华师大版九年级数学第一学期期中检测题(含答案)
华师大版数学九年级上册期中考试试卷带答案详解
华师大版数学九年级上册期中考试试题一、选择题。
(每小题只有一个正确答案)1x 的取值范围是( )A .5x ≥B .5x >C .5x <D .5x ≤2.一元二次方程2x 2﹣3x +1=0化为(x +a )2=b 的形式,正确的是( )A .23x-=162⎛⎫ ⎪⎝⎭B .2312x-=416⎛⎫ ⎪⎝⎭ C .231x-=416⎛⎫ ⎪⎝⎭ D .以上都不对 3.在ABC 与'A B ’'C 中,有下列条件,如果从中任取两个条件组成一组,那么能判断'''ABC A B C ∽的共有( )组. ①AB BC A B B C =''''; ②BC AC B C A C =''''; ③'A A ∠=∠;④'C C ∠=∠. A .1B .2C .3D .4 4.点()1,3N -可以看作由()1,1?M --()得到. A .向上平移4个单位 B .向左平移4个单位 C .向下平移4个单位 D .向右平移4个单位 5.用公式法解231x x -+=时,先求出a 、b 、c 的值,则a 、b 、c 依次为( ) A .1-,3,1- B .1,3-,1- C .1-,3-,1- D .1-,3,1 6.如图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为D ,AD=8,DB=2,则CD 的长为( )A .4B .16C .D .7.关于x 的一元二次方程()2a 1x 2x 30--+=有实数根,则整数a 的最大值是( )A .2B .1C .0D .-18.如图所示:两根竖直的电线杆AB 长为6,CD 长为3,AD 交于BC 于点E 点,则E 到地面的距离EF 的长是( )A .2B .2.2C .2.4D .2.59.如果a ,b 是一元二次方程2240x x --=的两个根,那么322a b a b -的值为( ) A .8- B .8 C .16- D .1610.如图,EF 是ABC 的中位线,O 是EF 上一点,且满足2OE OF =.则ABC 的面积与AOC 的面积之比为( )A .2B .32C .53D .3二、填空题11与x 的值是________. 12.在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局胜者记2分,负者记0分,如果平局,两个选手各记1分.某位同学统计了比赛中全部选手的得分总和为110分,则这次比赛中共有________名选手参赛.13.梯形的下底长为8cm ,中位线长为6cm ,则上底长为________cm .14=________.15.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________. 16.ABC 中,A 的坐标是()3,6,以原点为位似中心,将三角形缩小到原来12,则对应点的'A 的坐标是________.17.当1a =,1b =时,11a b-=________.18.若12a c e b d f ===,则a c e b d f++=++________. 19.已知a 、b 、d 、c 是成比例线段,a=4cm ,b=6cm ,d=9cm ,则c=_____.20.在平面直角坐标系中,点()4,2A ,关于x 轴的对称点坐标是________,关于原点对称的点的坐标为________.三、解答题21.如图ABC 的顶点坐标分别为()1,1A ,()2,3B ,()3,0C .(1)以点O 为位似中心画DEF ,使它与ABC 位似,且相似比为2.(2)在()1的条件下,若(),M a b 为ABC 边上的任意一点,则DEF 的边上与点M 对应的点'M 的坐标为________.22.用适当的方法解下列方程:(1)2420x x +-=; (2)()()323x x x -=-.23.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.在正方形ABCD 中,已知13AF AB =,14CG CB =, 求:(1)::EF FG GH ,(2):AE CH .25.如图,在梯形ABCD 中,//AB CD ,15AB =,30CD =,点E ,F 分别为AD ,BC 上一点,且//EF AB .若梯形AEFB ∽梯形EDCF ,求线段EF 的长.26.Rt ABC 中,90A ∠=,8AB cm =,6AC cm =,P 、Q 分别为AC ,AB 上的两动点,P 从点C 开始以1/cm s 的速度向点A 运动,Q 从点A 开始以2/cm s 的速度向点B 运动,当一点到达终点时,P 、Q 两点就同时停止运动.设运动时间为ts .(1)用t 的代数式分别表示AQ 和AP 的长;(2)设APQ 的面积为S ,①求APQ 的面积S 与t 的关系式;②当2t s =时,APQ 的面积S 是多少?(3)当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似?答案与详解1.A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∵∴x −5≥0,解得x ≥5.故选A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.2.C【分析】先进行移项,再把二次项系数化为1,配方即可.【详解】移项得2x ²-3x =-1, 二次项系数化为1得23122x x -=-, 配方得23919216216x x -+=-+, 即231()416x -=, 故选:C .【点睛】本题考查了配方法解一元二次方程,运用配方法时,方程左右两边同时加上一次项系数一半的平方是解题的关键.3.C【解析】【分析】根据相似三角形的判定定理(①有两角相等的两个三角形相似,②有两边的比相等,并且它们的夹角也相等的两个三角形相似,③有三组对应边的比相等的两三角形相似)得出即可.【详解】能判断△ABC ∽△A ′B ′C ′的有①②或②④或③④,共3组,故选:C.【点睛】考查相似三角形的判定,掌握相似三角形的判定定理是解题的关键.4.A【解析】【分析】根据向上平移,纵坐标加进行计算即可得解.