《整式的乘法》教学设计
北师大版数学七年级下册1.4《整式的乘法》说课稿1
北师大版数学七年级下册1.4《整式的乘法》说课稿1一. 教材分析《整式的乘法》是北师大版数学七年级下册第1.4节的内容,本节课的主要任务是让学生掌握整式乘法的基本运算方法。
整式乘法是代数学习的基础,也是后续学习多项式乘法、因式分解等知识的关键。
在本节课中,学生将通过具体的例子,学习如何进行整式的乘法运算,并理解其运算规律。
二. 学情分析面对七年级的学生,他们对整数四则运算已经有一定的基础,但对于代数式的运算还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,引导他们从具体到抽象,逐步理解整式乘法的运算规律。
此外,学生的学习动机、学习习惯和学习能力各有不同,我需要在教学中关注每一个学生的个体差异,充分调动他们的学习积极性。
三. 说教学目标本节课的教学目标有三:1.让学生掌握整式乘法的基本运算方法,能够正确进行整式的乘法运算。
2.让学生理解整式乘法的运算规律,能够灵活运用所学知识解决实际问题。
3.培养学生的逻辑思维能力,提高他们的数学素养。
四. 说教学重难点本节课的重难点是整式乘法的运算方法和运算规律。
对于这部分内容,学生需要通过大量的练习,才能熟练掌握。
因此,在教学过程中,我需要合理安排练习题,引导学生通过自主学习、合作学习等方式,克服困难,掌握重难点。
五. 说教学方法与手段在本节课的教学中,我将采用“引导发现法”和“实践操作法”相结合的教学方法。
通过引导学生观察、思考、讨论,发现整式乘法的运算规律;同时,通过让学生亲自动手进行实践操作,加深他们对整式乘法的理解。
此外,我还将利用多媒体教学手段,为学生提供丰富的学习资源,激发他们的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行整式的乘法运算。
2.新课讲解:通过具体的例子,讲解整式乘法的运算方法,引导学生发现运算规律。
3.练习巩固:安排一系列练习题,让学生亲自动手进行整式的乘法运算,巩固所学知识。
4.拓展延伸:引导学生思考如何将整式乘法应用到实际问题中,提高他们的应用能力。
九年级数学上人教版《 整式的乘法》教案
《整式的乘法》教案
一、教学目标
1.掌握整式乘法运算的规则和步骤。
2.学会进行整式的乘法运算。
3.理解单项式与单项式、单项式与多项式相乘的运算法则。
4.培养数学运算能力。
二、教学重点难点
1.重点:掌握整式乘法运算的规则和步骤,学会进行整式的乘法运算。
2.难点:理解单项式与单项式、单项式与多项式相乘的运算法则。
三、教学方法与手段
1.通过实例引入,让学生感受整式乘法运算在实际问题中的应用。
2.通过讲解和示范,让学生掌握整式乘法运算的规则和步骤,理解单项式与
单项式、单项式与多项式相乘的运算法则。
3.通过练习和反馈,让学生深入理解并掌握整式乘法的运算法则,学会进行
整式的乘法运算。
4.通过小组合作和讨论,让学生互相交流和学习。
四、教学过程
1.复习导入:复习单项式和多项式的概念,以及整式的加法运算。
2.新课引入:通过实例引入整式乘法运算的实际应用,激发学生的学习热情。
3.讲解新课:通过讲解和示范,让学生掌握整式乘法运算的规则和步骤,理
解单项式与单项式、单项式与多项式相乘的运算法则。
4.巩固练习:通过练习和反馈,让学生深入理解并掌握整式乘法的运算法则,
学会进行整式的乘法运算。
5.课堂小结:总结整式乘法运算的规则和步骤,强调单项式与单项式、单项
式与多项式相乘的运算法则。
6.作业布置:布置相关练习题,巩固所学知识。
五、教学反思与改进
1.通过观察学生的表现,了解学生对整式乘法运算的掌握情况。
2.根据学生的反馈情况,进行相应的反思和改进,调整教学方法和手段。
整式的乘法教案(通用3篇)
整式的乘法教案整式的乘法教案(通用3篇)作为一名优秀的教育工作者,常常需要准备教案,借助教案可以有效提升自己的教学能力。
我们应该怎么写教案呢?以下是小编为大家整理的整式的乘法教案(通用3篇),仅供参考,大家一起来看看吧。
整式的乘法教案1一、内容和内容解析1、内容:同底数幂的乘法。
2、内容解析同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。
在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。
同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。
同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。
基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。
