1,红1),(黑1,红2),(黑1,红3),(黑2,红1),(黑2,红2),(黑2,红3),(红1,红2),(红1,红3),(红2,红3).它们是等可能的.(2)其中摸得一个白球和一个黑球的结果有2个,摸得一个白球和一个红球的结果有3个,摸得二个黑球的结果有1个,摸得一个黑球和一个红球的结果有6个,摸得二个红球的结果有3个.所以P(摸得一个白球和一个黑球)=,P(摸得一个白球和一个红球)==,P(摸得二个黑球)=,P(摸得一个黑球和一个红球)==,P(摸得二红球)==.试题22答案:解:(1)②;(2)当x=4时,y=90,当x=10时,y=51,当x=36时,y=90,则解得所以y=(x-20)2+26;当x=20时,y有最小值26.答:该纪念币上市20天时市场价最低,最低价格为26元.试题23答案:解:过点A作AD⊥BC,垂足为D.在Rt△ADB中,∠ADB=90°,∠B=45°,AB=则cos ∠B=.∴AD=BD=AB ×cos 45°=×cos 45°=1.在Rt△ADC中,∠ADC=90°,C D=BC-BD =1+-1=.则tan ∠C ===.∴∠C=30°.∴AC==2,∠BAC=180°-45°-30°=105°.试题24答案:解:(1)如图;(2)如:OA=OA1,∠AO A1=∠BOB1等;(3)添加的条件为:∠AO A1=∠BOB1=α;OA=OA1=a;OB=OB1=b .面积为(b2-a2) 试题25答案:证明:连接OC、AC.A∵CD垂直平分OA,∴OC=AC.C∴OC=AC=OA.D∴△OAC是等边三角形.B∴∠AOC=60°.O∴∠ABC=∠AOC=30°.在△AOB中,OA=OB,∠AOB=90°.∴∠ABO=45°.∴∠CBO=∠ABO-∠ABC=45°-30°=15°.∴∠ABC=2∠CBO.试题26答案:解:(1)根据题意,得=,则y=x.因为-=-=-<0,所以<所以小明先到达终点.(2)方案一:小明在起点,小莉在起点前6米处,两人同时起跑,同时到达;方案二:设小莉在起点,小明在起点后a米处,两人同时起跑,同时到达.则=,即=,解得a=.所以小莉在起点,小明在起点后米处,两人同时起跑,同时到达.试题27答案:(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=DA,∠A=∠C,∠B=∠D,∠A+∠B=180°.∵AE=CF=CG=AH,∴BE=BF=DG=DH.∴△AEH≌△CFG,△BEF≌△DHG.∴EH=FG,EF=HG.∴四边形EFGH是平行四边形.又∵∠AEH=∠AHE=(180°-∠A)=90°-∠A,∠BEF=∠BFE=(180°-∠B)=90°-∠B,∴∠HEF=180°-∠AEH-∠BEF=180°-(90°-∠A)-(90°-∠B)=(∠A+∠B)=90°.∴四边形EFGH是矩形.(2)如图,m、n是经过菱形对角线交点且与对边垂直的2条直线,可证四边形EFGH是矩形,显然,AE与AH不相等.试题28答案:解:(1)学生回答合理应给分,如:从重叠部分的形状看分为2类,即三角形和四边形(梯形);也可从数量的角度来分类,设平移的距离为x.分为0<x ≤4,4<x ≤8,8<x ≤12三类等;(2)①当0≤x≤4时,y=x2;当4<x≤6时,y=x -;当6<x≤10时,y=-(x-8)2+;当10<x≤12时,y=-x+;当12<x≤16时,y=(16-x)2.②如图:。
2014江苏省南京市鼓楼区年中考一模数学试卷
南京市鼓楼区2014年中考一模数学试卷注意事项:1.本试卷共8页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项前的字母代号填在答题..卡.相应位置....上) 1.(2014•鼓楼1,1,2分)下列方程组中,解是⎩⎨⎧x =-5,y =1的是A .⎩⎨⎧x +y =6,x -y =4.B .⎩⎨⎧x +y =6,x -y =-6.C .⎩⎨⎧x +y =-4,x -y =-6.D .⎩⎨⎧x +y =-4,x -y =-4.1.C2.(2014•鼓楼1,2,2分)计算2×(-9)-18×(16-12)的结果是A .-24B .-12C .-9D .62.B3.(2014•鼓楼1,3,2分)利用表格中的数据,可求出 3.24+(4.123)2-190的近似值是(结果保留整数).3.C 4.(2014•鼓楼1,4,2分)把边长相等的正五边形ABGHI 和正六边形ABCDEF 的 AB 边重合,按照如图的方式叠合在一起,连接EB ,交HI 于点K ,则∠BKI 的大小为A .3B .4C .5D .6A .90°B .84°CD E FGHIK4.B5.(2014•鼓楼1,5,2分)反比例函数y =kx 和正比例函数y =mx由此可以得到方程kx =mx 的实数根为5.C6.(2014•鼓楼1,6,2分)如图, QQ 软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是 6.A二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卡.相应位置....上) 7.(2014•鼓楼1,7,2分)-3的绝对值等于 ▲. 7.38.(2014•鼓楼1,8,2分) (12+8 )× 2 = ▲ . 8.59.(2014•鼓楼1,9,2分)使1x +2有意义的x 的取值范围是 ▲ .9.x ≠-210.(2014•鼓楼1,10,2分) (2×103)2×(3×10-3) = ▲ .(结果用科学计数法表示)C .72°D .88°A .x =1B .x =2C .x 1=1,x 2=-1D .x 1=1,x 2=-2 A .B .C .D .(第6题)10.1.2×10411.(2014•鼓楼1,11,2分)已知⊙O 1,⊙O 2没有公共点.若⊙O 1的半径为4,两圆圆心距为5,则⊙O 2的半径可以是 ▲ .(写出一个符合条件的值即可) 11.答案不唯一,如0.5(满足0<r <1或r >9即可)12.(2014•鼓楼1,12,2分)如图,在梯形ABCD 中,AB ∥CD ,∠B =90° ,连接AC ,∠DAC =∠BAC .若BC =4cm ,AD =5cm ,则梯形ABCD 的周长为 ▲ cm . 12.2213.(2014•鼓楼1,13,2分)如图,在□ABCD 中,∠A =70° ,将□ABCD 绕顶点B 顺时针旋转到□A 1BC 1D 1,当C 1D 1首次经过顶点C 时,旋转角 ∠ABA 1= ▲ °.13. 4014.(2014•鼓楼1,14,2分)某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子 是女孩,其余类推.由数据,请估计我区两个孩子家庭中男孩与女 孩的人数比为 ▲ :▲ .14. 417︰38315.(2014•鼓楼1,15,2分)如图,⊙O 的半径是5,△ABC 是⊙O 的内接三角形,过圆心OADCB(第12题)ACDC 1D 1A 1 (第13题)分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF . 若OG =2,则EF 为 ▲ . 15. 2116.(2014•鼓楼1,16,2分) 将一张长方形纸片按照图示的方式进行折叠: ①翻折纸片,使A 与DC 边的中点M 重合,折痕为EF ;②翻折纸片,使C 落在ME 上,点C 的对应点为H ,折痕为MG ; ③翻折纸片,使B 落在ME 上,点B 的对应点恰与H 重合,折痕为GE .根据上述过程,长方形纸片的长宽之比ABBC = ▲ .16. 2三、解答题(本大题共11小题,共88分.请在答题..卡.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(2014•鼓楼1,17,6分)计算:2x 2-4-12x -4. 17.(6分)解:原式=2(x +2)(x -2)-12(x -2)········································· 2分=2-x2(x +2)(x -2) ······················································· 4分=-12x +4. ··························································· 6分18.(2014•鼓楼1,18,6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)解:解不等式①,得x >133; ······································································ 2分解不等式②,得x ≤6. ······································································· 4分 所以原不等式组的解集为133<x ≤6. ······················································ 5分它的整数解为5,6. ·········································································· 6分ABCD ①(第16题)19.(2014•鼓楼1,19,8分)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.(1)求证:四边形AECF是菱形.(2)若AB=2,BF=1,求四边形AECF的面积.19.(8分)(1)连接AC,AC交BD于点O.在正方形ABCD中,OB=OD,OA=OC,AC⊥BD.∵BF=DE,∴OB-BF=OD-DE,即OF=OE.∴四边形AECF是平行四边形.又∵AC⊥EF,∴□AECF是菱形.············································································ 4分(2)∵AB=2,∴AC=BD=AB2+AD2=22.∴OA=OB=BD2=2.∵BF=1,∴OF=OB-BF=2-1.∴S四边形AECF=12AC·EF=12×22×2(2-1)=4-22. ······························ 8分20.(2014•鼓楼1,20,8分)甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序.(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.20.(8分)解:所有可能出现的结果如下:······································································································ 5分以上共有6种等可能的结果.其中甲第一位出场的结果有2种,甲比乙先出场的结果有3种.所以P(甲第一位出场)=26=13. ························································· 7分AB CDFE(第19题)P (甲比乙先出场)=36=12. ·························································· 8分(注:用树状图列举所有结果参照以上相应步骤给分.)21.(8分)解:(1)不合理.因为如果1000人全部在金融行业抽取,那么全市城镇非私营单位员工被抽到的机会不相等,样本不具有代表性和广泛性. ···························· 2分 (2)·················································································· 6分人数市城镇非私营单位1 000人月收入统计图以下4000 ~ 6000 ~ 8000以上2000 ~ 4000(3)本题答案不惟一,下列解法供参考.用平均数反映月收入情况不合理.由数据可以看出1000名被调查者中有670人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理. ·················································································· 8分 (注:对于(1)(3)两问,学生回答只要合理,应酌情给分.)22.(2014•鼓楼1,22,8分)(1)如图①,若BC =6,AC =4,∠C =60°,求△ABC 的面积S △ABC ; (2)如图②,若BC =a ,AC =b ,∠C =α,求△ABC 的面积S △ABC ;(3)如图③,四边形ABCD ,若AC =m ,BD =n ,对角线AC 、BD 交于O 点,它们所成 的锐角为β.求四边形ABCD 的面积S 四边形ABCD .22.(8分)(1)如图①,过点A 作AH ⊥BC ,垂足为H . 在Rt △AHC 中,AHAC=sin60°,∴AH =AC ·sin60°=4×32=23. ∴S △ABC =12×BC ×AH =12×6×23=63.…………………………………………3分(2)如图②,过点A 作AH ⊥BC ,垂足为H . 在Rt △AHC 中,AHAC =sin α,∴AH =AC ·sin α=b sin α.∴S △ABC =12×BC ×AH =12ab sin α.……………………………………………………5分(3)如图③,分别过点A ,C 作AH ⊥BD ,CG ⊥BD ,垂足为H ,G . 在Rt △AHO 与Rt △CGO 中,AH =OA sin β,CG =OC sin β; 于是,S △ABD =12×BD ×AH =12n ×OA sin β;S △BCD =12×BD ×CG =12n ×OC sin β;OB CAB C A 60° A B C D β (图①) (图②) (图③) (第22题)α∴S 四边形ABCD = S △ABD +S △BCD =12n ×OA sin β+12n ×OC sin β=12n ×(OA +OC )sin β=12m n sin β.……………………………………………………………………8分23.(2014•鼓楼1,23,8分)如图,把长为40cm ,宽为30cm 的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余部分折成一个有盖..的长方体盒子,设剪掉的小正 方形边长为x cm .(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为 ▲ (单位:cm ); (2)若折成的一个长方体盒子的表面积为950cm 2,求此时长方体盒子的体积.23.(8分)解:(1)30-2x 、20-x 、x ; ························································· 3分(2)根据图示,可得2(x 2+20x )=30×40-950 解得x 1=5,x 2=-25(不合题意,舍去)长方体盒子的体积V =(30-2×5)×5×(20-5)=20×5×15=1500(cm 3). 答:此时长方体盒子的体积为1500 cm 3.···································· 8分30cm40cm (第23题)(图①)(图②)(图③)24.(2014•鼓楼1,24,8分)2014年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车12元.(1)直接写出y 1、y 2关于x 的函数关系式,并注明对应的x 的取值范围; (2)在如下的同一个平面直角坐标系中,画出y 1、y 2关于x 的函数图象;(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.24.(8分)(1)y 1=⎩⎪⎨⎪⎧11,(x ≤3)2.4x +3.8,(x >3)y 2=⎩⎪⎨⎪⎧9,(x ≤2.5)2.9x +1.75,(x >2.5) ····························································· 4分(2)画图正确. ··············································································· 6分(3)由2.4x +3.8=2.9x +1.75,解得,x =4.1.∴ 结合图象可知,当乘客打车的路程不超过 4.1公里时,乘坐纯电动出租车合算. ······································································································ 8分y (元)(第24题)y (元)25.(2014•鼓楼1,25,8分)如图,在□ABCD 中,过A 、B 、D 三点的⊙O 交BC 于点E,连接DE,∠CDE =∠DAE . (1)判断四边形ABED 的形状,并说明理由;(2)判断直线DC 与⊙O 的位置关系,并说明理由; (3)若AB =3,AE =6,求CE 的长.25.(8分)(1)四边形ABED 是等腰梯形.理由如下:在□ABCD 中,AD ∥BC , ∴∠DAE =∠AEB . ∴ ⌒DE= ⌒AB ,DE =AB . ∵AB ∥CD ,∴AB 与DE 不平行. ∴四边形ABDE 是等腰梯形. ······················································· 2分(2)直线DC 与⊙O 相切. 如图,作直径DF ,连接AF . 于是,∠EAF =∠EDF . ∵∠DAE =∠CDE ,∴∠EAF +∠DAE =∠EDF +∠CDE ,即∠DAF =∠CDF . ∵DF 是⊙O 的直径,点A 在⊙O 上,∴∠DAF =90°,∴∠CDF =90°.∴OD ⊥CD . 直线DC 经过⊙O 半径OD 外端D ,且与半径垂直,直线DC 与⊙O 相切. ·································································· 5分 (3)由(1),∠EDA =∠DAB . 