【详解】由M (−1,−1)得到N (−1,3),−1+4=3,所以,向上平移4个单位.故选:A.【点睛】考查点的平移,掌握点的平移规律是解题的关键.5.A【分析】把方程变为一般式,即可确定a ,b ,c .注意a ,b ,c 可同时乘以一个不为零的数.【详解】把方程231x x -+=化为一元二次方程的一般形式为2310x x -+=,∴a =1,b =−3,c =1.但选项里没有这组值,方程两边同乘以−1,得:2310x x -+-=,此时a =−1,b =3,c =−1.故选:A.【点睛】考查公式法解一元二次方程,掌握一元二次方程的一般形式是解题的关键.6.A【详解】∵∠C=90°,CD ⊥AB ,∴∠ADC=∠CDB=90°, ∠CAD+∠CBD=90°,∴∠CAD+∠ACD=90°,∴∠ACD=∠CBD ,∴△ADC ∽△CDB , ∴=CD BD AD CD, ∵AD=8,DB=2∴CD=4.故选A7.C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x 的一元二次方程()2a 1x 2x 30--+=有实数根, ∴()a 1a 10{{4412a 10a 3≠-≠⇒∆=--≥≤. 即a 的取值范围是4a 3≤且a 1≠. ∴整数a 的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.8.A【解析】【分析】 根据相似三角形对应边成比例可得DF EF BF EF BD AB BD CD==,, 然后代入数据两式相加其解即可.【详解】∵两根电线杆AB 、CD 都竖直,EF 垂直于地面,∴△ABD ∽△EFD ,△BCD ∽△BEF , ∴DF EF BF EF BD AB BD CD==,, ∴DF BF EF EF BD BD AB CD+=+, 即163EF EF +=, 解得EF =2.故选:A.【点睛】考查相似三角形的应用,掌握相似三角形的判定与性质是解题的关键.9.C【解析】【分析】先根据根与系数的关系得到ab=-4,再把原式表示得到原式=a 2•ab -2a•ab ,利用整体代入的方法可化简得到原式=-4a 2+8a ,接着根据一元二次方程解的定义得到a 2=2a+4,然后再次利用整体代入的方法计算即可.【详解】根据题意,ab =−4,所以原式()222242448a ab a ab a a a a =⋅-⋅=--⋅-=-+, ∵a 是一元二次方程2240x x --=的根,∴a 2−2a −4=0,即a 2=2a +4,∴原式=−4(2a +4)+8a =−8a −16+8a =−16.故选:C.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a+=-= 是解决本题的关键.10.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC,12EF BC=,再求出OE与BC的关系,然后利用三角形的面积公式解答即可.【详解】∵EF是△ABC的中位线,∴EF∥BC,12EF BC=,∵OE=2OF,∴1212123OE BC BC =⨯=+,设点A到BC的距离为h,则11111,22236 ABC AOCS BC h S OE h BC h BC h =⋅=⋅=⨯⋅=⋅,∴△ABC的面积与△AOC的面积之比=3.故选:D.【点睛】考查三角形中位线定理, 三角形的面积,三角形的中位线平行于第三边并且等于第三边的一半.11.2-或5【解析】【分析】直接利用二次根式的性质得出x2-4x=10-x,进而求出即可.【详解】∵与∴x2−4x=10−x,解得:x1=−2,x2=5,故答案为:−2或5.【点睛】考查最简二次根式的定义,掌握同类同类二次根式的定义是解题的关键.12.11【解析】【分析】每局的得分均为2分,2人的比赛只有一局;局数=12×选手数×(选手数-1);等量关系为:2×局数=所得分数.【详解】设这次比赛中共有x 名选手参加,则,12(1)1102x x ⨯⨯-=, 解得x =11,故答案是:11.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.13.4【解析】【分析】根据梯形的中位线定理得:下底=中位线长的2倍-上底.【详解】根据梯形的中位线定理得,上底=2×6-8=4cm .故答案为:4.【点睛】考查梯形中位线定理,掌握梯形的中位线定理是解题的关键.14.【解析】【分析】由于两个分母互为有理化因式,故先将分式通分,然后再计算.【详解】== 故答案为:【点睛】考查二次根式的加减,掌握分母有理化的方法是解题的关键.15.0a =或316a ≥-【分析】,∴y≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解)当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为0a =或316a ≥-【点睛】考查无理方程,难度一般,关键是掌握用换元法求解无理方程.16.3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k 求解.【详解】根据题意得对应点的A ′的坐标为(12×3,1 2×6)或(−12×3,−1 2×6), 即A ′的坐标为3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 故答案为:3,32⎛⎫⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【点睛】考查位似变换,位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .17.-2【解析】【分析】由a 与b 求出ab 与b-a 的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【详解】∵1a =,1b =∴1)12ab b a ==-=-,, 则原式 2.b aab -==-故答案为:−2.【点睛】考查二次根式的化简求值,掌握二次根式的运算是解题的关键.18.12【解析】【分析】 由12aceb d f ===,可得b=2a ,d=2c ,f=2e ,代入可求得a c eb d f ++++的值.