二、目标和目标解析1、目标(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。
(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。
2、目标解析达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同底数幂的`乘法运算。
达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。
三、教学问题诊断分析在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。
幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。
教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。
整式的乘法教案
整式的乘法教案一、教学目标1. 能够理解整式的乘法规则,掌握整式的乘法方法。
2. 能够应用整式的乘法方法解决实际问题。
二、教学内容1. 整式的乘法规则2. 整式的乘法方法3. 应用整式的乘法解决实际问题三、教学重难点1. 整式的乘法规则的掌握2. 整式的乘法方法的运用四、教学方法1. 讲授法2. 练习法五、教学过程1. 整式的乘法规则首先,对于两个单项式相乘,应用成分分解方法进行计算,即把两个单项式中的系数和字母分开,然后对系数和字母分别相乘:例如:(3a)(4b) = 3 × 4 × a × b = 12ab对于两个多项式相乘,利用分配律,把两个多项式的各项依次相乘,然后将结果合并:例如:(3a + 2b)(4a − 5b) = 3a × 4a − 3a × 5b + 2b × 4a − 2b × 5b = 12a^2 − 15ab + 8ab − 10b^2= 12a^2 − 7ab − 10b^22. 整式的乘法方法步骤一:分解整式将整式按照单项式分解的方式分解为单项式的乘积。
例如:2x^2 − 3xy + y^2 = (2x − y)(x − y)步骤二:按照公式进行运算根据乘法公式,在相应的位置上写下对应的系数和字母,然后合并同类项。
例如:(2x − y)(x − y) = 2x^2 − 2xy − xy + y^2 = 2x^2 − 3xy + y^2步骤三:检查结果检查结果是否合理,是否有错漏。
3. 应用整式的乘法解决实际问题例题一:甲、乙两人从甲地到乙地需要上车,车费7元,甲要付5元,乙付2元,求甲、乙两人到车站乘车的路程相差3千米,则甲、乙两人到车站乘车的路程分别是多少千米?解题方法:设甲的路程为x千米,则乙的路程为(x + 3)千米。
由题意可得:5/x + 2/(x + 3) = 7/x(x + 3)将上式通分并整理得:3x^2 − 2x − 15 = 0将上式分解得:(3x + 5)(x − 3) = 0得出x = −5/3,3因为路程不能为负数,所以甲的路程为3千米,乙的路程为6千米。
八年级上数学人教版《 整式的乘法》教案
《整式的乘法》教案教学目标:1.掌握单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘的运算方法。
2.学会用整式的乘法公式进行简便运算。
3.培养初步的运算能力,发展逻辑思维能力。
教学重点:掌握整式的乘法运算方法及简便运算。
教学难点:正确地进行整式的乘法运算。
教学准备:小黑板,投影仪。
教学过程:一、创设情境1.复习单项式与单项式的乘法法则及单项式与多项式的乘法法则。
2.列出算式:(4x+6)×5+7;(6+8y)×3+9。
二、探索新知1.教师讲解例5的题目(小黑板出示)。
(1)列出算式:(4x+6y)×3=12x+18y(教师板书)。
(2)讲解算式中各字母的意义及运算顺序。
(3)讲解整式的乘法法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
1.讲解例6的题目(小黑板出示)。
(1)教师列算式:(4x+6y)×(2x+3y)=8x2+12xy+6xy+18y2=8x2+18xy+18y2。
(2)讲解算式中各字母的意义及运算顺序。
(3)讲解整式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
三、拓展应用1.完成P38练习七的第1题。
学生独立完成,教师巡回指导,注意检查学生运算顺序是否正确,对运算中出现的问题及时给予指导。
然后集体订正。
2.完成P38练习七的第2题。
学生先独立完成,然后集体订正,订正时请一名学生板演。
对有困难的学生可引导他们先模仿着做,然后逐步掌握解题方法。
最后集体订正。
整式的乘法 教学设计
整式的乘法【第一课时】【教学目标】知识与技能:1.会进行单项式与单项式的乘法运算。
2.灵活运用单项式相乘的运算法则。
