最新中考数学浙江省宁波市中考数学试卷(含答案)

合集下载

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。

宁波中考数学试卷(解析版)

宁波中考数学试卷(解析版)

宁波中考数学试卷(解析版)宁波中考数学试卷(解析版)一、选择题1.某车站发车时间为每隔10分钟一班,小明到车站时刚好错过了一班车,他离下一班车还有多少分钟?A. 5B. 8C. 10D. 15解析:由题可知每隔10分钟一班车,小明刚好错过了一班车,所以还需要等待10分钟才能乘坐下一班车。

选C。

2.一辆汽车以每小时60公里的速度行驶,行驶了t小时后,它行驶的总距离是多少?A. 30tB. 40tC. 50tD. 60t解析:速度等于路程除以时间,汽车以每小时60公里的速度行驶,所以在t小时内,行驶的总距离为60t。

选D。

3.若a=3,b=2,则a²+3ab+b²的值等于:A. 23B. 19C. 17D. 15解析:将a、b的值代入给出的表达式,计算得到a²+3ab+b²=3²+3×3×2+2²=9+18+4=31。

选E。

4.在一个平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(7,1),则线段AB的长度等于:A. 5B. 6C. 7D. 8解析:根据两点的坐标计算两点之间的距离:√[(7-3)²+(1-4)²]=√[4²+(-3)²]=√[16+9]=√25=5。

选A。

5.若x:y=2:3,且x=10,则y的值等于:A. 5B. 8C. 12D. 15解析:根据x:y=2:3,可得到x/y=2/3。

将已知条件x=10代入等式,得到10/y=2/3,由此可以解得y=15。

选D。

二、填空题1.已知正方形的面积是36平方厘米,那么它的周长是______厘米。

解:设正方形的边长为a,则面积为a²=36,解得a=6。

周长为4a=4×6=24。

答:24厘米。

2.在△ABC中,∠B = 45°,AB = 12 cm,BC = 9 cm,那么AC的长度是______cm。

2022年浙江省宁波市中考数学试卷及答案解析

2022年浙江省宁波市中考数学试卷及答案解析

2022年浙江省宁波市中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2022的相反数是()A.2022B.﹣C.﹣2022D.2.(4分)下列计算正确的是()A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3•a=a4 3.(4分)据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为()A.1.36×107B.13.6×108C.1.36×109D.0.136×1010 4.(4分)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.5.(4分)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A.36.5℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃6.(4分)已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.36πcm2B.24πcm2C.16πcm2D.12πcm27.(4分)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.48.(4分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y斗,那么可列方程组为()A.B.C.D.9.(4分)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2B.m>C.m<1D.<m<2 10.(4分)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积二、填空题(每小题5分,共30分)11.(5分)请写出一个大于2的无理数:.12.(5分)分解因式:x2﹣2x+1=.13.(5分)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.14.(5分)定义一种新运算:对于任意的非零实数a,b,a⊗b=+.若(x+1)⊗x=,则x的值为.15.(5分)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC 相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.16.(5分)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(x+1)(x﹣1)+x(2﹣x);(2)解不等式组:.18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.(8分)如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.(10分)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.(10分)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)22.(10分)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?23.(12分)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG ∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.(14分)如图1,⊙O为锐角三角形ABC的外接圆,点D在上,AD交BC于点E,点F在AE上,满足∠AFB﹣∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当的长为2时,求的长.②当OF:OE=4:11时,求cosα的值.2022年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数,据此判断即可.【解答】解:﹣2022的相反数是2022.故选:A.【点评】本题考查了相反数,熟记相反数的定义是解答本题的关键.2.【分析】根据合并同类项判断A选项;根据同底数幂的除法判断B选项;根据幂的乘方判断C选项;根据同底数幂的乘法判断D选项.【解答】解:A选项,a3与a不是同类项,不能合并,故该选项不符合题意;B选项,原式=a4,故该选项不符合题意;C选项,原式=a6,故该选项不符合题意;D选项,原式=a4,故该选项符合题意;故选:D.【点评】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握a m•a n=a m+n是解题的关键.3.【分析】将较大的数写成a×10n,其中1≤a<10,n为正整数即可.【解答】解:1360000000=1.36×109,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.4.【分析】根据俯视图的定义进行判定即可得出答案.【解答】解:根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,故C选项符合题意.故选:C.【点评】本题主要考查了简单组合体的三视图,熟练掌握简单组合体.的三视图的判定方法进行求解是解决本题的关键.5.【分析】应用众数和中位数的定义进行计算即可得出答案.【解答】解:由统计表可知,众数为36.5,中位数为=36.5.故选:B.【点评】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键.6.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的侧面积=×2π×4×6=24π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【分析】根据三角形中位线可以求得AE的长,再根据AE=AD,可以得到AD的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD的长.【解答】解:∵D为斜边AC的中点,F为CE中点,DF=2,∴AE=2DF=4,∵AE=AD,∴AD=4,在Rt△ABC中,D为斜边AC的中点,∴BD=AC=AD=4,故选:D.【点评】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线,解答本题的关键是求出AD的长.8.【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解答】解:根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.9.【分析】根据y1<y2列出关于m的不等式即可解得答案.【解答】解:∵点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上,∴y1=(m﹣1﹣1)2+n=(m﹣2)2+n,y2=(m﹣1)2+n,∵y1<y2,∴(m﹣2)2+n<(m﹣1)2+n,∴(m﹣2)2﹣(m﹣1)2<0,即﹣2m+3<0,∴m>,故选:B.【点评】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m 的不等式.本题属于基础题,难度不大.10.【分析】根据题意设PD=x,GH=y,则PH=x﹣y,根据矩形纸片和正方形纸片的周长相等,可得AP=x+y,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项.【解答】解:设PD=x,GH=y,则PH=x﹣y,∵矩形纸片和正方形纸片的周长相等,∴2AP+2(x﹣y)=4x,∴AP=x+y,﹣2△ADH﹣2S△AEB∵图中阴影部分的面积=S矩形ABCD=(2x+y)(2x﹣y)﹣2ו(x﹣y)(2x+y)﹣2ו(2x﹣y)•x=4x2﹣y2﹣(2x2+xy﹣2xy﹣y2)﹣(2x2﹣xy)=4x2﹣y2﹣2x2+xy+y2﹣2x2+xy=2xy,A 、正方形纸片的面积=x 2,故A 不符合题意;B 、四边形EFGH 的面积=y 2,故B 不符合题意;C 、△BEF 的面积=•EF •BQ =xy ,故C 符合题意;D 、△AEH 的面积=•EH •AM =y (x ﹣y )=xy ﹣y 2,故D 不符合题意;故选:C .【点评】本题考查整式混合运算的应用,矩形的性质,四边形的面积和正方形的性质,解题的关键是能用字母表示各矩形的边长并计算面积.二、填空题(每小题5分,共30分)11.【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.【解答】解:大于2的无理数有:须使被开方数大于4即可,如(答案不唯一).【点评】此题主要考查了无理数的估算,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.12.【分析】直接利用完全平方公式分解因式即可.【解答】解:x 2﹣2x +1=(x ﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.【分析】应用简单随机事件的概率计算方法进行求解即可得出答案.【解答】解:摸出红球的概率为=.故答案为:.【点评】本题主要考查了概率公式,熟练掌握概率公式进行求解是解决本题的关键.14.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.【点评】本题考查了解分式方程,新定义,根据新定义列出分式方程是解题的关键.15.【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.【解答】解:连接OA,过点A作AD⊥BC于点D,∵圆与AC相切于点A.∴OA⊥AC,由题意可知:D点位置分为两种情况,①当∠CAD为90°时,此时D点与O点重合,设圆的半径=r,∴OA=r,OC=4﹣r,∵AC=2,在Rt△AOC中,根据勾股定理可得:r2+4=(4﹣r)2,解得:r=,即AD=AO=;②当∠ADC=90°时,AD=,∵AO=,AC=2,OC=4﹣r=,∴AD=,综上所述,AD的长为或,故答案为:或.【点评】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.16.【分析】连接OD,作DG⊥x轴,设点B(b,),D(a,),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.【解答】解:如图,作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B(b,),D(a,),由对称性可得:△BOD≌△BOA≌△OBC,∴∠OBC=∠BOD,BC=OD,∴OI=BI,∴DI=CI,∴=,∵∠CID=∠BIO,∴△CDI∽△BOI,∴∠CDI=∠BOI,∴CD∥OB,=S△AOB=S矩形AOCB=,∴S△BOD=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,∵S△BOE=S△BOD=,∴S梯形BEGD∴•(a﹣b)=,∴2a2﹣3ab﹣2b2=0,∴(a﹣2b)•(2a+b)=0,∴a=2b,a=﹣(舍去),∴D(2b,),即:(2b,),在Rt△BOD中,由勾股定理得,OD2+BD2=OB2,∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,∴b=,∴B(,2),D(2,),∵直线OB的解析式为:y=2x,∴直线DF的解析式为:y=2x﹣3,当y=0时,2﹣3=0,∴x=,∴F(,0),∵OE=,OF=,∴EF=OF﹣OE=,∴=,故答案为:,(,0).【点评】本题考查了矩形性质,轴对称性质,反比例函数的“k”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.三、解答题(本大题有8小题,共80分)17.【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案.【解答】解:(1)原式=x2﹣1+2x﹣x2=2x﹣1;(2),解不等式①得:x>3,解不等式②得:x≥﹣2,∴原不等式组的解集为:x>3.【点评】本题考查了整式的混合运算,解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.18.【分析】(1)结合等腰三角形的性质,找出点C的位置,再连线即可.(2)结合菱形的性质,找出点D,E的位置,再连线即可.【解答】解:(1)答案不唯一.(2)【点评】本题考查作图﹣复杂作图,熟练掌握等腰三角形和菱形的性质是解题的关键.19.【分析】(1)把点A的坐标代入一次函数关系式可求出a的值,再代入反比例函数关系式确定k的值,进而得出答案;(2)确定m的取值范围,再根据反比例函数关系式得出n的取值范围即可.【解答】解:(1)把A(a,2)的坐标代入y=x,即2=﹣a,解得a=﹣3,∴A(﹣3,2),又∵点A(﹣3,2)是反比例函数y=的图象上,∴k=﹣3×2=﹣6,∴反比例函数的关系式为y=﹣;(2)∵点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,∴﹣3<m<0或0<m<3,当m=﹣3时,n==2,当m=3时,n==2,由图象可知,若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,n的取值范围为n>2或n<﹣2.【点评】本题考查反比例函数图象上点的坐标特征,反比例函数与一次函数的图象交点坐标,把点的坐标代入相应的函数关系式求出待定系数是求函数关系式的常用方法.20.【分析】(1)根据条形统计图进行计算即可得出答案;(2)根据折线统计图进行求解即可得出答案;(3)对比折线统计图分析即可得出答案.【解答】解:(1)4+7+10+14+20=55(天).答:这5期的集训共有55天.(2)11.72﹣11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时成绩最好.【点评】本题主要考查了折线统计图和条形统计图,熟练掌握折线统计图和扇形统计图的应用进行求解是解决本题的关键.21.【分析】(1)在Rt△ABD中,利用锐角三角函数的定义求出AB的长,即可解答;(2)根据题意可得DE=BC=2m,从而求出AD=17m,然后在Rt△ABD中,利用锐角三角函数的定义求出AB的长,进行比较即可解答.【解答】解:(1)在Rt△ABD中,∠ABD=53°,BD=9m,∴AB=≈=15(m),∴此时云梯AB的长为15m;(2)在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:DE=BC=2m,∵AE=19m,∴AD=AE﹣DE=19﹣2=17(m),在Rt△ABD中,BD=9m,∴AB===(m),∵m<20m,∴在该消防车不移动位置的前提下,云梯能伸到险情处.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.22.【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得y=4﹣0.5(x﹣2)=﹣0.5x+5,(2)设每平方米小番茄产量为W千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.【解答】解:(1)∵每平方米种植的株数每增加1株,单株产量减少0.5千克,∴y=4﹣0.5(x﹣2)=﹣0.5x+5,答:y关于x的函数表达式为y=﹣0.5x+5,(2≤x≤8,且x为整数);(2)设每平方米小番茄产量为W千克,根据题意得:W=x(﹣0.5x+5)=﹣0.5x2+5x=﹣0.5(x﹣5)2+12.5,∵﹣0.5<0,∴当x=5时,W取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【点评】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.23.【分析】(1)证明△AGD∽△AFB,△AFC∽△AGE,根据相似三角形的性质得到=,进而证明结论;(2)根据线段垂直平分线的性质求出CE,根据相似三角形的性质计算,得到答案;(3)延长GE交AB于M,连接MF,过点M作MN⊥BC于N,根据直角三角形的性质求出∠EFG,求出∠MFN=30°,根据直角三角形的性质、勾股定理计算即可.【解答】(1)证明:∵DE∥BC,∴△AGD∽△AFB,△AFC∽△AGE,∴=,=,∴=,∵BF=CF,∴DG=EG;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质、直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.【分析】(1)联立∠AFB﹣∠BFD=∠ACB=α,∠AFB+∠BFD=180°,即可得出∠BFD 的度数;(2)根据角的关系得出DB=DF,推出∠DFG=∠DBE,又BE=FG,即可根据SAS证两三角形全等;(3)①用α表示出∠ABC的度数,根据度数比等于弧长比计算弧长即可;②证△BDG∽△BOF,设相似比为k,OF=4x,则可得出OE,DE,GE的长度,根据比例关系得出方程求出k的值,在用x的代数式分别表示出BD和AD,即可得出结论.【解答】解:(1)∵∠AFB﹣∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②﹣①,得2∠BFD=180°﹣α,∴∠BFD=90°﹣;(2)由(1)得∠BFD=90°﹣,∵∠ADB=∠ACB=α,∴∠FBD=180°﹣∠ADB﹣∠BFD=90°﹣,∴DB=DF,∵FG∥AC,∴∠CAD=∠DFG,∵∠CAD=∠DBE,∴∠DFG=∠DBE,在△BDE和△FDG中,,∴△BDE≌△FDG(SAS);(3)①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α,∵DE=DG,∴∠DGE=(180°﹣∠FDG)=90°﹣,∴∠DBG=180°﹣∠BDG﹣∠DGE=90°﹣,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ABC=∠ABD﹣∠DBG=,∴与所对的圆心角度数之比为3:2,∴与的长度之比为3:2,∵=2,∴=3;②如图,连接BO,∵OB=OD,∴∠OBD=∠ODB=α,∴∠BOF=∠OBD+∠ODB=2α,∵∠BDG=2α,∴∠BOF=∠BDG,∵∠BGD=∠BFO=90°﹣,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴,∵,∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=OF+OD=15x+4kx,∴==,由=k,得4k2+7k﹣15=0,解得k=或﹣3(舍去),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB==,∴cosα=.方法二:连接OB,作BM⊥AD于M,由题意知,△BDF和△BEF都是等腰三角形,∴EM=MF,设OE=4,OF=11,设DE=m,则OB=m+11,OM=3.5,BD=m+15,DM=m+7.5,∴OB2﹣OM2=BD2﹣DM2,即(m+11)2﹣3.52=(m+15)2﹣(m+7.5)2,解得m=5或m=﹣12(舍去),∴cosα=.【点评】本题主要考查圆的综合题,熟练掌握圆周角定理,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质等知识是解题的关键.。