【详解】 ∵12ace b df ===,∴b =2a ,d =2c ,f =2e , ∴a c e b d f ++++1.2222()2ac e a c e a c e a c e ++++===++++ 故答案为:1.2【点睛】考查比例的性质,分式的化简求值,根据12a c eb d f ===,可得b=2a ,d=2c ,f=2e ,代入所求代数式是解题的关键.19.13.5cm【解析】解:∵a 、b 、d 、c 是成比例线段,∴a :b =d :c .∵a =4cm ,b =6cm ,d =9cm ,∴4:6=9:c ,∴c =13.5(cm ).故答案为:13.5cm .20.()4,2- ()4,2--【解析】【分析】根据关于x 轴对称的点的规律,关于原点对称的点的规律,可得答案.【详解】在平面直角坐标系中,点A (4,2),关于x 轴的对称点坐标是(4,−2),关于原点对称的点的坐标为(−4,−2),故答案为:(4,−2),(−4,−2).【点睛】考查关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标,掌握关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标规律是解题的关键.21.()2,2a b 或()2,2a b --【解析】【分析】(1)把点A 、B 、C 的横、纵坐标都乘以2可得到对应点D 、E 、F 的坐标,再描点可得△DEF ;把点A 、B 、C 的横、纵坐标都乘以-2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′; (2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【详解】(1)如图,△DEF 和△D′E′F′为所作;(2)点M 对应的点M′的坐标为(2a ,2b )或(-2a ,-2b ).故答案为(2a ,2b )或(-2a ,-2b ).【点睛】考查位似变换,找到对应点是解题的关键.22.(1)12x =-22x =-(2)13x =,22x =-.【解析】【分析】(1)利用配方法解方程;(2)先变形得到x (x-3)+2(x-3)=0,然后利用因式分解法解方程.【详解】(1)242x x +=,2446x x ++=,2(2)6x +=,2x +=所以12x =-22x =-(2)()()3230x x x -+-=,()()320x x -+=,30x -=或20x +=,所以13x =,22x =-.【点睛】考查解一元二次方程,掌握配方法,因式分解法是解题的关键.23.(1)12,32-;(2)证明见解析. 【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.()1 ::3:6:2EF FG GH =;()2 :27:16AE CH =.【解析】【分析】(1)由正方形的性质得AD ∥BC ,CD ∥AB ,再根据平行线分线段成比例定理,由AE ∥BG 得到EF AF FG BF =,而13AF AB =,则12EF FG =,同理可得3FG GH=,然后利用比例性质得到EF :FG :GH=3:6:2; (2)根据平行线分线段成比例定理和(1)中的结论,由AF ∥DH 得到38AE EF AD FH ==,即38AE AD =,同理可得29CH GH CD EG ==,即29CH CD =,根据正方形的性质得AD=CD ,所以AE :CH=27:16.【详解】()1∵四边形ABCD 为正方形,∴//AD BC ,//CD AB ,∵//AE BG , ∴EFAFFG BF =,而13AF AB =, ∴12AFBF =, ∴12EFFG =,∵//CH BF , ∴FGBGGH CG =, 而14CGBG =, ∴3BGCG =, ∴3FGGH =, 即36EFFG =,62FGGH =,∴::3:6:2EF FG GH =;()2∵//AF DH , ∴38AEEF AD FH ==,即38AE AD =,∵//CG DE , ∴29CHGHCD EG ==,即29CH CD =,而AD CD =,∴:27:16AE CH =.【点睛】考查平行线分线段成比例,三条平行线被两条直线所截,所得的对应线段成比例.25..【解析】【分析】根据相似多边形对应边成比例列出关系式,代入已知数据计算即可.【详解】∵AEFB ∽梯形EDCF , ∴AB EF EF CD=, ∴2450EF AB CD =⨯=,解得EF =【点睛】考查相似多边形的性质,相似多边形的对应边成比例.26.()1?2AQ t =,6AP t =-;()2 ①26S t t =-,②28cm ;()3当t 为2.4秒或1811时,以点A 、P 、Q 为顶点的三角形与ABC 相似.【解析】【分析】(1)用t 的代数式分别表示AQ=2t ,AP=6-t ;(2)设△APQ 的面积为S ,①根据三角形的面积公式可知()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即S=6t-t 2; ②当t=2s 时,代入三角形的面积公式即可求值.(3)①当当AQ AP AB AC =时2666t t -=,则有t=2.4(s ); ②当AQ AP AC AB =时2668t t -=,则有()1811t s =; 【详解】()1用t 的代数式分别表示2AQ t =,6AP t =-;()2设APQ 的面积为S ,①APQ 的面积S 与t 的关系式为:()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即26S t t =-,②当2t s =时,APQ 的面积()()2112262822S AQ AP cm ⎡⎤=⨯⋅=⨯⨯⨯-=⎣⎦; ()3当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似,①当AQ AP AB AC =时2666t t -=,∴()2.4t s =; ②当AQ AP AC AB =时2668t t -=,∴()1811t s =; 综上所述,当t 为2.4秒或1811时, 以点A 、P 、Q 为顶点的三角形与ABC 相似.【点睛】 考查相似三角形的性质, 列代数式, 根据实际问题列二次函数关系式,掌握相似三角形的性质是解题的关键.。
