全国版2019版高考数学一轮复习第3章三角函数解三角形第2讲同角三角函数的基本关系与诱导公式增分练
2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练
2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练1.[xx·洛阳模拟]下列各数中与sinxx°的值最接近的是( ) A.12 B.32 C .-12D .-32答案 C解析 xx°=5×360°+180°+39°, ∴sinxx°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3 答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.[xx·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35 D .-35答案 B解析 tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13答案 C解析 ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( )A.13 B .-13C .-223D.223答案 B解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2x +1的值为( ) A .0 B.95 C.43 D.53答案 B解析 sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.故选B. 7.[xx·福建泉州模拟]已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2答案 A解析 因为1-sin 2α=cos 2α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=12.故选A.8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.答案 35解析 c os(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35.9.[xx·北京东城模拟]已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.答案 -125解析 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213(舍).故tan θ=-125.10.[xx·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________. 答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 1.[xx·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B.2.[xx·新乡模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( )A.35 B.45 C.74D.34答案 D解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2=1+2sin θcos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74 ②,联立①②得,sin θ=34.3.已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-1-cos2+α=-1213.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°. 解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan 945° =-sin120°·cos210°+cos300°·(-sin330°)+tan225° =(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=32×32+12×12+1=2. 5.[xx·南京检测]已知f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α=sin αcos α-sin αsin αsin α=-cos α.(2)因为α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f (α)=-cos α=265.2019年高考数学一轮复习第一章集合与常用逻辑用语 1.3 简单的逻辑联结词、全称量词与存在量词讲义分析解读江苏高考近五年没有考查本部分知识,在复习时主要要理解逻辑联结词“或”“且”“非”的含义,会写含有全称量词与存在量词的命题的否定.五年高考考点一简单的逻辑联结词(xx湖南改编,5,5分)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(填序号).答案②③考点二全称量词与存在量词1.(xx课标Ⅰ改编,3,5分)设命题p:∃n∈N,n2>2n,则¬p为.答案∀n∈N,n2≤2n2.(xx山东,12,5分)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为.答案 13.(xx重庆理改编,2,5分)命题“对任意x∈R,都有x2≥0”的否定为.答案存在x0∈R,使得<04.(xx四川理改编,4,5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则¬p 为.答案∃x∈A,2x∉B三年模拟A组xx模拟·基础题组考点一简单的逻辑联结词1.(苏教选2—1,一,2,变式)若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是.①p且q;②p或q;③ ;④p且q.答案②2.(苏教选2—1,一,2,变式)若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是. 答案p假q假3.(苏教选2—1,一,2,变式)对于命题p、q,若p且q为真命题,则下列四个命题:①p或q是真命题;②p且q是真命题;③p且q是假命题;④p或q是假命题.其中真命题是.答案①③考点二全称量词与存在量词4.(xx江苏南通中学测试)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)5.(xx江苏南京溧水中学质检,2)命题“∀x∈R,x2+2x+5>0”的否定是.答案∃x0∈R,+2x0+5≤06.(xx江苏苏州期中,2)若命题p:∃x∈R,使x2+ax+1<0,则p: .答案∀x∈R,x2+ax+1≥0B组xx模拟·提升题组(满分:30分时间:15分钟)一、填空题(每小题5分,共15分)1.(xx江苏南京师大附中期初调研,8)已知命题p:∃x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是.答案(-∞,1]2.(xx江苏前黄中学第二次学情调研,8)已知下列四个命题,其中真命题的序号是(把所有真命题的序号都填上).(1)命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”;(2)命题“在△ABC中,若A>B,则sin A>sin B”的逆命题为真命题;(3)“f '(x0)=0”是“函数f(x)在x=x0处取得极值”的充分不必要条件;(4)直线y=x+b不能作为函数f(x)=图象的切线.答案(2)(4)3.(xx江苏泰州一模,5)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)二、解答题(共15分)4.(xx江苏盐城期中,15)设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足<0.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.解析(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0,因为a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3.<0等价于(x-2)(x-3)<0,解得2<x<3,即q为真时,实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件等价于q⇒p且p⇒/ q,则有或所以实数a的取值范围是1≤a≤2.C组xx模拟·方法题组方法1 含有逻辑联结词的命题的真假判断1.若命题p:不等式4x+6>0的解集为,命题q:关于x的不等式(x-4)(x-6)<0的解集为{x|4<x<6},则“p且q”“p 或q”“ ”形式的命题中的真命题是.答案p或q,p且q2.分别指出下列各组命题构成的“p∧q”“p∨q”“ ”形式的命题的真假.(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析(1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,p为假命题.方法2 全称(存在性)命题真假的判定3.下列命题中的真命题的个数是.①∃x∈R,使得sin x+cos x=;②∃x∈(-∞,0),2x<3x;③∀x∈(0,π),sin x>cos x.答案04.已知命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.下面结论正确的是.①命题“p∧q”是真命题;②命题“p∧ ”是假命题;③命题“ ∨q”是真命题;④命题“ ∧ ”是假命题.答案④方法3 全称(存在性)命题的否定5.(xx江苏姜堰中学高三期中)命题“∀x∈,sin x>0”的否定是.答案∃x∈,sin x≤06.命题“任意x∈R,|x-2|+|x-4|>3”的否定是.答案存在x∈R,使得|x-2|+|x-4|≤37.判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.解析(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,p:存在一个x∈R,使x2+x+1≠0成立.(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,p:∀x∈R,x2+2x+5≤0.方法4 与逻辑联结词、全称(存在性)命题有关的参数问题8.(xx江苏盐城高三(上)期中)命题“∃x∈R,使x2-ax+1<0”是真命题,则a的取值范围是.答案(-∞,-2)∪(2,+∞)9.已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:4x2+4(m-2)x+1>0恒成立.若p或q为真,p且q为假,求m的取值范围.解析若函数y=x2+mx+1在(-1,+∞)上单调递增,则-≤-1,∴m≥2,即p:m≥2;若4x2+4(m-2)x+1>0恒成立,则Δ=16(m-2)2-16<0,解得1<m<3,即q:1<m<3.因为p或q为真,p且q为假,所以p、q一真一假,当p真q假时,解得m≥3.当p假q真时,解得1<m<2.综上可知,m的取值范围是{m|m≥3或1<m<2}.。
高考数学第一轮章节复习课件 第三章 三角函数 解三角形
【注意】 若角α的终边落在某条直线上,一般要分类讨论.
已知角α的终边在直线3x+4y=0上,求sinα, cosα,tanα的值.
.
解析:tan= 答案:
5.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀 地绕点O旋转,当时间t=0时,点A与钟面上标12的点B
重
合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d
=
,其中t∈[0,60].
解析:∵经过t(s)秒针转了 弧度
d
5. t
, d
t
10 sin
.
2 60
)内的单调性.