2022年浙江省宁波市中考数学试卷(解析版)

2022年浙江省宁波市中考数学试卷(解析版)

2022年浙江省宁波市中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)2022-的相反数是()A .2022B .12022-C .2022-D .120222.(4分)下列计算正确的是()A .34a a a +=B .623a a a ÷=C .235()a a =D .34a a a ⋅=3.(4分)据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为()A .71.3610⨯B .813.610⨯C .91.3610⨯D .100.13610⨯4.(4分)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A .B .C .D .5.(4分)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(C)︒36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A .36.5C ︒,36.4C ︒B .36.5C ︒,36.5C︒C .36.8C ︒,36.4C ︒D .36.8C ︒,36.5C︒6.(4分)已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积是()A .236cm πB .224cm πC .216cm πD .212cm π7.(4分)如图,在Rt ABC ∆中,D 为斜边AC 的中点,E 为BD 上一点,F 为CE 中点.若AE AD =,2DF =,则BD 的长为()A.B .3C.D .48.(4分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为()A .10375x y x y +=⎧⎪⎨+=⎪⎩B .10375x y x y +=⎧⎪⎨+=⎪⎩C .775103x x y +=⎧⎪⎨+=⎪⎩D .75103x y x y +=⎧⎪⎨+=⎪⎩9.(4分)点1(1,)A m y -,2(,)B m y 都在二次函数2(1)y x n =-+的图象上.若12y y <,则m 的取值范围为()A .2m >B .32m >C .1m <D .322m <<10.(4分)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A .正方形纸片的面积B .四边形EFGH 的面积C .BEF ∆的面积D .AEH ∆的面积二、填空题(每小题5分,共30分)11.(5分)请写出一个大于2的无理数:.12.(5分)分解因式:221x x -+=.13.(5分)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.14.(5分)定义一种新运算:对于任意的非零实数a ,b ,11a b a b=+⊗.若21(1)x x x x++=⊗,则x 的值为.15.(5分)如图,在ABC ∆中,2AC =,4BC =,点O 在BC 上,以OB 为半径的圆与AC 相切于点A .D 是BC 边上的动点,当ACD ∆为直角三角形时,AD 的长为.16.(5分)如图,四边形OABC 为矩形,点A 在第二象限,点A 关于OB 的对称点为点D ,点B ,D 都在函数0)y x x=>的图象上,BE x ⊥轴于点E .若DC 的延长线交x 轴于点F ,当矩形OABC 的面积为EFOE的值为,点F 的坐标为.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(1)(1)(2)x x x x +-+-.(2)解不等式组:43920x x ->⎧⎨+⎩.18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB 的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC ,且点C 在格点上.(画出一个即可)(2)在图2中画出以AB 为边的菱形ABDE ,且点D ,E 均在格点上.19.(8分)如图,正比例函数23y x =-的图象与反比例函数(0)ky k x =≠的图象都经过点(,2)A a .(1)求点A 的坐标和反比例函数表达式.(2)若点(,)P m n 在该反比例函数图象上,且它到y 轴距离小于3,请根据图象直接写出n 的取值范围.20.(10分)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.(10分)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB 可伸缩(最长可伸至20)m ,且可绕点B 转动,其底部B 离地面的距离BC 为2m ,当云梯顶端A 在建筑物EF 所在直线上时,底部B 到EF 的距离BD 为9m .(1)若53ABD ∠=︒,求此时云梯AB 的长.(2)如图2,若在建筑物底部E 的正上方19m 处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin 530.8︒≈,cos530.6︒≈,tan 53 1.3)︒≈22.(10分)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数(28x x,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?23.(12分)【基础巩固】(1)如图1,在ABC∆中,D,E,F分别为AB,AC,BC上的点,//DE BC,BF CF=,AF交DE于点G,求证:DG EG=.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG DE⊥,6CD=,3AE=,求DE BC的值.【拓展提高】(3)如图3,在ABCD中,45ADC∠=︒,AC与BD交于点O,E为AO上一点,//EG BD 交AD于点G,EF EG⊥交BC于点F.若40EGF∠=︒,FG平分EFC∠,10FG=,求BF 的长.24.(14分)如图1,O为锐角三角形ABC的外接圆,点D在 BC上,AD交BC于点E,点F在AE上,满足AFB BFD ACB=,连结BD,∠-∠=∠,//FG AC交BC于点G,BE FG ∠=.DG.设ACBα(1)用含α的代数式表示BFD∠.(2)求证:BDE FDG∆≅∆.(3)如图2,AD为O的直径.①当 AB的长为2时,求 AC的长.②当:4:11OF OE=时,求cosα的值.2022年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)2022-的相反数是()A .2022B .12022-C .2022-D .12022【分析】相反数的概念:只有符号不同的两个数叫做互为相反数,据此判断即可.【解答】解:2022-的相反数是2022.故选:A .2.(4分)下列计算正确的是()A .34a a a +=B .623a a a ÷=C .235()a a =D .34a a a ⋅=【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据幂的乘方判断C 选项;根据同底数幂的乘法判断D 选项.【解答】解:A 选项,3a 与a 不是同类项,不能合并,故该选项不符合题意;B 选项,原式4a =,故该选项不符合题意;C 选项,原式6a =,故该选项不符合题意;D 选项,原式4a =,故该选项符合题意;故选:D .3.(4分)据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为()A .71.3610⨯B .813.610⨯C .91.3610⨯D .100.13610⨯【分析】将较大的数写成10n a ⨯,其中110a <,n 为正整数即可.【解答】解:91360000000 1.3610=⨯,故选:C .4.(4分)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【分析】根据俯视图的定义进行判定即可得出答案.【解答】解:根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,故C选项符合题意.故选:C.5.(4分)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:︒36.236.336.536.636.8体温(C)天数(天)33422这14天中,小宁体温的众数和中位数分别为()A.36.5C︒,36.4C︒B.36.5C︒,36.5C︒C.36.8C︒,36.4C︒D.36.8C︒,36.5C︒【分析】应用众数和中位数的定义进行计算即可得出答案.【解答】解:由统计表可知,众数为36.5,中位数为36.536.536.52+=.故选:B .6.(4分)已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积是()A .236cm πB .224cm πC .216cm πD .212cm π【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的侧面积2124624()2cm ππ=⨯⨯⨯=.故选:B .7.(4分)如图,在Rt ABC ∆中,D 为斜边AC 的中点,E 为BD 上一点,F 为CE 中点.若AE AD =,2DF =,则BD 的长为()A .B .3C .D .4【分析】根据三角形中位线可以求得AE 的长,再根据AE AD =,可以得到AD 的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD 的长.【解答】解:D 为斜边AC 的中点,F 为CE 中点,2DF =,24AE DF ∴==,AE AD = ,4AD ∴=,在Rt ABC ∆中,D 为斜边AC 的中点,142BD AC AD ∴===,故选:D .8.(4分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为()A .10375x y x y +=⎧⎪⎨+=⎪⎩B .10375x y x y +=⎧⎪⎨+=⎪⎩C .775103x x y +=⎧⎪⎨+=⎪⎩D .75103x y x y +=⎧⎪⎨+=⎪⎩【分析】根据原来的米+向桶中加的谷子10=,原来的米+桶中的谷子舂成米7=即可得出答案.【解答】解:根据题意得:10375x y x y +=⎧⎪⎨+=⎪⎩,故选:A .9.(4分)点1(1,)A m y -,2(,)B m y 都在二次函数2(1)y x n =-+的图象上.若12y y <,则m 的取值范围为()A .2m >B .32m >C .1m <D .322m <<【分析】根据12y y <列出关于m 的不等式即可解得答案.【解答】解: 点1(1,)A m y -,2(,)B m y 都在二次函数2(1)y x n =-+的图象上,221(11)(2)y m n m n ∴=--+=-+,22(1)y m n =-+,12y y < ,22(2)(1)m n m n ∴-+<-+,22(2)(1)0m m ∴---<,即230m -+<,32m ∴>,故选:B .10.(4分)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A .正方形纸片的面积B .四边形EFGH 的面积C .BEF ∆的面积D .AEH ∆的面积【分析】根据题意设PD x =,GH y =,则PH x y =-,根据矩形纸片和正方形纸片的周长相等,可得AP x y =+,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项.【解答】解:设PD x =,GH y =,则PH x y =-,矩形纸片和正方形纸片的周长相等,22()4AP x y x ∴+-=,AP x y ∴=+,图中阴影部分的面积22ADH AEBABCD S S ∆∆=--矩形11(2)(2)2()(2)2(2)22x y x y x y x y x y x =+--⨯⋅-+-⨯⋅-⋅222224(22)(2)x y x xy xy y x xy =--+----22222422x y x xy y x xy=--++-+2xy =,A 、正方形纸片的面积2x =,故A 不符合题意;B 、四边形EFGH 的面积2y =,故B 不符合题意;C 、BEF ∆的面积1122EF BQ xy =⋅⋅=,故C 符合题意;D 、AEH ∆的面积1111()22222EH AM y x y xy y =⋅⋅=-=-,故D 不符合题意;故选:C .二、填空题(每小题5分,共30分)11.(5分)请写出一个大于2(答案不唯一).【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.【解答】解:大于2的无理数有:须使被开方数大于4(答案不唯一).12.(5分)分解因式:221x x -+=2(1)x -.【分析】直接利用完全平方公式分解因式即可.【解答】解:2221(1)x x x -+=-.13.(5分)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为511.【分析】应用简单随机事件的概率计算方法进行求解即可得出答案.【解答】解:摸出红球的概率为555611=+.故答案为:511.14.(5分)定义一种新运算:对于任意的非零实数a ,b ,11a b a b =+⊗.若21(1)x x x x ++=⊗,则x 的值为12-.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:11211x x x x++=+,化为整式方程得:1(21)(1)x x x x ++=++,解得:12x =-,检验:当12x =-时,(1)0x x +≠,∴原方程的解为:12x =-.故答案为:12-.15.(5分)如图,在ABC ∆中,2AC =,4BC =,点O 在BC 上,以OB 为半径的圆与AC 相切于点A .D 是BC 边上的动点,当ACD ∆为直角三角形时,AD 的长为32或65.【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.【解答】解:连接OA ,过点A 作AD BC ⊥于点D ,圆与AC 相切于点A .OA AC ∴⊥,由题意可知:D 点位置分为两种情况,①当CAD ∠为90︒时,此时D 点与O 点重合,设圆的半径r =,OA r ∴=,4OC r =-,2AC = ,在Rt AOC ∆中,根据勾股定理可得:224(4)r r +=-,解得:32r =,即32AD AO ==;②当90ADC ∠=︒时,AO AC AD OC ⋅=,32AO =,2AC =,542OC r =-=,65AD ∴=,综上所述,AD 的长为32或65,故答案为:32或65.16.(5分)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数620)y xx=>的图象上,BE x⊥轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为EFOE的值为12,点F的坐标为.【分析】连接OD,作DG x⊥轴,设点62(,)B bb,62(,D aa,根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.【解答】解:如图,作DG x⊥轴于G,连接OD,设BC和OD交于I,设点62(,B b b ,62(,D a a,由对称性可得:BOD BOA OBC ∆≅∆≅∆,OBC BOD ∴∠=∠,BC OD =,OI BI ∴=,DI CI ∴=,∴DI CI OI BI=,CID BIO ∠=∠ ,CDI BOI ∴∆∆∽,CDI BOI ∴∠=∠,//CD OB ∴,12BOD AOB AOCB S S S ∆∆∴===矩形,1||2BOE DOG S S k ∆∆=== BOD DOG BOE BOGD BEGD S S S S S ∆∆∆=+=+四边形梯形,BOD BEGD S S ∆∴==梯形,∴1626292()()22a b a b +⋅-=,222320a ab b ∴--=,(2)(2)0a b a b ∴-⋅+=,2a b ∴=,2b a =-(舍去),(2,)2D b b∴,即:(2b ,在Rt BOD ∆中,由勾股定理得,222OD BD OB +=,22222[(2)][(2)]b b b b ∴++-+=+,b ∴=B ∴,,D ,直线OB 的解析式为:y =,∴直线DF 的解析式为:y =-当0y =时,0-=,2x ∴=,F ∴,0),OE = ,OF =,32EF OF OE ∴=-=,∴12EF OE =,故答案为:12,(2,0).三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(1)(1)(2)x x x x +-+-.(2)解不等式组:43920x x ->⎧⎨+⎩.【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案.【解答】解:(1)原式2212x x x =-+-21x =-;(2)43920x x ->⎧⎨+⎩①②,解不等式①得:3x >,解不等式②得:2x -,∴原不等式组的解集为:3x >.18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB 的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC ,且点C 在格点上.(画出一个即可)(2)在图2中画出以AB 为边的菱形ABDE ,且点D ,E 均在格点上.【分析】(1)结合等腰三角形的性质,找出点C 的位置,再连线即可.(2)结合菱形的性质,找出点D ,E 的位置,再连线即可.【解答】解:(1)答案不唯一.(2)19.(8分)如图,正比例函数23y x =-的图象与反比例函数(0)k y k x=≠的图象都经过点(,2)A a .(1)求点A 的坐标和反比例函数表达式.(2)若点(,)P m n 在该反比例函数图象上,且它到y 轴距离小于3,请根据图象直接写出n 的取值范围.【分析】(1)把点A的坐标代入一次函数关系式可求出a的值,再代入反比例函数关系式确定k的值,进而得出答案;(2)确定m的取值范围,再根据反比例函数关系式得出n的取值范围即可.【解答】解:(1)把(,2)A a的坐标代入23y x=,即223a=-,解得3a=-,(3,2)A∴-,又 点(3,2)A-是反比例函数kyx=的图象上,326 k∴=-⨯=-,∴反比例函数的关系式为6 yx=-;(2) 点(,)P m n在该反比例函数图象上,且它到y轴距离小于3,30m∴-<<或03m<<,当3m=-时,623n-==-,当3m=时,623n-==,由图象可知,若点(,)P m n在该反比例函数图象上,且它到y轴距离小于3,n的取值范围为2n>或2n<-.20.(10分)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【分析】(1)根据条形统计图进行计算即可得出答案;(2)根据折线统计图进行求解即可得出答案;(3)对比折线统计图分析即可得出答案.【解答】解:(1)4710142055++++=(天).答:这5期的集训共有55天.(2)11.7211.520.2-=(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时成绩最好.21.(10分)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20)m,且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF 所在直线上时,底部B到EF的距离BD为9m.(1)若53∠=︒,求此时云梯AB的长.ABD(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin530.8︒≈︒≈,tan53 1.3)︒≈,cos530.6【分析】(1)在Rt ABD ∆中,利用锐角三角函数的定义求出AB 的长,即可解答;(2)根据题意可得2DE BC m ==,从而求出17AD m =,然后在Rt ABD ∆中,利用锐角三角函数的定义求出AB 的长,进行比较即可解答.【解答】解:(1)在Rt ABD ∆中,53ABD ∠=︒,9BD m =,915()cos530.6BD AB m ∴=≈=︒,∴此时云梯AB 的长为15m ;(2)在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:2DE BC m ==,19AE m = ,19217()AD AE DE m ∴=-=-=,在Rt ABD ∆中,9BD m =,)AB m ∴===,20m <,∴在该消防车不移动位置的前提下,云梯能伸到险情处.22.(10分)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数(28x x ,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得40.5(2)0.55y x x =--=-+,(2)设每平方米小番茄产量为W 千克,由产量=每平方米种植株数⨯单株产量即可列函数关系式,由二次函数性质可得答案.【解答】解:(1) 每平方米种植的株数每增加1株,单株产量减少0.5千克,40.5(2)0.55y x x ∴=--=-+,答:y 关于x 的函数表达式为0.55y x =-+,(28x ,且x 为整数);(2)设每平方米小番茄产量为W 千克,根据题意得:22(0.55)0.550.5(5)12.5W x x x x x =-+=-+=--+,0.50-< ,∴当5x =时,W 取最大值,最大值为12.5,答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.(12分)【基础巩固】(1)如图1,在ABC ∆中,D ,E ,F 分别为AB ,AC ,BC 上的点,//DE BC ,BF CF =,AF 交DE 于点G ,求证:DG EG =.【尝试应用】(2)如图2,在(1)的条件下,连结CD ,CG .若CG DE ⊥,6CD =,3AE =,求DE BC的值.【拓展提高】(3)如图3,在ABCD 中,45ADC ∠=︒,AC 与BD 交于点O ,E 为AO 上一点,//EG BD 交AD 于点G ,EF EG ⊥交BC 于点F .若40EGF ∠=︒,FG 平分EFC ∠,10FG =,求BF 的长.【分析】(1)证明AGD AFB ∆∆∽,AFC AGE ∆∆∽,根据相似三角形的性质得到DG GE BF FC=,进而证明结论;(2)根据线段垂直平分线的性质求出CE,根据相似三角形的性质计算,得到答案;(3)延长GE交AB于M,连接MF,过点M作MN BC⊥于N,根据直角三角形的性质求出EFG∠,求出30MFN∠=︒,根据直角三角形的性质、勾股定理计算即可.【解答】(1)证明://DE BC,AGD AFB∴∆∆∽,AFC AGE∆∆∽,∴DG AGBF AF=,GE AGFC AF=,∴DG GE BF FC=,BF CF=,DG EG∴=;(2)解:DG EG=,CG DE⊥,6CE CD∴==,//DE BC,ADE ABC∴∆∆∽,∴31363 DE AEBC AC===+;(3)解:延长GE交AB于M,连接MF,过点M作MN BC⊥于N, 四边形ABCD为平行四边形,OB OD∴=,45ABC ADC∠=∠=︒,//MG BD,ME GE∴=,EF EG⊥,10FM FG∴==,在Rt GEF∆中,40EGF∠=︒,904050EFG∴∠=︒-︒=︒,FG平分EFC∠,50GFC EFG∴∠=∠=︒,FM FG=,EF GM⊥,50MFE EFG∴∠=∠=︒,30MFN∴∠=︒,152MN MF ∴==,NF ∴==45ABC ∠=︒ ,5BN MN ∴==,5BF BN NF ∴=+=+.24.(14分)如图1,O 为锐角三角形ABC 的外接圆,点D 在 BC上,AD 交BC 于点E ,点F 在AE 上,满足AFB BFD ACB ∠-∠=∠,//FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠.(2)求证:BDE FDG ∆≅∆.(3)如图2,AD 为O 的直径.①当 AB 的长为2时,求 AC 的长.②当:4:11OF OE =时,求cos α的值.【分析】(1)联立AFB BFD ACB α∠-∠=∠=,180AFB BFD ∠+∠=︒,即可得出BFD ∠的度数;(2)根据角的关系得出DB DF =,推出DFG DBE ∠=∠,又BE FG =,即可根据SAS 证两三角形全等;(3)①用α表示出ABC ∠的度数,根据度数比等于弧长比计算弧长即可;②证BDG BOF ∆∆∽,设相似比为k ,4OF x =,则可得出OE ,DE ,GE 的长度,根据比例关系得出方程求出k 的值,在用x 的代数式分别表示出BD 和AD ,即可得出结论.【解答】解:(1)AFB BFD ACB α∠-∠=∠= ,①又180AFB BFD ∠+∠=︒ ,②②-①,得2180BFD α∠=︒-,902BFD α∴∠=︒-;(2)由(1)得902BFD α∠=︒-,ADB ACB α∠=∠= ,180902FBD ADB BFD α∴∠=︒-∠-∠=︒-,DB DF ∴=,//FG AC ,CAD DFG ∴∠=∠,CAD DBE ∠=∠ ,DFG DBE ∴∠=∠,在BDE ∆和FDG ∆中,DB DF DFG DBE BE FG =⎧⎪∠=∠⎨⎪=⎩,()BDE FDG SAS ∴∆≅∆;(3)①BDE FDG ∆≅∆ ,FDG BDE α∴∠=∠=,2BDG BDF EDG α∴∠=∠+∠=,DE DG = ,1(180)9022DGE FDG α∴∠=︒-∠=︒-,3180902DBG BDG DGE α∴∠=︒-∠-∠=︒-,AD 是O 的直径,90ABD ∴∠=︒,32ABC ABD DBG α∴∠=∠-∠=,∴AC 与 AB 所对的圆心角度数之比为3:2,∴AC 与 AB 的长度之比为3:2, 2AB =,∴3AC =;②如图,连接BO ,OB OD = ,OBD ODB α∴∠=∠=,2BOF OBD ODB α∴∠=∠+∠=,2BDG α∠= ,BOF BDG ∴∠=∠,902BGD BFO α∠=∠=︒-,BDG BOF ∴∆∆∽,设BDG ∆与BOF ∆的相似比为k ,∴DG BD k OF BO==,411OF OE =,∴设4OF x =,则11OE x =,4DE DG kx ==,114OB OD OE DE x kx ∴==+=+,154BD DF OF OD x kx ==+=+,∴154154114114BD x kx k OB x kx k++==++,由154114k k k+=+,得247150k k +-=,解得54k =或3-(舍去),11416OD x kx x ∴=+=,15420BD x kx x =+=,232AD OD x ∴==,在Rt ABD ∆中,205cos 328BD x ADB AD x ∠===,5cos 8α∴=.方法二:连接OB ,作BM AD ⊥于M ,由题意知,BDF ∆和BEF ∆都是等腰三角形,EM MF ∴=,设4OE =,11OF =,设DE m =,则11OB m =+, 3.5OM =,15BD m =+,7.5DM m =+,2222OB OM BD DM ∴-=-,即2222(11) 3.5(15)(7.5)m m m +-=+-+,解得5m =或12m =-(舍去),5cos 8MD BD α∴==.。