华师大版九年级上册数学期中考试试卷附答案
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列选项中,使根式有意义的a 的取值范围为a <1的是( )A .a 1-B .1a -C .()21a -D .11a -2.若tan(a+10°a 的度数是 ( )A .20°B .30°C .35°D .50°3.在化简甲、乙、丙三位同学化简的方法分别是甲:原式233633==;乙:原式33===( ) A .甲 B .乙 C .丙 D .都正确4.用配方法解方程x 2﹣23x ﹣1=0时,应将其变形为( ) A .(x ﹣13)2=89 B .(x+13)2=109 C .(x ﹣23)2=0 D .(x ﹣13)2=109 5.如图,已知123∠=∠=∠,则下列表达式正确的是( )A .AB DE AD BC= B .AC AD AE AB = C .AB AD AC AE = D .BC AE DE AC = 6.如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为( )A .5mB .4mC .6mD .8m7.如图,A 、B 的坐标分别为(2,0)、(0,1).若将线段AB 平移至11A B ,1A 、1B 的坐标分别(3,)b 、(,2)a ,则+a b 的值为( )A .2B .3C .4D .58.如果代数式225x x -+的值等于7,则代数式2361x x --的值为( )A .5B .6C .7D .89.某商务酒店客房有50间供客户居住.当每间房 每天定价为180元时,酒店会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,酒店当天的利润为10890元?设房价定为x 元,根据题意,所列方程是( )A .()18020501089010x x ⎛⎫+--= ⎪⎝⎭ B .()1805050201089010x x ⎛⎫+--⨯= ⎪⎝⎭ C .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ D .()18020501089010x x -⎛⎫--= ⎪⎝⎭10.如图,在四边形ABCD 中,90A ∠=︒,AB =3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .3B .4C .4.5D .5二、填空题11__.12.计算:÷=__.13.如图,A 、B 、C 、D 为矩形的四个顶点,16AB cm =,8AD cm =,动点P ,Q 分别从点A 、C 同时出发,点P 以3/cm s 的速度向B 移动,一直到达B 为止;点Q 以2/cm s 的速度向D 移动.当P 、Q 两点从出发开始到__秒时,点P 和点Q 的距离是10cm .14.如图,ABC ∆是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连结CE ,则tan ACE ∠的值为__.三、解答题15.计算 sin 230°+cos 245°·tan45°;16.在ABC ∆中,90C ∠=︒,若BC ,3AC =,求A ∠和AB 的值.17.已知2240x x c -+=的一个根,求方程的另一个根及c 的值. 18.如图,大楼AB 高16m ,远处有一塔CD ,某人在楼底B 处测得塔顶C 的仰角为38.5°,在楼顶A 处测得塔顶的仰角为22°,求塔高CD 的高及大楼与塔之间的距离BC 的长. (参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).19.如图,在ABC ∆中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么何时QBP ∆与ABC ∆相似?20.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕,且tan ∠EFC=34. (1)△AFB 与△FEC 有什么关系?试证明你的结论.(2)求矩形ABCD 的周长.21.一个小风筝与一个大风等形状完全相同,它们的形状如图所示,其中对角线AC ⊥BD .已知它们的对应边之比为1:3,小风筝两条对角线的长分别为12cm 和14cm .(1)小风筝的面积是多少?(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需用多长的材料?(不记损耗)(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?22.如图,在△ABC 中,BC =3,D 为AC 延长线上一点,AC =3CD ,∠CBD =∠A ,过D 作DH ∥AB ,交BC 的延长线于点H .(1)求证:△HCD ∽△HDB .(2)求DH 长度.23.在矩形ABCD 中,E 为DC 边上一点,把ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ~;(2)若AB =AD =4,求EC 的长.24.如图,一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合)过点P 分别作OA 和OB 的垂线,垂足为C ,D .(1)关于矩形OCPD 面积的探究:①点P 在何处时,矩形OCPD 的面积为1?写出计算过程;②是否存在一点P ,能使矩形OCPD 的面积为32?说说你的理由. (2)设点P 的坐标是(P x ,23)(0)x x -+>,图中阴影部分的面积为S ,尝试完成下列问题: ①建立x 与S 的关系式,并类比一次函数猜想S 是x 的什么函数,能否对此类函数下一个描述性的定义,其中包含它的一般形式;②我们知道代数式2(1)9x ++有最小值9,试问当P 在何处时S 有最小值,请把你的理由.参考答案1.D【详解】解:A .当a ≥1时,根式有意义.B .