在□ABCD 中,∠DAB =∠DCB ,∴∠EDA =∠DCB .又∵∠DAE =∠CDE ,∴△ADE ∽△DCE .∴AE DE =DE CE ,∵AB =3,由(1)得,AB =DE =DC =3.即 63=3DE.解得,CE =32.…………………………………………………………………………8分(第25题)26.(2014•鼓楼1,26,11分) 问题提出平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢? 初步思考设不在同一条直线上的三点A 、B 、C 确定的圆为⊙O . ⑴当C 、D 在线段AB 的同侧时,如图①,若点D 在⊙O 上,此时有∠ACB =∠ADB ,理由是 ▲ ;如图②,若点D 在⊙O 内,此时有∠ACB ▲ ∠ADB ;如图③,若点D 在⊙O 外,此时有∠ACB ▲ ∠ADB .(填“=”、“>”或“<”);由上面的探究,请直接写出A 、B 、C 、D 四点在同一个圆上的条件: ▲ . 类比学习(2)仿照上面的探究思路,请探究:当C 、D 在线段AB 的异侧时的情形.此时有 ▲ , 此时有 ▲ , 此时有 ▲ .由上面的探究,请用文字语言直接写出A 、B 、C 、D 四点在同一个圆上的条件: ▲ . 拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点C 在⊙O 上. 求作:CN ⊥AB .作法:①连接CA ,CB ;②在 ⌒CB上任取异于B 、C 的一点D ,连接DA ,DB ; ③DA 与CB 相交于E 点,延长AC 、BD ,交于F 点;④连接F 、E 并延长,交直径AB 于M ;图①图②图③图④⑤连接D 、M 并延长,交⊙O 于N .连接CN . 则CN ⊥AB .请按上述作法在图④中作图,并说明CN ⊥AB 的理由.(提示:可以利用(2)中的结论) 26.(11分)(1)同弧所对的圆周角相等. ∠ACB <∠ADB ,∠ACB >∠ADB .答案不惟一,如:∠ACB =∠ADB . ·················································· 4分 (2)如图:此时∠ACB +∠ADB =180°, 此时∠ACB +∠ADB >180°, 此时∠ACB +∠ADB <180 若四点组成的四边形对角互补,则这四点在同一个圆上.······································································································ 8分 (3)作图正确. ··············································································· 9分 ∵AB 是⊙O 的直径,C 、D 在⊙O 上, ∴∠ACB =90°,∠ADB =90°. ∴点E 是△ABF 三条高的交点. ∴FM ⊥AB . ∴∠EMB =90°. ∠EMB +∠EDB =180°, ∴点E ,M ,B ,D 在同一个圆上. ∴∠EMD =∠DBE .又∵点N ,C ,B ,D 在⊙O 上, ∴∠DBE =∠CND ,∠EMD =∠CND . ∴FM ∥CN .∴∠CPB =∠EMB =90°.∴CN ⊥AB . ···················································································· 11分 (注:其他正确的说理方法参照给分.)27.(2014•鼓楼1,27,9分)【课本节选】反比例函数y =kx(k 为常数,k ≠0)的图象是双曲线.当k >0时,双曲线两个分支分别备用图在一、三象限,在每一个象限内,y 随x 的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).这些我们熟悉的性质,可以通过说理得到吗? 【尝试说理】我们首先对反比例函数y =kx (k >0)的增减性来进行说理.如图,当x >0时.在函数图象上任意取两点A 、B ,设A (x 1,k x 1),B (x 2,kx 2),且0<x 1< x 2.下面只需要比较k x 1和kx 2的大小.k x 2—k x 1=k (x 1-x 2) x 1 x 2. ∵0<x 1< x 2,∴x 1-x 2<0,x 1 x 2>0,且 k >0. ∴k (x 1-x 2) x 1 x2<0.即k x 2<kx 1.这说明:x 1< x 2时,k x 1>kx 2.也就是:自变量值增大了,对应的函数值反而变小了.即:当x >0时,y 随x 的增大而减小.同理,当x <0时,y 随x 的增大而减小.(1)试说明:反比例函数y = kx (k >0)的图象关于原点对称.【运用推广】(2)分别写出二次函数y =ax 2 (a >0,a 为常数)的对称性和增减性,并进行说理. 说理:(3)对于二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数),请你从增减性的角度.......,简要解释为何当x =—b2a 时函数取得最小值.27.(9分)(1)在反比例函数y =kx (k >0)的图象上任取一点P (m ,n ),于是:mn =k .那么点P 关于原点的对称点为P 1(-m ,-n ).而(-m )(-n )=mn =k ,(第27题)这说明点P 1也必在这个反比例函数y =kx的图象上.所以反比例函数y = kx (k >0)的图象关于原点对称.…………………………2分(2)对称性:二次函数y =ax 2 (a >0,a 为常数)的图象关于y 轴成轴对称. 增减性:当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小. 理由如下:①在二次函数y =ax 2 (a >0,a 为常数) 的图象上任取一点Q (m ,n ),于是n =am 2. 那么点Q 关于y 轴的对称点Q 1(-m ,n ).而n =a (-m )2,即n =am 2. 这说明点Q 1也必在在二次函数y =ax 2 (a >0,a 为常数) 的图象上. ∴二次函数y =ax 2 (a >0,a 为常数)的图象关于y 轴成轴对称,②在二次函数y =ax 2 (a >0,a 为常数)的图象上任取两点A 、B,设A (m ,am 2), B (n ,an 2) ,且0<m <n . 则an 2-am 2=a (n +m )(n -m ) ∵n >m >0,∴n +m >0,n -m >0; ∵a >0,∴an 2-am 2=a (n +m )(n -m )>0.即an 2>am 2. 而当m <n <0时, n +m <0,n -m >0; ∵a >0,∴an 2-am 2=a (n +m )(n -m )<0.即an 2<am 2.这说明,当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小. ······························································································· 7分 (3)二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数) 的图象可以由y =ax 2的图象通过平 移得到,关于直线x =—b 2a 对称,当x =—b2a 时,y =4ac -b 24a.由(2),当x ≥—b 2a 时,y 随x 增大而增大;也就是说,只要自变量x ≥—b2a ,其对应的函数值y ≥4ac -b 24a ;而当x ≤—b2a 时,y 随x 增大而减小,也就是说,只要自变量x≤—b2a ,其对应的函数值y ≥4ac -b 24a.综上,对于二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数),当x =—b 2a时取得最小值4ac -b 24a.······································································································ 9分鼓楼区2013-2014学年度第二学期调研测试卷九年级数学(一)参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分.)二、填空题(本大题共10小题,每小题2分,共20分.)7.3 8.5 9.x ≠-2 10.1.2×104 11.答案不唯一,如0.5(满足0<r <1或r >9即可)12.22 13. 40 14. 417︰383 15. 21 16.2 三、解答题(本大题共11小题,共88分.)17.(6分)解:原式=2(x +2)(x -2)-12(x -2)········································· 2分=2-x2(x +2)(x -2) ······················································· 4分=-12x +4. ··························································· 6分18.(6分)解:解不等式①,得x >133; ······································································ 2分解不等式②,得x ≤6. ······································································· 4分 所以原不等式组的解集为133<x ≤6. ······················································ 5分它的整数解为5,6. ·········································································· 6分 19.(8分)(1)连接AC ,AC 交BD 于点O . 在正方形ABCD 中,OB =OD ,OA =OC ,AC ⊥BD . ∵BF =DE ,∴OB -BF =OD -DE ,即OF =OE . ∴四边形AECF 是平行四边形. 又∵AC ⊥EF ,∴□AECF 是菱形. ············································································ 4分 (2)∵AB =2,∴AC =BD =AB 2+AD 2=22. ∴OA =OB =BD2=2. ∵BF =1,∴OF =OB -BF =2-1.∴S 四边形AECF =12AC ·EF =12×22×2(2-1)=4-22. ······························ 8分20.(8分)解:所有可能出现的结果如下:······································································································ 5分以上共有6种等可能的结果.其中甲第一位出场的结果有2种,甲比乙先出场的结果有3种. 所以P (甲第一位出场)=26=13. ························································· 7分P (甲比乙先出场)=36=12. ·························································· 8分(注:用树状图列举所有结果参照以上相应步骤给分.) 23.(8分)解:(1)不合理.因为如果1000人全部在金融行业抽取,那么全市城镇非私营单位员工被抽到的机会不相等,样本不具有代表性和广泛性. ···························· 2分 (2)·················································································· 6分 (3)本题答案不惟一,下列解法供参考.用平均数反映月收入情况不合理.由数据可以看出1000名被调查者中有670人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理. ·················································································· 8分 (注:对于(1)(3)两问,学生回答只要合理,应酌情给分.) 24.(8分)人数市城镇非私营单位1 000人月收入统计图以下4000 ~ 6000 6000 ~ 8000以上2000 ~ 4000。
2014年福州市初中数学二检试卷及答案
2014年福州市初中毕业班质量检测 数学试卷参考答案及评分标准一、选择题1.A 2.B 3.C 4.D 5.C 6.D 7.A 8. B 9. B 10.C 二、填空题11.(1)xy y + 12.随机 13.2- 14.x <4 15.94 或182三、解答题16.(1)解:120141(1)3-⎛⎫+- ⎪⎝⎭=431-+ ································································ 6分 =2. ······································································ 7分(2)解:原式=1-2244a a a +-+ ················································ 4分=45a -+, ·························································· 5分 当a =21时,原式=-2+5=3. ········································ 7分 17.(1)证明:∵∠1=∠2,∴12ECA ECA ∠+∠=∠+∠, ························································· 2分 即 ACB DCE ∠=∠. ··································································· 3分 又∵,CA CD BC EC ==, ······························································ 5分 ∴△ABC ≌△DEC . ······························································ 6分 ∴AB DE =. ············································································· 7分 (2)①画图正确2分,1A (4,3),1B (0,3)……………4分;②如图,在Rt △OAB 中, ∵222OB AB OA +=,∴5OA ==.…………………5分∴90551802l ππ⨯==. …………………6分因此点A 所经过的路径长为52π. ·········································· 7分学生体育活动条形统计图18.(1)20;50;如图所示; …………………………………6分 (2)360;………………………8分 (3)列树状图如下:……10分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种. …………………11分∴抽到一男一女的概率P=61122=. ············································ 12分 解法二:列表如下:………10分由列表可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.………………………………11分∴抽到一男一女的概率P=61122=. ············································ 12分 19.解:(1)设购进这种衣服每件需a 元,依题意得: ·············· 1分6020%a a -=, ···························································· 3分 解得:50a =. ······························································· 4分答:购进这种衣服每件需50元. ·································· 5分 (2)设一次函数解析式为y kx b =+,由图像可得: ·················· 6分60407030k b k b +=⎧⎨+=⎩,解得:1k =-,100b =, ··································· 7分 ∴100y x =-+.女男3男2男1女男2男1女男3男1女男3男2男3男2男1∴利润为(50)(100)x x ω=--+ ······························· 8分21505000x x =-+-=2(75)625x --+. ··················································· 9分∵函数2(75)625x ω=--+的图像开口向下,对称轴为直线75x =, ∴当5070x ≤≤时,ω随x 的增大而增大, ······························ 10分 ∴当70x =时,600ω=最大.答:当销售单价定为70元时,商店销售这种衣服的利润最大.…11分 20.