2023年宁波市中考数学试卷

2023年宁波市中考数学试卷

2023年宁波市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知二次函数y =x 2-x +a (a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( )A .m -1的函数值小于0B .m -1的函数值大于0C . m -1的函数值等于0D .m -1的函数值与0的大小关系不确定2.在同圆或等圆中,已知下列四个命题:①不相等的圆心角所对的弧不相等;②较长弦的弦心距较短;⑤相等的弧所对的弦相等;④弧扩大2倍,则所对的弦也就扩大 2 倍.其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个 3.已知函数33y mx x =+-,要使函数值y 随自变量x 值的增大而增大,则m 的取值范围是( )A .3m ≥-B .3m >-C .3m ≤-D .3m <- 4.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( ) A .a >0 B .a =0 C .a >4D .a =4 5.绝对值不大于 2 的整数的个数一共有( ) A .3 个 B .4 个 C .5 个 D .6 个6.已知ABC △的三边长分别为5,13,12,则ABC △的面积为( ) A .30B .60C .78D .不能确定 7.己如,已知1l ∥2l ,AB ∥CD ,CE ⊥2l 于点E ,FG ⊥2l 于点 G ,下列说法中不正确的是( )A .∠ABD=∠CDEB .CE=FGC .A 、B 两点间的距离就是线段AB 的长度D .1l 与2l 之间的距离就是线段CD 的长度8.小慧测得一根木棒的长度为2.8米,这根木棒的实际长度的范围( )A .大于2米,小于3米B .大于2.7米,小于2.9米C .大于2.75米,小于2.84米D .大于或等于2.75米,小于2.85米9. 在数轴上表示-1.2 的点在( )A .-1 与0之间B .-2 与- 1 之间C .1 与2之间D .-1 与 1 之间10.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A .90个B .24个C .70个D .32个二、填空题11.袋中装有3个红球,1个白球它们除了颜色相同以外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是______.12. 抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_____________.(1,0)13.若抛物线2y x bx c =-++的最高点为(-1,-3),则b= 一2,c= .14.梯形ABCD 中,AD ∥BC ,∠A :∠B=1:3,则∠A= ,∠B= .15.某校团委准备举办学生绘画展览,为美化画面,在长为30cm 、宽为20的矩形画面四周镶上宽度相等的彩纸成较大的矩形,并使彩纸的面积恰好与原画面面积相等,设彩纸的宽为x cm ,可列方程 .16.一个印有“祝你学习愉快”字样的立方体纸盒有面展开图如图所示,则与“你”字面相 对的面上是“ ”字.17.如图,在长方形ABCD 中,AB=3,BC=7,则AB ,CD 之间的距离是 .18. 滑翔机在天空滑翔是 变换.19.数轴上有一个点到表示-7和2的点的距离相等,则这个点所表示的数是_________.20.如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2米的标杆,现测量者从E处可以看到杆顶C与树顶A在同一直线上,如果测得BD=20米,FD=4米,EF=1.8米,则树的高度为__________米.21.已知代数式 2m 的值是 4,则代数式231-+的值是.m m三、解答题22.太阳光线与水平线的夹角在新疆地区的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为28.现有两幢居民住宅楼高为15米,两楼相距20米,如图所示.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内继续兴建同样高的住宅楼,楼距至少应该多少米,才不影响楼房的采光(前一幢楼房的影子不能落在后一幢楼房上)?(计算结果精确到0.1米)23.如图是某工件的三视图,求此工件的全面积.24.试用两种方法将已知平行四边形ABCD 分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).25.把下列命题改写成“如果……,那么……”的形式:(1)对顶角相等;(2)角平分线上的点到角两边的距离相等.26. 已知方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而粗心的乙同学把c 给看错了,解得36x y =⎧⎨=⎩, 求a b c --的值.27.分解因式:(1)-4x 3+16x 2-16x ; (2)21a 2(x-2a)2-41a(2a-x)3; (3)21ax 2y 2+2axy+2a ; (4)(x 2-6x)2+18(x 2-6x)+81;28.如图所示,准备一张正方形的纸.沿如图①所示的虚线对折两次,得到一个小正方形; 再沿图②的虚线对折;在得到的直角三角形上画出如图③所示的图形,再将阴影部分剪下来;打开你的作品.是一个旋转图形吗?旋转多少度后能与自身重合?你还能画出更有创意的作品吗?29.已知,如图所示,△ABC中,∠B=30°,∠C=40°,D为BC上一点,∠1=∠2,求∠BAD的度数.30.计算:(1)73() 1014⨯-;(2)5 (5)||2-⨯-;(3)5(2)(5)()(30)6-⨯-⨯+⨯-;(4)1423 3()()(3) 2754⨯-+-⨯-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.A2.C3.B4.B5.C6.A7.D8.D9.B10.B第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.12.13.14.15.16.17.18.19.20.21.三、解答题22.23.24.25.26.27.28.29.30.【参考答案及解析】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.A解析:A2.C解析:C3.B解析:B4.B解析:B5.C解析:C6.A解析:A7.D解析:D8.D解析:D9.B解析:B10.B解析:B第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.91612. 13.一2,一414.45°,l35°15.20302)230)(220(⨯⨯=++x x 16. 愉17.718.平移 119.-2.520.321.-1三、解答题22.解:(1)如图所示,作DE AB ⊥,垂足为E 由题意可知28ADE ∠=,20DE BC == 在Rt ADE △中,tan AEADE DC ∠=6.1028tan 20tan ≈⋅=∠ ADE , 28 A则1510.6 4.4DC EB AB AE ==-=-=,即冬至时甲楼的影子在乙楼上约4.4米高.(2)楼距至少28.2米,才不影响楼房的采光.23.π)101(100+cm 2 .24.两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.25.(1)如果两个角是对顶角,那么这两个角相等;(2)如果一个点是角平分线上的点,那么这个点到这个角两边的距离相等26.127.(1)2)2(4--x x ;(2)2)2(41a x ax -;(3)2)2(21+xy a ;(4)4)3(-x . 28.它是一个旋转图形,旋转90°后与自身重合29.∠l=∠2=70°,∠1=∠B+∠BAD ,得∠BAD=40°30. (1)320- (2)252- (3)-250 (4)12-【题目及参考答案、解析】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.已知二次函数y=x2-x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是()A.m-1的函数值小于0 B .m-1的函数值大于0C.m-1的函数值等于0 D .m-1的函数值与0的大小关系不确定答案:A解析:A2.在同圆或等圆中,已知下列四个命题:①不相等的圆心角所对的弧不相等;②较长弦的弦心距较短;⑤相等的弧所对的弦相等;④弧扩大2倍,则所对的弦也就扩大 2 倍.其中正确命题的个数为()A.1 个B.2 个C.3 个D.4 个答案:C解析:C3.已知函数33=+-,要使函数值y随自变量x值的增大而增大,则m的取值范围y mx x是()A.3m≤-D.3m<-m>-C.3m≥-B.3答案:B解析:B4.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( ) A .a >0 B .a =0 C .a >4 D .a =4答案:B解析:B5.绝对值不大于 2 的整数的个数一共有( )A .3 个B .4 个C .5 个D .6 个答案:C解析:C6.已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定 答案:A解析:A7.己如,已知1l ∥2l ,AB ∥CD ,CE ⊥2l 于点E ,FG ⊥2l 于点 G ,下列说法中不正确的是( )A .∠ABD=∠CDEB .CE=FGC .A 、B 两点间的距离就是线段AB 的长度D .1l 与2l 之间的距离就是线段CD 的长度答案:D解析:D8.小慧测得一根木棒的长度为2.8米,这根木棒的实际长度的范围( )A .大于2米,小于3米B .大于2.7米,小于2.9米C .大于2.75米,小于2.84米D .大于或等于2.75米,小于2.85米答案:D解析:D9. 在数轴上表示-1.2 的点在( )A .-1 与0之间B .-2 与- 1 之间C .1 与2之间D .-1 与 1 之间 答案:B解析:B10.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个答案:B解析:B二、填空题11.袋中装有3个红球,1个白球它们除了颜色相同以外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是______.解析:9 1612.抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是_____________.(1,0)解析:13.若抛物线2y x bx c=-++的最高点为(-1,-3),则b= 一2,c= .解析:一2,一414.梯形ABCD中,AD∥BC,∠A:∠B=1:3,则∠A= ,∠B= .解析:45°,l35°15.某校团委准备举办学生绘画展览,为美化画面,在长为30cm、宽为20的矩形画面四周镶上宽度相等的彩纸成较大的矩形,并使彩纸的面积恰好与原画面面积相等,设彩纸的宽为x cm,可列方程 .解析:20302)230)(220(⨯⨯=++xx16.一个印有“祝你学习愉快”字样的立方体纸盒有面展开图如图所示,则与“你”字面相对的面上是“”字.解析:愉17.如图,在长方形ABCD中,AB=3,BC=7,则AB,CD之间的距离是.解析:718. 滑翔机在天空滑翔是 变换.解析:平移 119.数轴上有一个点到表示-7和2的点的距离相等,则这个点所表示的数是_________. 解析:-2.520.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2米的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一直线上,如果测得BD =20米,FD =4米,EF =1.8米,则树的高度为__________米.解析:321.已知代数式 2m 的值是 4,则代数式231m m -+的值是 .解析:-1三、解答题22.太阳光线与水平线的夹角在新疆地区的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为28.现有两幢居民住宅楼高为15米,两楼相距20米,如图所示.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内继续兴建同样高的住宅楼,楼距至少应该多少米,才不影响楼房的采光(前一幢楼房的影子不能落在后一幢楼房上)?(计算结果精确到0.1米)解析:解:(1)如图所示,作DE AB ⊥,垂足为E由题意可知28ADE ∠=,20DE BC ==在Rt ADE △中,tan AE ADE DC ∠=,AE=6.1028tan 20tan ≈⋅=∠⋅ ADE DE , 则1510.6 4.4DC EB AB AE ==-=-=,即冬至时甲楼的影子在乙楼上约4.4米高.(2)楼距至少28.2米,才不影响楼房的采光.23.如图是某工件的三视图,求此工件的全面积.解析:π)101(100+cm 2 .24.试用两种方法将已知平行四边形ABCD 分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).解析:两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.25.把下列命题改写成“如果……,那么……”的形式:(1)对顶角相等;(2)角平分线上的点到角两边的距离相等.解析:(1)如果两个角是对顶角,那么这两个角相等;(2)如果一个点是角平分线上的点,那么这个点到这个角两边的距离相等26. 已知方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而粗心的乙同学把c 给看错了,解得36x y =⎧⎨=⎩, 求a b c --的值.解析:127.分解因式:(1)-4x 3+16x 2-16x ; (2)21a 2(x-2a)2-41a(2a-x)3; (3)21ax 2y 2+2axy+2a ; (4)(x 2-6x)2+18(x 2-6x)+81;解析:(1)2)2(4--x x ;(2)2)2(41a x ax -;(3)2)2(21+xy a ;(4)4)3(-x .28.如图所示,准备一张正方形的纸.沿如图①所示的虚线对折两次,得到一个小正方形;再沿图②的虚线对折;在得到的直角三角形上画出如图③所示的图形,再将阴影部分剪下来;打开你的作品.是一个旋转图形吗?旋转多少度后能与自身重合?你还能画出更有创意的作品吗?解析:它是一个旋转图形,旋转90°后与自身重合29.已知,如图所示,△ABC 中,∠B=30°,∠C=40°,D 为BC 上一点,∠1=∠2,求∠BAD的度数.解析:∠l=∠2=70°,∠1=∠B+∠BAD,得∠BAD=40°30.计算:(1)73() 1014⨯-;(2)5 (5)||2-⨯-;(3)5(2)(5)()(30)6-⨯-⨯+⨯-;(4)1423 3()()(3) 2754⨯-+-⨯-解析:(1)320- (2)252- (3)-250 (4)12-。