知识点
考纲下载
考情上线
函数y= Asin(ωx +φ)的图 象
1.考查图象的变换和 1.了解函数y=Asin(ωx+φ)
解析式的确定,以 的
及通过图象描绘, 物理意义;能画出y=
观察讨论有关性质. Asin(ωx+φ)的图象,了解
2.以三角函数为载体, 参数A、ω、φ对函数图象
考查数形结合的思想. 变化的影响.
当且仅当α= ,即α=2时取等号, 此时 故当半径r=1 cm,圆心角为2弧度时,扇形面积最大, 其最大值为1 cm2.
法二:设扇形的圆心角为α(0<α<2π),半径为r,面积为S,
则扇形的弧长为rα,由题意有:2r+rα=4⇒α=
×r2=2r-r2=-(r-1)2+1,
∴当r=1(cm)时,S有最大值1(cm2),
为余弦线
有向线段 AT 为正切线
高考一轮复习第3章三角函数解三角形第2讲同角三角函数的基本关系式与诱导公式
第二讲 同角三角函数的基本关系式与诱导公式知识梳理·双基自测 知识梳理知识点一 同角三角函数的基本关系式 (1)平方关系: sin 2x +cos 2x =1 . (2)商数关系: sin xcos x =tan x .知识点二 三角函数的诱导公式重要结论1.同角三角函数基本关系式的变形应用:如sin x =tan x·cos x,tan 2x +1=1cos 2x,(sinx +cos x)2=1+2sin xcos x 等.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k·π2+α(k∈Z)中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k·π2+α(k∈Z)中,将α看成锐角时k·π2+α(k∈Z)所在的象限.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × )(2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin (π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin (kπ-α)=13(k ∈Z),则sin α=13.( × )[解析] (1)根据同角三角函数的基本关系式知当α,β为同角时才正确.(2)cos α≠0时才成立.(3)根据诱导公式知α为任意角.(4)当k 为奇数和偶数时,sin α的值不同.题组二 走进教材2.(必修4P 22B 组T3改编)已知tan α=12,则sin α-cos α3sin α+2cos α=( A )A .-17B .17C .-7D .7[解析] sin α-cos α3sin α+2cos α=tan α-13tan α+2=12-13×12+2=-17.故选A.3.(必修4P 22B 组T2改编)化简cos α1-sin α1+sin α+sin α1-co s α1+cos α⎝⎛⎭⎪⎫π<α<3π2得( A )A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α[解析] 原式=cos α1-sin α2cos 2α+sin α1-cos α2sin 2α,∵π<α<32π,∴cos α<0,sin α<0.∴原式=-(1-sin α)-(1-cos α)=sin α+cos α-2.4.(必修4P 29B 组T2改编)若sin(π+α)=-12,则sin(7π-α)= 12 ,cos ⎝ ⎛⎭⎪⎫α+3π2= 12 . [解析] 由sin(π+α)=-12,得sin α=12,则sin(7π-α)=sin(π-α)=sin α=12,cos ⎝ ⎛⎭⎪⎫α+3π2=cos ⎝ ⎛⎭⎪⎫α+3π2-2π=cos ⎝ ⎛⎭⎪⎫α-π2 =cos ⎝ ⎛⎭⎪⎫π2-α=sin α=12.题组三 走向高考5.(2019·全国卷Ⅰ)tan 255°=( D )A .-2- 3B .-2+ 3C .2- 3D .2+ 3[解析] 由正切函数的周期性可知,tan 255°=tan(180°+75°)=tan 75°=tan(30°+45°)=33+11-33=2+3,故选D.另:tan 225°=tan 75°>tan 60°=3,∴选D.6.(2015·福建)若sin α=-513,且α为第四象限角,则tan α的值等于( D )A.125B .-125C .512D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.7.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( A )A .-79B .-29C .29D .79[解析] 将sin α-cos α=43的两边进行平方,得sin 2α-2sin αcos α+cos 2α=169,即sin 2α=-79,故选A.考点突破·互动探究考点一 同角三角函数的基本关系式——师生共研 例1 (1)已知α为第三象限角,cos α=-817,则tan α=( D )A .-815B .815C .-158D .158(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 -5 .(3)若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 -3 .[解析] (1)因为α是第三象限角,cos α=-817,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-8172=-1517,故tan α=sin αcos α=158.选D.(2)由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. (3)由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-c os α+2sin α-sin α=-1-2=-3.名师点拨(1)已知一个角的三角函数值求这个角的其他三角函数值时,主要是利用公式sin 2α+cos 2α=1,tan α=sin αcos α求解,解题时,要注意角所在的象限.并由此确定根号前的正、负号,若不能确定角所在象限要分类讨论.(2)遇sin α,cos α的齐次式常“弦化切”,如:asin α+bcos αcsin α+dcos α=atan α+b ctan α+d ;sin αcos α=sin αcos α1=sin αcos αsin 2α+cos 2α=tan α1+tan 2α; sin 2α+sin αcos α-2cos 2α=sin 2α+sin αcos α-2cos 2αsin 2α+cos 2α=tan 2α+tan α-21+tan 2α. 〔变式训练1〕(1)若α是第二象限角,tan α=-512,则sin α=( C )A.15 B .-15C .513D .-513(2)已知α是第二象限角,化简1-cos 4α-sin 4α1-cos 6α-sin 6α= 23. (3)(2017·全国卷Ⅰ)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4= 31010 .[解析] (1)∵tan α=-512,∴sin αcos α=-512.∵sin 2α+cos 2α=1,∴sin 2α+⎝ ⎛⎭⎪⎫-125sin α2=1,∴sin α=±513.又α为第二象限角,∴sin α=513,故选C.(2)解法一:原式=1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α =sin 2α1+cos 2α-sin 2αsin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α-sin 2α =2cos 2α3cos 2α=23. 解法二:∵1-cos 4α-sin 4α=1-(cos 2α+sin 2α)2+2sin 2αcos 2α=2sin 2αcos 2α, ∴原式=2sin 2αcos 2α1-cos 2α+sin 2αcos 4α-cos 2αsin 2α+sin 4α =2sin 2αcos 2α1-cos 4α-sin 4α+cos 2αsin 2α =2sin 2αcos 2α3sin 2αcos 2α=23. (3)由tan α=2得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=55,sin α=255.因为cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4, 所以cos ⎝ ⎛⎭⎪⎫α-π4=55×22+255×22=31010. 考点二 诱导公式及其应用——多维探究 角度1 利用诱导公式化简三角函数式例2 (1)化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 22π-αcos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α= -1sin α .(2)化简1-2sin 10°sin 100°cos 80°-1-sin 2170°= -1 . [解析] (1)原式=cos α-cos αtan 2αsin α-sin α-sin α=-cos 2α·sin 2αcos 2αsin 3α=-1sin α. (2)∵cos 10°>sin10°,∴原式=1-2sin 10°cos 10°sin 10°-cos 10°=sin 210°-2sin 10°cos 10°+cos 210°sin 10°-cos 10°=|sin 10°-cos 10°|sin 10°-cos 10°=cos 10°-sin 10°-cos 10°-sin 10°=-1.角度2 “换元法”的应用例3 已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是 0 .[解析] 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a.sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 名师点拨(1)诱导公式的两个应用方向与原则:①求值:化角的原则与方向:负化正,大化小,化到锐角为终了. ②化简:化简的原则与方向:统一角,统一名,同角名少为终了.(2)注意已知中角与所求式子中角隐含的互余、互补关系、巧用诱导公式解题,常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,互补关系有π3+α与2π3-α;π4+α与3π4-α等.