解:(1)证明:连接OD . ·················································· 1分 ∵PD 是O 的切线,∴OD ⊥PD .又∵BH ⊥PD ,∴90PDO PHB ∠=∠=︒,……2分 ∴OD ∥BH ,∴ODB DBH ∠=∠.……………………………3分 而OD OB =,∴ODB OBD ∠=∠,……………4分 ∴OBD DBH ∠=∠,∴BD 平分ABH ∠. ……………………………5分 (2)过点O 作OG BC ⊥,G 为垂足,则3BG CG ==, ········································································ 6分 在Rt △OBG 中,OG =22BG OB -=4. ∵90ODH DHG HGO ∠=∠=∠=︒,∴四边形ODHG 是矩形. ···························································· 7分 ∴5,OD GH == 4,DH OG == 8.BH = ·········································· 8分在Rt △DBH 中,BD =······················································· 9分 (3)连接,AD AE ,则,AED ABD ∠=∠ 90ADB ∠=︒.在Rt △ADB 中,AD =. ························································· 10分又∵E 是 AB 的中点,即 AE BE =,∴ADE EDB ∠=∠, ∴△ADE ∽△FDB . ································································· 11分 即DE ADDB FD=,∴40DE FD DB AD ⋅=⋅=. ······································· 12分 21.解:(1)3CE t =-, ·························································· 1分553CQ t =-; ·········································································· 3分(2)当CP CQ =时,得:553t -=t ,解得: t =158;………………………………4分 当QC QP =时(如图1), ∵QE CD ⊥, ∴2CP CE =, ············································································ 5分 即:2(3)t t =-,解得:t =2; ············································································· 6分 当QP CP =时,由勾股定理可得:2224(23)(4)3PQ t t =-+-, ∴224(23)(4)3t t -+-=2t , ······················································· 7分 整理得:2432042250t t -+=, 解得:13t =(舍去),27543t =····················································· 8分 解法二:如图2,当QP CP =时,过点P 作PN CQ ⊥,N 为垂足, 则CN =CQ 21= 21(553t -)∵△CPN ∽△CAD .∴CP CN CA CD =, 即3)355(215t t -=, 解得:7543t =. ······································································ 8分因此当t =158,t =2或7543t =时,以C 、P 、Q 为顶点的三角形为等腰三角形.(3)如图3,过点C 作CF ⊥AB 交AB 于点F ,交PQ 于点H .4(3)7PA DA DP t t =-=--=-.在Rt △BCF 中,由题意得,4BF AB AF =-=.∴CF BF =,∴∠B =45°,…………………9分∴ 7QM MB t ==-, ∴QM PA =. 又∵QM ∥PA ,∴ 四边形AMQP 为平行四边形.∴PQ =AM =t . ········································································· 10分 ∵:1:3PCG CQG S S ∆∆=,且12P C G S PG C H ∆=⋅,12CQG S QG CH ∆=⋅, ∴PG ∶QG =1∶3 . ······························································· 11分 得:31(7)44t t -=, ····························································· 12分 解得:214t =. ····································································· 13分 因此当214t =时,:1:3P C G C Q G S S ∆∆=.22.解:(1)由抛物线2y ax bx c =++经过点A 、B 、C ,可得:30930c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:143a b c =⎧⎪=-⎨⎪=⎩, ············································· 3分 ∴抛物线的解析式为243y x x =-+. ·········································· 4分 (2)解:过点G 作GF x ⊥轴,垂足为F .设点G 坐标为(m ,243m m -+),∵点D (2,1-), ········································································· 5分 又∵B (3,0),C (0,3),∴由勾股定理得:CD=BD=,BC=∵222CD BC BD =+,∴△CBD 是直角三角形,………………………6分 ∴1tan tan 3GAF BCD ∠=∠=. ∵1tan 3GF GAF AF ∠==, ∴ AF =3GF ……7分 即 23(43)1m m m --+=-, 解得:11m =(舍去),383m =. ·············································· 8分 ∴点G 的坐标为(83,59-). ··············································· 9分(3)∵点D 的坐标为(2,1-), ∴△ABD 是等腰直角三角形,∴圆心E 是线段AB 的中点,即E (2,0),半径为1,………10分 设P (1x ,1y )(1<1x <3,10y ≠),M (3,0y ),作PF x ⊥轴,F 为垂足.∵点A 、P 、M 三点在一条直线上, ∴01121y y x =-,即10121y y x =-. ∴0112tan 1y y MEB EBx ∠==-,…… 11分∵AB 为直径, ∴∠APB =90°,∴∠PBA =∠APF , ……………12分∴111tan tan ||x PBA APF y -∠=∠=,……………13分 ∴11112||1tan tan 21||y x MEB PBA x y -∠⋅∠=⋅=-.……………14分 另解:同上,连接PE , ∵ PE =1,PF=|1y |, EF=|1x -2|,在Rt △PEF 中, 根据勾股定理得:2211(2)1x y -+=,即22111(2)x y --=,…………………………………………………12分,∵11tan 3y PBA x ∠=-,………………………………………………13分∴22112211122tan tan (43)1(2)y y MEB PBA x x x ∠⋅∠==--+--=2.……14分 (没有加绝对值或没有分类讨论扣1分)。
南京市鼓楼区中考二模数学试卷含答案
南京市鼓楼区中考二模数学试卷注意事项:本试卷共8页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.下列关于“-1”的说法中,错误的是()A.-1的相反数是1B.-1是最小的负整数C.-1的绝对值是1D.-1是最大的负整数2.16等于A.-4B.4C.±4D.2563.北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言.引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学计数法表示为A.0.4×103 B.0.4×104C.4×103 D.4×1044.计算(-2xy2)4的结果是A.8x4y8 B.-8x4y8 C.16 xy8 D.16 x4y85.如图,图(1)是一枚古代钱币,图(2)是类似图(1)的几何图形,将图(2)中的图形沿一条对称轴折叠得到图(3),关于图(3)描述正确的是A.只是轴对称图形B.只是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形6.将一块长a米,宽b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草.现有从左至右三种设计方案如图所示,种植花草的面积分别为为S1、S2和S3,则它们的大小关系为图(1)图(2)图(3)A .S 3<S 1<S 2B .S 1<S 3<S 2C . S 2<S 1<S 3D .S 1=S 2=S 3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.使式子1x +2有意义的x 的取值范围是 ▲ .8.计算48-27的结果为 ▲ .9.把4x 3-x 分解因式,结果为 ▲ .10.反比例函数y =kx的图像经过点P (3,-2),则k= _____▲_____.11.如图,把等腰直角三角尺的直角顶点放在直尺的一边上,则∠1+∠2= ▲ °.12.不等式组⎩⎪⎨⎪⎧1+x ≥0,x3+1> x+12.的解集为 ▲ .13.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如下表:则此次调查中平均每个红包的钱数的众数为 ▲ 元,中位数为 ▲ 元.14.如图,AB 为⊙O 的直径,弦CD 与AB 交于点E ,连接AD .若∠C =80°,∠CEA =30°,则∠CDA= ▲ °.(第11题) 1215.如图,二次函数y1=ax2+bx+c与函数y2=kx的图像交于点A和原点O,点A的横坐标为-4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是▲ .16.如图①,四边形ABCD中,若AB=AD,CB=CD,则四边形ABCD称为筝形.根据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大致区域,并用阴影表示.三、解答题(本大题共11小题,共88分)17.(10分)(1)解方程1-xx-2=12-x-2;(2)计算a-2a2-1÷ (1a-1-1) .18.(9分)为了了解某校1500名初中生冬季最喜欢的体育活动,该校随机抽取了校内部分学生进行调查,整理样本数据,得到下列统计图.(第14题)(第15题)ABCD图①矩形菱形平行四边形图②四边形正方形(第16题)根据以上信息回答下列问题:(1)共抽取了 ▲ 名校内学生进行调查,扇形图中m 值为 ▲ . (2)通过计算补全直方图.(3)在各个项目被调查的学生中,男女生人数比例如下表:根据这次调查,估计该校初中生中,男生人数是多少?19.(8分)把甲、乙两张形状、大小相同但是画面不同的风景图片都按同样的方式剪成相同的2段,混合洗匀.(1)从这堆图片中随机抽出一张,放回混合洗匀,再抽出一张.则抽出的这两张图片恰好是可以拼成同一张风景图片的概率为 ▲ ;(2)从这堆图片中随机抽出两张,求抽出的这两张图片恰好可以组成甲图片的概率.20.(9分)已知,如图,P A 与⊙O 相切于点A ,过A 作AB ⊥OP ,交⊙O 于点B ,垂足为H . 连接OA 、OB 、PB .(1) 求证:PB 为⊙O 的切线; (2) 若OA =2,PH =4,求OP 的长.21.(8分)在Rt △ABC 中,∠C =90°.BC =3,CA =4,矩形DEFC 的顶点D 、E 、F 都在△ABC的边上.(1)设DE =x ,则AD = ▲ (用含x 的代数式表示); (2) 求矩形DEFC 的最大面积.OPAB H(第20题)AED22.(8分)在某大型游乐场,景点A 、B 、C 依次位于同一直线上(如图),B 处是登高观光电梯的入口.已知A 、C 之间的距离为70米,EB ⊥AC .电梯匀速运行10秒可从B 处到达D 处,此时可观察到景点C ,电梯再次以相同的速度匀速运行30秒可到达E 处,此时可观察到景点A .在D 、E 处分别测得∠BDC =60°,∠BEA =30°.求电梯在上升过程中的运行速度.23.(7分)“郁郁林间桑葚紫,芒芒水面稻苗青”说的就是味甜汁多、酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40% 的价格卖出150kg .到了第三天,他发现剩余的桑葚卖相已不大好,于是果断地以低于进价20%的价格将剩余的全部售出.小李前后一共获利750元,设小李共购进桑葚x kg . (1)根据题意完成表格填空;(用含x 的代数式表示)(2)求x .24.(8分)如图,已知点A 、点B 和直线l .(保留作图痕迹,不写作法) (1)在图(1)中,利用尺规在直线l 上作出点P ,使得∠APB =90°; (2)在图(2)中,利用尺规在直线l 上作出点P ,使得∠CQD =60°.(第22题)CBA EDA BlCDl25.(10分)如图○1,在400米环形跑道上,M 、N 两点相距100米,.甲、乙两人分别从M 、N 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米.甲每跑200米停下来休息10秒钟,乙每跑400米停下来休息20秒钟.甲、乙两人各自跑完800米.设甲出发x 秒时,跑步的路程为y 米.图○2中的折线OABC 表示甲在跑步过程中y (米)与x (秒)之间的部分函数关系.(1)请解释图中点B 的的实际意义;(2)求线段BC 所表示的y 与x 的函数关系式;(3)甲、乙两人在跑步过程中相遇的时间是__________________________秒.2040 6080100120140160180 200220240260 y (米x (秒)O50 (图○2)26. (11分)在□ABCD 中,∠BAD 、∠ABC 、∠BCD 、∠CDA 平分线分别为AG 、BE 、CE 、DG ,BE 与CE 交于点E ,AG 与BE 交于点F ,AG 与DG 交于点G , CE 与DG 交于点H . (1)如图(1),已知AD =2AB ,此时点E 、G 分别在边AD 、BC 上. ①四边形EFGH 是___________;A. 平行四边形B. 矩形C. 菱形D. 正方形 ②请判断EG 与AB 的位置关系和数量关系,并说明理由;(2)如图(2),分别过点E 、G 作EP ∥BC 、GQ ∥BC ,分别交AG 、BE 于点P 、Q ,连结PQ 、EG .求证:四边形EPQG 为菱形;(3)已知AD =n AB (n ≠2),判断EG 与AB 的位置关系和数量关系(直接写出结论).A BCDEFGH 图(1)ABC DE F GHP Q图(2)数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(本大题共10小题,每小题2分,共20分) 7.x ≠-2; 8. 3 9.x (2x +1)(2x -1) 10.-6 11.135 12.20 15.-4<x <-3. 16.三、解答题(本大题共11小题,共88分) 17.(10分)(1)解:方程两边同乘以x -2得:1-x =-1-2(x -2).………………………2分解这个方程,得 x =2 .…………………………………………………………………4分 经检验: x =2是增根,原方程无解.………………………………………5分(2)a -2a 2-1÷ (1a -1-1)=a -2(a +1)(a -1)÷(1a -1-a -1a -1) …………………2分=a -2(a +1)(a -1)·a -12-a……………………4分 =-1a +1 ………………………5分18.(9分)解:(1)200,m =25%.………………………………………………………………4分(2)略 ………………………………………………………………………6分 (3)1500×(20%×14 + 25%×25+40%× 34+15%×45)………………………………………8分=855(人)答:估计该校初中毕业生中,男生人数为855人………………………………………9分16题19.(8分)(1)14………………………………………………………2分(2)画树状图或列表,………………………………………………………6分一共有12种等可能的结果,其中抽出的这两张图片恰好可以组成甲图片的情况有2种,∴抽出的这两张图片恰好可以组成甲图片的概率=212=16……………………………………………………8分20.(9分)∵P A 与⊙O 相切于点A ,∴OA ⊥P A ,……………………………………………………1分 即∠P AO =90°, ∵OP ⊥AB , ∴AH =BH , 即OP 垂直平分AB , ∴P A =PB . 在⊙O 中, OA =OB , ∵OP =OP ,∴△OAP ≌△OBP ,……………………………………………………3分 ∴∠PBO =∠P AO =90°, 即OB ⊥PB . 