2020年浙江省宁波市中考数学试卷附详细答案解析

2020年浙江省宁波市中考数学试卷附详细答案解析

2020年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在店,1, 0, -2这四个数中,为无理数的是()乙A. A/3B. —C. 0D. - 2122.(4分)下列计算正确的是()A. a2+a -a'B. (2a) MaC. a— a-aD. (a~) -a53.(4分)2020年2月13 0,宁波舟山港45万吨原油码头首次挂靠全球最大油轮-- “泰欧”轮,其中45万吨用科学记数法表示为()A. 0.45X10"吨B. 4. 5X105吨 c. 45乂10」吨口. 4. 5X10,吨4.(4分)要使二次根式G有意义,则x的取值范围是()A. x#3B. x>3C. xW3D. x235.(4分)如图所示的几何体的俯视图为()声^^见方向6.(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率7.(4分)已知直线m〃n,将一块含30°角的直角三角板ABC按如图方式放置(NABC=30° ),其中A, B两点分别落在直线叫n上,若Nl=20° ,则N2的度数为()A. 20°B. 30°C. 45°D. 50°8.(4分)若一组数据2, 3, x, 5, 7的众数为7,则这组数据的中位数为()A. 2B. 3C. 5D. 79.(4 分)如图,在RtZiABC 中,ZA=90° , BC=2五,以BC 的中点0为圆心分别与AB, AC相切于D, E两点,则前的长为()A. 2LB.—C. JID. 2兀 4 210.(4分)抛物线y=x2-2x+m2+2 (m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限11. (4分)如图,四边形ABCD是边长为6的正方形,点E在边AB 上,BE=4,过点E作EF〃BC,分别交BD, CD于G, F两点.若M, N 分别是DG, CE的中点,则MN的长为()A. 3B. 273C. V13D- 412. (4分)一个大矩形按如图方式分割成九个小矩形,且只有标号 为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知 道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面 积,则n 的最小值是(A. 3B. 4C. 5D. 6二、填空题(每题4分,满分24分,将答案填在答题纸上)13. (4分)实数-8的立方根是.14. (4分)分式方程2二反的解是 3-x 2 -15. (4分)如图,用同样大小的 黑色棋子按如图所示的 规律摆放: 则第⑦个图案有 个黑色棋子.• • • ・ • • ••• ••• • ♦ ・ • • • ① ② ③ ®16. (4分)如图,一名滑雪运动员沿着倾斜角为34。

2024年浙江省宁波市中考数学真题(解析版)

2024年浙江省宁波市中考数学真题(解析版)

2024年浙江省宁波市中考数学真题(解析版) 2024年浙江省宁波市中考数学真题(解析版)
2024年浙江省宁波市中考数学真题(解析版)是2024年中考数学科目的考试试卷。

本次考试的题目主要涵盖了与数学相关的各个知识点,涉及到数与代数、几何与变换、函数与统计等多个领域。

本文将对这份试卷的各个题目进行解析与讲解。

1. 选择题解析:
第一题:(题目内容)
这道题目...
解析:(解析部分)
第二题:(题目内容)
这道题目...
解析:(解析部分)
2. 解答题解析:
第三题:(题目内容)
这道题目...
解析:(解析部分)
第四题:(题目内容)
这道题目...
解析:(解析部分)3. 计算题解析:
第五题:(题目内容)这道题目...
解析:(解析部分)第六题:(题目内容)这道题目...
解析:(解析部分)4. 应用题解析:
第七题:(题目内容)这道题目...
解析:(解析部分)第八题:(题目内容)这道题目...
解析:(解析部分)总结:
通过对2024年浙江省宁波市中考数学真题的解析,我们可以看到这份试卷对学生的数学综合能力提出了一定的要求。

其中的选择题考察了学生对知识点的掌握程度,解答题要求学生运用所学知识进行推理和解答,计算题考查了学生的计算能力,应用题则要求学生能将数学知识应用到实际问题中。

这份数学试卷的难度适中,既考察了学生的基本知识掌握,又考查了学生的思维灵活性和问题解决能力。

希望同学们通过认真解析这份试卷,找到自己的不足并加以提高,为日后的学习打下坚实的数学基础。

(以上内容为根据给定标题自行补全,文章具体内容需按照实际情况进行撰写)。

2022年浙江省宁波市中考数学试卷及答案解析

2022年浙江省宁波市中考数学试卷及答案解析

2022年浙江省宁波市中考数学试卷及答案解析2022年浙江省宁波市中考数学试卷一、选择题〔每题4分,共48分,在每题给出的四个选项中,只有一项符合题目要求〕1.〔4分〕在﹣3,﹣1,0,1这四个数中,最小的数是〔〕 A.﹣3 B.﹣1 C.0D.1×106××104 D.55×1043.〔4分〕以下计算正确的选项是〔〕 A.a3+a3=2a3B.a3?a2=a6 C.a6÷a2=a3D.〔a3〕2=a54.〔4分〕有五张反面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片反面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为〔〕A. B. C. D.5.〔4分〕正多边形的一个外角等于40°,那么这个正多边形的边数为〔〕A.6B.7C.8D.96.〔4分〕如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是〔〕A.主视图 B.左视图C.俯视图 D.主视图和左视图7.〔4分〕如图,在?ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.假设∠ABC=60°,∠BAC=80°,那么∠1的度数为〔〕第1页〔共28页〕A.50° B.40° C.30° D.20°8.〔4分〕假设一组数据4,1,7,x,5的平均数为4,那么这组数据的中位数为〔〕 A.7B.5C.4D.39.〔4分〕如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,那么的长为〔〕A.π B.π C.π D.π〔k1>0,x>0〕,y=〔k2>10.〔4分〕如图,平行于x轴的直线与函数y=0,x>0〕的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,假设△ABC的面积为4,那么k1﹣k2的值为〔〕A.8 B.﹣8 C.4 D.﹣411.〔4分〕如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.假设点P的横坐标为﹣1,那么一次函数y=〔a﹣b〕x+b的图象大致是〔〕第2页〔共28页〕A. B. C.D.12.〔4分〕在矩形ABCD内,将两张边长分别为a和b〔a>b〕的正方形纸片按图1,图2两种方式放置〔图1,图2中两张正方形纸片均有局部重叠〕,矩形中未被这两张正方形纸片覆盖的局部用阴影表示,设图1中阴影局部的面积为S1,图2中阴影局部的面积为S2.当AD﹣AB=2时,S2﹣S1的值为〔〕A.2a B.2b C.2a﹣2b D.﹣2b二、填空题〔每题4分,共24分〕 13.〔4分〕计算:|﹣2022|= . 14.〔4分〕要使分式有意义,x的取值应满足.,那么x2﹣4y2的值为.15.〔4分〕x,y满足方程组16.〔4分〕如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.假设飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,那么这条江的宽度AB为米〔结果保存根号〕.第3页〔共28页〕17.〔4分〕如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.〔4分〕如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.假设∠EMD=90°,那么cosB的值为.三、解答题〔本大题有8小题,共78分〕19.〔6分〕先化简,再求值:〔x﹣1〕2+x〔3﹣x〕,其中x=﹣. 20.〔8分〕在5×3的方格纸中,△ABC的三个顶点都在格点上.〔1〕在图1中画出线段BD,使BD∥AC,其中D是格点;〔2〕在图2中画出线段BE,使BE⊥AC,其中E是格点.21.〔8分〕在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间〔用t表示,单位:小时〕,采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如下图的两幅不完整的统计图,由第4页〔共28页〕图中给出的信息解答以下问题:〔1〕求本次调查的学生人数;〔2〕求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;〔3〕假设该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数. 22.〔10分〕抛物线y=﹣x2+bx+c经过点〔1,0〕,〔0,〕.〔1〕求该抛物线的函数表达式;〔2〕将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.〔10分〕如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点〔点D与A,B不重合〕,连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.〔1〕求证:△ACD≌△BCE;〔2〕当AD=BF时,求∠BEF的度数.24.〔10分〕某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.〔1〕求甲、乙两种商品的每件进价;〔2〕该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:第5页〔共28页〕。

2022年浙江省宁波市中考数学精选真题试卷附解析

2022年浙江省宁波市中考数学精选真题试卷附解析

2022年浙江省宁波市中考数学精选真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知⊙O 过正方形ABCD 的顶点A 、B ,且与CD 边相切,若正方形的边长为2,则圆的半径为( )A .34B .45C .25D .12.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( )A .12B .13C .23D .143.若α是锐角,且sin α=34,则( ) A .60°<a<90°B . 45°<α<60°C . 30°<α<45°D .0°<a<30° 4.已知三边长为3、4、6的ΔABC 的内切圆半径为r ,则ΔABC 的面积为( ) A .5r B . 6r C . 0.5r D . 6.5r5.抛物线223y x x =-++的顶点在( ) A . 第一象限 B .第二象限 C. 第三象限D . 第四象限 6.如图,A 、C 是函数2y x =的图象上任意两点,过A 作x 轴的垂线,垂足为 B ,过C 作x 轴的垂线,垂足为 D ,如果设Rt △AOB 的面积为 S 1,Rt △COD 的面积为S 2,那么( )A .S 1>S 2B .S 1<S 2C . S 1 =S 2D .大小无法确定 7.从 1、2、3、…、9这九个数字中,任取一个数字是偶数的概率是( ) A . 0 B .49 C .12D .59 8.如图,已知 AE=CF ,BE =DF.要证△ABE ≌△CDF ,还需添加的一个条件是( )A . ∠BAC=∠ACDB . ∠ABE=∠CDFC .∠DAC=∠BCAD . ∠AEB=∠CFD9.用代入法解方程组34225x y x y +=⎧⎨-=⎩ ,使得代入后化简比较容易的变形是( )A.由①得x=243y-B.由①得y=234x-C.由②得x=52y+D.由②得y=2x-510.A、B两家公司都准备招聘技术人才,两家公司其它条件类似,工资待遇如下:A 公司年薪2 万元,每年加工龄工资 400 元;B公司半年工资 1 万元,每半年加工龄工资 100 元,从经济收入来考虑,选择哪一家公司更有利()A.A 公司B.B 公司C.两家公司一样D.不能确定11.如图,以 A.B两点为其中两个顶点作位置不同的正方形,一共可以作()A.1 个B.2 个C.3 个D.4 个二、填空题12.解方程:2324x=-,x= .13.如图,(1)么1的同位角是;(2)∠1与是内错角;(3)∠1与∠3是;(4)若∠l=∠4,则∠1与也相等.14.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张?答:.15.画条形统计图,一般地,纵轴应从开始.16.据信息产业部2003年4月公布的数字显示,我国固定电话和移动电话用户近年来都有大幅度增加,移动电话用户已接近固定电话用户.根据统计图,我国固定电话从年至年的年增加量最大;移动电话从年至年的年增加量最大.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .18.近似数0.0300精确到位,含有个有效数字,l.20万精确到位,有效数字是.三、解答题19.如图,由小正方形组成的L及T字形的图形中,而且他们都是正方体展开图的一部分,请你用三种方法分别在图中添画一个正方形使它成为轴对称图形.20.如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧).21.如图,在直角梯形ABCD 中,AB∥CD,∠C=Rt∠,AB=AD=10cm,BC=8cm. 点P从点A 出发,以每秒3cm的速度沿线段AB方向运动,点Q从点D 出发,每秒2cm的速度沿线段DC方向向点C运动. 已知动点P,Q同时出发,当点Q运动到点C时,P,Q运动停止,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P,点 Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为 20 cm2若存在,请求出所有满足条件的t的值;若不存在,请说明理由.22.我们常见到如图所示那样的地面,它们分别是用正方形或用正六边形的形状的材料铺成的,这样形状的材料能铺成平整、无空隙的地面.问:(1)像上面那样密铺地面,能否用正五边形的材料,为什么?(2)你能不能另外想出一个用一种多边形(不一定是正多边形)•的材料密铺地面的方案?把你想到的方案画成草图.23.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC与∠F的度数.24.你班的同学中有在同一个月出生的吗?有在同月同日出生的吗?你的同学在哪个月出生最多?其它班的同学也是在那个月出生最多吗?做个小调查,看看会有什么有趣的发现.25.小华家距离学校2.4 km ,某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12 min 了,如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?26.某公司第一季度的营业额为a 万元,预计本年度每季度比上季度的营业额增长x%,请用代数式分别表示第二季度、第三季度、第四季度的预计营业额.27.计算: (1)2[92(52)]⨯--(精确到 0.01)(2)3243552π-+-(精确到 0.01)28.已知111999a =,222111b =,试试看,你能比较a 、b 的大小吗?29.小明买了6个梨的总质量是0.95 kg ,那么平均每个梨的质量约为多少(精确到0.01 kg)?30.如图,已知∠1=∠2,求证:AB ∥CD .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.D5.A6.C7.B8.D9.D10.B11.C二、填空题12. 2m =-13.(1)∠4;(2)∠2;(3)同旁内角;(4)∠214.第一张方块415. 016.2002,2003,2001,200217.1120a +18.万分;三;百;1,2,0三、解答题19.如图:20.略.21.(1)16 cm (2)(8813+存在,53t =s 或395s 22.(1)不能,因为正五边形的内角为108°,不能组成360°的角;(2)如平行四边形、长方形、三角形等23.∠BAC=82°,∠F= 42°24.略25.0.1km/min26.a(1+x%)万元,a(1+x%)2 万元,a(1+x%)3万元27.(1)17.06 (2)6.92在此输入试卷标题,也可以从WORD 文件复制粘贴28.∵1111111119999111a ==⨯,2111111111(111)111111b ==⨯,且1111119111<,从而知a b < 29.0.16 kg30.略。

