人教版八年级上册数学第十三章 《轴对称》13.3.2 等边三角形(2) 导学案

合集下载

人教版八年级数学上册 第十三章 轴对称 等腰三角形 等边三角形第2课时 含30°角的直角三角形的性质

人教版八年级数学上册 第十三章 轴对称 等腰三角形 等边三角形第2课时 含30°角的直角三角形的性质

6.(丹东中考)如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰 好平分∠BAC.若DE=1,则BC的长是__3__.
7.将一副三角尺按如图所示叠放在一起,若AB=10 cm,则阴影部分的面积是 ____1_2_._5_c_m_2_.
8.如图,在 Rt△ABC 中,∠C=90°,过点 C 作 CD⊥AB 于点 D,添加一 个你认为适当的条件,并利用此条件说明 BD=14 AB.
解:当∠A=30°时,BD=14 AB,理由如下:∵∠A=30°,∠ACB=90°,∴ ∠B=60°,在 Rt△ABC 中,BC=12 AB.又 CD⊥AB,∴∠CDB=90°,∴∠BCD= 30°,则 BD=12 BC,∴BD=12 ×12 AB=41 AB
9.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点 Q,PQ=3,PE=1,求AD的长.
10.如图,在△ABC中,AB=AC,△BEN的边BN在BC上,点E在△ABC的内 部,∠E=∠EBC=60°,AD平分∠BAC交EN于点D,若BE=6 cm,DE=2 cm, 求BC的长.(提示:延长AD交BC于点M)
解:延长 AD 交 BC 于点 M,∵AB=AC,AD 是∠BAC 的平分线,∴AM⊥BC,BM =MC=12 BC,∵∠E=∠EBN=60°,∴△BEN 为等边三角形,∴EN=BN=BE=6 cm, ∴DN=6-2=4(cm),在 Rt△DMN 中,∠BND=60°,∴∠MDN=30°,∴MN=12 DN =12 ×4=2(cm),∴BC=2BM=2(BN-MN)=2×(6-2)=8(cm)
解:∵△ABC 为等边三角形,∴∠BAC=∠C=60°,AB=AC.又∵AE=CD,∴ △ABE≌△CAD(SAS),∴∠ABE=∠CAD,BE=AD.∴∠BPQ=∠BAP+∠ABE= ∠BAP+∠CAD=∠BAC=60°.又∵BQ⊥PQ,∴∠AQB=90°,∴∠PBQ=30°, ∴PQ=12 PB,∴PB=2PQ=6,∴BE=PB+PE=6+1=7,∴AD=BE=7

人教版八年级上册数学13.3.2等边三角形等边三角形的性质和判定教案设计

人教版八年级上册数学13.3.2等边三角形等边三角形的性质和判定教案设计

13. 3.2等边三角形教案(第一课时)教学目标:1、理解和掌握等边三角形的性质与判定。

2、能够用等边三角形的性质解决相应的数学问题。

学习重点:等边三角形的性质与判定学习难点:等边三角形的性质与判定的应用。

教学设计:一、知识回顾等腰三角形的性质(板书)1、(等腰三角形的两个底角相等。

)等边对等角2、(等腰三角形的顶角平分线、底边上的中线、底边上的高相互合。

)三线合一3、等腰三角形是轴对称图形,(对称轴是底边上的中线或顶角平分线、底边上的高所在的直线。

)等腰三角形的判定:1、定义(有两边相等的三角形是等腰三角形)。

2、(如果一个三角形有两个内角相等,那么这两个角所对的两条边也相等。

)等角对等边二、新课学习教材79页——80页13.3.2等边三角形(板书)本节课主要学习等边三角形的性质与判定。

1、等边三角形的定义:等边三角形是三边都相等的特殊的等腰三角形。

即(板书)底≠腰的等腰三角形等腰三角形{底=腰的等腰三角形(即等边三角形)2、等边三角形的性质:(板书)(1)学生自主探究79页“思考”中第一个问题师:利用等腰三角形的性质很容易得到等边三角形的性质:如图,如果AB=AC=BC,则∵AB=AC∴∠B=∠C又∵AC=BC∴∠B=∠A∴∠A=∠B=∠C进一步分析还可以得:∵∠A+∠B+∠C=180°∴∠A=∠B=∠C=60°归纳:等边三角形的三个内角都相等,并且每一个内角都等于60°。