〔变式训练2〕(1)(角度1)已知f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α.①化简f(α);②若α是第三象限的角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f(α)的值. (2)(角度2)(2021·唐山模拟)已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α= -74 ,cos ⎝⎛⎭⎪⎫α-π4= 34 .[解析] (1)①f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α=-sin α·cos α·-cos α-cos α·sin α=-cos α.②因为cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α,所以sin α=-15. 又α是第三角限的角, 所以cos α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f(α)=265.(2)sin ⎝⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+α, 因为α为钝角, 所以34π<π4+α<54π,所以cos ⎝ ⎛⎭⎪⎫π4+α<0.所以cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74.cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34.名师讲坛·素养提升sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系例4 (2021·北京东城模拟)已知sin θ+cos θ=713,θ∈(0,π),则tan θ= -125. [解析] 解法一:因为sin θ+cos θ=713,θ∈(0,π)所以(sin θ+cos θ)2=1+2sin θcos θ=49169,sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.因为θ∈(0,π),所以sin θ>0.所以sin θ=1213,cos θ=-513,tan θ=sin θcos θ=-125.解法二:同解法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169,弦化切,得 tan θtan 2θ+1=-60169,解得tan θ=-125或tan θ=-512. 又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0.∴θ∈⎝ ⎛⎭⎪⎫π2,π,且sin θ>|cos θ|,∴⎪⎪⎪⎪⎪⎪sin θcos θ=|tan θ|>1,∴tan θ=-125.解法三:解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1.得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213.(舍去)故tan θ=-125.名师点拨sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系为(sin x +cos x)2=1+2sin xcos x ,(sin x -cos x)2=1-2sin xcos x ,(sin x +cos x)2+(sin x -cos x)2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值. 〔变式训练3〕(1)(2021·山东师大附中模拟)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( C ) A.75 B .725 C .257D .2425(2)若1sin α+1cos α=3,则s in αcos α=( A )A .-13B .13C .-13或1D .13或-1 [解析] (1)解法一:∵sin α+cos α=15,∴(sin α+cos α)2=125,∴sin αcos α=-1225,又α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin α<0,cos α>0,∴cos α-sin α=sin α-cos α2=1-2sin αcos α=75.∴1cos 2α-sin 2α=1cos α-sin αcos α+sin α=257,故选C. 解法二:由解法一知⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=-75,得⎩⎪⎨⎪⎧cos α=45,sin α=-35.∴tan α=sin αcos α=-34.∴1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=1+tan 2α1-tan 2α =1+9161-916=257,故选C.(2)由1sin α+1cos α=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcosα=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1,故选A.。
2019版高考数学一轮复习第3章三角函数解三角形3.2同角三角函数的基本关系及诱导公式习题课件理
5.(2017·郑州期末) 1-s2insi4n01°0°c1o+s1c0o°s+80s°in10°的值为 ()
12 A.2 B. 2 C. 2 D. 3 解析 1-s2insi4n01°0°c1o+s1c0o°s+80s°in10°=
2 cos1s0in°-40s°i·n120c°o+s4s0i°n10°= 2cossi1n08°0°= 22.故选 B.
8.cos21°+cos22°+cos23°+…+cos290°=( ) A.90 B.45 C.44.5 D.44
解 析 原 式 = (cos21°+ cos289°) + (cos22°+ cos288°)
+…+(cos244°+cos246°)+cos245°+cos290°
= (cos21°+ sin21°) + (cos22°+ sin22°) + … + (cos244°+
10.已知 3cos2α+4sinαcosα+1=0,则sinsi2nα4-α-sincoαsc4oαsα =( )
A.-2 B.2 C.-12 D.12
解析 ∵3cos2α+4sinαcosα+1=0,
∴4cos2α+4sinαcosα+sin2α=0,
∴(sinα+2cosα)2=0,∴tanα=-2.
4.(2017·化德县校级期末)设 cos(-80°)=m,那么
tan100°等于( )
1-m2 A. m
B.-
1-m2 m
m C. 1-m2
D.-
m 1-m2
解析 ∵cos(-80°)=m, ∴cos80°=m,sin80°= 1-cos280°= 1-m2. ∴tan100°=-tan80°=- 1-m m2.故选 B.
sin4α-cos4α sinαsinα-cosα
全国近年高考数学一轮复习第3章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式增分练(20
(全国版)2019版高考数学一轮复习第3章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第3章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式增分练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第3章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式增分练的全部内容。
第2讲同角三角函数的基本关系与诱导公式板块四模拟演练·提能增分[A级基础达标]1.[2018·洛阳模拟]下列各数中与sin2019°的值最接近的是()A。
错误!B。
错误!C.-错误!D.-错误!答案C解析2019°=5×360°+180°+39°,∴sin2019°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-错误!cos(2π-θ),|θ|<错误!,则θ等于( )A.-错误!B.-错误!C.错误!D。
错误!答案D解析∵si n(π+θ)=-错误!cos(2π-θ),∴-sinθ=-错误!cosθ,∴tanθ=错误!.∵|θ|<错误!,∴θ=错误!。
3.[2018·华师附中月考]已知tan(α-π)=错误!,且α∈错误!,则sin错误!=()A。
错误!B.-错误!C。
错误!D.-错误!答案B解析tan(α-π)=错误!⇒tanα=错误!。
又因为α∈错误!,所以α为第三象限的角,所以sin错误!=cosα=-错误!.4.已知f(α)=错误!,则f错误!的值为( )A.错误!B.-错误!C.-错误!D。
高考数学复习第3章三角函数与解三角形第2讲同角三角函数的基本关系式与诱导公式
考向 3 证明
例 4:求证:tatannαα-·ssininαα=tatannαα+·ssininαα.
证明:方法一,右边= tan
tan2α-sin2α α-sin α·tan αsin
α
=tantaαn-2α-sintaαn2·αtacnosα2sαin
α=tan
tan2α1-cos2α α-sin α·tan αsin
10°cos 10° 1-cos210°.
解:原式= csoisn1100°°--|scions1100°°|2=
|sin cos
10°-cos 10°-sin
10°|=cos 10° cos
10°-sin 10°-sin
1100°°=1.
【规律方法】化简三角函数式应看清式子的结构特征并作 有目的的变形,注意“1”的代换、乘法公式、切化弦等变形技巧, 对于有平方根的式子,去掉根号的同时加绝对值号再化简.
答案:C
【规律方法】已知sin α,cos α,tan α三个三角函数值中的 一个,就可以求另外两个.但在利用平方关系开方时,符号的选 择要看α属于哪个象限,这是易出错的地方,应引起重视.而当 角α的象限不确定时,则需分象限讨论,不要遗漏终边在坐标轴 上的情况.