最新浙江省宁波市中考数学学业水平测试试卷附解析

最新浙江省宁波市中考数学学业水平测试试卷附解析

浙江省宁波市中考数学学业水平测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.方程(1)5(1)x x x -=-的解是( )A .1B .5C .1或5D . 无解2.如图中有五个正方形,在:其中的A 、B 、C 、D 四个正方形内分别填入适当的数,使得在相邻两个正方形中的数互为相反数,则填入正方形A 、B 、C 、D 内的四个数依次是( )A .1,-1,-1,-1B .1,-1,1,-1C .-1,1,1,1D .-1,-1,1,1 3.下列等式是由 5x-1 =4x 根据等式性质变形得到的,其中正确的有( ) ①5x-4x=1;②4x-5x=1;③51222x x -=;④6x-1=3x A .0 个 B .1 个 C .2 个 D .3 个4.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成 12份,不考虑骰子落在线上的情形)是( )A .16B .14C .13D . 125.下列说法中,错误的是( )A .同旁内角互补,两直线平行B .两直线平行,内错角相等C .对顶角相等D .同位角相等6.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm7.已知函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )A .B .C .D .8.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”.该园占地面积约为800000m 2,若按比例尺1:2000缩小后,其面积大约相当于 ( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《陕西日报》的一个版面的面积D .《数学》课本封面的面积 9.如图,周长为68的矩形ABCD 被分成7个全等小矩形,则矩形ABCD 的面积为( )A . 98B .196C .280D .28410.由几个大小相同的小正方体组成的立体图形的俯视..图如图所示,则这个立体图形应是下图中的( )A .B .C .D .11.将一圆形纸片对折后再对折,得到如图的形状,然后沿着虚线剪开,得到两部分,其中一部分展开后得到的图形是( )A .B .C .D . 12.如图,DE 是△ABC 的中位线,F 是DE 的中点,BF 的延长线交AC 于点H ,则AH:HE 等于( )A .1:1B .2:1C .1:2D .3:2 13.随机抛掷一枚均匀的硬币两次,则出现两面不一样的概率是( ) A .41 B .21 C .43 D .114.如图,若正方形A 1B 1D 1C 1内接于正方形ABCD 的内切圆,则ABB A 11的值为( ) A .21 B .22C .41D .42 15.到△ABC 的三条边的距离相等的点是△ABC 的( )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .三条边的垂直平分线的交点16.己两根竖直在地面上的标杆,长度分别为 3 m 和 2m ,当一个杆子的影长为 3m 时,另一根杆子的影子长为( )A .2mB .4.5mC .2m 或4.5 mD . 以上都不对17.下列等式成立的是( )A .a b =+B . =D .ab =-二、填空题18.如果口袋中只有若干个白球,没有其它颜色的球,而且不许将球倒出来. 若想估计出 其中的自球数,可采用的方法有:方法一:向口袋中放几个黑球;方法二:从口袋中抽出几个球并将它们染成黑色或做上标记.若按方法一,向口袋中放5个黑球,并通过多次实验,估计出黑球的概率为 0.2,则你可估计出白球的数目为 .若按方法二,从口袋中抽出 5个白球,将它们做上标记,并通过多次实验,估计出做上标记的概率为 0.2,则你可估计出口袋中白球的数目为 .19.已知四边形ABCD 内接于⊙O ,且∠A :∠C=1:2,则∠BOD=______.20.写出“在一个三角形中,等边对等角”命题的逆命题 .21.如图,在等腰△ABC 中,AB=AC ,D 、E 分别是AB 、AC 上的点,DE ⊥AC ,EF ⊥BC ,∠BDE=130°,则∠DEF= 度.22.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的21.。

2021年浙江省宁波市中考数学试卷(解析版)

2021年浙江省宁波市中考数学试卷(解析版)

2021年浙江省宁波市中考数学试卷一、选择题〔每题3分,共36分,在每题给出的四个选项中,只有一项符合题目要求〕1.〔2021•宁波〕〔﹣2〕0的值为〔〕A.﹣2B.0C.1D.22.〔2021•宁波〕以下交通标志图案是轴对称图形的是〔〕A.B.C.D.3.〔2021•宁波〕一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为〔〕A.B.C.D.14.〔2021•宁波〕据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为〔〕A.1.04485×106元B.0.104485×106元C.1.04485×105元D.10.4485×104元5.〔2021•宁波〕我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28〔单位:℃〕,那么这组数据的极差与众数分别为〔〕A.2,28B.3,29C.2,27D.3,286.〔2021•宁波〕以下计算正确的选项是〔〕A.a6÷a2=a3B.〔a3〕2=a5C.D.7.〔2021•宁波〕实数x,y满足,那么x﹣y等于〔〕A.3B.﹣3C.1D.﹣18.〔2021•宁波〕如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,那么BC的长为〔〕A.4B.2C.D.9.〔2021•宁波〕如图是某物体的三视图,那么这个物体的形状是〔〕A.四面体B.直三棱柱C.直四棱柱D.直五棱柱10.〔2021•宁波〕如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,那么看不见的面上的点数总和是〔〕A.41B.40C.39D.3811.〔2021•宁波〕如图,用邻边分别为a,b〔a<b〕的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽〔拼接处材料忽略不计〕,那么a与b满足的关系式是〔〕A.b=a B.b=a C.b=D.b= a12.〔2021•宁波〕勾股定理是几何中的一个重要定理.在我国古算书?周髀算经?中就有“假设勾三,股四,那么弦五〞的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为〔〕A.90B.100C.110D.121二、填空题〔每题3分,共18分〕13.〔2021•宁波〕写出一个比4小的正无理数_________.14.〔2021•宁波〕分式方程的解是_________.15.〔2021•宁波〕如图是七年级〔1〕班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是_________人.16.〔2021•宁波〕如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,那么∠EAB=_________度.17.〔2021•宁波〕把二次函数y=〔x﹣1〕2+2的图象绕原点旋转180°后得到的图象的解析式为_________.18.〔2021•宁波〕如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,那么线段EF长度的最小值为_________.三.解答题〔本大题有8题,共66分〕19.〔2021•宁波〕计算:.20.〔2021•宁波〕用同样大小的黑色棋子按如下图的规律摆放:〔1〕第5个图形有多少黑色棋子?〔2〕第几个图形有2021颗黑色棋子?请说明理由.21.〔2021•宁波〕如图,一次函数与反比例函数的图象交于点A〔﹣4,﹣2〕和B〔a,4〕.〔1〕求反比例函数的解析式和点B的坐标;〔2〕根据图象答复,当x在什么范围内时,一次函数的值大于反比例函数的值?22.〔2021•宁波〕某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图,局部统计量如表:〔1〕求甲队身高的中位数;〔2〕求乙队身高的平均数及身高不小于1.70米的频率;〔3〕如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由.23.〔2021•宁波〕如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.〔1〕求证:AC是⊙O的切线;〔2〕sinA=,⊙O的半径为4,求图中阴影局部的面积.24.〔2021•宁波〕为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨的局部b0.80超过30吨的局部 6.00 0.80〔说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用〕小王家2021年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.〔1〕求a、b的值;〔2〕随着夏天的到来,用水量将增加.为了节省开支,小王方案把6月份的水费控制在不超过家庭月收入的2%.假设小王家的月收入为9200元,那么小王家6月份最多能用水多少吨?25.〔2021•宁波〕邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,假设第n次操作余下的四边形是菱形,那么称原平行四边形为n阶准菱形.如图1,▱ABCD中,假设AB=1,BC=2,那么▱ABCD为1阶准菱形.〔1〕判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠〔点E在AD上〕,使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.〔2〕操作、探究与计算:①▱ABCD的邻边长分别为1,a〔a>1〕,且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②▱ABCD的邻边长分别为a,b〔a>b〕,满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.26.〔2021•宁波〕如图,二次函数y=ax2+bx+c的图象交x轴于A〔﹣1,0〕,B〔2,0〕,交y轴于C〔0,﹣2〕,过A,C画直线.〔1〕求二次函数的解析式;〔2〕点P在x轴正半轴上,且P A=PC,求OP的长;〔3〕点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①假设M在y轴右侧,且△CHM∽△AOC〔点C与点A对应〕,求点M的坐标;②假设⊙M的半径为,求点M的坐标.参考答案与试题解析一.选择题〔每题3分,共36分,在每题给出的四个选项中,只有一项符合题目要求〕1.〔2021•宁波〕〔﹣2〕0的值为〔〕A.﹣2B.0C.1D.2考点:零指数幂。

中考数学试题及答案宁波

中考数学试题及答案宁波

中考数学试题及答案宁波一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…B. √4C. πD. 0.5答案:C2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 17C. 18D. 19答案:A3. 如果一个函数的图象经过点(2,3),那么这个函数的解析式可能是?A. y = x + 1B. y = 2x - 1C. y = 3x - 6D. y = 4x + 2答案:A4. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D5. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A6. 下列哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A7. 一个圆的半径是3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:B8. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A9. 下列哪个选项是方程x² - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 6D. x = 9答案:A10. 一个数的立方根是2,那么这个数是多少?A. 6B. 8C. 9D. 27答案:D二、填空题(每题3分,共15分)11. 如果一个数的平方是25,那么这个数可能是______。

答案:±512. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是______。

答案:513. 一个数的绝对值是7,那么这个数可能是______。

答案:±714. 一个数的倒数是2,那么这个数是______。

答案:0.515. 一个数的平方根是4,那么这个数是______。

答案:16三、解答题(每题10分,共40分)16. 已知一个二次函数的图象经过点(1,0)和(3,0),且顶点的横坐标为2,求这个二次函数的解析式。

2019-2020宁波市中考数学试卷(附答案)

2019-2020宁波市中考数学试卷(附答案)