(板书)(2)完成教材80页第1题,并得出轴对称及三线合一的性质。

3、等边三角形的判定①定义:三边相等==>等边三角形②等边三角形的三个内角都相等。

反过来三个角都相等的三角形一定是等边三角形吗?即:三角相等==>三边相等?学生探究。

可分组讨论(教材79页“思考”第二问题)学生代表发言:如图:如果∠A=∠B=∠C,则∵∠B=∠C∴AB=AC又∵∠A=∠B∴AC=BCAB=AC=BC即△ABC是等边三角形。

13.3.2等边三角形(2) 课件(共19张PPT)

13.3.2等边三角形(2)  课件(共19张PPT)

∴ Rt△BDE中, DB=2DE=12
E
B
∵ AD是∠BAC的平分线, DE⊥AB, DC⊥AC
∴DC=DE=6
∴BD=DC+DB=18.
课后作业
教材83页习题13.3第14、15题.
解:∵ DE⊥AC,BC⊥AC,∠A =30°,
∴ BC = 1 AB,DE = 1 AD.
2
2
B D
∴ BC =3.7(m).
又 AD = 1 AB,
2
A EC
∴DE = 1 AD =1.85(m) .
2
答:立柱BC 的长是3.7 m,DE 的长是1.85 m.
小试牛刀
1.如图,一棵树在一次强台风中于离地面8米
4
证明: ∵∠ACB=90°,∠A=30°,
∴BC=
1 2
AB,∠B=60°
∵CD是高,
∴∠CDB=90°,∠B=60°,
∴∠BCD=30°,
∴BD= 1 BC, ∴BD=1 AB.
2
4
课堂小结
今天我们收获了哪些知识? (畅所欲言)
1、含30°角的直角三角形的性质是什么? 2、需要注意什么?
实战演练
1
∴ BC = 2 AB.
B
C
合作探究
B
A 归纳总结:
在直角三角形中,如果一个锐角等于30°,
那么它所对的直角边等于斜边的一半.
符号语言:∵∠C =90°, ∠A=30°
1
C
∴ BC = 2 AB.
典例精析
例.如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、 DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?

新宁县一中八年级数学上册第十三章轴对称13.3等腰三角形2等边三角形第2课时含30°角的直角三角形

新宁县一中八年级数学上册第十三章轴对称13.3等腰三角形2等边三角形第2课时含30°角的直角三角形

新知探究
含30 °直角三角形性质探索 :
在△ABD中 , AB=BD=DA , A C是底边BD上的高 , 探究BC与A B之间的数量有什么关系 ?
A
分析 : ∵ AC是等边△ABD的高
∴ △ABD关于直线AC対称
B
CD
∴BC=CD
∵AB=BD
∴BC=CD=
1 2
AB
在一个直角三角形中 , 如果一个角是30 ° , 那么30 °的角所対的直角边与斜边又有什么关系呢 ?
在直角三角形中 , 如果一个锐角等30° , 那么 , 它所対的直角边等于斜边的一半。
休息时间到啦
同学们,下课休息十分钟。现在是休息时间 休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
解 : 轴対称图形有 : 角、线段、直线、圆、扇形、正方形、等边三角 形、等腰梯形和矩形 ; 角、线段、扇形、等腰梯形只有1条対称轴 , 直线、 圆有无数条対称轴 , 正方形有4条対称轴 , 等边三角形有3条対称轴 , 矩形 有2条対称轴。
【合作探究]小组讨论交流解题思路 , 小组活动后 , 小组代表展示活动成果。10分钟
如下图 , △ABC和△DEF关于某条直线成轴対称 , 你能作出 这条直线吗 ?
点拨精讲 : 作线段垂直平分线是根据线段垂直平分线的判定 , 而作対称轴 是根据轴対称的性质作対称轴。 总结归纳 : ①如果两个图形成轴対称 , 其対称轴就是任何一对对应点所连
线段的垂直平分线 。②対于轴対称图形 , 只要找到任意一组対应点 , 作出対应点所连线段的垂直平分线 , 就得到此图形的対称轴。