考向 2 化简
例
3:化简:cos11-0°2-sin
考点 2 同角三角函数基本关系式 考向 1 三角函数求值 例 2:(1)(2019 年新课标Ⅱ)已知 α∈0,π2,2sin 2α=cos 2α +1,则 sin α=( )
1
5
A.5
B. 5
3 C. 3
25 D. 5
解析:2sin 2α=cos 2α+1,即4sin αcos α=2cos2α, 则 2sin α=cos α, 联立2sisnin2αα+=ccoos2sαα=,1 ,得 sin α=± 55, 又 α∈0,π2,∴sin α= 55. 答案:B
高考数学一轮复习 第3章 三角函数、解三角形 热点探究课2 三角函数与解三角形中的高考热点问题教师用
热点探究课(二) 三角函数与解三角形中的高考热点问题[命题解读] 从近五年全国卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图像与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 三角函数的图像与性质(答题模板)要进行五点法作图、图像变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.(本小题满分12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图像向右平移π6个单位长度,得到函数g (x )的图像,求函数g (x )在区间[0,π]上的最大值和最小值. 【导学号:66482187】[思路点拨] 1.先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期.2.先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值.[规X 解答] (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π3,5分 于是T =2π1=2π. 6分 (2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫x +π6. 8分 ∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,10分 ∴g (x )=2sin ⎝⎛⎭⎪⎫x +π6∈[-1,2]. 11分故函数g (x )在区间[0,π]上的最大值为2,最小值为-1. 12分[答题模板] 解决三角函数图像与性质的综合问题的一般步骤为:第一步(化简):将f (x )化为a sin x +b cos x 的形式.第二步(用辅助角公式):构造f (x )=a 2+b 2·⎝ ⎛⎭⎪⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2. 第三步(求性质):利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质.第四步(反思):反思回顾,查看关键点、易错点和答题规X .[温馨提示] 1.在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2 sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.2.求g (x )的最值一定要重视定义域,可以结合三角函数图像进行求解.[对点训练1] (2016·某某模拟)已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2. (1)求f (x )的解析式; (2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.[解] (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π. 2分又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),4分所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝⎛⎭⎪⎫πx +π6(k ∈Z ). 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫πx +π6. 5分 (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ). 7分 由214≤k +13≤234,解得5912≤k ≤6512,9分 又k ∈Z ,知k =5,10分由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163. 12分热点2 解三角形从近几年全国卷来看,高考命题强化了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD , S △ADC =12AC ·AD sin ∠CAD . 2分因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理,得sin B sin C =AC AB =12. 5分 (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 7分在△ABD 和△ADC 中,由余弦定理,知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 9分故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1),知AB =2AC ,所以AC =1. 12分[规律方法] 解三角形问题要关注正弦定理、余弦定理、三角形内角和定理、三角形面积公式,要适时、适度进行“角化边”或“边化角”,要抓住能用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则两个定理都有可能用到.[对点训练2] (2016·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值. [解] (1)在△ABC 中,由a sin A =bsin B, 可得a sin B =b sin A .2分又由a sin2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,所以cos B =32,得B =π6. 5分 (2)由cos A =13,可得sin A =223,则 sin C =sin[π-(A +B )]=sin(A +B )=sin ⎝⎛⎭⎪⎫A +π6 =32sin A +12cos A =26+16. 12分 热点3 三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.(2017·东北三省四市一联)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b =cos C c . (1)求ab 的值;(2)若角A 是钝角,且c =3,求b 的取值X 围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,2分 ∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ).∴sin(B +C )=2sin(A +C ).∵A +B +C =π,∴sin A =2sin B ,∴ab=2. 5分 (2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b<0, ∴b > 3. ①7分∵b +c >a ,即b +3>2b ,∴b <3, ②由①②得b 的X 围是(3,3). 12分[规律方法] 1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练3] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2Asin 2A +cos 2A 的值;(2)若B =π4,a =3,求△ABC 的面积.【导学号:66482188】 [解] (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A2tan A +1=25. 5分(2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 7分由a =3,B =π4及正弦定理a sin A =bsin B ,得b =3 5. 9分 由sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9. 12分。
2019版高考数学理全国一轮复习课件:3-2同角三角函数的基本关系及诱导公式 精品
【教材母题变式】 1.已知sin α= , ≤α≤π,则tan α= A.-2 B.2 C. D.-
(
)
5 5
2 1 2 1 2
【解析】选D.因为cos α= 所以tan α=
- 1 sin 2
sin 1 =- . cos 2
5 2 2 5 - 1-( ) - , 5 5
2.化简 【解析】
(2)sin21°+sin22°+…+sin289°=________. 世纪金榜导学号12560090 (3)已知tan α=2,求 的值.
sin 4cos 5sin 2cos
【解析】(1)选B.由cos α=k,k∈R,α∈ ,可知 k<0,设角α终边上一点P(k,y)(y>0),OP=1,所以 =1,得y= ,由三角函数定义可知sin α=
1 2
1 2
1 2
1 2
tan 4 24 1 . 5tan 2 5 2 2 6
【答题模板微课】——整体代换法在化简求值中的模 板化过程,本例(3)的求解过程可模板化为: 建模板:“ ” ………原式变形 (分子、分母同除以cos α)