过程与方法:1.经历探索乘法运算法则的过程,体会乘法分配律的作用和转化思想。
2.感受运算法则和相应的几何模型之间的联系,发展数形结合的思想。
情感、态度与价值观:在学习中获得成就感,增强学好数学的能力和信心。
【教学重难点】重点:熟练地进行单项式的乘法运算。
难点:单项式的乘方与乘法的混合运算。
【教学过程】一、情景引入教师引导学生复习整式的有关概念整式的乘法实际上就是单项式×单项式、单项式×多项式、多项式×多项式。
二、探索法则与应用1.组织讨论:完成课本“试着做做”的题目,引导学生分组讨论单项式×单项式的法则(组织学生积极讨论,教师应积极参与学生的讨论过程,并对不主动参与的同学进行指导。
)2.在学生发言的基础上,教师总结单项式的乘法法则并板书法则:系数与系数相同字母与相同字母单独存在的字母以上3点的处理办法,让学生归纳解题步骤。
(学生刚接触,故要求学生按步骤解题,且提醒学生不能漏项。
)3.例题讲解例1:计算:(1)4x·3xy ; (2)(-2x )·(-3x 2y ); (3)解:(1)(2)(3)例2:计算:(1); (2)解:(1) (2)(强调法则的运用)4.练习:课本“练习”第1题,学生口答,讲解错误的理由;第2题,学生板书,发现问题及时纠正,可让学生辨析、指出错误,巩固法则。
三、课堂总结指导学生总结本节课的知识点、学习过程等的自我评价。
2321abc b c 32⎛⎫⋅- ⎪⎝⎭y12χy χ)(χ3)(43χy 4χ2=⋅⋅⋅⨯=⋅[]y 3226χy )χ(χ3)(2)(y)3χ(2χ)(=⋅⋅⋅-⨯-=-⋅-23324321211abc (b c)a (b b )(c c)ab c .32323⎡⎤⎛⎫⋅-=⨯-⋅⋅⋅⋅⋅=- ⎪⎢⎥⎝⎭⎣⎦-⋅⋅2212ab 3a bc 2221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭2212a ab 3a bc 2-⋅⋅c )c b ()a a a (321)2(22⋅⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡⨯⨯-=cb 3a 34-=221ab (5abc)2⎛⎫-⋅- ⎪⎝⎭)5abc ()b (a 212222-⋅⎪⎭⎫ ⎝⎛-=)5abc (b a 4142-⋅=c )b b ()a a ()5(4142⋅⋅⋅⋅⋅⎥⎦⎤⎢⎣⎡-⨯=c b a 4553-=(可畅所欲言,包括学习心得和困惑,互相帮助,互相促进。
初中数学《整式的乘法》教案设计
初中数学《整式的乘法》教案设计初中数学《整式的乘法》教案设计「篇一」15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,•那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ch.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、 ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a2;正方体的体积为长宽高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的'定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、• ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为32、43,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是 ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。
冀教版数学七年级下册8.4《整式的乘法》教学设计1
冀教版数学七年级下册8.4《整式的乘法》教学设计1一. 教材分析冀教版数学七年级下册8.4《整式的乘法》是整式乘除单元的重要内容。
本节内容通过实例引入整式乘法,让学生掌握整式乘法的基本法则和运算技巧。
教材从实际问题出发,引导学生探究整式乘法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析七年级的学生已经掌握了整式的基本知识,对加减乘除运算有了初步了解。
但学生在进行整式乘法运算时,容易出错,对乘法分配律的理解不够深入。
因此,在教学过程中,需要帮助学生巩固整式乘法的基本规则,引导学生发现运算规律,提高运算速度和准确性。
三. 教学目标1.知识与技能:使学生掌握整式乘法的基本法则,能够熟练进行整式乘法运算。
2.过程与方法:通过实例探究,让学生理解并掌握整式乘法的运算过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:整式乘法的基本法则和运算过程。