当a ≤1时,根式有意义.C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1.故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.2.D【分析】根据特殊角的三角形函数值即可求解.【详解】∵tan60︒=tan(a+10°∴a+10°=60°,即a=50°.故选D.【点睛】本题考查了特殊角的三角函数值.牢记tan60︒=.3.D【分析】根据二次根式的性质化简,方法过程可以略有不同,本题甲、乙、丙三位同学化简的方法和结果都是正确的.【详解】甲:原式233633==,正确;乙:原式33==丙:原式==故选:D.【点睛】本题考查二次根式的性质和化简,熟练掌握性质,灵活运用化简方法是关键.4.D【详解】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣23x﹣1=0,∴x2﹣23x=1,∴x2﹣23x+19=1+19,∴(x﹣13)2=109.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.C【分析】题目中给出的条件主要是角度相等,观察图形,寻找其他等角,根据“有两个角对应相等的三角形相似”,找出图中所有相似三角形,对答案逐一判断.【详解】12∠=∠,12DAC DAC∴+=+∠∠∠∠,即BAC DAE∠=∠,23∠=∠,AFE DFC∠=∠,C E∴∠=∠,BAC DAE∠=∠,C E∠=∠,BAC DAE∴∆∆∽,∴AB BCAD DE=,A选项错误;BAC DAE∆∆∽,∴AC ABAE AD=,B选项错误;BAC DAE∆∆∽,∴AB ADAC AE=,C选项正确;BAC DAE∆∆∽,∴BC ACDE AE=,D选项错误;故选:C.【点睛】本题主要考查相似三角形的判定和性质,认真观察图形,找到角的相等关系,运用判定定理找出所有相似三角形是关键.6.B【分析】根据题意可得△ABD ∽△ACE ,根据相似三角形的性质可求得AE=6m ,再由DE=AE-AD 即可求得DE 的长.【详解】根据题意,BD ⊥AE ,CE ⊥AE ,∴△ABD ∽△ACE ,又AD=2m ,BD=3m ,CE=9m . ∴BD AD CE AE =,即329AE=, ∴AE=6m ,∴DE=AE-AD=4m .故选B.【点睛】本题考查了相似三角形的判定及性质,解决本题要把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例解答即可.7.A【分析】根据点在平面直角坐标系中左右上下平移与坐标变化的关系解答,()2,0A 变为()13,A b ,说明线段右移一个单位,()0,1B 变为()1,2B a ,说明线段上移一个单位,由此判断,a b 的值即可.【详解】观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段11A B ,1a ,1b =,2a b ∴+=,故选:A .【点睛】本题主要考查平面直角坐标系中点的平移与坐标的变化之间的关系,结合图形,熟练掌握这种关系是解答关键.8.A【分析】仔细观察已知代数式与要求的代数式,可发现它们的二次项与一次项存在倍数关系,据此可用整体代入法解决问题.【详解】代数式225x x -+的值等于7,222x x ,2361x x ∴--23(2)1x x =--61=-5=.故选:A .【点睛】本题考查运用整体带入法求代数式的值,找到已知条件与要求的代数式之间的数量关系是关键.9.D【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x 元,根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭ 故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.10.A【分析】根据三角形中位线定理可知EF =12DN ,求出DN 的最大值即可. 【详解】解:如图,连结DN .∵DE =EM ,FN =FM ,∴EF =12DN ,当点N 与点B 重合时,DN 的值最大即EF最大.在Rt△ABD中,∵∠A=90°,AD=3,AB∴BD,∴EF的最大值=12BD=3.故选A.点睛:本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.11【分析】.【详解】=【点睛】本题考查了二次根式的化简与同类二次根式的意义,理解掌握该知识点是解答关键. 12.3.【分析】先将括号中两数化为最简二次根式,再根据乘法分配律分别除以. 【详解】原式=÷=3=.故答案为:3.【点睛】本题主要考查二次根式的化简与计算,熟练掌握化简方法,运用运算律解答是关键. 13.2或225. 【分析】本题可作PE CD ⊥,设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,再表示出AP ,DQ ,EQ 的长度,在Rt PEQ 中根据勾股定理列出方程式,解之即可,需注意有两个答案.【详解】设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,此时3AP xcm =,(162)DQ x cm =-,()1623EQ x x cm =--在Rt PEQ 中有:222(1623)810x x --+=,解得:12x =,2225x =. 答:当P 、Q 两点从出发开始到2秒或225秒时,点P 和点Q 的距离是10cm . 故答案为:2或225. 【点睛】 本题是综合了矩形与勾股定理等知识的动点问题,除了掌握知识点之外,动点问题一定要将整个运动过程思考清楚,在运动过程中寻找符合要求的节点和此时的数量关系.14.3.【分析】想求tan ACE ∠,需构造与之相关的直角三角形,可作EF AC ⊥于F ,设BE x =,则BD ,通过等腰直角三角形各边的数量关系用x 表示出EF ,CF 即可解答.