2019-2020宁波市中考数学试卷(附答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是()A .点AB .点BC .点CD .点D3.已知二次函数y =ax 2+bx bx++c ,且a>b>c a>b>c,,a +b +c =0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax 22+bx bx++c=0的一个实数根;②二次函数y =ax 22+bx bx++c 的开口向下;③二次函数y =ax 2+bx bx++c 的对称轴在y 轴的左侧;④不等式4a+2b+c>0一定成立.A .①②B .①③C .①④D .③④4.下列运算正确的是()A .23a a a +=B .()2236a a =C.623a a a ÷=D .34a a a ⋅=5.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为()A .53B .255C .52D .236.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且7.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣348.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.如图,在⊙O 中,中,AE AE 是直径,半径OC 垂直于弦AB 于D ,连接BE BE,若,若AB=27,CD=1CD=1,,则BE 的长是( )A .5B .6C .7D .810.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5211.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.若一个数的平方等于5,则这个数等于_____.16.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.17.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .18.正六边形的边长为8cm ,则它的面积为____cm 2.19.如图①,在矩形 MNPQ 中,动点中,动点 R 从点从点 N 出发,沿出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于关于 x 的函数图象如图②所的函数图象如图②所示,则矩形 MNPQ 的面积是的面积是________.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.两个全等的直角三角形两个全等的直角三角形 ABC ABC ABC 和和 DEF DEF 重叠在一起,其中∠A=60°,重叠在一起,其中∠A=60°,重叠在一起,其中∠A=60°,AC=1AC=1AC=1.固定△ABC .固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段)如图,△DEF 沿线段 AB AB AB 向右平移(即向右平移(即向右平移(即 D D D 点在线段点在线段点在线段 AB AB AB 内移动),连接内移动),连接内移动),连接 DC DC DC、、CF CF、、FB FB,四边形,四边形,四边形 CDBF CDBF CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当)如图,当 D D D 点移到点移到点移到 AB AB AB 的中点时,请你猜想四边形的中点时,请你猜想四边形CDBF CDBF 的形状,并说明理由.的形状,并说明理由.(3)如图,△DEF 的)如图,△DEF 的 D D D 点固定在点固定在点固定在 AB AB AB 的中点,然后绕的中点,然后绕的中点,然后绕 D D D 点按顺时针方向旋转△DEF,使点按顺时针方向旋转△DEF,使点按顺时针方向旋转△DEF,使 DF DF 落在落在落在 AB AB AB 边上,此时边上,此时边上,此时 F F F 点恰好与点恰好与点恰好与 B B B 点重合,连接点重合,连接点重合,连接 AE AE AE,请你求出,请你求出,请你求出 sinα的值.22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由. (3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 由科学记数法知90.000000007710-=⨯; 【详解】 解:90.000000007710-=⨯;故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10na ⨯中a 与n 的意义是解题的关键.2.B解析:B【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】解:∵△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1, ∴连接PP 1、NN 1、MM 1, 作PP 1的垂直平分线过B 、D 、C , 作NN 1的垂直平分线过B 、A , 作MM 1的垂直平分线过B , ∴三条线段的垂直平分线正好都过B , 即旋转中心是B . 故选:B .【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.C解析:C 【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确;根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确故④正确.. 故选:C.4.D 解析:D 【解析】 【分析】 【详解】解:A 、a+a 2不能再进行计算,故错误; B 、(3a )2=9a 2,故错误;C 、a 6÷a 2=a 4,故错误; D 、a·a·a a 3=a 4,正确; 故选:D .本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.5.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB 222252AC BC =+=+=()3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 53AC AB==.故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.D 解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键7.B解析:B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32.故答案选B .8.B解析:B 【解析】 【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】 ∵AB ∥CD , ∴∠BAC+∠C=180°, ∵∠C=70°,∴∠CAB=180°CAB=180°-70°-70°-70°=110°=110°, 又∵AE 平分∠BAC , ∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°, 故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.B 解析:B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB , ∴AD=DB=12AB=7 在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2+(7 )2, 解得,OA=4 ∴OD=OC-CD=3,∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.C解析:C 【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得PG=2,从而得出答案. 详解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD ∥GF , ∴∠GFH=∠PAH , 又∵H 是AF 的中点, ∴AH=FH ,在△APH 和△FGH 中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APH ≌△FGH (ASA ), ∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1, ∵CG=2、CD=1, ∴DG=1, 则GH=12PG=12×22PD DG +=22, 故选:C .点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.11.D解析:D【解析】【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程用的时间相等即可列出一元一次方程..【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键. 12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形. 【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】 本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题. 二、填空题13.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE 、BF 交于点H .∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分. ∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .∵CD=10-2-2=6, ∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案 解析:5. 【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得5OB OA =,根据三角函数的定义即可得到结论. 【详解】 过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒, ∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:,∴252512BOD OAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA =, ∴tan 5OB BAO OA∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质键是熟知平方根的性质解析:5±【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5±.故答案为:5±.【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.17.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22125+=.考点:1.轴对称-最短路线问题;2.正方形的性质.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD 解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×8×443=163cm2.∴S正六边形=6S△OCD=6×=6×16163=963cm2.考点:正多边形和圆19.2020【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是2020【点【点睛】本题为动点问题的函数图象探究题考查了动点到达睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中 ∠ACB=90°∠ABC=30°∴AB=2 ……………………………………………………………………………………22分∴………3分(2)菱形………………………………………4分∵D 是AB 的中点的中点 ∴AD=DB=CF=1 在Rt △ABC 中,CD 是斜边中线是斜边中线∴CD=1CD=1………………55分 同理 BF=1 ∴CD=DB=BF=CF ∴四边形CDBF 是菱形…………………………6分(3)在Rt △ABE 中∴……………………………7分 过点D 作DH ⊥AE 垂足为H则△ADH ∽△AEB ∴即∴ DH=……8分 在Rt △DHE 中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE ,再结合两条平行线间的距离相等,则三角形ACD 的面积等于三角形BEF 的面积,所以要求的梯形的面积等于三角形ABC 的面积.根据60度的直角三角形ABC 中AC=1,即可求得BC 的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形; (3)过D 点作DH ⊥AE 于H ,可以把要求的角构造到直角三角形中,根据三角形ADE 的面积的不同计算方法,可以求得DH 的长,进而求解.22.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】 (1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°tan67°==AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.(1)详见解析;()详见解析;(22)存在,)存在,223+4+4;(;(;(33)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23;(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°BDC=60°++∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴AD=12AC=2,∴CD=22224223 AC AD-=-=,∴DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷t=2÷1=21=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°BDC=60°++∠BDC , 而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm ,∴t=14÷t=14÷1=141=14(s ); 综上所述:当t=2s 或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D 在运动过程中,△DBE 是等边三角形这一点得到DE=CD ,从而可知当CD ⊥AB 时,CD 最短,则DE 最短,由此即可由已知条件解得DE 的最小值;(2)解第3小题的关键是:根据点D 的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t 的值了.。

【中考真题】2022年浙江省宁波市中考数学试卷(附答案)

【中考真题】2022年浙江省宁波市中考数学试卷(附答案)

2022年浙江省宁波市中考数学真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2022-的相反数是( ) A .2022B .2022-C .12022-D .120222.下列计算正确的是( ) A .34a a a +=B .623a a a ÷=C .()325a a =D .34a a a ⋅=3.据国家医保局最新消息,全国统一的医保信息平台己全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为( ) A .71.3610⨯B .813.610⨯C .91.3610⨯D .100.13610⨯4.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是( )A .B .C .D .5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:这14天中,小宁体温的众数和中位数分别为( )A .36.6℃,36.4℃ B .36.5℃,36.5℃ C .36.8℃,36.4℃ D .36.8℃,36.5℃6.已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( ) A .236πcmB .224πcmC .216πcmD .212πcm7.如图,在Rt ABC 中,D 为斜边AC 的中点,E 为BD 上一点,F 为CE 中点.若AE AD =,2DF =,则BD 的长为( )A.B .3 C.D .48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再春成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为( )A .10375x y x y +=⎧⎪⎨+=⎪⎩B .10375x y x y +=⎧⎪⎨+=⎪⎩C .75103x y x y +=⎧⎪⎨+=⎪⎩D .75103x y x y +=⎧⎪⎨+=⎪⎩9.点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( ) A .2m >B .32m >C .1m <D .322m <<10.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出( )A .正方形纸片的面积B .四边形EFGH 的面积C .BEF 的面积D .AEH △的面积二、填空题11.写出一个大于2的无理数_____. 12.分解因式:x 2-2x +1=__________.13.一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为___________. 14.定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________. 15.如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.16.如图,四边形OABC 为矩形,点A 在第二象限,点A 关于OB 的对称点为点D ,点B ,D 都在函数0)y x =>的图象上,BE ⊥x 轴于点E .若DC 的延长线交x 轴于点F ,当矩形OABC 的面积为时,EFOE的值为___________,点F 的坐标为___________.三、解答题 17.计算(1)计算:(1)(1)(2)x x x x +-+-.(2)解不等式组:43920x x ->⎧⎨+≥⎩18.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数23y x=-的图像与反比例函数(0)ky kx=≠的图像都经过点(,2)A a.(1)求点A的坐标和反比例函数表达式.(2)若点(,)P m n在该反比例函数图像上,且它到y轴距离小于3,请根据图像直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题: (1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB 可伸缩(最长可伸至20m ),且可绕点B 转动,其底部B 离地面的距离BC 为2m ,当云梯顶端A 在建筑物EF 所在直线上时,底部B 到EF 的距离BD 为9m .(1)若⊥ABD =53°,求此时云梯AB 的长.(2)如图2,若在建筑物底部E 的正上方19m 处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由. (参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克? 23.(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF =∥交DE 于点G ,求证:DG EG =.(2)如图2,在(1)的条件下,连接,CD CG .若,6,3⊥==CG DE CD AE ,求DEBC的值.(3)如图3,在ABCD 中,45,︒∠=ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G ,⊥EF EG 交BC 于点F .若40,︒∠=EGF FG 平分,10∠=EFC FG ,求BF 的长.24.如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠. (2)求证:△≌△BDE FDG . (3)如图2,AD 为O 的直径. ⊥当AB 的长为2时,求AC 的长.⊥当:4:11OF OE时,求cosα的值.=参考答案:1.A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.D【解析】【分析】根据合并同类项判断A选项;根据同底数幂的除法判断B选项;根据幂的乘方判断C选项;根据同底数幂的乘法判断D选项.【详解】解:A选项,a3与a不是同类项,不能合并,故该选项不符合题意;B选项,原式=a4,故该选项不符合题意;C选项,原式=a6,故该选项不符合题意;D选项,原式=a4,故该选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握am•an=am+n是解题的关键.3.C【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:1360000000用科学记数法表示为91.3610⨯. 故选:C 【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.4.C 【解析】 【分析】根据俯视图的意义和画法可以得出答案. 【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C 符合题意, 故答案选:C . 【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键. 5.B 【解析】 【分析】应用众数和中位数的定义进行就算即可得出答案. 【详解】解:由统计表可知,36.5⊥出现了4次,次数最多,故众数为36.5, 中位数为36.536.52+=36.5(⊥). 故选:B . 【点睛】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键. 6.B 【解析】【分析】利用圆锥侧面积计算公式计算即可:S rl π=侧; 【详解】4624S rl πππ==⋅⋅=侧2cm ,故选B . 【点睛】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可. 7.D 【解析】 【分析】根据三角形中位线可以求得AE 的长,再根据AE =AD ,可以得到AD 的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD 的长. 【详解】解:⊥D 为斜边AC 的中点,F 为CE 中点,DF =2, ⊥AE =2DF =4, ⊥AE =AD , ⊥AD =4,在Rt ⊥ABC 中,D 为斜边AC 的中点, ⊥BD =12AC =AD =4,故选:D . 【点睛】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线,解答本题的关键是求出AD 的长. 8.A 【解析】 【分析】根据题意列出方程组即可; 【详解】原来有米x 斗,向桶中加谷子y 斗,容量为10斗,则10x y +=;已知谷子出米率为35,则来年共得米375x y+=;则可列方程组为10375x yx y+=⎧⎪⎨+=⎪⎩,故选A.【点睛】本题考查了根据实际问题列出二元一次方程组,题目较简单,根据题意正确列出方程即可.9.B【解析】【分析】根据y1<y2列出关于m的不等式即可解得答案.【详解】解:⊥点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上,⊥y1=(m-1-1)2+n=(m-2)2+n,y2=(m-1)2+n,⊥y1<y2,⊥(m-2)2+n<(m-1)2+n,⊥(m-2)2-(m-1)2<0,即-2m+3<0,⊥m>32,故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.10.C【解析】【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH 是正方形,设正方形纸片边长为x ,正方形EFGH 边长为y ,则长方形的宽为x -y ,所以图中阴影部分的面积=S 正方形EFGH +2S △AEH +2S △DHG =2112()222y y x y xy +⨯-+⨯=2xy ,所以根据题意,已知条件为xy 的值,A.正方形纸片的面积=x 2,根据条件无法求出,不符合题意;B.四边形EFGH 的面积=y 2, 根据条件无法求出,不符合题意;C.BEF 的面积=12xy ,根据条件可以求出,符合题意; D.AEH △的面积=21()22xy y y x y --=,根据条件无法求出,不符合题意; 故选 C .【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.11【解析】【分析】首先2,由于开方开不尽的数是无理数,由此即可求解.【详解】解:⊥大于2的无理数须使被开方数大于4.【点睛】本题考查无理数定义及比较大小.熟练掌握无理数的定义是解题的关键.12.(x -1)2【解析】【详解】由完全平方公式可得:2221(1)x x x -+=-故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:⊥因式分解的方法掌握不熟练;⊥因式分解不彻底. 13.511【解析】【分析】利用概率计算公式,用红色球的个数除以球的总个数,算出概率即可.【详解】⊥有5个红球和6个白球,⊥袋中任意摸出一个球是红球的概率555611P ==+, 故答案为:511. 【点睛】本题主要考查概率计算公式,一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率()m P A n =,掌握概率计算公式是解答本题的关键.14.12-##0.5- 【解析】【分析】 根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x ++=+解方程即可. 【详解】解:⊥11ba b a ⊗=+, ⊥()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又⊥21(1)++⊗=x x x x , ⊥22121x x x x x++=+, ⊥()()()221210x x x x x ++-+=,⊥()()2210x x x x +-+=,⊥()2210x x +=, ⊥21(1)++⊗=x x x x即0x ≠, ⊥210x +=, 解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解, 故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.15.32或65 【解析】【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.【详解】解:连接OA ,⊥当D 点与O 点重合时,⊥CAD 为90°,设圆的半径=r ,⊥OA =r ,OC =4-r ,⊥AC =4,在Rt △AOC 中,根据勾股定理可得:r 2+4=(4-r )2,解得:r =32,即AD=AO=32;⊥当⊥ADC=90°时,过点A作AD⊥BC于点D,⊥12AO•AC=12OC•AD,⊥AD=AO AC OC,⊥AO=32,AC=2,OC=4-r=52,⊥AD=65,综上所述,AD的长为32或65,故答案为:32或65.【点睛】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.16.12,0)【解析】【分析】连接OD,作DG⊥x轴,设点B(b),D(a),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.【详解】解:如图,作DG ⊥x 轴于G ,连接OD ,设BC 和OD 交于I ,设点B (b ),D (a , 由对称性可得:△BOD ⊥⊥BOA ⊥⊥OBC ,⊥⊥OBC =⊥BOD ,BC =OD ,⊥OI =BI ,⊥DI =CI , ⊥DI CI OI BI, ⊥⊥CID =⊥BIO ,⊥⊥CDI ⊥⊥BOI ,⊥⊥CDI =⊥BOI ,⊥CD ⊥OB ,⊥S △BOD =S △AOB =12S 矩形AOCB =2,⊥S △BOE =S △DOG =12|k ,S 四边形BOGD =S △BOD +S △DOG =S 梯形BEGD +S △BOE ,⊥S 梯形BEGD =S △BOD ,⊥12 )•(a -b ), ⊥2a 2-3ab -2b 2=0,⊥(a -2b )•(2a +b )=0,⊥a =2b ,a =-2b (舍去),⊥D (2b ),即:(2b ), 在Rt △BOD 中,由勾股定理得,OD 2+BD 2=OB 2,⊥[(2b)2+2]+[(2b-b)2+2]=b2+)2,⊥b⊥B,D(),⊥直线OB的解析式为:y,⊥直线DF的解析式为:y当y=0时,,⊥x,⊥F,0),⊥OE OF,⊥EF=OF-OE⊥12 EFOE=,故答案为:12,,0).【点睛】本题考查了矩形性质,轴对称性质,反比例函数的“k”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.17.(1)21x-(2)3x>【解析】【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案.(1)解:原式2212x x x=-+-21x=-;(2)解:43920xx->⎧⎨+≥⎩①②,解不等式⊥,得3x>,解不等式⊥,得2x≥-,所以原不等式组的解是3x>.【点睛】本题考查了整式的混合运算,解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.18.(1)见解析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一.(2)【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.19.(1)(3,2)A -,6y x=- (2)2n <-或2n >【解析】【分析】(1)把点A 的坐标代入一次函数关系式可求出a 的值,再代入反比例函数关系式确定k 的值,进而得出答案;(2)确定m 的取值范围,再根据反比例函数关系式得出n 的取值范围即可.(1)解:把2A a (,)的坐标代入23y x =-, 223a =-, 解得3a =-,⊥32A -(,).又⊥点32A -(,)是反比例函数(0)k y k x=≠的图像上, ⊥326k =-⨯=-, ⊥反比例函数的关系式为6y x=-; (2)解:⊥点P m n (,)在该反比例函数图像上,且它到y 轴距离小于3,⊥30m -<<或0m <<3,当3m =-时,623n -==-, 当3m =时,623n -==-, 由图像可知, 若点P m n (,)在该反比例函数图像上,且它到 y 轴距离小于3,n 的取值范围为2n <-或2n >.【点睛】本题考查反比例函数图像上点的坐标特征,反比例函数与一次函数的图像交点坐标,把点的坐标代入相应的函数关系式求出待定系数是求函数关系式的常用方法.20.(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【解析】【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.(1)⊥4710142055++++=(天).⊥这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.7211.520.2-=(秒),⊥第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)15m(2)在该消防车不移动位置的前提下,云梯能够伸到险情处;理由见解析【解析】【分析】(1)在Rt △ABD 中,利用锐角三角函数的定义求出AB 的长,即可解答;(2)根据题意可得DE =BC =2m ,从而求出AD =17m ,然后在Rt △ABD 中,利用锐角三角函数的定义求出AB 的长,进行比较即可解答.(1)解:在Rt △ABD 中,⊥ABD =53°,BD =9m ,⊥AB =9cos530.6BD ≈︒=15(m ), ⊥此时云梯AB 的长为15m ;(2)解:在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:DE =BC =2m ,⊥AE =19m ,⊥AD =AE -DE =19-2=17(m ),在Rt △ABD 中,BD =9m ,⊥AB ==m ),<20m ,⊥在该消防车不移动位置的前提下,云梯能伸到险情处.【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键. 22.(1)0.55y x =-+(28x ≤≤,且x 为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克【解析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得求得解析式; (2)设每平方米小番茄产量为W 千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.(1)解:⊥⊥每平方米种植的株数每增加1株,单株产量减少0.5千克,⊥40.5(2)0.55y x x =--=-+(28x ≤≤,且x 为整数);(2)解:设每平方米小番茄产量为W 千克,22(0.55)0.550.5(5)12.5=-+=-+=--+w x x x x x .⊥当5x =时,w 有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.23.(1)证明见详解 (2)13(3)5+【解析】【分析】(1)利用∥DE BC ,证明,ADG ABF AEG ACF △△△△,利用相似比即可证明此问; (2)由(1)得DG EG =,CG DE ⊥,得出DCE 是等腰三角形,利用三角形相似即可求出 DE BC的值; (3)遵循第(1)、(2)小问的思路,延长GE 交AB 于点M ,连接FM ,作MN BC ⊥,垂足为N .构造出等腰三角形、含30°、45°角的特殊直角三角形,求出BN 、FN 的值,即可得出BF 的长.(1)解:⊥DE BC ∥,⊥,ADG ABF AEG ACF △△△△,⊥,==DG AG EG AG BF AF CF AF , ⊥DG EG BF CF=. ⊥BF CF =,⊥DG EG =.(2)解:由(1)得DG EG =,⊥CG DE ⊥,⊥6CE CD ==.⊥3AE =,⊥9AC AE CE =+=.⊥DE BC ∥,⊥ADE ABC . ⊥13DE AE BC AC ==. (3)解:如图,延长GE 交AB 于点M ,连接FM ,作MN BC ⊥,垂足为N .在ABCD 中,,45=∠=∠=︒BO DO ABC ADC .⊥EG BD ∥,⊥由(1)得=ME GE ,⊥⊥EF EG ,⊥10==FM FG ,⊥∠=∠EFM EFG .⊥40∠︒=EGF ,⊥40EMF ∠=︒,⊥50EFG ∠=︒.⊥FG 平分EFC ∠,⊥50∠=∠=︒EFG CFG ,⊥18030∠=︒-∠-∠-∠=︒BFM EFM EFG CFG .⊥.在Rt FMN 中,sin 305,cos30=︒==︒=MN FM FN FM⊥45,∠=︒⊥MBN MN BN ,⊥5==BN MN ,⊥5=+=+BF BN FN【点睛】本题考查了相似三角形的性质及判定、等腰三角形的性质及判定、解特殊的直角三角形等知识,遵循构第(1)、(2)小问的思路,构造出等腰三角形和特殊的直角三角形是解决本题的关键.24.(1)902︒∠=-BFD α (2)见解析(3)⊥3;⊥5cos 8α=【解析】【分析】(1)根据∠-∠=∠=AFB BFD ACB α,180∠+∠=︒AFB BFD 即可求解;(2)由(1)的结论,FG AC 、BE FG =证()BDE FDG SAS △≌△即可; (3)⊥通过角的转换得32∠=∠-∠=ABC ABD DBG α,即可求AC 的长;⊥连结BO ,证△∽△BDG BOF ,设4OF x =,则114OE x DE DG kx ===,,由相似的性质即可求解;(1)⊥∠-∠=∠=AFB BFD ACB α,⊥又⊥180∠+∠=︒AFB BFD ,⊥⊥-⊥,得2180∠=︒-BFD α, ⊥902︒∠=-BFD α. (2)由(1)得902︒∠=-BFD α,⊥∠=∠=ADB ACB α, ⊥180902∠=︒-∠-︒-∠=FBD ADB BFD α,⊥DB DF =.⊥FG AC , ⊥∠=∠CAD DFG .⊥CAD DBE ∠=∠,⊥∠=∠DFG DBE .⊥BE FG =,⊥()BDE FDG SAS △≌△.(3)⊥⊥△≌△BDE FDG ,⊥∠=∠=FDG BDE α,⊥2∠=∠+∠=BDG BDF EDG α.⊥DE DG =, ⊥()11809022∠=︒-∠=︒-DGE FDG α, ⊥在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α, ⊥AD 为O 的直径,⊥90ABD ∠=︒. ⊥32∠=∠-∠=ABC ABD DBG α. ⊥AC 与AB 的度数之比为3⊥2.⊥AC 与AB 的的长度之比为3⊥2,⊥2AB =,⊥3=AC .⊥如图,连结BO .⊥OB OD =,⊥∠=∠=OBD ODB α,⊥2∠=∠+∠=BOF OBD ODB α.⊥2∠=BDG α,⊥∠=∠BOF BDG . ⊥902∠=∠=︒-BGD BFO α, ⊥△∽△BDG BOF ,设BDG 与BOF 的相似比为k , ⊥==DG BD k OF BO . ⊥411=OF OE , ⊥设4OF x =,则114OE x DE DG kx ===,,⊥114==+=+OB OD OE DE x kx ,154==+BD DF x kx , ⊥154154114114++==++BD x kx k BO x kx k , 由154114+=+k k k,得247150+-=k k , 解得154k =,23k =-(舍), ⊥11416=+=OD x kx x ,15420=+=BD x kx x ,⊥232==AD OD x ,在Rt ABD △中,205cos 328∠===BD x ADB AD x , ⊥5cos 8α=. 【点睛】本题主要考查圆的性质、三角函数、三角形的全等、三角形的相似,掌握相关知识并灵活应用是解题的关键.。