2.难点:乘法分配律的理解和运用。
五. 教学方法1.情境教学法:通过生活实例引入整式乘法,让学生在实际问题中感受数学的价值。
2.启发式教学法:引导学生主动探究整式乘法的运算规律,培养学生的逻辑思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示整式乘法的运算过程和实例。
2.练习题:准备一些整式乘法的练习题,用于巩固所学知识。
3.板书设计:设计板书,突出整式乘法的基本法则和运算规律。
七. 教学过程1.导入(5分钟)利用生活实例,如计算商品的折扣,引入整式乘法的学习。
激发学生的学习兴趣,引导学生思考如何进行整式乘法运算。
2.呈现(10分钟)展示整式乘法的运算过程,让学生观察和思考。
通过讲解和示范,使学生掌握整式乘法的基本法则。
3.操练(10分钟)让学生分组进行练习,互相讨论和交流。
北师大版七年级下册数学教学设计:1.4.2 《整式的乘法》
北师大版七年级下册数学教学设计:1.4.2 《整式的乘法》一. 教材分析《整式的乘法》是北师大版七年级下册数学的一个重要内容。
在此之前,学生已经学习了有理数的运算、整数的运算等基础知识。
本节课的内容为整式的乘法,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。
这一部分内容在代数学中占据着重要地位,是学生进一步学习函数、方程等高级内容的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于运算规则、公式等有一定的理解。
但是,整式的乘法涉及到的运算较为复杂,需要学生能够灵活运用已有的知识,理解并掌握整式乘法的基本原理和方法。
三. 教学目标1.理解整式乘法的概念和原理。
2.掌握整式乘法的基本方法,能够熟练进行整式的乘法运算。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重点:整式乘法的概念、原理和方法。
2.难点:整式乘法中不同情况下的运算规律和技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过问题解决的方式,理解并掌握整式乘法。
2.使用多媒体教学辅助工具,展示运算过程,帮助学生直观理解。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力。
六. 教学准备1.多媒体教学课件。
2.相关练习题和测试题。
3.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考并解决问题,从而引出整式乘法的需求。
2.呈现(10分钟)利用多媒体教学课件,展示整式乘法的定义、原理和方法,让学生直观地理解整式乘法。
3.操练(10分钟)让学生独立完成一些整式乘法的例题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生进行小组讨论,总结整式乘法的运算规律和技巧,教师点评并总结。
5.拓展(10分钟)引导学生思考并探索整式乘法的拓展问题,如:是否存在同类项?如何进行合并?6.小结(5分钟)让学生总结本节课所学内容,教师进行补充和完善。
7.家庭作业(5分钟)布置一些整式乘法的练习题,要求学生在课后进行自主学习。
《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册
《整式的乘法》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生理解整式乘法的概念及运算规则,能正确进行同类项合并及多项式乘法计算,通过实践操作掌握整式乘法的具体应用。
培养学生分析问题和解决问题的能力,激发学生对数学学习的兴趣和热情。
二、教学重难点教学重点:掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式等。
教学难点:理解整式乘法中同类项的合并过程,以及多项式乘法中如何灵活运用乘法分配律和乘法结合律。
三、教学准备课前准备:准备教材、教具(如白板、多媒体设备)、练习题以及课后作业。
教师需提前熟悉教材内容,准备好讲解用的示例和练习题,确保学生能够通过练习巩固所学知识。
同时,需确保教学环境安静舒适,为学生提供一个良好的学习氛围。
在上述教学准备基础上,教师应根据实际情况调整教学方法和策略,以适应不同学生的学习需求,提高教学效果。
四、教学过程:一、导课启思本环节将通过实际生活中的问题,引出整式乘法的概念和必要性。
教师可以利用具体的例子,如面积计算、速度与距离的关系等,让学生感受到整式乘法在现实生活中的广泛应用。
二、知识铺垫1. 复习旧知:回顾之前学过的单项式、多项式等概念,为整式的概念打下基础。