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

27 2
(cm)
17.(14分)(原创题)已知△ABC是等边三角形,点D是直线BC上一点, 以AD为一边在AD的右侧作等边三角形ADE.
(1)如图①,点D在线段BC上移动时,求证:CE+CD=AB; (2)如图②,点D在线段BC的延长线上移动时,那么: ①线段CE,CD,AB之间有怎样的数量关系?请加以证明; ②∠DCE的度数为___6_0_°___; (3)如图③,点D在线段BC的反向延长线上移动时,∠DCE的大小是否 发生变化?线段CE,CD,AB之间又有怎样的数量关系?请直接写出结 论.
2.(3分)如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,
则∠ADB的度数为( ) D
A.25°
B.60°
C.85°
D.95°
3.(3分)如图,已知△ABC是等边三角形,点B,C,D,E在同一直线 上,且CG=CD,DF=DE,则∠E=___1_5_°___.
4 . (3 分 ) 如 图 , 在 等 边 三 角 形 ABC 中 , CD⊥AB 于 点 D , 过 点 D 作 DE∥BC交AC于点E,若△ABC的边长为2,则△ADE的周长是__3__.
∠E,∴DB=DE
6.(3分)下列四个说法中,正确的有( D ) ①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形 是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个 角相等的等腰三角形是等边三角形. A.0个 B.1个 C.2个 D.3个
7.(3分)等腰三角形补充下列条件后,仍不一定成为等边三角形的是 ( C)
14.(台州中考)如图,等边三角形纸片ABC的边长为6,E,F是边BC 上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪 下的△DEF的周长是___6_.

人教版初中数学第十三章知识点总结

人教版初中数学第十三章知识点总结

第十三章轴对称13.1轴对称13.1.1轴对称1.轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;这条直线就是它的对称轴。

2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称;这条直线叫做对称轴;折叠后的点是对应点,叫做对称点。

3.轴对称图形与轴对称的区别:(1)轴对称是对两个图形而言,而轴对称图形是一个图形;(2)轴对称是指形状相同,大小相等,并且具有一定特殊位置的两个图形,轴对称图形是指一个具有特殊形状的图形;(3)轴对称只有一条对称轴,而轴对称图形的对称轴可能不只一条。

4.轴对称图形与轴对称的联系:(1)都是沿着某条直线折叠,折叠后都能够重合;(2)把成轴对称的两个图形看成一个整体,它就是一个轴对称图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线轴对称。

5.线段的垂直平分线:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

6.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

13.1.2线段的垂直平分线的性质1.线段垂直平分线的性质定理:线段垂直平分线上的点与这条线段的两个端点的距离相等。

2.线段垂直平分线的判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.线段的垂直平分线可以看成是到线段两个端点距离相等的所有点的集合。

4.尺规作图4:作已知线段的垂直平分线已知:线段AB求作:线段AB的垂直平分线CD作法:(1)分别以A,B为圆心,大于12AB长为半径画弧,两弧交于点C、D;(2)作直线CD.则直线CD为所求5.尺规作图5:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C求作:AB的垂线,使它经过点C作法:(1)任意取一点K,使点K和点C在AB的两旁;(2)以点C为圆心,CK长为半径作弧,交AB于点D和E;(3)分别以D,E为圆心,大于12DE长为半径画弧,两弧交于点F;作直线CF.则直线CF为所求的垂线。