sin 4cos tan 4 5sin 2cos 5tan 2
【解析】因为 ……………………………………… 原式变形 sin x 3cos x 又因为tan x= ,所以原式= ……………………………………… 整体代换 2sin x 3cos x 即原式= 答案:-
tan x 3 2tan x 3
……………化简求值
1 3
1 3 3 1 2 3 3
【解析】sin 2 490°= sin(7×360°-30°)= -sin 30°=- . 答案:-
2019届高三数学一轮复习三角函数与解三角形:第二讲 同角三角函数 含解析 精品
第二讲 同角三角函数【基础扫描】同角三角函数的基本关系(1)平方关系:同一个角α的正弦、余弦的平方和等于1,即sin 2α+cos 2α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即sin αcos α=tan_α⎝ ⎛⎭⎪⎫其中α≠k π+π2(k ∈Z ). 【知识运用】考点一:利用同角三角函数求值【例1】(1)已知sin α=1213,并且α是第二象限角,求cos α和tan α.(2)已知tan α=43,且α是第三象限角,求sin α,cos α的值.【变1】1.已知α是第二象限角,sin α=513,则cos α=( )A . -1213 B .-513 C.513 D.2132.已知tan α=34,α∈⎝ ⎛⎭⎪⎫π,3π2,则cos α=( )A .±45 B.45 C .-45 D.35 3.若cos α=-45,α是第三象限角,则sin α=________,tan α=________.考点二:弦的齐次问题【例2】已知tan α=3,求下列各式的值.① 4sin α-cos α3sin α+5cos α;②sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α;③34sin 2a +12cos 2α.【变2】1.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α.2.已知tan α=2,求4sin 2α-3sin αcos α-5cos 2α的值.考点三: sin θ±cos θ与sin θcos θ关系的应用【例3】已知sin α+cos α=-13,0<α<π.(1)求sin αcos α的值;(2)求sin α-cos α的值.【变3】1.(1)若sin θ-cos θ=2,则tan θ+1tan θ=________. (2)已知sin αcos α=18,且π4<α<π2,则cos α-sin α=________.2.若cos α+2sin α=-5,则tan α=( )A.12 B .2 C .-12D .-2 3..已知0<θ<π,且sin θ-cos θ=15,求sin θ+cos θ,tan θ的值.【强化练习】 一、单选题1.设0,2πθ⎛⎫∈ ⎪⎝⎭,若1sin 3θ=,则cos θ=( ) A. 3 B. 232.已知错误!未找到引用源。
高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系及诱导公式创新教学案(含
第2讲 同角三角函数的基本关系及诱导公式[考纲解读] 1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α,并能熟练应用同角三角函数关系进行化简求值.(重点)2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式,理解“奇变偶不变,符号看象限〞的含义,并能利用诱导公式进行化简.(重点、难点) [考向预测] 从近三年高考情况来看,本讲内容在高考中一般不单独命题,但它是三角函数的基础.预测2021年高考将以诱导公式为基础内容,结合同角三角函数关系式及三角恒等变换进行考查,试题以客观题为主,难度小,具有一定的技巧性.对应学生用书P0631.同角三角函数的基本关系(1)平方关系:01 sin 2α+cos 2α=1.(2)商数关系:02 sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式一 二三四五 六 角2k π+α(k ∈Z )π+α-απ-απ2-α π2+α 正弦sin α01 -sin α 02 -sin α 03sin α 04cos α 05 cos α 余弦cos α06 -cos α07cos α 08 -cos α 09sin α10 -sin α正切tan α11 tan α12 -tan α13 -tan α ——口诀 函数名不变,符号看象限函数名改变,符号看象限1.概念辨析(1)对任意α,β∈R ,有sin 2α+cos 2β=1.( ) (2)假设α∈R ,那么tan α=sin αcos α恒成立.( )(3)(sin α±cos α)2=1±2sin αcos α.( )(4)sin(π+α)=-sin α成立的条件是α为锐角.( ) 答案 (1)× (2)× (3)√ (4)× 2.小题热身 (1)假设sin α=55,π2<α<π,那么tan α=________. 答案 -12解析 因为sin α=55,π2<α<π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎪⎫552=-255, 所以tan α=sin αcos α=-12.(2)化简:cos 2α-1sin αtan α=________.答案 -cos α解析 原式=-sin 2αsin α·sin αcos α=-cos α.(3)sin 2490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.答案 -12-12解析 sin2490°=sin(7×360°-30°)=-sin30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝⎛⎭⎪⎫π+π3 =-cos π3=-12.(4)sin ⎝⎛⎭⎪⎫π2+α=35,α∈⎝ ⎛⎭⎪⎫0,π2,那么sin(π+α)=________.答案 -45解析 因为sin ⎝⎛⎭⎪⎫π2+α=cos α=35,α∈⎝⎛⎭⎪⎫0,π2,所以sin α=1-cos 2α=45,所以sin(π+α)=-sin α=-45.对应学生用书P063题型 一 同角三角函数关系式的应用角度1 化简与求值1.(2019·某某模拟)角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3),那么cos α=( )A.12 B .-12C.32D .-32答案 A解析 由任意角三角函数的定义得tan α=32sin α,即sin αcos α=32sin α,所以3cos α=2sin 2α=2(1-cos 2α).整理得2cos 2α+3cos α-2=0,解得cos α=12或cos α=-2(舍去).角度2 sin α+cos α、sin αcos α、sin α-cos α三者之间的关系2.(2019·某某石室中学模拟)α为第二象限角,且sin α+cos α=15,那么cos α-sin α=( )A.75 B .-75C .±75D.2425答案 B解析 因为sin α+cos α=15,所以(sin α+cos α)2=125,即1+2sin αcos α=125,所以2sin αcos α=-2425.所以(cos α-sin α)2=1-2sin αcos α=1+2425=4925.又因为α为第二象限角.所以cos α<0,sin α>0.所以cos α-sin α<0.所以cos α-sin α=-75.角度3“齐次式〞问题3.sin α+3cos α3cos α-sin α=5,那么cos 2α+sin αcos α的值是() A.35 B .-35C .-3D .3 答案 A 解析 因为sin α+3cos α3cos α-sin α=5,所以tan α+33-tan α=5,解得tan α=2,所以cos 2α+sin αcos α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+222+1=35.1.应用同角三角函数关系式化简、求值的方法(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.如举例说明1.(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系〞公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.2.sin α+cos α,sin αcos α,sin α-cos α之间的关系问题(1)方法:利用(sin α±cos α)2=1±2sin αcos α可以知一求二.(2)关注点:根据角α终边的位置确定sin α+cos α,sin α-cos α的符号.如举例说明2.3.sin α,cos α的齐次式的解法 (1)常见的结构①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切〞代换法求解;②sin α,cos α的齐次分式⎝ ⎛⎭⎪⎫如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)巧用“1〞的变换:1=sin 2α+cos 2α.如举例说明3.1.假设α是第二象限角,那么tan α1sin 2α-1化简的结果是( ) A .-1 B .1 C .-tan 2α D .tan 2α答案 A解析 因为α是第二象限角,所以sin α>0,cos α<0,所以tan α1sin 2α-1=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α=-sin αcos α·cos αsin α=-1. 