又∵点B 在⊙O 上,∴PB 为⊙O 的切线.………………………………………………………4分 (2)∵AB ⊥OP , ∴∠AHP =90°, ∴∠APO +∠P AH =90°, 由(1)知∠P AO =90°, ∴∠OAH +∠P AH =90°,∴∠OAH =∠APO ,又∵∠AOH =∠POA ,∴△OAH ∽△OP A ,………………………………………………………5分 ∴OA OP =OHOA,∴OA 2=OH ³OP , ∴22=(OP -4)²OP ………………………………………………………7分OP =2±22,∵OP >0∴OP =2+22………………………………………………………8分21.(8分)(1)43x ………………………………………………………2分(2)矩形DEFC 的面积=(4-43x ) x ……………………………………………………4分=-43x 2+4x=-43(x -32)2+3……………………………………………………6分∵0≤x ≤3∴当x =32时,矩形DEFC 的面积有最大值,最大值是3…………………8分22.(8分)设电梯在上升过程中的运行速度为x m/s . ∵ BE ⊥AC ,∴ ∠ABE =∠CBE =90°. 在Rt △ABE 中,∠ABE =90°,∠BEA =30°, ∴ tan ∠BEA =AB BE ,∴ tan30°=AB BE,∴33=AB 40x ,∴ AB =4033x .……………………………………………………2分 在Rt △BDC 中,∠CBD =90°,∠BDC =60°, ∴ tan ∠BDC =BC BD .∴ tan60°=BC BD.∴ 3=BC10x .∴ BC =103x .……………………………………………………4分∴ AC =AB +BC =4033x +103x =7033x .由题意得AC =70,∴7033x =70.……………………………………………………6分 ∴ x =3.……………………………………………………7分∴ 电梯在上升过程中的运行速度为3m/s .……………………………………………………8分(第22题)CBAED23.(7分)(1)①3000x •(1+40%) ②3000x •(1-20%) ③x -150………………………………………3分(2)根据题意得150•3000x •(1+40%)+(x -150)•3000x •(1-20%)-3000=750,……………………………………………5分或 150•3000x •40%-(x -150)•3000x•20%=750,解得:x =200,………………………………………………………………………………………………………………………………6分 经检验x =200是原方程的解.答:小李共购进桑葚200kg .……………………………………………………………………………7分24.(8分) (1点P 1、P 2为所要作的点.……………………………………………………4分 (2)点Q 1、Q 2为所要作的点.……………………………………………………8分Q 1Q 2CDll25. (10分)(1)点B 实际意义是当甲出发50秒后,所跑路程为200米(且已在此处休息10秒);……………………………………………………2分 (2)设y BC =kx +b (k ≠0);由图像可知:B (50,200),点C 的纵坐标为400,∴ 点C 的横坐标为50+(400-200)÷5=90,即C (90,400).将B (50,200),C (90,400)分别代入y BC =kx +b 得⎩⎨⎧ 50k +b =200, 90k +b =400,解得⎩⎨⎧ k =5, b =-50,∴ y BC =5x -50;……………………………………………………7分(3)120、145、170秒.下方方法供参考……………………………………………………10分26. (11分)(1)①B ;……………………………………………………1分 ②EG ∥AB ,EG =AB .理由:∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,∴ ∠AEB =∠EBG .∵ BE 平分∠ABC ,∴ ∠ABE =∠EBG , ∴ ∠ABE =∠AEB ,∴ AB =AE . 同理,BG =AB ,∴ AE =BG .2040 6080100 120 140 160 180 200 220 240 260 y (米x (秒)O50 A B CDEFGH∵ AE ∥BG ,AE =BG ,∴ 四边形ABGE 是平行四边形.∴ EG ∥AB ,EG =AB . ……………………………………………………5分 (2)证明:分别延长EP 、GQ ,交AB 于点M 、N , 分别延长PE 、QG ,交CD 于点M'、N', ∵ 四边形ABCD 是平行四边形, ∴ AB ∥DC ,又∵ PE ∥BC , ∴ 四边形MBCM'是平行四边形, ∴ MM '=BC ,MB =M'C . ∵ PE ∥BC , ∴ ∠MEB =∠EBC . ∵ BE 平分∠ABC , ∴ ∠ABE =∠EBC , ∴ ∠MEB =∠ABE ,∴ MB =ME .同理,M'E =M'C . ∴ ME =M'E .∴ ME =12MM ',又∵ MM '=BC ,∴ ME =12BC .同理,NG =12BC.∴ ME =NG . ∵ GQ ∥BC , ∴ ∠DAG =∠AGN . ∵ AG 平分∠BAD , ∴ ∠DAG =∠NAG , ∴ ∠NAG =∠AGN , ∴ AN =NG .∵ MB =ME ,AN =NG ,ME =NG , ∴ MB =AN .∴ MB -MN =AN -MN ,即BN =AM .A BCD F EGHP QM N M'N'∵ PE ∥BC , ∴ ∠DAG =∠APM , 又∵ ∠DAG =∠BAG , ∴ ∠APM =∠BAG , ∴ AM =PM .同理,BN =QN . ∴ PM =QN .∵ ME =NG ,PM =QN ,∴ ME -PM =NG -QN ,即PE =QG . ∵ EP ∥BC ,GQ ∥BC , ∴ EP ∥GG . 又∵ PE =QG ,∴ 四边形EPQG 是平行四边形. ∵ AG 、BE 分别平分∠BAD ,∠ABC , ∴ ∠BAG =12∠BAD ,∠ABG =12∠ABC .∴ ∠BAG +∠ABG =12∠BAD +12∠ABC =12×180°=90°,∴∠AFB =90°,即PG ⊥EF .∴ 平行四边形EPQG 是菱形. ……………………………………………………9分 (3)①n >1时,EG ∥AB 且EG =(n -1)AB ; ②n <1时,EG ∥AB 且EG =(1-n )AB ;③n =1时,此四边形不存在.(此种情况不写不扣分)………………………………………11分。
2014数学二模试题及答案
海 淀 区 九 年 级 第 二 学 期 期 末练 习(二模)数学2014.6.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的相反数是 A .16-B .16C .6-D .62.2013年12月2日凌晨,承载了国人登月梦想的“嫦娥三号”在西昌卫星发射中心成功发射.在此次发射任务中,火箭把“嫦娥三号”送入近地点高度约210千米、远地点高度约368000千米的地月转移轨道.数字368000用科学记数法表示为 A .36.8×104B .3.68×106 C .3.68×105D .0.368×1063.如图是某个几何体的三视图,该几何体是A .长方体B .圆锥C .圆柱D .三棱柱4.如图,AB ∥CD ,点E 在CA 的延长线上. 若∠BAE =40°,则∠ACD 的大小为 A .150° B .140° C .130°D .120°5.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷一次骰子,在骰子向上的一面上出现点数大于4的概率为俯视图左视图主视图E DCBAA .16B .13C .12D .236.如图,四边形ABCD 是⊙O 的内接正方形,点P 是CD ⌒上不同于点C 的任意一点,则∠BPC 的大小是 A .45° B .60° C .75° D .90°7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分,全班40,他们的得分情况如下表所示:则全班40名同学的成绩的中位数和众数分别是 A .75,70 B .70,70 C .80,80D .75,808.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点. 一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程. 设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的 A.点M B. 点N C. 点P D. 点Q二、填空题(本题共16分,每小题4分) 9.分解因式:3269bb b -+=___________________.10.请写出一个y 随x 增大而增大的正比例函数表达式,y =______________. 11.在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.PFED CBA12.平面直角坐标系中有一点(1, 1)A ,对点A 进行如下操作:第一步,作点A 关于x 轴的对称点1A , 延长线段1AA 到点2A ,使得122A A =1AA ; 第二步,作点2A 关于y 轴的对称点3A , 延长线段23A A 到点4A ,使得34232A A A A =; 第三步,作点4A 关于x 轴的对称点5A , 延长线段45A A 到点6A ,使得56452A A A A =; ·······则点2A 的坐标为________,点2014A 的坐标为________. 三、解答题(本题共30分,每小题5分) 13.计算:011|π12cos302--+--()()14.解方程组:3,23 1.x y x y +=⎧⎨-=⎩15.如图,在△ABC 与△BAD 中,AD 与BC 相交于点E ,∠C =∠D ,EA=EB . 求证:BC=AD .16.已知22440a ab b -+=,0ab ≠,求222()a ba b a b+⋅--的值. 17. 列方程(组)或不等式(组)解应用题:每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?A18. 如图,一次函数2+=kx y 的图象与反比例函数xy 4=的图象交于点A m (1,),与x 轴交于点B . (1)求一次函数的解析式和点B 的坐标; (2)点C 在x 轴上,连接AC 交反比例函数xy 4=的图象于点P ,且点P 恰为线段AC 的中点.请直接写出点P 和点C 的坐标.四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,点D 、E 分别是边BC 、AC 的中点,过点A 作AF ∥BC 交DE 的延长线于F 点,连接CF . (1)求证:四边形ABDF 是平行四边形;(2)若∠CAF =45°,BC=4,CAF 的面积.20.为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:套餐资费标准小莹选择了该移动公司的一种套餐,下面两个统计图都反映了她的手机消费情况.(1)已知小莹2013年10月套餐外通话费为33.6元,则她选择的上网套餐为套餐(填“一”、“二”或“三”);(2)补全条形统计图,并在图中标明相应的数据;(3)根据2013年后半年每月的消费情况,小莹估计自己每月本地主叫市话通话大约430分钟,发短信大约240条,国内移动数据流量使用量大约为120兆,除此之外不再产生其他费用,则小莹应该选择套餐最划算(填“一”、“二”或“三”);选择该套餐后,她每月的手机消费总额约为元.35%42%11.75%11.25% 86.176.088.184.683.1总额/元月份套餐费用套餐外 通话费套餐外 短信费套餐外数 据流量费2013年后半年每月手机消费总额统计图21.如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD=2∠BAC ,连接CD .过点C 作CE ⊥DB ,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)当BF =5,3sin 5F =时,求BD 的长.22.在数学课上,同学们研究图形的拼接问题.比如:两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形(如图1),也能拼成一个正方形(如图2).图1 图2 (1)现有两个相似的直角三角形纸片,各有一个角为30,恰好可以拼成另一个含有30°角的直角三角形,那么在原来的两个三角形纸片中,较大的与较小的纸片的相似比为,请画出拼接的示意图;(2)现有一个矩形恰好由三个各有一个角为30的直角三角形纸片拼成,请你画出两种不同拼法的示意图.在拼成这个矩形的三角形中,若每种拼法中最小的三角形的斜边长为a ,请直接写出每种拼法中最大三角形的斜边长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的方程:2(1)0x m x m ---=①和2(9)2(1)3x m x m --++=②,其中0m >.(1)求证:方程①总有两个不相等的实数根;(2)设二次函数21(1)y x m x m =---的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),将A 、B 两点按照相同的方式平移后,点A 落在点'(1,3)A 处,点B 落在点'B 处,若点'B 的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下,函数1y ,2y 的图象位于直线3x =左侧的部分与直线y kx =(0k >)交于两点,当向上平移直线y kx =时,交点位置随之变化,若交点间的距离始终不变,则k 的值是________________.A24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a ,b 为常数,且a b <.将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图25.对于半径为r 的⊙P 及一个正方形给出如下定义:若⊙P 上存在到此正方形四条边距离都相等的点,则称⊙P 是该正方形的“等距圆”.如图1,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 的坐标为(2,4),顶点C 、D 在x 轴上,且点C 在点D 的左侧. (1)当r=①在P 1(0,-3),P 2(4,6),P 3(2)中可以成为正方形ABCD 的“等距圆”的圆心的是;②若点P 在直线2y x =-+上,且⊙P 是正方形ABCD 的“等距圆”,则点P 的坐标为; (2)如图2,在正方形ABCD 所在平面直角坐标系xOy 中,正方形EFGH 的顶点F 的坐标为(6,2),顶点E 、H 在y 轴上,且点H 在点E 的上方. ①若⊙P 同时为上述两个正方形的“等距圆”,且与BC 所在直线相切,求⊙P 在y 轴上截得的弦长;②将正方形ABCD 绕着点D 旋转一周,在旋转的过程中,线段HF 上没有一个点能成为它的“等距圆”的圆心,则r 的取值范围是.图1图2AB CAB海淀区九年级第二学期期末测评数学试卷答案及评分参考2014.6 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:011|π12cos302--++-()()122=+-…………………………………………………………4分=1. …………………………………………………………………………………5分14.323 1.x yx y+=⎧⎨-=⎩,①②解:由①3⨯+②得, 510x=.解得, 2x=. …………………………………………………………………………2分把2x=代入①得,1y=. ……………………………………………………………4分∴原方程组的解为2,1.xy=⎧⎨=⎩……….……………………………………………………5分15.证明:在△CAE和△DBE中,,,,C DCEA DEBEA EB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAE≌△DBE.……………………………………………………………………3分∴CE=DE.……………………………………………………………………………4分∵EA= EB,A∴CE +EB=DE+EA .即BC=AD . ……………………………………………………5分 16. 解:∵22440,a ab b -+=2(2)0.a b -=∴ ………………………………………………………………………1分2.a b =∴ ……………………………………………………………………………2分∵0ab ≠, ∴2222()()()()a b a ba b a b a b a b a b ++⋅-=⋅---+2a ba b+=+ ………………………………………………………3分 222b bb b+=+ ………………………………………………………4分 4.3= ……………………………………………………………5分 17. 解:设这份快餐含有x 克的蛋白质. ……………………………………………………1分 根据题意可得:440070%x x +≤⨯,……………………………………………3分 解不等式,得56.x ≤ …………………………………………………………4分 答:这份快餐最多含有56克的蛋白质. …………………………………………5分18.解:(1)A (1)m ,在4y x=的图象上,∴441m ==. …………………………………………………………………………1分 ∴A 点的坐标为(14),.∵A 点在一次函数2+=kx y 的图象上,4 2 .k =+∴ 2 .k =∴2 2.y x =+∴一次函数的解析式为 …………………………………………………2分令0,y =即220x +=,解得1x =-.