人教版八年级数学上册13.3.2《等边三角形(2)》说课稿

人教版八年级数学上册13.3.2《等边三角形(2)》说课稿

人教版八年级数学上册13.3.2《等边三角形(2)》说课稿一. 教材分析等边三角形是初中数学中的重要内容,它既有三角形的普遍性质,又有自身独特的性质。

人教版八年级数学上册13.3.2《等边三角形(2)》这一节,主要让学生进一步理解等边三角形的性质,并学会运用等边三角形的性质解决一些实际问题。

教材通过一些典型的例题和练习,让学生在实践中掌握等边三角形的性质,培养学生的数学思维能力和解决问题的能力。

二. 学情分析八年级的学生已经学过三角形的性质,对三角形有一定的了解。

但是,对于等边三角形的性质,他们可能还不是很清楚,需要通过实例来进一步理解和掌握。

同时,学生在学习过程中可能存在对等边三角形性质的认识误区,需要教师进行引导和纠正。

三. 说教学目标1.知识与技能目标:让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。

2.过程与方法目标:通过观察、实践、探究等方法,让学生学会发现和总结等边三角形的性质。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 说教学重难点1.教学重点:等边三角形的性质及其运用。

2.教学难点:等边三角形性质的推导和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学。

六. 说教学过程1.导入:通过复习三角形的相关知识,引入等边三角形的概念,激发学生的学习兴趣。

2.讲解:讲解等边三角形的性质,引导学生通过观察、实践、探究等方法,发现和总结等边三角形的性质。

3.练习:给出一些练习题,让学生运用所学的等边三角形的性质进行解答,巩固所学知识。

4.拓展:给出一些综合性的问题,让学生进行思考和讨论,培养学生的解决问题能力和团队合作意识。

5.总结:对本节课的内容进行总结,强调等边三角形的性质及其应用。

七. 说板书设计板书设计要清晰、简洁,能够突出等边三角形的性质。

2022年人教版八年级数学上册第十三章练习题及答案 等边三角形(第2课时)

2022年人教版八年级数学上册第十三章练习题及答案  等边三角形(第2课时)

第十三章轴对称13.3 等腰三角形13.3.2 等边三角形第2课时1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )A.6米B.9米C.12米D.15米2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.300a元B.150a元C.450a元D.225a元3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC =___________ .4.如图,Rt△ABC中,∠A= 30°,AB+BC=12cm,则AB=______cm.5. 在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.6. 在△ABC中,AB=AC,∠BAC=120° ,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.7. 如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.参考答案:1.B2.B3.54.85. 解:连接AE,∵DE是AB的垂直平分线,∴BE=AE,∴∠EAB=∠B=15°,∴∠AEC=∠EAB+∠B=30°.∵∠C=90°,∴AC= 12AE= 12BE=2.5.6. 证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵ D是BC的中点,∴AD⊥BC.∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE.7. 证明:∵△ABC为等边三角形,∴AC=BC=AB ,∠C=∠BAC=60°,∵CD=AE,∴△ADC≌△BEA.∴∠CAD=∠ABE.∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.∴∠BPQ=60°.又∵ BQ⊥AD,∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.。

初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案

初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案

描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.3 等腰三角形一、学习任务1. 了解等腰三角形和等边三角形的概念.2. 掌握等腰三角形和等边三角形的性质定理和判定定理,掌握 角的直角三角形的性质.二、知识清单等腰三角形 等边三角形三、知识讲解1.等腰三角形等腰三角形有两条边相等的三角形叫做等腰三角形(isosceles triangle ).等腰三角形的性质① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).三角形的边角对应关系在同一个三角形内,大边对大角,大角对大边.构造等腰三角形的方法30∘都填上)∠ADE=∠AED=2∠BAD34DE△BDE接 ,试判断 的形状,并说明理由.∠DBC描述:例题:2.等边三角形等边三角形三边都相等的三角形叫做等边三角形(equilateral triangle ),也属于等腰三角形.等边三角形的性质三个内角都相等,并且每一个角都等于 .等边三角形性质的推论在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.等边三角形的判定① 三个角都相等的三角形是等边三角形;② 有一个角是 的等腰三角形是等边三角形.构造等边三角形的方法,.即 是等腰三角形.2∴∠DBC =∠E ∴BD =DE △BDE 60∘30∘60∘如图所示,在等边三角形 中, 和 的平分线相交于点 ,, 的垂直平分线分别交 于点 ,,求证: 是等边三角形.分析:根据垂直平分线的性质可知,,,由于 , 是角平分线,所以 ,再由于外角和定理,,所以 是等边三角形.证明: , 分别是 , 垂直平分线上的点,ABC ∠ABC ∠ACB O BO OC BC E F △OEF OE =BE OF =F C OB OC ∠OBC =∠OCB =30∘∠OEF =∠OF E =60∘△OEF ∵EF BO OC值为( )32A△ABC。