【详解】作EF AC ⊥于F ,如图,ABC ∆是等腰三角形,90ACB ∠=︒,45A B ∠,AC BC ==, EF AC ⊥,DE AB ⊥,AEF ∴∆和BED ∆都是等腰直角三角形,设BE x =,则BD =,点D 为BC 的中点,BC AC ∴==,4AB x ∴==,43AE x x x ∴=-=,AF EF AE x ∴===,CF AC AF ∴=-=-=, 在Rt EFC ∆中,tan 3EF ECF CF ∠===. 故答案为3.【点睛】本题结合三角函数考查了等腰直角三角形的性质,关键还是根据等腰直角三角形的性质求出与三角函数相关的边长.15.34【分析】此题主要考查特殊角三角函数值的应用,代入值就可以求得结果.【详解】解:原式=(12)2+(2)2 1=14+12=34考点:特殊角三角函数值16.30A ∠=︒,AB =【分析】在直角三角形中根据勾股定理和三角函数关系解答即可.【详解】如图,在ABC ∆中,90C ∠=︒,BC ,3AC =,则AB ==tan BC A AC ∠== 30A ∴∠=︒.【点睛】本题考查的是根据勾股定理和三角函数的解直角三角形,熟练掌握三角函数与勾股定理是解答关键.17.1x 2=1c =【解析】试题分析:设另一根为x 1,由根与系数的关系得,两根和为4,求得x 1,,再根据两根积求得常数项c.试题解析:设另一根为x 1,由根与系数的关系得:12x 4∴=1x 2∴=∴(2c =∴1c =考点:根与系数的关系.18.40米【解析】【分析】过点A 作AE ⊥CD 于点E ,由题意可知:22,CAE ∠= 38.5CBD ∠=,ED =AB =16米,设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x ,分别在Rt △BCD 中和Rt △ACE 中,用x 表示出CD 和CE ,利用CD −CE =DE ,得到有关x 的方程求得x 的值即可.【详解】解:过点A 作AE ⊥CD 于点E ,由题意可知:22,38.5CAE CBD ,∠=∠= ED =AB =16米设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x (不设未知数x 也可以)∵在Rt △BCD 中,tan ,CD CBD BD∠= ∴ t an?38.50.8,CD BD x =⋅≈∵在Rt △ACE 中,tan ,CE CAE AE∠=∴ t an220.4,CE AE x =⋅≈∵CD −CE =DE ,∴0.8x −0.4x =16 ,∴x =40,即BD =40(米) ,CD =0.8×40=32(米),答:塔高CD 是32米,大楼与塔之间的距离BD 的长为40米.19.经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【分析】观察图形可得,QBP ∆与ABC ∆已经有公共角B ,根据题意需要考虑B 的两条边对应成比例,此时会出现两种情况,BP BQ BA BC =和BP BQ BC BA=,可设经过t 秒时QBC ∆与ABC ∆相似,用时间t 分别表示出相关线段的长度,代入比例式解答即可.【详解】设经过t 秒时,QBC ∆与ABC ∆相似,则2AP t =,82BP t =-,4BQ t =,PBQ ABC ∠=∠,∴当BP BQ BA BC=时,BPQ BAC ∆∆∽,即824816t t -=,解得2()t s =; 当BP BQ BC BA=时,BPQ BCA ∆∆∽,即824168t t -=,解得0.8()t s =; 即经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【点睛】本题是结合了相似三角形的判定的动点问题,在运动过程中寻找符合要求的节点,转化为判定三角形的相似是解答关键.20.(1)△AFB ∽△FEC (2)36cm【分析】(1)由四边形BCD 是矩形,可得∠AFE=∠D=90°,又由同角的余角相等,可得∠BAF=∠EFC ,即可证得:△AFB ∽△FEC ;(2)由Rt △FEC 中,tan ∠EFC=34,可得34CE CF =,则可设CE=3k ,则CF=4k ,由勾股定理得EF=DE=5k .继而求得BF 与BC ,则可求得k 的值,由矩形ABCD 的周长=2(AB+BC )求得结果.【详解】解:(1)△AFB ∽△FEC .证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠BAF+∠AFB=90°,由折叠的性质可得:∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△AFB ∽△FEC ;(2)∵tan ∠EFC=34, ∴在Rt △EFC 中,设EC=3xcm ,FC=4xcm ,5(cm)EF x ∴==,由折叠的性质可得:DE=EF=5xcm ,∴AB=CD=DE+CE=8x (cm ),∵∠BAF=∠EFC ,3tan 4BF BAF AB ∴∠==, ∴BF=6x (cm ),10(cm)AF x ∴==,(cm)AE ∴==, 5AE =,∴x=1,∴AD=BC=AF=10x=10(cm ),AB=CD=8x=8(cm ),∴矩形ABCD 的周长为:10+10+8+8=36(cm ).21.(1)84(cm )2;(2) 78cm;(3) 756(cm )2【分析】(1)根据三角形的面积公式列式计算即可;(2)根据相似三角形的性质得到A′C′=3AC=42cm ,同理B′D′=3BD=36cm ,于是得到结论; (3)根据矩形和三角形的面积公式即可得到结论.【详解】解:(1)∵AC ⊥BD ,∴小风筝的面积S=12AC•BD=12×12×14=84(cm)2;(2)∵小风筝与大风筝形状完全相同,∴假设大风筝的四个顶点为A′,B′,C′,D′,∴△ABCD∽△A′B′C′D′,∵它们的对应边之比为1:3,∴A′C′=3AC=42cm,同理B′D′=3BD=36cm,∴至少需用42+36=78cm的材料;(3)从四个角裁剪下来废弃不用的彩色纸的面积=矩形的面积﹣大风筝的面积=42×36﹣9×84=756(cm)2.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.22.(1)见解析;(2)DH的长度为2.