2. 引入新课:通过具体问题引出整式的概念,强调整式中各个项的乘积和相加关系。
三、新课讲解(一)整式的定义与分类1. 定义讲解:清晰、准确地阐述整式的定义,包括单项式和多项式等类型。
2. 实例展示:通过具体的数学表达式,让学生明确整式的形式。
3. 互动讨论:鼓励学生提出疑问,通过师生互动加深对整式定义的理解。
(二)整式的乘法法则1. 同类项的乘法:讲解同类项相乘的规则,强调乘法运算的顺序。
2. 分配律的应用:通过具体例子展示分配律在整式乘法中的应用,如(a+b)×c=a×c+b×c等。
3. 乘法的交换律和结合律:强调在整式乘法中交换律和结合律的重要性,并通过实例加以说明。
初中数学整式的乘法教案3篇
初中数学整式的乘法教案1总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。
同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。
因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义。
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用。
一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。
二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用。
(2)了解完全平方公式的几何背景。
数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力。
(2)发展学生的数形结合的数学思想。
情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”。
三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用。
《整式的乘法》教案
《整式的乘法》教案一、教学目标1. 理解整式乘法的概念和意义。
2. 掌握整式乘法的基本方法和步骤。
3. 能够运用整式乘法解决实际问题。
二、教学内容1. 整式乘法的定义和性质。
2. 整式乘法的基本方法和步骤。
3. 整式乘法在实际问题中的应用。
三、教学重点与难点1. 整式乘法的概念和意义。
2. 整式乘法的基本方法和步骤。
3. 整式乘法在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解整式乘法的概念和意义。
2. 采用示范法,演示整式乘法的基本方法和步骤。
3. 采用练习法,让学生通过实际问题运用整式乘法。
五、教学准备1. 教学课件或黑板。
2. 练习题。
教案内容:一、导入(5分钟)1. 引入整式乘法的概念,引导学生回顾整式的基本知识。
2. 通过实际例子,让学生感受整式乘法的意义。
二、讲解整式乘法(15分钟)1. 讲解整式乘法的定义和性质。
2. 演示整式乘法的基本方法和步骤。
3. 引导学生通过例子理解和掌握整式乘法。
三、练习整式乘法(15分钟)1. 分组练习,让学生相互讨论和交流。
2. 教师选取部分学生的作业进行讲解和指导。
四、应用整式乘法解决实际问题(15分钟)1. 给出实际问题,让学生运用整式乘法进行解决。
2. 引导学生总结整式乘法在实际问题中的应用。
五、总结与布置作业(5分钟)1. 对整式乘法进行总结,强调重点和难点。
2. 布置相关练习题,让学生巩固所学知识。
六、教学过程1. 复习导入:回顾上一节课的内容,通过几个简单的整式乘法例子,让学生回顾并巩固整式乘法的基本方法和步骤。
2. 讲解新课:讲解整式乘法的进阶概念和技巧,如平方差公式、完全平方公式等。
通过示例和练习,让学生理解和掌握这些概念和技巧。
3. 应用练习:给出一些实际问题,让学生运用整式乘法进行解决。
通过讨论和交流,引导学生总结整式乘法在实际问题中的应用。
七、教学评价1. 课堂练习:在课堂上,让学生完成一些整式乘法的练习题,通过学生的解答情况,了解学生对整式乘法的掌握程度。
整式的乘除主题单元教学设计[优秀范文5篇]
整式的乘除主题单元教学设计[优秀范文5篇]第一篇:整式的乘除主题单元教学设计整式的乘除主题单元教学设计模板(填写说明:文档内所有斜体字均为提示信息,在填写后请删除提示信息)主题单元标题作者姓名整式的乘除学科领域(在学科名称后打√ 表示主属学科,打+ 表示相关学科)思想品德语文数学体育音乐美术外语物理化学生物历史地理信息技术科学社区服务社会实践劳动与技术其他(请列出):适用年级所需时间初中数学一年级(说明:课内共用几课时,每周几课时;课外共用几课时)课内共用6课时,每周5课时;课外共用2课时主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本单元主要研究的是整式运算及其应用,它是初中数学的重要内容之一,是以后学习分式和根式运算、方程以及函数等知识的基础.由数到式的学习过程,也是学生改进认识方式,数学思想发生飞跃的变化过程。