人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计

人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计
3.等边三角形的判定方法:介绍等边三角形的判定方法,如:SSS判定法(三边相等)、SAS判定法(两边相等且夹角相等)、ASA判定法(两角相等且夹边相等)等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,让每个小组针对等边三角形的性质、判定方法进行讨论,共同总结规律。
2.互动交流:各小组展示讨论成果,其他小组进行补充、质疑,形成全面、深入的理解。
3.提出问题:引导学生思考,如果一个三角形的三条边都相等,那么这个三角形会有哪些性质?如何判定一个三角形是等边三角形?
(二)讲授新知
1.等边三角形的定义:在学生观察、思考的基础上,给出等边三角形的定义:三条边都相等的三角形称为等边三角形。
2.等边三角形的性质:引导学生通过实际操作、观察、讨论等途径,发现并总结等边三角形的性质,如:三个角相等,均为60度;三条中线、高、角平分线重合等。
2.作业量要适中,避免学生负担过重。
3.鼓励学生主动思考,培养解决问题的能力。
4.家长要关注学生的学习进度,协助教师督促学生完成作业。
5.教师要及时批改作业,了解方法:通过例题讲解,让学生掌握等边三角形的判定方法,并能熟练运用。
(5)巩固练习:设计不同难度的题目,让学生独立完成,巩固所学知识。
(6)课堂小结:总结本节课所学内容,强调等边三角形的性质和判定方法。
(7)作业布置:布置适量的作业,巩固所学知识,提高学生的运用能力。
3.教学策略:
(1)关注学生的个体差异,因材施教,提高教学的有效性。
1.激发学生对数学学习的兴趣,培养良好的学习习惯和积极的学习态度。
2.培养学生的空间观念,提高对几何图形的审美意识和鉴赏能力。
3.增强学生解决问题的自信心,培养勇于探索、敢于创新的精神。

人教版八年级上册数学 等边三角形的性质与判定

人教版八年级上册数学  等边三角形的性质与判定

E
D
A
B
C
变式3:上题中,若将条件DE∥BC改为AD=AE, △ADE还是等边三角
形吗?试说明理由.
证明: ∵ △ABC是等边三角形, ∴ ∠A= ∠B= ∠C.
∵ AD=AE, ∴ ∠ADE= ∠B, ∠ AED= ∠C. ∴ ∠A= ∠ADE= ∠ AED. ∴ △ADE是等边三角形.
A
D B
方法总结:判定一个三角形是等边三角形有以下方法: 一是证明三角形三条边相等;二是证明三角形三个内角 相等;三是先证明三角形是等腰三角形,再证明有一个 内角等于60°.
针对训练: 如图,等边△ABC中,D、E、F分别是各边上的一点, 且AD=BE=CF. 求证:△DEF是等边三角形.
证明:∵△ABC为等边三角形,且AD=BE=CF ∴AF=BD=CE,∠A=∠B=∠C=60°, ∴△ADF≌△BED≌△CFE(SAS), ∴DF=ED=EF, ∴△DEF是等边三角形.
∴AC=MC,CN=CB,∠ACM=∠BCN=60°.
∴∠ACN=∠MCB.
∴△ACN≌△MCB(SAS).
∴AN=BM.
图①
(2)△CEF是等边三角形. 证明:∵∠ACE=∠FCM=60°, ∴∠ECF=60°. ∵△ACN≌△MCB, ∴∠CAE=∠CMB. ∵AC=MC, ∴△ACE≌△MCF(ASA), ∴CE=CF. ∴△CEF是等边三角形.
1.等边三角形的两条高线相交成钝角的度数是( B ) A.105° B.120° C.135° D.150°
2.如图,等边三角形ABC的三条角平分线交于点O,DE∥BC,则这个图
形中的等腰三角形共有( D ) A
A. 4个 B. 5个
C. 6个