【分析】(1)根据两个角对应相等即可证明△HCD∽△HDB;(2)根据DH∥AB,AC=3CD,对应线段成比例可得CH=1,再结合(1)△HCD∽△HDB,对应边成比例即可求出DH的长度.【详解】(1)证明:∵DH∥AB,∴∠A=∠HDC,∵∠CBD=∠A,∴∠HDC=∠CBD,又∠H=∠H,∴△HCD∽△HDB;(2)∵DH∥AB,∴CD CH AC BC=,∵AC=3CD,∴133CH =,∴CH=1,∴BH=BC+CH=3+1=4,由(1)知△HCD ∽△HDB , ∴DH CH BH DH=, ∴DH 2=4×1=4,∴DH=2(负值舍去).答:DH 的长度为2.【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,解决本题的关键是掌握相似三角形的判定与性质.23.(1)证明见解析;(2 【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩, ∴ABF FCE ~;(2)设EC x =,由翻折的性质得:4AF AD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~, ∴CF ECAB BF =2x =,解得x =即EC =. 【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)①当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1;②不存在一点P ,能使矩形OCPD 的面积为32;理由见解析;(2)①29234S x x =-+,它是二次函数,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数;②当3(4P ,3)2时,S 有最小值. 【分析】(1)①可设(P x ,23)(0)x x -+>,则矩形OCPD 的面积可表示为(23)x x -+,令其等于1,解方程即可. ②令矩形OCPD 的面积表达式(23)x x -+等于32,解方程看是否有解即可. (2)①观察图形可知,阴影部分面积等于AOB 的面积减去矩形OCPD 的面积,代入数值计算整理为函数的一般形式即可. ②把第①问里的二次函数整理变形为顶点式,根据二次函数的性质求最值即可.【详解】(1)点P 在线段AB 上,∴设(P x ,23)(0)x x -+>,①由题意得,(23)1x x -+=,解得:11x =,212x =,21 231x ∴-+=或1232x -+=, 综上所述,当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1; ②由题意得,3(23)2x x -+=, 整理得,24630x x -+=,△36480=-<,此方程无实数根,∴不存在一点P ,能使矩形OCPD 的面积为32; (2)①一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,3(2A ∴,0),(0,3)B , ()213932323224AOB OCPD S S S x x x x ∆∴=-=⨯⨯--+=-+矩形, 它是二次函数,类比得到一般的,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数; ②22939232()448S x x x =-+=-+, ∴当34x =时,S 有最小值, ∴当3(4P ,3)2时,S 有最小值.【点睛】本题结合平面直角坐标系中由一次函数形成的图形的面积问题考查了二次函数及其性质,理解题意,熟练掌握函数及其性质是解答关键.。
华师大版九年级上册数学期中测试题带答案
期中检试题得分________卷后分________评价________ 一、选择题(每小题3分,共30分)1.函数y=x+1x-2,自变量x的取值范围是(C)A.x≥-1 B.x>-1且x≠2C.x≥-1且x≠2 D.x≠22.下列各组二次根式中,属于同类二次根式的是(B)A.12与72B.63与28C.4x3与22x D.18与2 33.已知a<0,化简二次根式-a3b 的正确的结果是(A)A.-a-ab B.-a ab C.a ab D.a-ab4.下列运算正确的是(A)A.(-a)2=-a(a≤0) B.(-5)2·3=-53C.(- a )2=-a D.(2-3)2=2-35.解方程2(5x-1)2=3(5x-1)最适当的方法是(D)A.直接开方法B.配方法C.公式法D.因式分解法6.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是(C)A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解7.能判定△ABC与△A′B′C′相似的条件是(C)A.ABA′B′=ACA′C′B.ABAC=A′B′A′C′,且∠A=∠CC.ABA′B′=BCA′C′,且∠B=∠A′ D.ABA′B′=ACA′C′,且∠B=∠B′8.(安阳二模)《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为(C)A.82+x2=(x-3)2B.82+(x+3)2=x2C.82+(x-3)2=x2D.x2+(x-3)2=829.如图,在平行四边形ABCD中,点E在AD上,连结CE并延长与BA的延长线交于点F,若AE=2ED,CD=3 cm,则AF的长为(B)A.5 cm B.6 cm C.7 cm D.8 cm第9题图第10题图10.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发沿AB 运动到B点,动点E从C点沿CA运动到A点,点D运动的速度为1 cm/s,点E运动的速度为2 cm/s,如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是(A)A.3 s或4.8 s B.3 s C.4.5 s D.4.5 s或4.8 s二、填空题(每小题3分,共15分)11.将方程x2+4x-3=0进行配方,那么配方后的方程是__(x+2)2=7__.12.已知实数a在数轴上的位置如图所示,化简|a-1|+(a-2)2=__1__.