∴点B 的坐标为(-1,0). ……………………………………………………………3分 (2)点P 的坐标为(2,2);点C 的坐标为(3,0). ………………………………5分 四、解答题(本题共20分,每小题5分)19.(1)证明:∵点D 、E 分别是边BC 、AC 的中点,∴DE ∥AB . ……………………………………………………………………1分 ∵AF ∥BC ,∴四边形ABDF 是平行四边形. ………………………………………………2分(2)解:过点F 作FG ⊥AC 于G 点. ∵BC=4,点D 是边BC 的中点,∴BD=2.由(1)可知四边形ABDF 是平行四边形,∴AF =BD=2. ∵∠CAF =45°,∴AG =. …………………………………………………………………3分 在Rt △FGC 中,∠FGC =90°,,∴=…………………………………………………4分 ∴AC =AG+GC=113.22CAFSAC FG =⋅=⨯= ……………………………………5分 20. 解:(1)二;……………………………………………………………………………1分(2)……………………………………3分(3)三;77. ………………………………………………………………………5分21. 证明:(1)连接OC .∵OA OC =,∴1 2.∠=∠.又∵312,∠=∠+∠∴32 1.∠=∠又∵421∠=∠,∴4 3.∠=∠ ……………………1分 ∴OC ∥DB . ∵CE ⊥DB , ∴OC ⊥CF .又∵OC 为⊙O 的半径,∴CF 为⊙O 的切线. ………………………………………………………2分 (2)连结AD .在Rt △BEF 中,∠BEF =90°, BF =5,3sin 5F =,∴3BE =. ……………………………………………………………………3分 ∵OC ∥BE ,∴FBE △∽FOC △. ∴.FB BEFO OC=A设⊙O 的半径为r ,∴53.5r r =+ ∴152r =. ……………………………………………………………………4分∵AB 为⊙O 直径, ∴15AB =. ∴90ADB ∠=. ∵4EBF ∠=∠, ∴F BAD ∠=∠. ∴3sin sin .5BD BAD F AB ∠=== ∴3.155BD = ∴9BD =.……………………………………………………………………5分22. 解:(1; …………………………………………………………………1分……………………………………………………………2分(2)…………………4分最大三角形的斜边长分别是2a ,2a .………………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)222(1)421(1)m m m m m ∆=-+=++=+,……………………………1分由0m >知必有10m +>,故0∆>.∴方程①总有两个不相等的实数根. ……………………………………………2分 (2)令10y =,依题意可解得(1,0)A -,(,0)B m .∵平移后,点A 落在点'(1,3)A 处,∴平移方式是将点A 向右平移2个单位,再向上平移3个单位得到.∴点(,0)B m 按相同的方式平移后,点'B 为(2,3)m +. ……………………3分 则依题意有2(2)(9)(2)2(1)3m m m m +--+++=. …………………………4分 解得13m =,252m =-(舍负). ∴m 的值为3. ………………………………………………………………………5分(3)32k =. ………………………………………………………………………7分 24.解:(1) …………………………………………………2分(2)连接BF .∵将ABD △沿射线BC 方向平移,得到FCE △,∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC .∵∠ABC=90°,∴四边形ABCF 为矩形.∴AC =BF . ……………………………………3分∵AD BE ⊥,∴EF BE ⊥. …………………………………4分∵AD a =,AC b =,∴EF a =,BF b =.∴BE . ………………………………………………………………5分(3)180α︒-; α . ……………………………………………………………7分 25. 解:(1)①P 2,P 3; ……………………………………………………………………2分 ②P (-4,6)或P (4,-2). …………………………………………………4分 (2)①解:∵⊙P 同时为正方形ABCD 与正方形EFGH 的“等距圆”,∴⊙P 同时过正方形ABCD 的对称中心E 和正方形EFGH 的对称中心I .∴点P 在线段EI 的中垂线上.∵A (2,4),正方形ABCD 的边CD 在x 轴上;F (6,2),正方形EFGH 的边HE 在y 轴上,∴E (0,2),I (3,5)∴∠I EH=45°,设线段EI 的中垂线与y 轴交于点L ,与x 轴交于点M ,∴△LIE 为等腰直角三角形,LI ⊥y 轴,∴L (0,5),∴△LOM 为等腰直角三角形,LO=OM∴M (5,0),∴P 在直线y=-x +5上,∴设P (p ,-p +5)过P 作PQ ⊥直线BC 于Q ,连结PE ,∵⊙P 与BC 所在直线相切,∴PE=PQ ,∴()()222522p p p +-+-=+,解得:15p =+25p =-∴.12(5(5P P +--..……………………………………5分 ∵⊙P 过点E ,且E 点在y 轴上,∴⊙P 在y 轴上截得的弦长为224224-=或.…6分②0r r <<>…………………………………………………8分注:其他解法请参照给分.。
江苏省南京市鼓楼区2014年中考数学一模试卷
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有
22.(8分)(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;
(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC;
(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成
的锐角为β.求四边形ABCD的面积S四边形ABCD.
若OG=2,则EF为▲.
16.将一张长方形纸片按照图示的方式进行折叠:
①翻折纸片,使A与DC边的中点M重合,折痕为EF;
②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;
③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.
根据上述过程,长方形纸片的长宽之比=▲.
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
24.(8分)2014年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.
车型
起步公里数
起步价格
超出起步公里数后的单价
普通燃油型
3
9元+2元(燃油附加费)
2.4元/公里
纯电动型
2.5
9元
2.9元/公里
设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.
南京市鼓楼区2014年中考一模
南京市鼓楼区中考二模数学试卷含答案
南京市鼓楼区中考二模数学试卷注意事项:本试卷共8页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.下列关于“-1”的说法中,错误的是()A.-1的相反数是1B.-1是最小的负整数C.-1的绝对值是1D.-1是最大的负整数2.16等于A.-4B.4C.±4D.2563.北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言.引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学计数法表示为A.0.4×103 B.0.4×104C.4×103 D.4×1044.计算(-2xy2)4的结果是A.8x4y8 B.-8x4y8 C.16 xy8 D.16 x4y85.如图,图(1)是一枚古代钱币,图(2)是类似图(1)的几何图形,将图(2)中的图形沿一条对称轴折叠得到图(3),关于图(3)描述正确的是A.只是轴对称图形B.只是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形6.将一块长a米,宽b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草.现有从左至右三种设计方案如图所示,种植花草的面积分别为为S1、S2和S3,则它们的大小关系为图(1)图(2)图(3)A .S 3<S 1<S 2B .S 1<S 3<S 2C . S 2<S 1<S 3D .S 1=S 2=S 3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.使式子1x +2有意义的x 的取值范围是 ▲ .8.计算48-27的结果为 ▲ .9.把4x 3-x 分解因式,结果为 ▲ .10.反比例函数y =kx的图像经过点P (3,-2),则k= _____▲_____.11.如图,把等腰直角三角尺的直角顶点放在直尺的一边上,则∠1+∠2= ▲ °.12.不等式组⎩⎪⎨⎪⎧1+x ≥0,x3+1> x+12.的解集为 ▲ .13.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如下表:则此次调查中平均每个红包的钱数的众数为 ▲ 元,中位数为 ▲ 元.14.如图,AB 为⊙O 的直径,弦CD 与AB 交于点E ,连接AD .若∠C =80°,∠CEA =30°,则∠CDA= ▲ °.(第11题) 1215.如图,二次函数y1=ax2+bx+c与函数y2=kx的图像交于点A和原点O,点A的横坐标为-4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是▲ .16.如图①,四边形ABCD中,若AB=AD,CB=CD,则四边形ABCD称为筝形.根据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大致区域,并用阴影表示.三、解答题(本大题共11小题,共88分)17.(10分)(1)解方程1-xx-2=12-x-2;(2)计算a-2a2-1÷ (1a-1-1) .18.(9分)为了了解某校1500名初中生冬季最喜欢的体育活动,该校随机抽取了校内部分学生进行调查,整理样本数据,得到下列统计图.(第14题)(第15题)ABCD图①矩形菱形平行四边形图②四边形正方形(第16题)根据以上信息回答下列问题:(1)共抽取了 ▲ 名校内学生进行调查,扇形图中m 值为 ▲ . (2)通过计算补全直方图.(3)在各个项目被调查的学生中,男女生人数比例如下表:根据这次调查,估计该校初中生中,男生人数是多少?19.(8分)把甲、乙两张形状、大小相同但是画面不同的风景图片都按同样的方式剪成相同的2段,混合洗匀.(1)从这堆图片中随机抽出一张,放回混合洗匀,再抽出一张.则抽出的这两张图片恰好是可以拼成同一张风景图片的概率为 ▲ ;(2)从这堆图片中随机抽出两张,求抽出的这两张图片恰好可以组成甲图片的概率.20.(9分)已知,如图,P A 与⊙O 相切于点A ,过A 作AB ⊥OP ,交⊙O 于点B ,垂足为H . 连接OA 、OB 、PB .(1) 求证:PB 为⊙O 的切线; (2) 若OA =2,PH =4,求OP 的长.21.(8分)在Rt △ABC 中,∠C =90°.BC =3,CA =4,矩形DEFC 的顶点D 、E 、F 都在△ABC的边上.(1)设DE =x ,则AD = ▲ (用含x 的代数式表示); (2) 求矩形DEFC 的最大面积.OPAB H(第20题)AED22.(8分)在某大型游乐场,景点A 、B 、C 依次位于同一直线上(如图),B 处是登高观光电梯的入口.已知A 、C 之间的距离为70米,EB ⊥AC .电梯匀速运行10秒可从B 处到达D 处,此时可观察到景点C ,电梯再次以相同的速度匀速运行30秒可到达E 处,此时可观察到景点A .在D 、E 处分别测得∠BDC =60°,∠BEA =30°.求电梯在上升过程中的运行速度.23.(7分)“郁郁林间桑葚紫,芒芒水面稻苗青”说的就是味甜汁多、酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40% 的价格卖出150kg .到了第三天,他发现剩余的桑葚卖相已不大好,于是果断地以低于进价20%的价格将剩余的全部售出.小李前后一共获利750元,设小李共购进桑葚x kg . (1)根据题意完成表格填空;(用含x 的代数式表示)(2)求x .24.(8分)如图,已知点A 、点B 和直线l .(保留作图痕迹,不写作法) (1)在图(1)中,利用尺规在直线l 上作出点P ,使得∠APB =90°; (2)在图(2)中,利用尺规在直线l 上作出点P ,使得∠CQD =60°.(第22题)CBA EDA BlCDl25.(10分)如图○1,在400米环形跑道上,M 、N 两点相距100米,.甲、乙两人分别从M 、N 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米.甲每跑200米停下来休息10秒钟,乙每跑400米停下来休息20秒钟.甲、乙两人各自跑完800米.设甲出发x 秒时,跑步的路程为y 米.图○2中的折线OABC 表示甲在跑步过程中y (米)与x (秒)之间的部分函数关系.(1)请解释图中点B 的的实际意义;(2)求线段BC 所表示的y 与x 的函数关系式;(3)甲、乙两人在跑步过程中相遇的时间是__________________________秒.2040 6080100120140160180 200220240260 y (米x (秒)O50 (图○2)26. (11分)在□ABCD 中,∠BAD 、∠ABC 、∠BCD 、∠CDA 平分线分别为AG 、BE 、CE 、DG ,BE 与CE 交于点E ,AG 与BE 交于点F ,AG 与DG 交于点G , CE 与DG 交于点H . (1)如图(1),已知AD =2AB ,此时点E 、G 分别在边AD 、BC 上. ①四边形EFGH 是___________;A. 平行四边形B. 矩形C. 菱形D. 正方形 ②请判断EG 与AB 的位置关系和数量关系,并说明理由;(2)如图(2),分别过点E 、G 作EP ∥BC 、GQ ∥BC ,分别交AG 、BE 于点P 、Q ,连结PQ 、EG .求证:四边形EPQG 为菱形;(3)已知AD =n AB (n ≠2),判断EG 与AB 的位置关系和数量关系(直接写出结论).A BCDEFGH 图(1)ABC DE F GHP Q图(2)数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(本大题共10小题,每小题2分,共20分) 7.x ≠-2; 8. 3 9.x (2x +1)(2x -1) 10.-6 11.135 12.20 15.-4<x <-3. 16.三、解答题(本大题共11小题,共88分) 17.(10分)(1)解:方程两边同乘以x -2得:1-x =-1-2(x -2).………………………2分解这个方程,得 x =2 .…………………………………………………………………4分 经检验: x =2是增根,原方程无解.………………………………………5分(2)a -2a 2-1÷ (1a -1-1)=a -2(a +1)(a -1)÷(1a -1-a -1a -1) …………………2分=a -2(a +1)(a -1)·a -12-a……………………4分 =-1a +1 ………………………5分18.(9分)解:(1)200,m =25%.………………………………………………………………4分(2)略 ………………………………………………………………………6分 (3)1500×(20%×14 + 25%×25+40%× 34+15%×45)………………………………………8分=855(人)答:估计该校初中毕业生中,男生人数为855人………………………………………9分16题19.(8分)(1)14………………………………………………………2分(2)画树状图或列表,………………………………………………………6分一共有12种等可能的结果,其中抽出的这两张图片恰好可以组成甲图片的情况有2种,∴抽出的这两张图片恰好可以组成甲图片的概率=212=16……………………………………………………8分20.(9分)∵P A 与⊙O 相切于点A ,∴OA ⊥P A ,……………………………………………………1分 即∠P AO =90°, ∵OP ⊥AB , ∴AH =BH , 即OP 垂直平分AB , ∴P A =PB . 在⊙O 中, OA =OB , ∵OP =OP ,∴△OAP ≌△OBP ,……………………………………………………3分 ∴∠PBO =∠P AO =90°, 即OB ⊥PB . 又∵点B 在⊙O 上,∴PB 为⊙O 的切线.………………………………………………………4分 (2)∵AB ⊥OP , ∴∠AHP =90°, ∴∠APO +∠P AH =90°, 由(1)知∠P AO =90°, ∴∠OAH +∠P AH =90°,∴∠OAH =∠APO ,又∵∠AOH =∠POA ,∴△OAH ∽△OP A ,………………………………………………………5分 ∴OA OP =OHOA,∴OA 2=OH ³OP , ∴22=(OP -4)²OP ………………………………………………………7分OP =2±22,∵OP >0∴OP =2+22………………………………………………………8分21.(8分)(1)43x ………………………………………………………2分(2)矩形DEFC 的面积=(4-43x ) x ……………………………………………………4分=-43x 2+4x=-43(x -32)2+3……………………………………………………6分∵0≤x ≤3∴当x =32时,矩形DEFC 的面积有最大值,最大值是3…………………8分22.