人教版八年级上册13.3.2《等边三角形》教案

人教版八年级上册13.3.2《等边三角形》教案
最后,在总结回顾环节,学生对本节课的知识点有了较为全面的掌握。但我也意识到,课后还需要关注学生的消化吸收情况,及时解答他们的疑问,巩固所学知识。
1.加强课堂互动,提高学生的参与度;
2.注重个体差异,因材施教,帮助每个学生掌握知识点;
3.加强课堂讨论的引导,确保讨论主题的针对性;
4.课后关注学生的反馈,及时解答疑问,巩固所学知识。
在实践活动环节,学生们分组讨论和实验操作,整体效果较好。但我也注意到,部分学生在讨论过程中存在依赖思想,不够积极主动。为了提高学生的参与度,我将在以后的课堂中加强引导,鼓励学生独立思考,勇于表达自己的观点。
此外,学生小组讨论环节,大家对于等边三角形在实际生活中的应用提出了很多有趣的见解。这说明学生们已经能够将所学知识运用到实际问题中,这让我感到很欣慰。但同时,我也发现部分学生在讨论时容易偏离主题,导致讨论效果受到影响。针对这个问题,我将在今后的教学中加强对学生的引导,确保讨论围绕主题展开。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等边三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作一个等边三角形,并观察其性质。
3.成果展示论(用时10分钟)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等边三角形的基本概念。等边三角形是三边长度相等的三角形。它具有独特的性质和判定方法,在几何图形中具有重要地位。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等边三角形在建筑、艺术等领域的应用,了解它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等边三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

13.3.2(2) 含30度角的直角三角形的性质(课件)八年级数学上册(人教版)

13.3.2(2) 含30度角的直角三角形的性质(课件)八年级数学上册(人教版)
30°∵DA⊥BA,∴∠CAD=
120°﹣90°=30°,∴∠CAD=
∠C,∴AD=CD,在Rt△ABD中,
∵∠B=30°,BD=10,

∴AD= BD=5

∴CD=AD=5.
一半,反之亦然.在△ABC中,∠A=30°,∠B=90°,AC=8,点D在边AB
上,且BD= ,点P是△ABC边上的一个动点,若AP=2PD时,则PD的
长是 3
3.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,CD是△ABC的高,
且BD=1,则AD的长是 3 .
图1
图3
当堂测试
4.如图,已知△ABC是等边三角形,D,E分别为BC、AC上的点,且CD=AE,AD、
证明:在Rt△ABC中,∠ACB=90°,∠B=30°,
1
∴∠BAC=60°,AC= AB
2
∵DE是AB的垂直平分线

∴AD=DB= AB

∴AD=AC,∴△ADC是等边三角形;
分层作业
【基础达标作业】
5.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,DE是AB的垂直平分线,交AB、
BC于点D、E连接CD、AE.求证:点E在线段CD的垂直平分线上.
∵∠C=90º,
1
1
∴AC= 2 AE=2
BE=2.5.
B
E
C
随堂练习
2.在△ABC中,AB=AC,∠BAC=120º,D是BC的中点,DE⊥AB于E
点,求证:BE=3EA.
证明∵AB=AC,∠BAC=120º,
∴∠B=∠C=30º.
∵D是BC的中点, ∴AD⊥BC
B
∴∠ADC=90º,∠BAD=∠DAC=60º.

13.3.2(2)等边三角形教学反思

13.3.2(2)等边三角形教学反思

《等边三角形(2)》的教学反思我本次授课类型为新授课,即人教版八年级上册等边三角形的第2课时,含30°的直角三角形的相关性质。

本节课教学目标是掌握含30°的直角三角形的性质定理及逆定理,并会用该性质解决问题,同时经历“活动探索-直觉猜想-推理证明”的过程,培养学生发现问题,解决问题的能力。

教学的难点放在直角三角形性质及逆定理的探索证明过程;重点放在性质的应用。

本节课的教学安排是这样的:第一个环节情景导入,学生活动(拼摆直角三角板,找等边三角形),达成承上启下的目的;第二个环节自主探究,重点放在猜想的理论证明,得出直角三角形的性质定理和逆定理,并配题练习;第三个环节例题讲解(教材例题),重点放在问题的突破和解析上,注重方法归纳总结;第四个环节小结,要求学生自我小结,然后教师补充。