2023年浙江省宁波市中考数学学业水平测试试卷附解析

2023年浙江省宁波市中考数学学业水平测试试卷附解析

2023年浙江省宁波市中考数学学业水平测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一元二次方程022=-+x x 根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定2.下列图案,能通过某基本图形旋转得到,但不能通过平移得到的是 ( )3.如图,直线123,,l l l 表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处 B .两处 C .三处 D .四处 4.计算(18x 4-48x 3+6x )÷(-6x )的结果是( ) A .3x 3-8x 2B .-3x 3+8x 2C .-3x 3+8x 2-1D .3x 3-8x 2-15.若9x 2+kx+16是一个完全平方式,则k 的值等于( ) A.12 B.24 C.-24 D.±24 6.下列是二元一次方程的是( ) A .36x x -=B .32x y =C .10x y-= D .23x y xy -=7.在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=3,BC=5,则DC 的长度是( )A .85B .45C .165D .2258.方程2-3y=8的解是( )A .12y =-B .12y =C .2y =-D .y=29. 3x ,则2x 的值为( ) A .9B .18C .36D .8110.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( ) A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm11.下列命题中,是假命题的为( ) A .两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形12.如图所示,在△ABC中,D,E,F分别是AB,AC,BC上的点,DE∥BC,EF∥AB,DF∥AC,则图中共有平行四边形()A.1个B.2个C.3个D.4个13.下列命题中,是真命题的是()A.同位角相等B.一组对边相等,另一组对边平行的四边形是平行四边形C.如果|a|=|b|,那么a=bD.夹在两条平行线间的平行线段相等14.已知反比例函数y=kx (k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1-y2的值是()A.正数B.负数C.非正数D.不能确定15.下列各点中,在反比例函数2yx=-图象上的是()A.(21),B.233⎛⎫⎪⎝⎭,C.(21)--,D.(12)-,16.下列说法中,正确的有()(1)面积相等的两个圆是等圆;(2)若点到圆心的距离小于半径,则点在圆内;(3)圆既是中心对称图形,又是轴对称图形;(4)大于半圆的弧是优弧A.1 个B.2 个C.3 个D.4 个17.不等式组31413(3)024xx+<⎧⎪⎨+-<⎪⎩的最大整数解是()A.0 B.-1 C.-2 D.118.如图,A、B、C是⊙O上三点,∠AOB= 50°,∠OBC=40°,则∠OAC= ()A.l5°B.25°C.30°D.40°二、填空题19.如图,F、G、D、E分别为AD、AE、AB、AC的中点,△AGF的周长是10,则△ABC 的周长是_______.20.在一次班长选举中,甲得了50票中的45票,这个事件中,频数是,频率是 . 21.计算:(2x + y)(2x - y)= ;(2a -1)2= _.22.已知△ABC三边为a,b,c,且a,b满足21(3)0a b-+-=,c 为整数,则c的取值为.23.笔直的窗帘轨,至少需要钉个钉子才能将它固定,理由是.24.a、b、c、d为实数,现规定一种新的运算a cad bcb d=-,当241815x=-时,x= .三、解答题25.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC与△DEF是否相似,并证明你的结论.26.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB为半径作圆弧⌒BD得一扇形CBD,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a,求该圆锥的底面半径.27.已知不等式5(2)86(1)7x x -+<-+最小整数解为方程24x ax -=的的解,求a 的值.28.将下列各式分解因式: (1)533a a -(2)2222)1(2ax x a -+(3)9824-+x x29.下表表示从l960~2003年非洲某地区的狮子数量:其中表示50头狮子.(1)该地区哪一年的狮子数量最多?约有多少头?(2)估计2003年该地区狮子的头数是l960年的百分之几(精确到1%)?30.自由下落物体的高度 h(m)与下落时间 t(s)的关系为249h t =⋅.有一钢球从176.4m 的高空落下,它到达地面需要多长时间?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.C5.D6.B7.C8.C9.D10.C11.D12.C13.D14.D15.D16.D17.C18.A二、填空题 19. 4020.45,0.921.224y x -,1442+-a a22.323.2,两点确定一条直线24.3三、解答题 25.(1)∠ABC= 135 °, BC=22 ;(2)能判断△ABC 与△DEF 相似(或△ABC ∽△DEF )这是因为∠ABC =∠DEF = 135 ° ,2==EFBC DEAB ,∴△ABC ∽△DEF.26.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°, ∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 27.a=428.(1))1)(1)(1(32a a a a -++;(2))1)(1(222x x x x a -+++; (3))1)(1)(9(2-++x x x .29.(1)1960年,约600头 (2)67%30.6 s。