2.假设sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,那么sin αcos α的值等于( ) A .-25B .-15C.25或-25D.25答案 A解析 由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,那么tan α=-2,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan α1+tan 2α=-25. 3.α∈⎝⎛⎭⎪⎫0,π4,sin αcos α=229,那么sin α-cos α=________.(提示(22-1)2=9-42)答案1-223解析 因为sin αcos α=229,所以(sin α-cos α)2=1-2sin αcos α =1-429=9-429=⎝ ⎛⎭⎪⎫22-132.又因为α∈⎝⎛⎭⎪⎫0,π4,所以sin α-cos α<0,所以sin α-cos α=1-223.题型 二 诱导公式的应用1.化简sin(-1071°)sin99°+sin(-171°)sin(-261°)的结果为( ) A .1 B .-1 C .0 D .2答案 C解析 原式=(-sin1071°)sin99°+sin171°sin261°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin9°cos9°-sin9°cos9°=0.2.(2019·某某六校教育研究会联考)假设sin ⎝ ⎛⎭⎪⎫α-π4=55,那么cos ⎝ ⎛⎭⎪⎫α+π4的值为( )A.255 B .-255C.55D .-55 答案 D解析 cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫α-π4=-55. 3.假设cos ⎝ ⎛⎭⎪⎫π6-θ=a ,那么cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值为________.答案 0 解析 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a .sin ⎝⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , 所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.(1)诱导公式的两个应用方向与原那么①求值,化角的原那么与方向:负化正,大化小,化到锐角为终了. ②化简,化简的原那么与方向:统一角,统一名,同角名少为终了. (2)应用诱导公式的基本流程(3)巧用口诀:奇变偶不变,符号看象限.(4)注意观察角与所求角的关系,如果两者之差或和为π2的整数倍,可考虑诱导公式,如举例说明2中⎝⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫α-π4=π2.1.(2020·某某高三摸底)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),那么sin ⎝ ⎛⎭⎪⎫α-2021π2=( )A .-45B .-35C.35D.45答案 B解析 因为角α的终边经过点P (3,4). 所以cos α=332+42=35. 所以sin ⎝ ⎛⎭⎪⎫α-2021π2=sin ⎝ ⎛⎭⎪⎫α-π2-1010π =sin ⎝ ⎛⎭⎪⎫α-π2=-sin ⎝ ⎛⎭⎪⎫π2-α=-cos α=-35. 2.k ∈Z ,化简:sin k π-αcos[k -1π-α]sin[k +1π+α]cos k π+α=________.答案 -1解析 当k 为偶数时,原式=sin -αcos -π-αsin π+αcos α=-sin α-cos α-sin αcos α=-1.当k 为奇数时,原式=sin π-αcos -αsin αcos π+α=sin αcos αsin α-cos α=-1.综上知,原式=-1.题型 三 同角三角函数基本关系式和诱导公式的综合应用1.(2019·某某模拟)cos ⎝ ⎛⎭⎪⎫2019π2+α=12,α∈⎝ ⎛⎭⎪⎫π2,π,那么cos α=( )A.12 B .-12C .-32D.32答案 C 解析 因为cos ⎝⎛⎭⎪⎫2019π2+α=cos ⎝ ⎛⎭⎪⎫1008π+3π2+α=cos ⎝ ⎛⎭⎪⎫3π2+α=sin α=12,又α∈⎝⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-32.2.在△ABC 中,3sin ⎝ ⎛⎭⎪⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),那么C 等于( )A.π3 B.π4 C.π2D.2π3答案 C解析 因为3sin ⎝⎛⎭⎪⎫π2-A =3sin(π-A ),所以3cos A =3sin A ,所以tan A =33,又0<A <π,所以A =π6.因为cos A =-3cos(π-B ),即cos A =3cos B ,所以cos B =13cos π6=12,又0<B <π,所以B =π3,所以C =π-(A +B )=π2.应选C. 3.(2019·某某六中第一次阶段性检测)f (α)=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π2-αtan π+α-cos π-α2-14sin ⎝ ⎛⎭⎪⎫3π2+α+cos π-α+cos 2π-α.(1)化简f (α);(2)假设-π3<α<π3,且f (α)<14,求α的取值X 围.解 (1)f (α)=cos αtan α+cos α2-1-4cos α-cos α+cos α=sin α+cos α2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z .∵-π3<α<π3,∴-π6<α<π3.故α的取值X 围为⎝⎛⎭⎪⎫-π6,π3.同角三角函数关系式和诱导公式综合应用题的解法(1)使用诱导公式把求解的三角函数式化为只含一个角的三角函数式.如举例说明3.(2)使用同角三角函数的基本关系式求解该三角函数式的值,求解中注意公式的准确性.1.(2019·某某八校联考)sin(π+α)=-13,那么tan ⎝ ⎛⎭⎪⎫π2-α=() A .2 2 B .-2 2 C.24D .±2 2答案 D解析 因为sin(π+α)=-sin α=-13,所以sin α=13,所以cos α=±1-sin 2α=±223, 所以tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=±2 2. 2.1+2sin π-3cos π+3化简的结果是( ) A .sin3-cos3 B .cos3-sin3 C .±(sin3-cos3) D .以上都不对答案 A解析 因为sin(π-3)=sin3,cos(π+3)=-cos3,所以原式=1-2sin3·cos3=sin3-cos32=|sin3-cos3|.因为π2<3<π,所以sin3>0,cos3<0,即sin3-cos3>0,所以原式=sin3-cos3.3.tan100°=k ,那么sin80°的值等于( ) A.k1+k2B .-k1+k2kk答案 B解析 由得tan100°=k =tan(180°-80°)=-tan80°,所以tan80°=-k ,又因为tan80°=sin80°cos80°=sin80°1-sin 280°,所以sin 280°1-sin 280°=k 2,注意到k <0,可解得sin80°=-k1+k2.对应学生用书P277组 基础关1.计算:sin 11π6+cos 10π3=( )A .-1B .1C .0 D.12-32答案 A 解析 sin 11π6+cos 10π3=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.2.sin(π+θ)=-3cos(2π-θ),|θ|<π2,那么θ等于( )A .-π6B .-π3C.π6D.π3答案 D解析 因为sin(π+θ)=-3cos(2π-θ),所以-sin θ=-3cos θ,所以tan θ=sin θcos θ= 3.又因为|θ|<π2,所以θ=π3. 3.cos31°=a ,那么sin239°·tan149°的值是( ) A.1-a2aB.1-a 2a答案 B解析 sin239°·tan149°=sin(270°-31°)·tan(180°-31°)=(-cos31°)·(-tan31°)=sin31°=1-a 2.4.假设0≤2x ≤2π,那么使1-sin 22x =cos2x 成立的x 的取值X 围是( )A.⎝⎛⎭⎪⎫0,π4B.⎝⎛⎭⎪⎫3π4,πC.⎝⎛⎭⎪⎫π4,5π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤3π4,π答案 D解析 显然cos2x ≥0,因为0≤2x ≤2π,所以0≤2x ≤π2或3π2≤2x ≤2π,所以x ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤3π4,π.5.(2019·某某二中模拟)角α终边上一点P 的坐标是(2sin2,-2cos2),那么sin α等于( )A .sin2B .-sin2C .cos2D .-cos2答案 D 解析 因为r =2sin22+-2cos22=2,由任意角的三角函数的定义,得sin α=y r=-cos2.6.假设sin θ,cos θ是方程4x 2+2mx +m =0的两根,那么m 的值为( ) A .1+ 5 B .1- 5 C .1± 5 D .