第五个环节作业达标,教师我精选11道题,课内达标1-8题,课后达标9-11题。

设计相对科学合理,注重精讲多练相结合,充分体现了以教师为主导、学生为主体这一宗旨。

本着科学合理的教学设计,我在规定的时间内,完成了新课内容,课堂实施效果良好。

我认为本节课的最大优点是,1、能充分调动学生积极性,学生自主探讨,合作交流,达到预设目的。

以提纲中两个文字命题的理论证明贯穿整堂课,活动为主线,学生为主体。

2、注重讲练结合,通过课堂内外达标练习,达到知识的落实。

当然,课堂中也存在很多的不足之处,例如:1、年轻教师(我)处理课堂教学突发事件,应变能力存在问题;后期应加大自身组织教学能力的提升,时时总结,堂堂反思。

2、不相信学生能力,有些活动开展不佳,总是教师包办学生,拘谨学生思维。

今后教学中,应大胆放手,让学生思维活起来,教师适时适当地给与点拨即可……“教然后而知困。

”教师在教育教学过程中时常反思,会不断地发现困惑,激发教师终身学习。

一份耕耘,一份收获。

教学工作苦乐相伴。

我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,积极专研教材教法,学习他人经验,努力提升自身教学能力和水平,争做一个新时代下的新青年教师。

13.3.2 等边三角形(第二课时)说课稿-2022-2023学年人教版八年级上册数学

13.3.2 等边三角形(第二课时)说课稿-2022-2023学年人教版八年级上册数学

13.3.2 等边三角形(第二课时)说课稿-2022-2023学年人教版八年级上册数学一、教学目标1.知识与技能:–掌握等边三角形的性质和判定定理;–能够应用等边三角形的性质解决相关问题。

2.过程与方法:–引导学生理解等边三角形的性质,通过观察与推理探究等边三角形的特点;–培养学生的观察和推理能力,培养学生应用数学方法解决问题的能力。

3.情感态度与价值观:–培养学生爱好数学、善于思考和探索的兴趣和态度;–培养学生合作学习、发现问题和解决问题的能力和习惯。

二、教学重难点1.教学重点:–掌握等边三角形的定义和性质;–能够应用等边三角形的性质解决相关问题。

2.教学难点:–理解等边三角形的定义和性质,并能够应用到解题中。

三、教学过程1. 导入新课可通过一些生活中的例子导入新课,例如:拿出一张纸、一支笔等,让学生观察并发现其中可能存在的等边三角形,并引导学生讨论等边三角形的特点。

2. 学习新知1.引入知识:–提出问题:什么是等边三角形?有哪些特点?–学生进行思考,并进行讨论。

2.引入概念:–通过观察等边三角形的示意图,引入等边三角形的概念和性质。

–示意图中标记等边三角形的边和角,并引导学生找出其中的关键特点。

3.展示定理:–将“等边三角形的边相等,角都是60°”的定理展示给学生,并引导学生进行理解和记忆。

3. 拓展练习1.巩固概念与性质:–让学生实际操作,通过调整纸张的形状,观察等边三角形在平面上的表现,并发现与定理的吻合。

–提供一些实例,让学生判断是否为等边三角形,并给出理由。

2.解决问题:–出示一些与等边三角形相关的问题,引导学生运用所学知识解决问题。

4. 总结归纳通过与学生的互动讨论,引导学生总结等边三角形的性质和判定定理,并进行板书整理,帮助学生形成系统的知识结构。

5.小结与展望对本节课的重点和难点进行小结,并对下节课的内容进行展望。

四、教学资源•教材《人教版八年级上册数学》•纸张•笔五、板书设计等边三角形- 定义:三边相等、三角形为等边三角形- 性质:三边相等,三个角都是60°六、课后作业1.完成课堂练习册上与等边三角形相关的练习题;2.思考并记录生活中的实例,判断是否为等边三角形,并给出理由。