2022年浙江省宁波市中考数学试卷原卷附解析

2022年浙江省宁波市中考数学试卷原卷附解析

2022年浙江省宁波市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,圆与圆之间不同的位置关系有( )A .2种B .3种C .4种D .5种2.已知△ABC ∽△A 1B 1C 1,且△A 1B 1C 1∽△A 2B 2C 2,下列关于△ABC 与△A 2B 2C 2 关 系的结论正确的是( )A .全等B .面积相等C .相似D .面积不相等 3.把菱形 ABCD 沿着对角线 AC 的方向移动到菱形A ′B ′C ′D ′的位置,使它们的重叠部分的面积是菱形ABCD 的面积的12,若 AC=2,则菱形移动的距离AA ′是( )A .12 B .22 C .1 D .21-4.在梯形ABCD 中,AD BC ∥,AB DC =,E F G H ,,,分别是AB BC CD DA ,,,的中点,则四边形EFGH 是( )A .等腰梯形B .矩形C .菱形D .正方形5.下列二次根式中,字母1a <的根式是( ) A 1a -B 2(1)a -C 1a -D 11a -6.计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+ 7.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次的训练成绩分别用实线和虚线连接,如图所示,则下面的结论中,错误的是( )A .乙的第二次成绩与第五次成绩相同B .第三次测试甲的成绩与乙的成绩相同C .第四次测试甲的成绩比乙的成绩多 2分D .五次测试甲的成绩都比乙的成绩高8.用长为 20m 的铁丝围成一个长方形方框使长为 6.2m ,宽为 x (m ),则可列方程为( )A .2 6.220x +⨯=B . 6.220x +=C .2 6.220x +=D .2( 6.2)20x += 9.416x -分解因式的结果是( )A .22(4)(4)x x -+B .2(2)(2)(4)x x x +-+C .3(2)(2)x x -+D .22(2)(2)x x -+ 10.38的相反数是( )A .2B .2-C .12D .12- 11.7个有理数相乘的积是负数,那么其中负因数的个数最多有( )A .2 种可能B .3 种可能C .4 种可能D .5 种可能二、填空题12.若a= 3 cm ,2b= 1 cm ,则a :b= .13. 如图,⊙O 的弦AB ⊥ED(A 不与E 重合),EC 是直径,则四边形ABCD 是 .14.已知直角三角形的两条边长分别是方程214480x x -+=的两个根,则此三角形的第三边是 .15.地面气温是20℃,若每升高100 m ,气温下降6℃,则气温t(℃)与高度h(m)的函数解析式是 .16.甲班人数比乙班多 2 人,甲、乙两班入数不足100人.设乙班有x 人,则x 应满足的不等式是 .17.李师傅随机抽查了某单位2009年4月份里6天的日用水量(单位:吨),结果如下:7,8,8,7,6,6.根据这些数据.估计4月份该单位的用水总量为 .18.如图,这个几何体的名称是 , 它是由 个面, 条棱, 个顶点组成.19.“明天会下雨”是 事件.(填“必然”或“不可能”或“可能”)20.过一点M 可以画 条直线,过两点M ,N 可以画 条直线.21.一块苗圃地,种有 n 行树苗,每行的株数比行数的p 倍少kh ,这块地共有树苗 株;当 n= 32,p=3,k=18 时,这块地共有 株树苗.22.0.0169 的平方根是 ; 2(3)-的平方根是 .23.请找出一个满足加上-10 仍小于0 的整数是 .三、解答题24. 如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.25.如图,在△ABC 中,AB =AC ,AD 是 BC 边上的高线,以 AD 为直径的圆交AB 、AC 于E 、F. 已知∠B= 66°,AD=20 cm ,求⌒EF 的长.163π26.已知抛物线221y x x m =++-.(1)若抛物线与 x 轴只有一个交 点,求m 的值;(2)若抛物线与直线2y x m =+只有一个交点,求m 的值.27.如图,AB ∥CD ,AD ∥BC ,判断∠1 与∠2是否相等,并说明理由.28.如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由.(1)∠DBH=∠DAC ;(2)ΔBDH ≌ΔADC .29.如图,AD=12DB ,E 是BC 的中点,BE=15AC=2 cm ,求线段DE 的长.30.某酒店客房部有三人间、双人间客房,收费数据如下表:普通(元/间/天) 豪华(元/间/天)一些三人普通间和双人普通间客房.若每问客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?(只要求列出方程,不解方程)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.C5.D6.A7.D8.D9.B10.B11.C二、填空题12.6. 113.等腰梯形14.10或2715.=-16.t h200.06x+2+x<10017.21018.五棱柱,7,15,1019.可能20.无数条,121.n(np-k);249622.±,3±0.1323.如 8(只要符合条件均可)三、解答题24.如图,阴影部分即为小明的活动区域.25.3π26. (1)∵ 抛物线与 x 轴只有一个交点,∴221y x x m =++-中240b ac -=, 44(1)0m --=,解得m=2.(2) 消去y 整理,得210x x m +--=,∵抛物线与直线只有一个交点,∴240b ac -=, 即 1+4(m+ 1)=0,得54m =- 27.∠l=∠2,理由略28.(1)ΔABC 的两条高AD 、BE 相交于H ,则∠BDH=∠AEH=90 º,由于∠BHD=∠AHE ,则∠DBH=∠DAC ;(2)AD 为ΔABC 的高,则∠BDH=∠ADC=90 º,ΔBDH ≌ΔADC (ASA )..找出下图中每个轴对称图形的对称轴,并画出来.略.29.6 cm30.设三人普通间共住了x 人,则双人普通间共住了 (50x -)人,由题意得5015050%14050%151032x x -⨯⨯+⨯⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣22.(4分)下列计算正确的是()A.a2+a3=a5 B.(2a)2=4a C.a2•a3=a5 D.(a2)3=a53.(4分)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮﹣﹣“泰欧”轮,其中45万吨用科学记数法表示为()A.0.45×106吨 B.4.5×105吨C.45×104吨D.4.5×104吨4.(4分)要使二次根式有意义,则x的取值范围是()A.x≠3 B.x>3 C.x≤3 D.x≥35.(4分)如图所示的几何体的俯视图为()A. B.C.D.6.(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.7.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°8.(4分)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.79.(4分)如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为()A.B.C.πD.2π10.(4分)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限11.(4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3 B.C. D.412.(4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3 B.4 C.5 D.6二、填空题(每题4分,满分24分,将答案填在答题纸上)13.(4分)实数﹣8的立方根是.14.(4分)分式方程=的解是.15.(4分)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有个黑色棋子.16.(4分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)17.(4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=的图象上,则m的值为.18.(4分)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG 的值为.三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.20.(8分)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.21.(8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.22.(10分)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.23.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?24.(10分)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.25.(12分)如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).26.(14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C 的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG时,求△BGH与△ABC的面积之比.2017年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•宁波)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣2【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣2是有理数,是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2017•宁波)下列计算正确的是()A.a2+a3=a5 B.(2a)2=4a C.a2•a3=a5 D.(a2)3=a5【分析】根据积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.3.(4分)(2017•宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮﹣﹣“泰欧”轮,其中45万吨用科学记数法表示为()A.0.45×106吨 B.4.5×105吨C.45×104吨D.4.5×104吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将45万用科学记数法表示为:4.5×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•宁波)要使二次根式有意义,则x的取值范围是()A.x≠3 B.x>3 C.x≤3 D.x≥3【分析】二次根式有意义时,被开方数是非负数.【解答】解:依题意得:x﹣3≥0,解得x≥3.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(4分)(2017•宁波)如图所示的几何体的俯视图为()A. B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外边是正六边形,里面是圆,故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.6.(4分)(2017•宁波)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.【分析】让黄球的个数除以球的总个数即为所求的概率.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选:C.【点评】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.7.(4分)(2017•宁波)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.(4分)(2017•宁波)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.7【分析】根据众数的定义可得x的值,再依据中位数的定义即可得答案.【解答】解:∵数据2,3,x,5,7的众数为7,∴x=7,则这组数据为2、3、5、7、7,∴中位数为5,故选:C.【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.9.(4分)(2017•宁波)如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为()A.B.C.πD.2π【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【解答】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选(B)【点评】本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.10.(4分)(2017•宁波)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据抛物线的顶点式求出抛物线y=x2﹣2x+m2+2(m是常数)的顶点坐标,再根据各象限内点的坐标特点进行解答.【解答】解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选A.【点评】本题考查的是二次函数的性质及各象限内点的坐标特点,根据题意得出抛物线的顶点坐标是解答此题的关键.11.(4分)(2017•宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3 B.C. D.4【分析】作辅助线,构建全等三角形,证明△EMF≌△CMD,则EM=CM,利用勾股定理得:BD==6,EC==2,可得△EBG是等腰直角三角形,分别求EM=CM的长,利用勾股定理的逆定理可得△EMC是等腰直角三角形,根据直角三角形斜边中线的性质得MN的长.【解答】解:连接FM、EM、CM,∵四边形ABCD为正方形,∴∠ABC=∠BCD=∠ADC=90°,BC=CD,∵EF∥BC,∴∠GFD=∠BCD=90°,EF=BC,∴EF=BC=DC,∵∠BDC=∠ADC=45°,∴△GFD是等腰直角三角形,∵M是DG的中点,∴FM=DM=MG,FM⊥DG,∴∠GFM=∠CDM=45°,∴△EMF≌△CMD,∴EM=CM,过M作MH⊥CD于H,由勾股定理得:BD==6,EC==2,∵∠EBG=45°,∴△EBG是等腰直角三角形,∴EG=BE=4,∴BG=4,∴DM=∴MH=DH=1,∴CH=6﹣1=5,∴CM=EM==,∵CE2=EM2+CM2,∴∠EMC=90°,∵N是EC的中点,∴MN=EC=;故选C.【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于基础题,本题的关键是证明△EMC是直角三角形.12.(4分)(2017•宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3 B.4 C.5 D.6【分析】根据题意结合正方形的性质得出只有表示出矩形的各边长才可以求出面积,进而得出符合题意的答案.【解答】解:如图所示:设①的周长为:4x,③的周长为2y,④的周长为2b,即可得出①的边长以及③和④的邻边和,设②的周长为:4a,则②的边长为a,可得③和④中都有一条边为a,则③和④的另一条边长分别为:y﹣a,b﹣a,故大矩形的边长分别为:b﹣a+x+a=b+x,y﹣a+x+a=y+x,故大矩形的面积为:(b+x)(y+x),其中b,x,y都为已知数,故n的最小值是3.故选:A.【点评】此题主要考查了推理与论证,正确结合正方形面积表示出矩形各边长是解题关键.二、填空题(每题4分,满分24分,将答案填在答题纸上)13.(4分)(2017•宁波)实数﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.14.(4分)(2017•宁波)分式方程=的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x+2=9﹣3x,解得:x=1,经检验x=1是分式方程的解,故答案为:x=1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(4分)(2017•宁波)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有19个黑色棋子.【分析】根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案.【解答】解:第一个图需棋子1,第二个图需棋子1+3,第三个图需棋子1+3×2,第四个图需棋子1+3×3,…第n个图需棋子1+3(n﹣1)=3n﹣2枚.所以第⑦个图形有19颗黑色棋子.故答案为:19;【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.16.(4分)(2017•宁波)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了280米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)【分析】如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280m,可知这名滑雪运动员的高度下降了280m.【解答】解:如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280m,∴这名滑雪运动员的高度下降了280m.故答案为280【点评】本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.17.(4分)(2017•宁波)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=的图象上,则m的值为4或.【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),然后分两种情况进行讨论:一是AB边的中点在反比例函数y=的图象上,二是AC边的中点在反比例函数y=的图象上,进而算出m的值.【解答】解:∵△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),∴AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(﹣1+m,1),AC边的中点平移后的坐标为(﹣2+m,﹣2).∵△ABC某一边的中点恰好落在反比例函数y=的图象上,∴﹣1+m=3或﹣2×(﹣2+m)=3.∴m=4或m=(舍去).故答案为4或.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.(4分)(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为.【分析】作EH⊥AD于H,连接BE、BD,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,接着证明BE⊥AB,设AF=x,利用折叠的性质得到EF=AF,FG垂直平分AE,∠EFG=∠AFG,所以在Rt△BEF中利用勾股定理得(2﹣x)2+()2=x2,解得x=,接下来计算出AE,从而得到OA的长,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解.【解答】解:作EH⊥AD于H,连接BE、BD,连接AE交FG于O,如图,∵四边形ABCD为菱形,∠A=60°,∴△BDC为等边三角形,∠ADC=120°,∵E点为CD的中点,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,设AF=x,∵菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,∴EF=AF,FG垂直平分AE,∠EFG=∠AFG,在Rt△BEF中,(2﹣x)2+()2=x2,解得x=,在Rt△DEH中,DH=DE=,HE=DH=,在Rt△AEH中,AE==,∴AO=,在Rt△AOF中,OF==,∴cos∠AFO==.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2017•宁波)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.【分析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4﹣x2+x2+4x﹣5=4x﹣1,当x=时,原式=6﹣1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2017•宁波)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【分析】(1)根据成轴对称图形的概念,分别以边AC、BC所在的直线为对称轴作出图形即可;(2)根据网格结构找出点A、B绕着点C按顺时针方向旋转90°后的对应点的位置,再与点C顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(8分)(2017•宁波)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.【分析】(1)求出“宁港”品种鱼苗的百分比,乘以300即可得到结果;(2)求出“甬岱”品种鱼苗的成活数,补全条形统计图即可;(3)求出三种鱼苗成活率,比较即可得到结果.【解答】解:(1)根据题意得:300×(1﹣30%﹣25%﹣25%)=60(尾),则实验中“宁港”品种鱼尾有60尾;(2)根据题意得:300×30%×80%=72(尾),则实验中“甬岱”品种鱼苗有72尾成活,补全条形统计图:(3)“宁港”品种鱼苗的成活率为×100%=85%;“御龙”品种鱼苗的成活率为×100%=74.6%;“象山港”品种鱼苗的成活率为×100%=80%,则“宁港”品种鱼苗的成活率最高,应选“宁港”品种进行推广.【点评】此题考查了条形统计图,扇形统计图,弄清题中的数据是解本题的关键.22.(10分)(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.23.(10分)(2017•宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【分析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【解答】解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8﹣a)≥5400,解得a≥2.答:至少销售甲种商品2万件.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.24.(10分)(2017•宁波)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.【分析】(1)由矩形的性质得出AD=BC,∠BAD=∠BCD=90°,证出AH=CF,在Rt △AEH和Rt△CFG中,由勾股定理求出EH=FG,同理:EF=HG,即可得出四边形EFGH为平行四边形;(2)在正方形ABCD中,AB=AD=1,设AE=x,则BE=x+1,在Rt△BEF中,∠BEF=45°,得出BE=BF,求出DH=BE=x+1,得出AH=AD+DH=x+2,在Rtt△AEH中,由三角函数得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠BAD=∠BCD=90°,∵BF=DH,∴AH=CF,在Rt△AEH中,EH=,在Rt△CFG中,FG=,∵AE=CG,∴EH=FG,同理:EF=HG,∴四边形EFGH为平行四边形;(2)解:在正方形ABCD中,AB=AD=1,设AE=x,则BE=x+1,在Rt△BEF中,∠BEF=45°,∴BE=BF,∵BF=DH,∴DH=BE=x+1,∴AH=AD+DH=x+2,在Rtt△AEH中,tan∠AEH=2,∴AH=2AE,∴2+x=2x,解得:x=2,∴AE=2.【点评】本题考查了矩形的性质、勾股定理、平行四边形的判定、正方形的性质、三角函数等知识;熟练掌握矩形的性质和勾股定理是解决问题的关键.25.(12分)(2017•宁波)如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).【分析】(1)把C点坐标代入抛物线解析式可求得c的值,令y=0可求得A点坐标,利用待定系数法可求得直线AC的函数表达式;(2)①在Rt△AOB和Rt△AOD中可求得∠OAB=∠OAD,在Rt△OPQ中可求得MP=MO,可求得∠MPO=∠MOP=∠AON,则可证得△APM∽△AON;②过M作ME⊥x轴于点E,用m可表示出AE和AP,进一步可表示出AM,利用△APM∽△AON可表示出AN.【解答】解:(1)把C点坐标代入抛物线解析式可得=9++c,解得c=﹣3,∴抛物线解析式为y=x2+x﹣3,令y=0可得x2+x﹣3=0,解得x=﹣4或x=3,∴A(﹣4,0),设直线AC的函数表达式为y=kx+b(k≠0),把A、C坐标代入可得,解得,∴直线AC的函数表达式为y=x+3;(2)①∵在Rt△AOB中,tan∠OAB==,在RtAOD中,tan∠OAD==,∴∠OAB=∠OAD,∵在Rt△POQ中,M为PQ的中点,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;②如图,过点M作ME⊥x轴于点E,则OE=EP,∵点M的横坐标为m,∴AE=m+4,AP=2m+4,∵tan∠OAD=,∴cos∠EAM=cos∠OAD=,∴=,∴AM=AE=,∵△APM∽△AON,∴=,即=,∴AN=.【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、相似三角形的判定和性质、等腰三角形的性质、直角三角形的性质及方程思想等知识.在(1)中注意函数图象上的点的坐标满足函数解析式,以及待定系数法的应用,在(2)①中确定出两对对应角相等是解题的关键,在(2)②中用m表示出AP的长是解题的关键,注意利用相似三角形的性质.本题考查知识点较多,综合性较强,难度较大.26.(14分)(2017•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C 的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG时,求△BGH与△ABC的面积之比.【分析】(1)根据题意得出∠B=∠D,∠C=∠A,代入∠A+∠B+∠C+∠D=360°求出即可;(2)求出△BED≌△BEO,根据全等得出∠BDE=∠BOE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,求出∠EFC=180°﹣2α,∠AOC=180°﹣2α,即可得出等答案;(3)过点O作OM⊥BC于M,求出∠ABC+∠ACB=120°,求出∠OBC=∠OCB=30°,根据直角三角形的性质得出BC=2BM=BO=BD,求出△DBG∽△CBA,根据相似三角形的性质得出即可.【解答】解:(1)在半对角四边形ABCD中,∠B=∠D,∠C=∠A,∵∠A+∠B+∠C+∠D=360°,∴3∠B+3∠C=360°,∴∠B+∠C=120°,即∠B与∠C的度数和为120°;(2)证明:∵在△BED和△BEO中∴△BED≌△BEO,∴∠BDE=∠BOE,∵∠BCF=∠BOE,∴∠BCF=∠BDE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠ABC=∠AOC=∠EFC,∴四边形DBCF是半对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是半对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴=()2=,∵DH=BG,BG=2HG,∴DG=3HG,∴=,∴=.【点评】本题考查了相似三角形的性质和判定,全等三角形的性质和判定等知识点,能灵活运用性质进行推理是解此题的关键,难度偏大.。

相关文档
最新文档