(8分)设电梯在上升过程中的运行速度为x m/s . ∵ BE ⊥AC ,∴ ∠ABE =∠CBE =90°. 在Rt △ABE 中,∠ABE =90°,∠BEA =30°, ∴ tan ∠BEA =AB BE ,∴ tan30°=AB BE,∴33=AB 40x ,∴ AB =4033x .……………………………………………………2分 在Rt △BDC 中,∠CBD =90°,∠BDC =60°, ∴ tan ∠BDC =BC BD .∴ tan60°=BC BD.∴ 3=BC10x .∴ BC =103x .……………………………………………………4分∴ AC =AB +BC =4033x +103x =7033x .由题意得AC =70,∴7033x =70.……………………………………………………6分 ∴ x =3.……………………………………………………7分∴ 电梯在上升过程中的运行速度为3m/s .……………………………………………………8分(第22题)CBAED23.(7分)(1)①3000x •(1+40%) ②3000x •(1-20%) ③x -150………………………………………3分(2)根据题意得150•3000x •(1+40%)+(x -150)•3000x •(1-20%)-3000=750,……………………………………………5分或 150•3000x •40%-(x -150)•3000x•20%=750,解得:x =200,………………………………………………………………………………………………………………………………6分 经检验x =200是原方程的解.答:小李共购进桑葚200kg .……………………………………………………………………………7分24.(8分) (1点P 1、P 2为所要作的点.……………………………………………………4分 (2)点Q 1、Q 2为所要作的点.……………………………………………………8分Q 1Q 2CDll25. (10分)(1)点B 实际意义是当甲出发50秒后,所跑路程为200米(且已在此处休息10秒);……………………………………………………2分 (2)设y BC =kx +b (k ≠0);由图像可知:B (50,200),点C 的纵坐标为400,∴ 点C 的横坐标为50+(400-200)÷5=90,即C (90,400).将B (50,200),C (90,400)分别代入y BC =kx +b 得⎩⎨⎧ 50k +b =200, 90k +b =400,解得⎩⎨⎧ k =5, b =-50,∴ y BC =5x -50;……………………………………………………7分(3)120、145、170秒.下方方法供参考……………………………………………………10分26. (11分)(1)①B ;……………………………………………………1分 ②EG ∥AB ,EG =AB .理由:∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,∴ ∠AEB =∠EBG .∵ BE 平分∠ABC ,∴ ∠ABE =∠EBG , ∴ ∠ABE =∠AEB ,∴ AB =AE . 同理,BG =AB ,∴ AE =BG .2040 6080100 120 140 160 180 200 220 240 260 y (米x (秒)O50 A B CDEFGH∵ AE ∥BG ,AE =BG ,∴ 四边形ABGE 是平行四边形.∴ EG ∥AB ,EG =AB . ……………………………………………………5分 (2)证明:分别延长EP 、GQ ,交AB 于点M 、N , 分别延长PE 、QG ,交CD 于点M'、N', ∵ 四边形ABCD 是平行四边形, ∴ AB ∥DC ,又∵ PE ∥BC , ∴ 四边形MBCM'是平行四边形, ∴ MM '=BC ,MB =M'C . ∵ PE ∥BC , ∴ ∠MEB =∠EBC . ∵ BE 平分∠ABC , ∴ ∠ABE =∠EBC , ∴ ∠MEB =∠ABE ,∴ MB =ME .同理,M'E =M'C . ∴ ME =M'E .∴ ME =12MM ',又∵ MM '=BC ,∴ ME =12BC .同理,NG =12BC.∴ ME =NG . ∵ GQ ∥BC , ∴ ∠DAG =∠AGN . ∵ AG 平分∠BAD , ∴ ∠DAG =∠NAG , ∴ ∠NAG =∠AGN , ∴ AN =NG .∵ MB =ME ,AN =NG ,ME =NG , ∴ MB =AN .∴ MB -MN =AN -MN ,即BN =AM .A BCD F EGHP QM N M'N'∵ PE ∥BC , ∴ ∠DAG =∠APM , 又∵ ∠DAG =∠BAG , ∴ ∠APM =∠BAG , ∴ AM =PM .同理,BN =QN . ∴ PM =QN .∵ ME =NG ,PM =QN ,∴ ME -PM =NG -QN ,即PE =QG . ∵ EP ∥BC ,GQ ∥BC , ∴ EP ∥GG . 又∵ PE =QG ,∴ 四边形EPQG 是平行四边形. ∵ AG 、BE 分别平分∠BAD ,∠ABC , ∴ ∠BAG =12∠BAD ,∠ABG =12∠ABC .∴ ∠BAG +∠ABG =12∠BAD +12∠ABC =12×180°=90°,∴∠AFB =90°,即PG ⊥EF .∴ 平行四边形EPQG 是菱形. ……………………………………………………9分 (3)①n >1时,EG ∥AB 且EG =(n -1)AB ; ②n <1时,EG ∥AB 且EG =(1-n )AB ;③n =1时,此四边形不存在.(此种情况不写不扣分)………………………………………11分。
2014年南京市联合体数学二模试卷及答案[1]
19.(1)画树状图略……………………………………………………………………4分
所以P(2次摸出的球都是白球)=.………………………………………6分
(2) …………………………………………………………………………………8分
20. (1)从八年级抽取了120名学生…………………………………………………4分
(1)判断BC与⊙O有何位置关系,并说明理由;
(2)若⊙O的半径为4,∠BAC=30°,求图中阴影部分的面积.
25.(8分)提高南京长江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数图像如下.当车流密度不超过20辆/千米,此时车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数;当桥上的车流密度达到200辆/千米,造成堵塞,此时车流速度为0.
(2)①36;②1−1.5小时.…………………………………………………6分
(3)八年级学生课外阅读时间不少于1.5小时的估计有240人…………………8分
21.证明:(1)∵ , 的平分线交 于 ,
∴在△ACD和△AED中
∴△ACD≌△AED………………………………2分
∴AC=AE………………………………………………………………3分
在Rt△ACD中,tan∠CAB= …………1分
在Rt△BCD中,tan∠CBD= …………2分
设CD为x则AD= =x………3分
BD= =x………4分
AB=AD-BD
730=x-x…………5分
x= …………6分
在Rt△BCD中,Sin∠CBD=
2014年江苏省南京市鼓楼区中考数学一模试卷
2014年江苏省南京市鼓楼区中考数学一模试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列方程组中,解是的是()A.B.C.D.2.(2分)计算2×(﹣9)﹣18×(﹣)的结果是()A.24 B.﹣12 C.﹣9 D.63.(2分)利用表格中的数据可求出+(4.123)2﹣的近似值是(结果保留整数)()A.3 B.4 C.5 D.64.(2分)把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A.90°B.84°C.72°D.88°5.(2分)反比例函数y=和正比例函数y=mx的部分图象如图,由此可以得到方程=mx的实数根为()A.x=1 B.x=2 C.x1=1,x2=﹣1 D.x1=1,x2=﹣26.(2分)如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体,下列图形中,是该几何体的表面展开图的是()A.B.C.D.二、填空题(共10小题,每小题2分,满分20分)7.(2分)﹣3的绝对值是.8.(2分)(+)×=.9.(2分)使有意义的x取值范围是.10.(2分)(2×102)2×(3×10﹣2)=(结果用科学记数法表示)11.(2分)已知⊙O1,⊙O2没有公共点,若⊙O1的半径为4,两圆圆心距为5,则⊙O2的半径可以是(写出一个符合条件的值即可)12.(2分)如图,在梯形ABCD中,AB∥CD,∠B=90°,连接AC,∠DAC=∠BAC,若BC=4cm,AD=5cm,则梯形ABCD的周长为cm.13.(2分)如图,在▱ABCD中,∠A=70°,将▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=.14.(2分)某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子的男孩,第二个孩子是女孩,其余类推,由数据,请估计我区两个孩子家庭中男孩与女孩的人数比为:.15.(2分)如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF,若OG=2,则EF为.16.(2分)将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.根据上述过程,长方形纸片的长宽之比=.三、解答题(共11小题,)17.(6分)化简﹣.18.(6分)解不等式并写出不等式组的整数解.19.(8分)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,(1)求证:四边形AECF是菱形;(2)若AB=2,BF=1,求四边形AECF的面积.20.(8分)甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.21.(8分)为了解南京市2012年城镇非私营企业单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查,整理样本数据,得到下列图表:(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;(2)根据这样的调查结果绘制成条形统计图;(3)2012年南京市城镇非私营单位月平均工资为5034,请你结合上述统计数据,谈一谈用平均数反映月收入情况是否合理?22.(8分)(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐.角为β,求四边形ABCD的面积S四边形ABCD23.(8分)如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.24.(8分)2014年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;(2)在如图的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.25.(8分)如图,在▱ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)判断四边形ABED的形状,并说明理由;(2)判断直线DC与⊙O的位置关系,并说明理由;(3)若AB=3,AE=6,求CE的长.26.(11分)问题提出平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时.如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是.如图②,若点D在⊙O内,此时有∠ACB∠ADB;如图③,若点D在⊙O外,此时有∠ACB∠ADB(填“=”、“>”、“<”)由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:.拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB作法:①连接CA、CB②在CB上任取异于B、C的一点D,连接DA,DB;③DA与CB相交于E点,延长AC、BD,交于F点;④连接F、E并延长,交直径AB与M;⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)27.(9分)[课本节选]反比例函数y=(k为常数,k≠0)的图象是双曲线,当k>0时,双曲线两个分支分别在一、三象限,在每一个象限内,随的增大而减小(简称增减性),反比例函数的图象关于原点对称(简称对称性).【尝试说理】我们首先对反比例函数y=(k>0)的增减性来进行说理.如图,当x>0时,在函数图象上如图1任意取两点A、B,设A(x1,),B(x2,),且0<x1<x2.下面只需要比较和的大小.=﹣∵0<x1<x2,∴x1﹣x2<0,x1x2>0,面k>0.∴,即<.这说明:x1<x2时,>.也就是:自变量值增大了,对应的函数值反而变小了.即:当x>0时,y随x的增大而减小.同理:当x<0时,y随x的增大而减小(1)试说明:反比例函数y=(k>0)的图象关于原点对称.【运用推广】(2)分别写出二次函数y=ax2(a>0,a常数)的对称性和增减性,并进行说理.对称性:;增减性:;说理:.(3)对于二次函数y=ax2+bx+c(a>0,a、b、c为常数),请你从增减性的角度,简要解释为何当x=﹣时函数取得最小值.2014年江苏省南京市鼓楼区中考数学一模试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列方程组中,解是的是()A.B.C.D.【分析】根据解方程组,可得方程组的解,可得答案.【解答】解:A、的解是,故A不符合题意;B、的解是,故B不符合题意;C、的解是,故C符合题意;D、的解是,故D不符合题意;故选:C.【点评】本题考查了二元一次方程组的解,分别求出每一个方程组的解,再选出答案.2.(2分)计算2×(﹣9)﹣18×(﹣)的结果是()A.24 B.﹣12 C.﹣9 D.6【分析】原式第一项利用异号两数相乘的法则计算,第二项利用乘法分配律计算即可得到结果.【解答】解:原式=﹣18﹣3+9=﹣12.故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2分)利用表格中的数据可求出+(4.123)2﹣的近似值是(结果保留整数)()A.3 B.4 C.5 D.6【分析】根据表格中的数据求出原式各项的值,即可得到结果的近似值.【解答】解:∵182=324,∴=1.8,∵=4.123,∴(4.123)2=17,∵==13.784,∴原式=1.8+17﹣13.784=5.016≈5.故选:C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2分)把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A.90°B.84°C.72°D.88°【分析】根据正五边形的内角,可得∠I,∠BAI的值,根据正六边形,可得∠ABC 的度数,根据正六边形的对角线,可得∠BAK的度数,根据四边形的内角和公式,可得答案.【解答】解:由正五边形内角,得=108°,由正六边形内角,得,BE平分∠ABC,∠ABK=60°,由四边形的内角和,得∠BKI=360°﹣∠I﹣∠BAI﹣∠ABK=360°﹣108°﹣108°﹣60°=84°.故选:B.【点评】本题考查了多边形的内角与外角,利用了正五边形的内角,正六边形的内角,四边形的内角和公式.5.(2分)反比例函数y=和正比例函数y=mx的部分图象如图,由此可以得到方程=mx的实数根为()A.x=1 B.x=2 C.x1=1,x2=﹣1 D.x1=1,x2=﹣2【分析】由反比例函数y=和正比例函数y=mx相交于点C(1,2),根据反比例函数与正比例函数是中心对称图形,可得另一个交点为:(﹣1,﹣2)继而求得答案.【解答】解:如图,∵反比例函数y=和正比例函数y=mx相交于点C(1,2),∴另一个交点为:(﹣1,﹣2),∴方程=mx的实数根为:x1=1,x2=﹣1.故选:C.【点评】此题考查了反比例函数与一次函数的交点问题.此题难度不大,注意掌握数形结合思想的应用.6.(2分)如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体,下列图形中,是该几何体的表面展开图的是()A.B.C.D.【分析】正方体的侧面展开图共11种,本题要掌握正方体侧面展开图中相邻的面和相对的面.【解答】解:根据题意可得出:正方体向对面上的线段应该平行或在一条直线上.故符合题意的只有:A.故选:A.【点评】此题主要考查了几何体的展开图,由平面图形的折叠及正方体的展开图解题.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.二、填空题(共10小题,每小题2分,满分20分)7.(2分)﹣3的绝对值是3.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.【点评】规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2分)(+)×=5.【分析】根据二次根式的乘法法则运算.【解答】解:原式=+=1+4=5.故答案为5.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.(2分)使有意义的x取值范围是x≠﹣2.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.【点评】本题考查的知识点为:分式有意义,分母不为0.10.