研究方法主要是充分利用问题情境,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程。
从中观层面上看,本单元既是中学数学中数与式的重要组成部分,又是联系现实世界及其他学科的重要工具。
本单元分为四个专题:专题一整式的乘法主要内容:1.掌握同底数幂的乘法及乘方法则;2.会利用法则进行单项式的乘法运算;3.会利用乘法分配律进行单项式与多项式的乘法运算;专题二乘法公式主要内容:1.在专题三的基础上,会进行多项式与多项式的乘法运算;2.了解平方差公式的几何背景,能够利用平方差公式进行有关计算;3.利用多项式乘法法则推导完全平方公式,了解公式的几何背景,运用公式进行计算;专题三整式的除法。
主要内容:1.掌握同底数幂的除法法则,理解负整数指数幂的意义;2.会利用法则进行单项式的除法运算;3.会进行多项式除以单项式的运算专题四整式的乘除综合运用主要内容:熟练运用幂的运算法则、整式乘除法进行运算;综合运用这些知识解决稍复杂的问题.本单元预期的学习成果:1.熟练掌握幂的运算法则;2.能够熟练的进行整式乘除法的运算;3.能熟练运用乘法公式及其变形解决相关问题;主要的学习方式:自主探究小组合作观察课件演示实践操作主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。
整式的乘法教案
整式的乘法教案教案:整式的乘法一、教学目标1. 理解整式的定义和特点。
2. 掌握整式乘法的运算法则。
3. 能够应用整式乘法解决实际问题。
二、教学重难点1. 整式的乘法运算法则。
2. 解决实际问题时如何应用整式乘法。
三、教学过程1. 导入(5分钟)通过一个简单的问题引入整式乘法的概念,如:小明有3本书,每本书的价格是$2,那么这3本书的总价格是多少?2. 理解整式(10分钟)解释整式的定义:由常数、变量及它们的乘积以及它们的和或差构成的代数表达式称为整式。
整式通常用字母表示变量,比如 3x^2 + 2xy - 5。
3. 整式的特点(5分钟)解释整式的特点:整式是由多个单项式相加或相减而成的,每个单项式又由常数与变量的乘积构成。
整式中的每一项称为整式的项,项中的常数称为该项的系数,项中的变量的次数称为该项的次数。
4. 整式的乘法运算法则(15分钟)详细介绍整式的乘法运算法则,包括:- 系数相乘:将两个单项式的系数相乘。
- 变量相乘:将两个单项式的变量相乘,并得到它们的乘积。
- 次数相加:将两个单项式的变量次数相加,并得到它们的次数之和。
- 合并同类项:将所有乘积得到的单项式合并成一个整式,并将其中的同类项合并。
5. 整式乘法的例题演练(15分钟)通过一些具体的例题演示整式乘法的运算过程,帮助学生从实际问题中理解和掌握整式乘法的运算规则。
6. 应用整式乘法解决实际问题(10分钟)提供一些实际问题,让学生运用所学的整式乘法解决,加深他们对整式乘法应用的理解。
7. 总结与评价(5分钟)让学生总结整式乘法的运算法则,并与他们之前学过的知识进行对比和评价。
四、作业布置布置一些相关的练习题,要求学生独立完成,并检查答案。
五、课堂延伸可以引入多项式的乘法运算,并进行相关的深入讨论和练习。
注意事项:教学过程中避免直接使用与标题相同的文字,以免造成混淆和误导。
人教版八年级上册14.1整式的乘法15.1:整式的乘法教学设计
人教版八年级上册14.1整式的乘法15.1:整式的乘法教学设计一、教学目标1.知道什么是整式的乘法,会进行整式的乘法计算。
2.运用整式的乘法解决实际问题。
3.培养学生的数学思维能力和解决实际问题的能力。
二、教学内容整式的乘法。
三、教学重难点1.整式的乘法的定义,如何进行计算。
2.运用整式的乘法解决实际问题。
四、教学方法1.案例讲解法:通过讲解一些实际问题,引导学生探索使用整式的乘法来解决问题的方法。
2.组内合作法:将学生分成小组,让他们在小组内合作探讨,再共同完成课堂任务。
五、教学过程5.1 导入新课1.引入整式的乘法的概念,让学生从实际问题中感受整式的乘法的必要性。
例如:小明每天早上从家里步行5分钟到车站,然后再乘坐公交车去上学。
如果小明每天都要进行这样的行程,那么7天一周,他一周在路上所花费的时间是多少?2.帮助学生理解整式的乘法的概念,例如:2(a+b)表示2个a加2个b,(a+b)^2表示(a+b)乘以(a+b)。
3.通过乘积的运算法则,讲解整式的乘法的计算方法。
例如:(ax+by)(cx+dy)=(ac)x2+(bc+ad)xy+bdy2。
5.2 整合知识1.让学生自己设计一个问题,并用整式的乘法来解决这个问题。
2.然后让学生将自己的问题和解决方法在小组间分享,评价和改进。