-1- 5答案 B解析 由得Δ=(2m )2-4×4×m =4m (m -4)≥0,所以m ≤0或m ≥4,排除A ,C.又因为sin θ+cos θ=-m 2,sin θcos θ=m4,(sin θ+cos θ)2=1+2sin θcos θ,所以m 24=1+m2,解得m =1-5或m =1+5(舍去).7.tan α=3,那么1+2sin αcos αsin 2α-cos 2α的值是( )A.12 B .2C .-12D .-2答案 B解析 因为tan α=3,所以1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=tan 2α+1+2tan αtan 2α-1 =32+1+2×332-1=2. 8.化简:(1+tan 2α)(1-sin 2α)=________. 答案 1解析 (1+tan 2α)(1-sin 2α)=⎝ ⎛⎭⎪⎫1+sin 2αcos 2α·cos 2α=cos 2α+sin 2α=1.9.化简:sin α+πcos π-αsin ⎝ ⎛⎭⎪⎫5π2-αtan -αcos 3-α-2π=________. 答案 -1解析 原式=-sin α-cos αsin ⎝ ⎛⎭⎪⎫π2-α-tan αcos 3α=sin αcos αcos α-sin αcos αcos 3α=sin αcos 2α-sin αcos 2α=-1. 10.cos(75°+α)=13,那么sin(α-15°)+cos(105°-α)的值是________.答案 -23解析 因为cos(75°+α)=13,所以sin(α-15°)=sin[(75°+α)-90°]=-cos(75°+α)=-13.cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-13.所以sin(α-15°)+cos(105°-α)=-23.组 能力关1.2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么tan θ=( )A.22B .-22C. 2 D .- 2答案 A解析 因为sin 4θ+cos 4θ=59,所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23,所以tan θtan 2θ+1=23,解得tan θ=22(tan θ=2,舍去,这是因为2θ是第一象限的角,所以tan θ为小于1的正数).2.(2019·某某模拟)当θ为第二象限角,且sin ⎝ ⎛⎭⎪⎫θ2+π2=13时,1-sin θcos θ2-sinθ2的值是( )A .1B .-1C .±1D .0答案 B解析 ∵sin ⎝ ⎛⎭⎪⎫θ2+π2=13,∴cos θ2=13,∴θ2在第一象限,且cos θ2<sin θ2,∴1-sin θcos θ2-sin θ2=-⎝⎛⎭⎪⎫cos θ2-sin θ2cos θ2-sinθ2=-1.3.-π2<α<0,sin α+cos α=15,那么1cos 2α-sin 2α的值为() A.75 B.257 C.725D.2425答案 B解析 因为-π2<α<0,所以cos α>0,sin α<0,可得cos α-sin α>0,因为(sin α+cos α)2+(cos α-sin α)2=2,所以(cos α-sin α)2=2-(sin α+cos α)2=2-125=4925,cos α-sin α=75,cos 2α-sin 2α=15×75=725,所以1cos 2α-sin 2α的值为257. 4.(2020·某某摸底)假设1+cos αsin α=2,那么cos α-3sin α=( )A .-3B .3C .-95D.95答案 C解析 因为1+cos αsin α=2,所以cos α=2sin α-1.又因为sin 2α+cos 2α=1,所以sin 2α+(2sin α-1)2=1.整理得5sin 2α-4sin α=0,因为sin α≠0,所以sin α=45.所以cos α=2sin α-1=35.所以cos α-3sin α=35-125=-95.5.cos ⎝⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,那么cos ⎝ ⎛⎭⎪⎫π12-α等于( )A.223B.13 C .-13D .-223答案 D 解析 因为⎝ ⎛⎭⎪⎫5π12+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝⎛⎭⎪⎫5π12+α.因为-π<α<-π2,所以-7π12<α+5π12<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12,所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.6.sin 21°+sin 22°+sin 23°+…+sin 289°=________. 答案 44.5解析 因为sin(90°-α)=cos α,所以当α+β=90°时,sin 2α+sin 2β=sin 2α+cos 2α=1, 设S =sin 21°+sin 22°+sin 23°+…+sin 289°, 那么S =sin 289°+sin 288°+sin 287°+…+sin 21°,两个式子相加得2S =1+1+1+…+1=89,S =44.5. 7.α∈⎝ ⎛⎭⎪⎫π,3π2,且满足 1-sin α1+sin α+1cos α=2,那么cos 2α+2sin2α=________.答案 95解析 因为α∈⎝⎛⎭⎪⎫π,3π2,所以 1-sin α1+sin α+1cos α=1-sin α1-sin α1+sin α1-sin α+1cos α=1-sin α-cos α+1cos α=sin αcos α,那么sin αcos α=2,tan α=2,而cos 2α+2sin2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=95. 8.sin α=255,求tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α的值.解 tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ∵sin α=255>0,∴α为第一或第二象限角.当α为第一象限角时,cos α=1-sin 2α=55, 那么原式=1sin αcos α=52;当α为第二象限角时,cos α=-1-sin 2α=-55, 那么原式=1sin αcos α=-52.。
2019版高考数学一轮复习第3章三角函数、解三角形32同角三角函数的基本关系及诱导公式.doc
3. 2同角三角函数的基本关系及诱导公式E 课后作业孕谀[基础送分提速狂刷练]一、选择题 1.若 tem(5“+o)=〃/,则泌 3 +心sin — ci —cos TI + a的值为(zz?+1 ni ~ 1 AR B.市 C. -1 D. 1答案A解析由 tan(5 TE + 67)=zz7,得 tan a =m.原弋 —sin 。
一cos a sino+cosa tano+1 〃/+1— sin a +cos a sin a —cos a tana —1 刃一1' 故选A.2. ―n —3—cos ―" +3 — 化简的 结果是( )A. sin3 —cos3B. cos3 —sin3C. 土(sin3 —cos3)答案A解析 Tsin (兀 一3) =sin3, cos (兀+3) =—cos3, ・••寸 1—2sin3 • cos3= sin3_cos3V —<3< 兀,.e .sin3>0, cos3<0.D.以上都不刈•sin3 —cos3 . •:原式=$in3 —cos3,选 A.3. (2017 •梅州模拟)已知a 为锐角,且tan(兀一a)+3 = 0,贝ij sin a wio W? Ws 10 - 75的值是() 1 A -3答案解析■*tan(n-^)+3 = 0 得閒。
=3,即册",sin 。
Feos9= 9(1 —sin 2 o) 9 lOsin 2 a =9, si 『a =I 。
.又因为a 为锐角,所以sin a4. (2017 •化徳县校级期末)设cos (-80° ) A. 口mB.那么tanlOO 0等于(mi,所以s i 『a 书.故选B.)C "D. 答案B解析Vcos ( — 80° )=//;,.*.cos80°=in, sin80°—cos280°=p\_d.1 yl2 B -3 C * 3 D ・答案]6 (sin 0 +cos ^)2=—, /• l+2sin "cos y 772.*.2sin 〃cos ,由(sin 0 —cos 0)2= 1 —2sin "cos 〃 = 1—可得 sin "—cos 037. (2017 •安徽江南十校联考)己知tan a则sin a ・(sin a —cos a)=( )答案AA. 90B. 45C. 44.5D. 44 答案c解析 原式=(cos 2l° +COS 289° ) + (COS 22° +COS 288° )+•••+ (cos 244° +cos 246° ) AtanlOO 0 =-tan80°—刃.故选B ./cc vr/ i 、 sin40° A /1 + COS 80°z、5'(201?-郑州期末)JmoJosl 。
高考数学一轮复习第3章三角函数解三角形热点探究课2三角函数与解三角形中的高考热点问题市赛课公开课一等
sin C=sin(180°-A-B)=sin(135°-B)=sin 135°cos B-cos 135°sin B= 22×45 -- 22×35=7102. (2)由正弦定理,得sBinCA=siAnBC,即102=7AB2,解得 AB=14,
2 10 则△ABC 的面积 S=12AB·BC·sin B=12×14×10×35=42.