(2分)(2×102)2×(3×10﹣2)= 1.2×103(结果用科学记数法表示)【分析】根据积得乘方等于每个因式分别乘方,再把所得的幂相乘,可得幂,根据有理数的乘法运算律,可简便运算,根据科学记数法的表示方法,可得答案.【解答】解:原式=4×104×3×10﹣2=12×(104×10﹣2)=1.2×103,故答案为:1.2×103.【点评】本题考查了单项式乘单项式,先算积的乘方,再算有理数的乘法.11.(2分)已知⊙O1,⊙O2没有公共点,若⊙O1的半径为4,两圆圆心距为5,则⊙O2的半径可以是答案不唯一,如10.(写出一个符合条件的值即可)【分析】由⊙O1,⊙O2没有公共点,可得⊙O1,⊙O2外离或内含,然后由两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系求得答案.【解答】解:∵⊙O1,⊙O2没有公共点,∴⊙O1,⊙O2外离或内含,∵⊙O1的半径为4,两圆圆心距为5,∴若外离,则⊙O2的半径小于5﹣4=1,若内含,则⊙O2的半径大于5+4=9,∴⊙O2的半径可以是10.故答案为:答案不唯一,如10.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是关键.12.(2分)如图,在梯形ABCD中,AB∥CD,∠B=90°,连接AC,∠DAC=∠BAC,若BC=4cm,AD=5cm,则梯形ABCD的周长为22cm.【分析】首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.【解答】解:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8(cm),∴梯形ABCD的周长为:AB+BC+CD+AD=8+4+5+5=22(cm).故答案为:22.【点评】此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(2分)如图,在▱ABCD中,∠A=70°,将▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=40°.【分析】由旋转的性质可知:▱ABCD全等于▱A1BC1D1,所以BC=BC1,所以∠BCC1=∠C1,又因为旋转角∠∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.【解答】解:∵▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,∴BC=BC1,∴∠BCC1=∠C1,∵∠A=70°,∴∠C=∠C1=70°,∴∠BCC1=∠C1,∴∠CBC1=180°﹣2×70°=40°,∴∠ABA1=40°,故答案为:40°.【点评】本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.14.(2分)某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子的男孩,第二个孩子是女孩,其余类推,由数据,请估计我区两个孩子家庭中男孩与女孩的人数比为417:383.【分析】首先计算出400户家庭中男孩与女孩数,可得比例,再利用样本估计总体的方法可得答案.【解答】解:由题意得:男孩总数为:101×2+99+116=417,女孩总数:99+116+84×2=383,我区两个孩子家庭中男孩与女孩的人数比为:417:383,故答案为:417;383.【点评】此题主要考查了利用样本估计总体,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15.(2分)如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF,若OG=2,则EF为.【分析】连结OA,根据垂径定理由OG⊥AC得到AG=CG,在Rt△AOG中,根据勾股定理得AG=,则AC=2AG=2,再根据垂径定理由OE⊥AB,OF⊥BC得到AE=BE,CF=BF,所以EF为△ABC的中位线,则EF=AC=.【解答】解:连结OA,如图,∵OG⊥AC,∴AG=CG,在Rt△AOG中,OG=2,OA=5,∴AG==,∴AC=2AG=2,∵OE⊥AB,OF⊥BC,∴AE=BE,CF=BF,∴EF为△ABC的中位线,∴EF=AC=.故答案为.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和三角形中位线性质.16.(2分)将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.根据上述过程,长方形纸片的长宽之比=.【分析】根据折叠的性质,可知△AEF≌△MEF,△CMG≌△HMG,△BEG≌△HEG,由全等三角形的对应边相等得出AE=ME,CM=HM,CG=HG=BG,由全等三角形的对应角相等及矩形的性质得出∠C=∠MHG=90°,∠B=∠EHG=90°,∠CGM=∠HGM,∠BGE=∠HGE,进而得出∠MGE=90°,然后在Rt△MGE中由勾股定理得出三边关系式,进而求解.【解答】解:由题意,得△AEF≌△MEF,△CMG≌△HMG,△BEG≌△HEG,∴AE=ME,CM=HM,CG=HG=BG,BE=HE,∠C=∠MHG=90°,∠B=∠EHG=90°,∠CGM=∠HGM,∠BGE=∠HGE,∵∠CGM+∠HGM+∠BGE+∠HGE=180°,∴∠HGM+∠HGE=90°,即∠MGE=90°.设CM=DM=x,CG=y,BE=a,则HM=x,HE=a,ME=MH+HE=x+a.∵CD=CM+DM=2x,AB=AE+BE=ME+BE=x+a+a=x+2a,∴2x=x+2a,∴x=2a.在Rt△MGE中,∵∠MGE=90°,∴MG2+GE2=EM2,∴x2+y2+y2+a2=(x+a)2,∴4a2+y2+y2+a2=9a2,∴y2=2a2,∴y2=x2,∴=,∴===.故答案为.【点评】本题考查了矩形的性质,折叠的性质,勾股定理,有一定难度.根据折叠的性质及平角的定义得到∠MGE=90°是解题的关键.三、解答题(共11小题,)17.(6分)化简﹣.【分析】先把原式的分母通分,化为同分母的分数后再相加减.【解答】解:原式=﹣===﹣.【点评】本题考查了分式的加减法,要牢记异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:18.(6分)解不等式并写出不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【解答】解:,解①得:x>,解②得:x≤6,则不等式组的解集是:<x≤6.则不等式组的整数解是:5和6.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.19.(8分)已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,(1)求证:四边形AECF是菱形;(2)若AB=2,BF=1,求四边形AECF的面积.【分析】(1)根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果;(2)根据正方形的边长、对角线,可得直角三角形,根据勾股定理,可得AC、EF的长,根据菱形的面积公式,可得答案.【解答】(1)证明:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABF=∠CBF=∠CDE=∠ADE=45°.∵BF=DE,∴△ABF≌△CBF≌△DCE≌△DAE(SAS).AF=CF=CE=AE∴四边形AECF是菱形;(2)解:在Rt△ABD中,由勾股定理,得BD=,AC=BD=2,EF=BD﹣BF﹣DE=2﹣1﹣1,四边形AECF的面积=AC•EF÷2=2=4﹣2.【点评】本题考查了正方形的性质,(1)先证明四个三角形全等,再证明四边相等的四边形是菱形;(2)先求出菱形的对角线的长,再求出菱形的面积.20.(8分)甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.【分析】(1)由甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,直接利用概率公式求解即可求得答案;(2)利用列举法可得:出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,继而可求得答案.【解答】解:(1)∵甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,∴甲第一位出场的概率为;(2)∵出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,∴甲比乙先出场的情况有:甲乙丙,甲丙乙,丙甲乙,∴甲比乙先出场的概率为:=.【点评】此题考查了列举法求概率的知识.注意用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了解南京市2012年城镇非私营企业单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查,整理样本数据,得到下列图表:(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;(2)根据这样的调查结果绘制成条形统计图;(3)2012年南京市城镇非私营单位月平均工资为5034,请你结合上述统计数据,谈一谈用平均数反映月收入情况是否合理?【分析】(1)抽取的样本应该具有广泛性和随机性;(2)根据各个范围内的频数作出频率分布直方图即可;(3)因收入差别较大,用平均数不太合理.【解答】解:(1)∵金融业人士收入相对其他行业收入较高且抽取不具有随机性,∴这样抽取不合理;(2)(3)因为收入差别比较大,所以用平均数反映月收入情况不合理.【点评】本题考查了频数分布直方图和频率分布表的知识,解题的关键是读懂统计表的知识.22.(8分)(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐.角为β,求四边形ABCD的面积S四边形ABCD【分析】(1)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(2)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(3)过A作AE⊥BD于E,过C作CF⊥BD于F,解直角三角形求出AE、CF,根据三角形面积公式求出即可.【解答】解:(1)如图①,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=60°,AC=4,∴AM=AC×sin60°=4×=2,∵BC=6,∴△ABC的面积S=×BC×AM=×6×2=6;△ABC(2)如图②,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=α,AC=b,∴AM=AC×sinα=b×sinα=bsinα,∵BC=a,=×BC×AM=×a×bsinα=absinα;∴△ABC的面积S△ABC(3)如图3,过A作AE⊥BD于E,过C作CF⊥BD于F,BD=n,OA+OC=m,∵AC、BD夹角为β,∴AE=OA•sinβ,CF=OC•sinβ,∴S=S△ABD+S△BDC四边形ABCD=BD•AE+BD•CF=BD•(AE+CF)=BD•(OA•sinβ+OC•sinβ)=BD•AC•sinβ=mnsinβ.=mnsinβ.即四边形ABCD的面积S四边形ABCD【点评】本题考查了解直角三角形,三角形的面积的应用,此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.23.(8分)如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.【分析】(1)根据所给出的图形可直接得出长方体盒子的长、宽、高;(2)根据图示,可得2(x2+20x)=30×40﹣950,求出x的值,再根据长方体的体积公式列出算式,即可求出答案.【解答】解:(1)长方体盒子的长是:(30﹣2x)cm;长方体盒子的宽是(40﹣2x)÷2=20﹣x(cm)长方体盒子的高是xcm;(2)根据图示,可得2(x2+20x)=30×40﹣950,解得x1=5,x2=﹣25(不合题意,舍去),长方体盒子的体积V=(30﹣2×5)×5×(20﹣5)=20×5×15=1500(cm3).答:此时长方体盒子的体积为1500cm3.【点评】此题考查了一元二次方程的应用,用到的知识点是长方体的表面积和体积公式,关键是根据图形找出等量关系列出方程,要注意把不合题意的解舍去.24.(8分)2014年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;(2)在如图的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.【分析】(1)根据表格中的数值,待定系数法,可得函数解析式;(2)根据描点画函数图象的方法,可得函数图象;(3)根据观察函数图象,纯电动车的图象在下方的区域,可得答案.【解答】解:(1)普通燃油出租车的费用y,纯电动出租车的费用y;(2)在同一个平面直角坐标系中,画出y1、y2关于x的函数图象;(3)观察函数图象,可得y2在下的区域,x<4.1时,乘坐纯电动出租车更合算.【点评】本题考查了一次函数的应用,(1)待定系数法求函数解析式;(2)描点法画函数图象;(3)图象在下的区域.25.(8分)如图,在▱ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)判断四边形ABED的形状,并说明理由;(2)判断直线DC与⊙O的位置关系,并说明理由;(3)若AB=3,AE=6,求CE的长.【分析】(1)四边形ABED为等腰梯形,理由为:利用四边形的外角等于它的内对角得到一对角相等,再由平行四边形的对角相等,利用等量代换得到∠DEC=∠C,利用等角对等边得到DE=DC,而DC=AB,故DE=AB,再由BE与AD平行,DE与AB不平行即可得证;(2)DC与圆O相切,理由:连接DO并延长与圆交于F点,利用圆周角定理及等量代换得到OD与DC垂直,即可得证;(3)由等腰梯形对角线相等得到AE=BD,利用弦切角等于夹弧所对的圆周角,以及公共角相等得到三角形CDE与三角形BCD相似,由相似得比例,即可求出CE的长.【解答】解:(1)四边形ABED为等腰梯形,理由为:∵∠DEC为圆内接四边形ABED的外角,∴∠DEC=∠DAB,∵ABCD为平行四边形,∴∠C=∠DAB,DC=AB,AD∥BC,∴∠DEC=∠C,∴DC=DE,∴AB=DE,∵AD∥BC,DE与AB不平行,∴四边形ABED为等腰梯形;(2)DC与圆O相切,理由为:连接DO并延长,交圆O于点F,连接AF,∵DF为圆的直径,∴∠DAF=90°,即∠DAE+∠EAB+∠BAF=90°,∵∠DAE=∠CDE,∠EAB=∠EDB,∠BAF=∠BDF,∴∠FDC=∠CDE+∠EDB+∠BDF=90°,则DC与圆O相切;(3)∵四边形ABED为等腰梯形,∴AE=DB=6,∵DC与圆O相切,∴∠CDE=∠DBC,∵∠C=∠C,∴△CED∽△CDB,∴=,∵AB=CD=3,DE=3,BD=6,∴=,解得:CE=1.5.【点评】此题考查了切线的判定,平行四边形的性质,等腰梯形的判定与性质,相似三角形的判定与性质,熟练掌握切线的判定是解本题的关键.26.(11分)问题提出平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时.如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是同弧所对的圆周角相等.如图②,若点D在⊙O内,此时有∠ACB<∠ADB;如图③,若点D在⊙O外,此时有∠ACB>∠ADB(填“=”、“>”、“<”)由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:当C、D 在线段AB的同侧且∠ACB=∠ADB时,A、B、C、D四点在同一个圆上.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:当C、D在线段AB的异侧且∠ACB+∠ADB=180°时,A、B、C、D四点在同一个圆上.拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB作法:①连接CA、CB②在CB上任取异于B、C的一点D,连接DA,DB;③DA与CB相交于E点,延长AC、BD,交于F点;④连接F、E并延长,交直径AB与M;⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)【分析】(1)∠ACB=∠ADB的依据是:同弧所对的圆周角相等.利用圆周角定理及三角形的外角性质,即可得到圆外角、圆周角、圆内角三者之间的关系,进而得到四点共圆的判定方法.(2)利用圆周角的度数与所对弧的度数的关系即可得到∠ACB+∠ADB=180°;再结合三角形的外角性质,即可得到点D在圆内、圆外时∠ACB+∠ADB与180°的大小关系,进而得到四点共圆的判定方法.(3)由(2)中的结论可证到:点E、D、B、M在同一个圆上,从而有∠EMD=∠EBD.由∠CND=∠CBD可证到CN∥EM,进而可证到CN⊥AB.【解答】解:(1)①如图①,根据“同弧所对的圆周角相等”得∠ACB=∠ADB.②如图②,延长BD交⊙O于点E,∵∠AEB=∠ACB,∠AEB<∠ADB∴∠ACB<∠ADB.③如图③,连接AF,∵∠AFB=∠ACB,∠AFB>∠ADB∴∠ACB>∠ADB.故答案为:同弧所对的圆周角相等、<、>、当C、D在线段AB的同侧且∠ACB=∠ADB时,A、B、C、D四点在同一个圆上.(2)①如图④,∵与的度数之和等于360°,且∠ADB的度数等于度数的一半,∠ACB的度数等于度数的一半,∴∠ACB+∠ADB=180°.。
2013-2014学年九年级数学鼓楼区一模试题(含答案)
C G B
(第 16 题)
AB 根据上述过程,长方形纸片的长宽之比 = BC 明、证明过程或演算步骤) 2 1 17. (6 分)计算: 2 - . x -4 2x-4
▲
.