5.3 拓展应用1.让学生从实际问题中感受到应用整式的乘法所带来的便捷性和实用性。
2.让学生在实际生活中应用整式的乘法来解决一些实际问题。
六、教学评价1.教师通过观察学生课堂表现、听取他们的小组讨论以及评价自己设计问题的解决方法和应用整式的乘法解决实际问题等,进行综合性评价。
2.学生进行自评和互评,从不同的角度进行评价和提升。
七、教学反思整式的乘法是初中数学概念中较难理解的部分之一,需要进行系统、全面的教学。
要让学生从实际问题中感受到掌握整式的乘法的必要性和应用价值,让学生体验到数学的实用性,并培养学生的思维能力和解决问题的能力。
人教版八年级上册14.1整式的乘法15.1:整式的乘法课程设计 (2)
人教版八年级上册14.1整式的乘法15.1:整式的乘法课程设计一、课程背景整式是初中数学中重要的内容之一,也是代数学的基础知识。
在七年级和八年级的整式课程中,学生学习了单项式和多项式的加减法,以及多项式的乘法。
在本节课中,将着重介绍整式的乘法,并让学生能熟练掌握整式的乘法方法,培养他们利用整式解决实际问题的能力。
二、教学目标1.理解整式的乘法的含义和性质。
2.能准确地应用公式计算整式的乘法。
3.能熟练地运用整式的乘法解决实际问题。
三、教学内容1.整式乘法的含义和规则。
2.利用分配律和合并同类项对整式进行乘法运算。
3.利用实例深入理解整式乘法的运用。
四、教学重点1.整式的乘法规则。
2.利用公式进行整式的乘法运算。
五、教学难点1.对于含有多个系数和指数的整式的乘法运算的巧妙运用。
2.进一步培养学生利用整式解决实际问题的能力。
六、教学方法1.合作学习法:让学生相互讨论和合作解决问题。
2.演示法:教师可以利用线性板书等形式进行演示。
3.案例分析法:让学生通过分析实例进行深入理解。
七、教学过程Step1:引入整式乘法首先,通过举例的方式,讲解多项式的乘法运算,并介绍整式乘法的含义和性质。
Step2:整式乘法的规律及应用教师介绍整式的乘法规则,如何利用分配律和合并同类项对整式进行乘法运算。
然后给学生提供一些实例来帮助他们深入理解整式的乘法运用。
Step3:拓展应用教师以生活中的实际问题为例,让学生将乘法运用到实际问题中,并提供一些思路和导引,让学生自己发现规律和解决方法。
Step4:小结和总结最后,教师设计一些小练习来让学生自己应用所学知识,巩固知识点,并通过总结让学生更好地掌握整式的乘法。
八、教学评估教师可采用课堂问答、小练习、小组讨论等方式进行教学评估,了解学生是否掌握所学知识,检查教学效果。
九、课后作业教师可布置一些习题作为作业,让学生巩固所学知识,同时鼓励他们在实际生活中更加广泛地应用整式乘法。
十、教学资源1.教材:人教版八年级上册,数学课本第十四章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的乘法(复习)》教学设计
【教学要求】
1. 掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进行计算。
2. 掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会整式的乘法运算。
3. 会由整式的乘法推导乘法公式,并能运用公式进行简单计算。
4. 理解因式分解的意义及其与整式的乘法之间的关系,
5. 会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。
教学过程:
1. 正整数幂的运算性质:
(1)同底数幂相乘:底数不变,指数相加。
即:a a a m n m n ·=+(m 、n 均为正整数)
(2)幂的乘方:底数不变,指数相乘。
即:()a a m n m n
=·(m 、n 均为正整数)
(3)积的乘方:等于各因数的乘方之积。
即:()a b a b m m m ·=(m 为正整数)
注:①用同底数幂的乘法法则,首先要看是否同底,底不同,就不能用。
只有底数相同,才能指数相加。
如:a a 23·中底数a 相同,指数2和3才能相加。
②同底数幂的乘法法则要注意指数是相加,而不是相乘,不能与幂的乘方法则中的指数相乘混淆。
③同底数幂乘法法则中,底数不一定只是一个数或一个字母,可以是一个式子,如:单项式、多项式等。
如:()()()()x y x y x y x y --=-=-+23235·,其中x y -是一个多项式。
④同底数幂乘法法则中,幂的个数可以推广到任意多个数。
如:()()()()()a b a b a b a b a b +++=+=+++23523510··
⑤要善于逆用积的乘方法则,有时可得不错结果,可使计算简便。
如:8122178122171110101010⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪=⨯⎛⎝ ⎫⎭⎪==·
⑥在计算中要注意符号的变化,如:()-a 43