5/27
[规范解答] x)
(1)f(x)=2 3sin2x+π4·cos2x+π4-sin(x+π)= 3sinx+π2-(-sin 3分
= 3cos x+sin x=2sinx+π3,
5分
于是 T=21π=2π.
6分
6/27
(2)由已知得 g(x)=fx-π6=2sinx+π6. ∵x∈[0,π],∴x+π6∈π6,76π, ∴sinx+π6∈-12,1, ∴g(x)=2sinx+π6∈[-1,2]. 故函数 g(x)在区间[0,π]上的最大值为 2,最小值为-1.
8分
10 分 11 分 12 分
7/27
[答题模板] 解决三角函数图像与性质的综合问题的一般步骤为:
第一步(化简):将 f(x)化为 asin x+bcos x 的形式.
第二步(用辅助角公式):构造 f(x)=
a2+b2·sin
x·
a2a+b2+cos
x·
b a2+b2.
第三步(求性质):利用 f(x)= a2+b2sin(x+φ)研究三角函数的性质.
17/27
[对点训练 2] 在△ABC 中,已知 A=45°,cos B=45. (1)求 sin C 的值; (2)若 BC=10,求△ABC 的面积. 【导学号:00090118】 [解] (1)因为 cos B=45,且 B=(0°,180°), 所以 sin B= 1-cos2B=35.
2019年高考数学(文)一轮复习第3章三角函数、解三角形第2节同角三角函数的基本关系与诱导公式学案整理
[ 考纲传真 ] 1. 理解同角三角函数的基本关系式:
sin
2
2
sin
α + cos α = 1,cos
α α = tan
α .2.
能利用单位圆中的三角函数线推导出
π 2 ±α , π ± α 的正弦、余弦、正切的诱导公式.
( 对应学生用书第 41 页 )
[ 基础知识填充 ]
1 α cos α = 得 2sin
2 α cos α=- ,
3
3
所以 (cos
α - sin
α ) 2= 1-2sin
5 α cos α = ,
3
又 α 是第二象限角,所以 cos α - sin α < 0,
15 所以 cos α - sin α =- 3 ,
2
2
3
15
因此 cos 2 α = cos α- sin α = (cos α + sin α )(cos α - sin α ) = 3 × - 3 =
cos_ α
余弦 cos α
- cos α
cos α
- cos_ α
sin α
-sin α
正切
tan α
tan α
- tan α
- tan_ α
口诀
函数名不变,符号看象限
函数名改变符号看象限
[ 知识拓展 ]
同角三角函数的基本关系式的几种变形
(1)(sin α ±cos α ) 2=1±2s in α cos α .
( 1) A
5
3
2
cos2α + 4sin α cos α
(2) - 3 [(1) ∵ tan α =4,则 cos α + 2sin 2α = sin2 α +cos2 α =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 同角三角函数的基本关系与诱导公式
板块四 模拟演练·提能增分
[A 级 基础达标]
1.[2018·洛阳模拟]下列各数中与sin2019°的值最接近的是( ) A.12 B.32 C .-12
D .-
32
答案 C
解析 2019°=5×360°+180°+39°, ∴sin2019°=-sin39°和-sin30°接近.选C.
2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π
2,则θ等于( )
A .-π6
B .-π3
C.π6
D.π3 答案 D
解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π
3
.
3.[2018·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=
( )
A.4
5 B .-4
5
C.35 D .-35
答案 B
解析 tan(α-π)=34⇒tan α=3
4
.
又因为α∈⎝ ⎛⎭⎪⎫π2
,3π2,所以α为第三象限的角,
所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 4.已知f (α)=π-α
π-α-π-α
α
,则f ⎝ ⎛⎭
⎪⎫-
31π3的值为( ) A.1
2 B .-1
3
C .-12
D.13
答案 C
解析 ∵f (α)=sin α·cos α
-cos αtan α
=-cos α,
∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝
⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( )
A.1
3 B .-13
C .-223
D.223
答案 B
解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2
x +1的值为( ) A .0 B.95 C.4
3 D.53
答案 B
解析 sin 2
x +1=2sin 2
x +cos 2
x sin 2x +cos 2x =2tan 2
x +1tan 2
x +1=9
5
.故选B. 7.[2018·福建泉州模拟]已知1+sin αcos α=-12,则cos α
sin α-1的值是( )
A.1
2 B .-12
C .2
D .-2
答案 A
解析 因为1-sin 2
α=cos 2
α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=1
2
.故选A.
8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.
答案 3
5
解析 cos(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35
.
9.[2018·北京东城模拟]已知sin θ+cos θ=7
13,θ∈(0,π),则tan θ=________.
答案 -12
5
解析 解方程组⎩⎪⎨
⎪⎧
sin θ+cos θ=713,sin 2θ+cos 2θ=1,
得
⎩⎪⎨⎪
⎧
sin θ=1213
,
cos θ=-513
或⎩⎪⎨⎪⎧
sin θ=-513
,
cos θ=12
13
(舍).
故tan θ=-12
5
.
10.[2018·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________. 答案 -33
4
解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝
⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝
⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. [B 级 知能提升]
1.[2018·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
答案 B
解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π
2
-A >0,∴sin A >
sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭
⎪⎫π2-A =cos A ,
∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B. 2.[2018·新乡模拟]若θ∈⎣⎢⎡⎦
⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( )
A.35
B.4
5 C.74
D.34
答案 D
解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2
=1+2sin θcos θ=8+378,(sin θ-
cos θ)2
=1-2sin θcos θ=
8-37
8
,
∵θ∈⎣⎢
⎡⎦
⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74 ②,联立①②
得,sin θ=3
4
.
3.已知cos(75°+α)=5
13,α是第三象限角,则sin(195°-α)+cos(α-15°)的
值为________.
答案 -17
13
解析 因为cos(75°+α)=5
13>0,α是第三象限角,
所以75°+α是第四象限角, sin(75°+α)=-1-cos
2
+α
=-1213
.
所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)
=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713
.
4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°. 解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan945° =-sin120°·cos210°+cos300°·(-sin330°)+tan225° =(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=
32×32+12×1
2
+1=2. 5.[2018·南京检测]已知f (α)=
π-α
π-α
os ⎝
⎛⎭⎪⎫-α+3π2
cos ⎝
⎛⎭
⎪⎫
π2-α-π-α
.
(1)化简f (α);
(2)若α是第三象限角,且cos ⎝
⎛⎭⎪⎫α-3π2=15,求f (α)的值.
解 (1)f (α)=
π-α
π-α
⎝
⎛⎭⎪⎫-α+3π2
cos ⎝ ⎛⎭
⎪
⎫π2-α-π-α
=
sin αcos α-sin α
sin αsin α
=-cos α.
(2)因为α是第三象限角,且cos ⎝
⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-
1-sin 2
α=-1-⎝ ⎛⎭
⎪⎫-152
=-265.所以f (α)=-cos α=265.。