三、解答题(本大题共 11 小题,共 88 分.请在答题 卡 指定区域 内作答,解答时应写出文字说 .. . ....
5+3x>18, 18. (6 分)解不等式组x x-2 并写出不等式组的整数解. ≤4- . 2 3 19. (8 分)已知:如图,在正方形 ABCD 中,点 E、F 在对角线 BD 上,且 BF=DE. (1)求证:四边形 AECF 是菱形. (2)若 AB=2,BF=1,求四边形 AECF 的面积.
16. 将一张长方形纸片按照图示的方式进行折叠: ①翻折纸片,使 A 与 DC 边的中点 M 重合,折痕为 EF; ②翻折纸片,使 C 落在 ME 上,点 C 的对应点为 H,折痕为 MG; ③翻折纸片,使 B 落在 ME 上,点 B 的对应点恰与 H 重合,折痕为 GE.
D C ① D F M C ② D F H A B A E B A E G B M C ③ D F H A E M
鼓楼区 2013-2014 学年度第二学期调研测试卷
九年级数学(一)
注意事项: 1.本试卷共 8 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在答题卡上,答 在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将 自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后, 再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项前的字母代号填在答题 卡 相应位置 上) .. . .... x=-5, 1.下列方程组中,解是 的是 y=1 x+y=6, x+y=6, x+y=-4, x+y=-4, A. B. C. D. x-y=4. x-y=-6. x-y=-6. x-y=-4. 1 1 2.计算 2×(-9)-18×( - )的结果是 6 2 A.-24 B.-12 C.-9
2014年中考二模数学试卷及答案
xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。
江苏省南京市2014鼓楼区中考数学二模试卷及答案
(第12题)(第13题)11 900 000个,将这个数用科学记数法表示为 ▲ (保留2个有效数字). 9.在Rt △ABC 中,CD 是斜边AB 上的中线,如果AB =4.8 cm ,那么CD = cm . 10. 化简 a (a -b )2 - b(b -a )2的结果是 ▲ . 11.若某个圆锥底面半径为3,侧面展开图的面积为12π,则这个圆锥的高为 ▲ .12. 如图,把面积分别为9与4的两个等边三角形的部分重叠,若两个阴影部分的面积分别记为S 1与S 2(S 1>S 2),则S 1-S 2= ▲ .13. 如图,将△ABC 绕点A 逆时针方向旋转到△ADE 的位置,点B 落在AC 边上的点D 处,设旋转角为α (0︒<α<90︒).若∠B =125︒,∠E =30︒,则∠α= ▲ °.14.如图,将矩形ABCD 折叠,使得A 点落在CD 上的E 点,折痕为FG ,若AD =15cm ,AB =12cm ,FG =13cm ,则DE 的长度为 ▲ cm .15.根据如图所示的函数图象,可得不等式ax 2+bx +c <kx的解集为 ▲ .16.已知二次函数y =a (x +1)(x -3)的图象与x 轴交于点A ,B ,与y 轴交于点C ,则使△ABC 为等腰三角形的a 的值为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:21 2 - 1 232 + 18. 18.(6分)解方程:5x -4x -2=4x +103x -6-1.19.(8分)根据某市农村居民与城镇居民人均可支配收入的数据绘制如下统计图:2010—2013年 人均可支配收入统计图2010—2013年 城镇居民人均可支配收入年增长率统计图2.93.3 434 5 收入∕万元 农村居民城镇居民1015 增长率(%)8.713.89.111.1(第15题)x -3 2 3y =ax 2+bx +cy =kxy(第14题)FABDCGE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学参考答案及评分标准
说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分. 一、选择题(每小题 2 分,共计 12 分) 题号 答案 1 D 2 B 3 A 1 a-b 4 C 5 A 6 B
二、填空题(每小题 2 分,共计 20 分) 7.7 13.25 8.1.2³107 25 14. 4 9.2.4 10. 11. 7 12.5
-1-
∵BF=CE,∴AB-BF=AC-CE.∴AF=AE. ∴矩形 AFDE 是正方形. …………………………………………………………………8 分 21. (本题 8 分) 1 解: (1) . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·2 分 4 (2)画出树状图或列举正确. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 解:所有可能的结果用树状图表示如下:
3 =- 2…………………………………………………………………………6 分 4 18. (本题 6 分) 5x–4 4x+10 解: = -1 . x–2 3(x–2) 3(5x-4)=4x+10-3(x-2). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 x=2. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 检验:当 x=2 时,3(x-2)=0,所以 x=2 是增根,原方程无解. · · · · · · · · · · · · · · · · · · · · · ·6 分 19. (本题 8 分) (1)图略,………………………………………………………………………………………2 分 农村居民和城镇居民可支配收入分别为 1.6 万元、3.6 万元.……………………… 6 分 (2)2013. ………………………………………………………………………………………8 分 20. (本题 8 分) (1)证明:∵点 D 是边 BC 的中点,DE⊥AC,DF⊥AB, ∴BD=CD,∠DFB=∠DEC=90° . ……………………………………………………2 分 ∵BF=CE,∴Rt△BDF≌Rt△CDE.……………………………………………………3 分 ∴∠B=∠C.∴AB=AC.即△ABC 是等腰三角形.…………………………………4 分 (2)∵∠BAC=90°,DE⊥AC,DF⊥AB, ∴∠BAC=∠DFA=∠DEA=90°. ∴四边形 AFDE 是矩形. …………………………………………………………………6 分 ∵△ABC 是等腰三角形,∴AB=AC.
-3-
A C
3 2
O E B
4 1
D
∵CE⊥DB,∴∠E=90°. ∴∠OCE=90°,即 OC⊥CE.……………………………………………………………4 分 直线 CE 经过半径 OC 的外端点 C,并且垂直于半径 OC,所以直线 CE 与⊙O 相切. …………………………………………………………………………………………………5 分 (2) 连接 BC,∵AB 是直径,∴∠ACB=90°, ∴∠ACB=∠E,BC=3.………………………………………………………………6 分 ∵∠2=∠4,∴△ACB∽△DEC. ……………………………………………………7 分 ∴ AB CB 12 = ,得 EC= . ………………………………………………………………8 分 DC EC 5
-2-
所以 OP 长度的范围为: 3 ≤OP≤2. ………………………………………8 分 24. (本题 8 分) (1)由图象可知:当 1≤x≤40 时,p 是 x 的一次函数,设 p=kx+b,
k=1, ,解得: 40k+b=50, b=10, ∴当 1≤x≤40 时,p=x+10.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·2 分 (2)由图象可知:当 1≤x≤40 时,q 是 x 的一次函数,设 q=k'x+b',
30°
CD' 最短,即为 AD'+D'E 最短. 2Βιβλιοθήκη D' E' M
B
由直线外一点与这条直线上点的所有连线段中,垂线段最短. 可知此时 D'点即为所求. …………………………………………………………………5 分 (3)如图,
将(1,11) 、 (40,50)代入得:
k+b=11,
将(1,79) 、 (40,40)代入得:
k'+b'=79,
40k'+b'=40,
k'=-1, ,解得: b'=80,
∴当 1≤x≤40 时,q=-x+80.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分 由题意可知:当 1≤x≤40 时, y=p (q-20)=(x+10) (-x+80-20)=-(x-25)2+1225. · · · · · · · · · · · · · · · · · · · · · · · · · ·6 分 (3)∴当 x=25 时,y 取得最大值,最大值为 1225. 即这 40 天试销过程中,第 25 天获得的利润最大,最大利润为 1225 元. · · · · · · · ·8 分 25. (本题 8 分) 解: (1)△ABC 为直角三角形.……………………………………………………………1 分 理由如下: ∵CD=AD,∴∠ACD=∠A. 又∵D 为 AB 中点,∴AD=BD,∴CD=BD,∴∠DCB=∠B. ∵∠A+∠ACD+∠DCB+∠B=180°,∴∠ACB=∠ACD+∠DCB=90°, ∴△ABC 为直角三角形..………………………………………………………………… 3 分 (2) 画图正确.………………………………………………………………………………4 分 (3)连接 DM. ∵M 是弦 AE 的中点,D 为圆心,∴DM⊥AE, ∴点 M 在以 AD 为直径的圆上运动.………………………………………………………6 分 在 Rt△ ABC 中, AC=6,BC=8, ∴AB=10, ∴AD=5. ∴点 M 的运动路径长为 5π. …………………………………………………………………8 分 26. (本题 8 分) 解: (1)解:直线 CE 与⊙O 相切.理由如下: 连接 CO、DO. ∵AC=CD,CO=CO,AO=DO, ∴△ACO≌DCO.∴∠1=∠2. ∵CO=DO,∴∠1=∠3. ∴∠2=∠3. ∵∠2=∠4 ∴∠3=∠4.∴CO∥ED.
第一期被淘汰 第二期被淘汰 所有可能出现的结果
乙 甲 丙 丁 甲 乙 丙 丁 甲 丙 乙 丁 甲 丁 乙 丙
(甲,乙) (甲,丙) (甲,丁) (乙,甲) (乙,丙) (乙,丁) (丙,甲) (丙,乙) (丙,丁) (丁,甲) (丁,乙) (丁,丙)
开 始
共有 12 种等可能的结果,其中甲在第二期被淘汰的结果有 3 种, 1 所以 P(甲在第二期被淘汰)= .………………………………………………………6 分 4 1 (3) . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·8 分 4 22.(本题 8 分) 解:设该市 PM2.5 指数平均每年降低的百分率为 x, 根据题意,得 60(1-x)2=48.6. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 解得:x1=0.1,x2=1.9 (不合题意,舍去). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 所以该城市 PM2.5 指数平均每年降低的百分率为 10%. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·6 分 2 由于 48.6³(1-10%) =39.366>38,所以该市不能顺利达成中期目标. · · · · · · · · · · · · · ·8 分 23. (本题 8 分) (1)A(-2,0),B(2,0),C(0,2). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 1 1 (2)由题意得,OP2=x2+y2=x2+(- x2+2) 2= (x2-2) 2+3(-2≤x≤2) · · · · · · ·5 分 2 4 当 x2=2 时,即 x=± 2时, OP2 取得最小值,最小值为 3.即 OP 的最小值为 3 . 当 x=-2、0 或 2 时,OP2 取得最大值,最大值为 4.即 OP 的最大值为 2. …7 分