初中数学:13.3.2 等边三角形

初中数学:13.3.2 等边三角形

BQ⊥AD于点Q,PQ=3,PE=1. 求AD的长.
① 证明△ABE≌△CAD
② AD=BE,∠3 =∠5
③ 证明∠2 = 60°,得到∠1=30° ④ 在Rt△BPQ中,BP=2PQ=6
A
4 5E P
2
3
Q
1
B
DC
⑤ AD=BE=BP+PE = 7
小结
等边三角形
性质
三个角相等,都等于60°. 三条边相等. 等腰三角形的其它性质.
C. BD=2CD
D. CD=ED
A
∠A=60° ∠CAD=30°=∠B
E' E
AD=BD BD=AD=2CD
C
B
D
练习 在△ABC中,∠C=90°,∠B=30°,AC=3,点P是BC
上的动点. 则AP的长不可能是( )
A. 3.5
B. 4.2
C. 5.8
D. 7
A
C
P
B
练习 在△ABC中,∠C=90°,∠B=30°,AC=3,点P是BC
是AB上的一点,连接DE. 则下面结论错误的是( ) A. ∠CAD=30° B. AD=BD
C. BD=2CD
D. CD=ED
A
C D
E B
例4 在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,E 是AB上的一点,连接DE. 则下面结论错误的是( ) A. ∠CAD=30° B. AD=BD
C. ②③
D. ①③
Q
R
S
△BRP≌△△CSP≌QSP
B
P
C
练习 如图,一个等边三角形纸片,剪去一个角后得到一个四 边形,则图中∠1+∠2的度数是 ( ). A. 180° B. 220° C. 240° D. 300°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.3.2 等边三角形(2)
掌握含有30°角的直角三角形的性质.
重、难点:含有30°角的直角三角形的性质.
一、自学指导
自学:自学课本P80-81页“探究及例5”,掌握含有30°角的直角三角形的性质,完成下列填空.(5分钟)
总结归纳:在直角三角形中,如果一个锐角等于30°,那么,它所对的直角边等于斜边的一半.
二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)
1.课本P81页练习题1.
2.在Rt △ABC 中,若∠BCA =90°,∠A =30°,AB =4,则BC =2.
3.如图,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =4 cm ,则CD =2_cm .
4.若等腰三角形一腰上的高等于腰长的一半,则这个三角形的底角等于75°或15°.
5.如图,AD 为等边△ABC 的高,DE 是△ADC 的高,已知△ABC 的边长为6,求AE 的长.
解:∵AD 为等边△ABC 的高,∴CD =12CB =3,∵DE ⊥AC ,∠C =60°,∴∠CDE =30°,∴CE =12
CD =12×3=32
.
小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)
探究1 如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线交AC 于D ,
求证:AD =12
CD. 证明:连接BD ,∵BA =BC ,∠B =120°,∴∠A =∠C =30°,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠ABD =∠A =30°,∵∠CBD =∠ABC -∠ABD =120°-30°=90°,又∵∠C =30°,∴DB =12CD ,∴AD =12
CD.
探究2 如图,在等边△ABC 中,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,求证:BP =2PQ. 证明:∵△ABC 是等边三角形,∴∠BAE =∠C =60°,AB =AC ,∵在△ABE 与△CAD 中⎩⎨⎧AB =CA ,
∠BAE =∠C ,AE =CD ,
∴△ABE ≌△CAD ,∴∠ABE =∠CAD ,∵∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°,∵BQ ⊥AD ,∴∠PBQ =30°,∴BP =2PQ.
学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)
如图,一棵大树在一次强台风中离地面5米处折断倒下,倒下部分与地面成30°夹角,这样的大树在折断前的高度为(B )
A .10米
B .15米
C .25米
D .30米
(3分钟)在直角三角形中,由角的度数可以得到边之间的数量关系,同样根据边的数量关
系也可以得到角的特殊度数.在运用的过程中,要注意前提条件是在直角三角形中.
(学生总结本堂课的收获与困惑)(2分钟)
(10分钟)。

相关文档
最新文档