与()[]-a 43
的符号有区别。
⑦在进行幂的乘方时,要分清底数、指数,然后用法则。
2. 整式的乘法:
(1)单项式与单项式相乘
单项式与单项相乘,只要将它们的系数相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
注:在进行单项式乘法时,可分别按系数各单项式中都含有的字母进行计算,有乘方的要先算乘方。
如:()
--
⎛
⎝
⎫
⎭
⎪3
1
3
23
2 x y xyz xy
··
(2)单项式与多项式相乘
单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得积相加,用式子表示如下:
注:单项式与多项式相乘的关键是转化,即运用乘法对加法的分配律将单项式乘以多项式转化为单项式乘以单项式,计算时要注意符号。
如:
() ---232
2
x x x
(3)多项式与多项式相乘
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,用式子表示如下:
注:a. 进行多项式乘法的关键是两次转化:第一次是把其中一个多项式看作一项,运用分配律将多项式乘法转化为单项式乘以多项式。
第二次是将单项式乘以多项式转化为单项式乘法。
b. 多项式乘法计算时注意不能漏项。
c. 多项式乘法计算时要注意符号,是同类项的一定要合并,最后对结果按某个指定的字母进行升(降)幂排列。
3. 乘法公式:
(1)平方差公式:()()
a b a b a b
+-=-
22
,即两数和与它们的差的积等于这两数的平
方差。
注:a. 运用平方差公式的关键是正确识别两数(或式),即看是哪两个数(或式)的和与差的积。
如:()()
---
m m
11可以写成()
[]()
[]
---+
m m
11
b. 在平方差公式()()
a b a b a b
+-=-
22
中,字母a、b可以表示具体的数(正数、负
数)、字母、单项式,也可以表示一个多项式,只要式子符合公式的结构特征,或变形后符合公式的结构特征,就可以运用公式进行计算。
如:()() a b c a b c
+--+
(2)完全平方公式:()
a b a ab b
±=±+
222
2,即两数的和(差)的平方,等于它们的
平方和加上(减去)它们乘积的2倍。
注:a. 在运用完全平方公式时要注意符号与项数,不要漏掉中间的乘积项。
b. 三项式的平方,也可以写成两项和与第三项和的完全平方。
如:()
a b c
+-
232()
[]
=+-
a b c
232()()
=+-+-
a a
b
c b c
22
22323
c. 在综合运用公式时,要分清不同的公式的结构特征和不同的计算结果。
4. 因式分解:
(1)因式分解定义:把一个多项式化为几个整式的乘积形式,就是因式分解。
(2)公因式:多项式中各项都含有公共因式。
注:找公因式方法:a. 系数部分要提出各项系数的最大公因数。
b. 字母部分要找出相同字母。
c. 指数部分要找出相同字母的最低次幂。
如:7282332x y x y -中公因式为
722x y 。
(3)提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种方法叫做提公因式法。
如:()ma mb mc m a b c ++=++
注:a. 当多项式的首项系数为负数,提公因式时要将负号提出,使括号内第一项的系数是正的,且要注意括号内其他各项的变号。
如:()-+=--55532a ab a a b 。
b. 当公因式是多项式时,引入“整体”概念,只要把这个多项式看成一个“整体”或一个字母,按照提字母公因式一样提出即可。
如:()()()()2323a b c b c b c a +-+=+-。
c. 有时需要对多项式的项进行适当的变形之后才能提公因式,这时要注意各项的符号变化。
如:()()()()()()62262226x x x x x x x x -+-=---=--
(4)公式法:
平方差公式:()()a b a b a b 22-=+-
完全平方公式:()a ab b a b 22
2±+=±2 注:a. 用公式法因式分解时,关键是掌握公式的结构特征。
b. 两种方法的综合运用是难点:一般情况下是先考虑是否可提公因式,然后,再运用公式法,要求分解时要分解到不能分解为止。
分解之后,有时要合并同类项,即“一提,二套,三化简”。
如:()()()282422232x x x x x x x -=-=-+。
另外补充两种因式分解方法:
(1)十字相乘法:()()()x a b x ab x a x b 2+++=++
(2)分组分解法:四项式:二二分组或三一分组,分组后能提公因式继续分解,或分组后用公式,最终达到将四项式最后写成几个整式积的形式。
如:x x 256++ ()=+++⨯x x 23232 ()()=++x x 32。