第12题图第14题图第15题图13.(商南县月考)已知α,β是方程x 2-2x -4=0的两实根,则α3+8β+6的值为__30__. 14.如图,O 为矩形ABCD 的中心,M 为BC 边上一点,N 为DC 边上一点,ON ⊥OM ,若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 的函数关系式为__y =23x __.15.(河南模拟)边长为2的正方形ABCD 中,E 是AB 的中点,P 在射线DC 上从D 出发以每秒1个单位长度的速度运动,过P 作PF ⊥DE ,当运动时间为__1或52 __秒时,以点P ,F ,E 为顶点的三角形与△AED 相似.三、解答题(共75分) 16.(8分)计算: (1)125 -5145 +14 3.2 -30.2 ; (2)18 -12 ÷2-1+12+1-(2 -1)0. 解:(1)6415 5 解:(2)42 -317.(9分)解方程:(1)(6x -1)2=25; (2)4x 2-1=12x ;解:(1)x 1=1,x 2=-23 解:(2)x 1=32 +102 ,x 2=32 -102(3)x (x -7)=8(7-x ). 解:(3)x 1=7,x 2=-818.(9分)先化简,再求值:a 2-b 2a ÷(2ab -b 2a -a ),其中a =1+2 ,b =1-2 .解:原式=-a +b a -b ,当a =1+2 ,b =1-2 时,原式=-2219.(9分)如图,已知在△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且满足AB 2=DB ·CE .求证:△ADB ∽△EAC .证明:∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABD =∠ACE ,∵AB 2=DB ·CE ,∴ABCE=DB AB ,∴AB CE =DBAC,∴△ADB ∽△EAC20.(9分)已知关于x的一元二次方程x2+2(m+1)x+m2-1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足(x1-x2)2=16-x1x2,求实数m的值.解:(1)由题意,得Δ=4(m+1)2-4(m2-1)≥0,则m≥-1(2)x1+x2=-2(m+1),x1·x2=m2-1,(x1-x2)2=16-x1x2,(x1+x2)2-4x1x2=16-x1x2,∴(x1+x2)2-3x1x2-16=0,则4(m+1)2-3(m2-1)-16=0,m2+8m-9=0,解得m=-9或m=1,又∵m≥-1,∴m=121.(10分)将如图方格中的△ABC做下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴正方向平移3个单位长度;(2)关于x轴对称;(3)以点C为位似中心,将△ABC放大2倍;(4)以点C为中心,将△ABC逆时针旋转180°.解:画图略(1)A1(0,2),B1(1,5),C1(2,4)(2)A2(0,1),B2(1,-2),C2(2,-1)(3)A3(-2,-3),B3(0,3),C3(2,1)(4)A4(4,3),B4(3,0),C4(2,1)22.(10分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简):(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?解:(1)80-x200+10x800-200-(200+10x)(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9 000.解得x1=x2=10.当x=10时,80-x=70>50.符合题意.答:第二个月的单价应是70元23.(11分)如图,正方形ABCD的边长为1,AB边上有一动点P,连结PD,线段PD 绕点P顺时针旋转90°后,得到线段PE,且PE交BC于点F,连结DF,过点E作EQ⊥AB 交AB的延长线于点Q.(1)求线段PQ的长;(2)问点P在何处时,△PFD∽△BFP,并说明理由.解:(1)由题意得:PD=PE,∠DPE=90°.∴∠APD+∠QPE=90°,∵四边形ABCD 是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,又∵PD=PE,∴△ADP≌△QPE(AAS),∴PQ=AD=1 (2)∵△PFD∽△BFP,∴PBBF=PDPF,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴PDPF=APBF,∴APBF=PBBF,∴P A=PB,∴P A=12AB=12,∴当P A=12时,△PFD∽△BFP。
华师大版第一学期期中考试卷九年级数学答案
米HGFED CB A49ABCD第一学期期中考试卷九年级数学所有题目都须在答卷纸上作答,答在试卷和草稿纸上无效。
一、填空题:本大题共10小题,每小题3分,共30分.1. 某段迎水坡的坡比为i =1:3,则它的坡角a 的度数为 ▲ .2. 抛物线y =-2(x +1)2+2的对称轴是直线▲ .3. 若关于x 的方程250x x k -+=的一个根是0,则另一个根是 ▲ . 4. 有一间长为18 m ,宽为7.5 m 的会议室,在它的中间铺一块地毯,地毯的面积 是会议室面积的12,四周未铺地毯处的宽度相同,设所留宽度为x m ,则根据 题意,可列方程为 ▲ .5. 如图,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点, 若34tan =∠AEH ,四边形EFGH 的周长为60cm ,则矩形ABCD 的周长 为 ▲ cm .6. 甲、乙两同学解方程x 2+ px + q =0,甲看错了一次项系数,解得根为4和-9; 乙看错了常数项,解得根为2和3;则原方程为 ▲ .7. 小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和 地面BC 上,量得CD =4米,BC =10米,CD 与地面成30o 的角,且在此时测得 1 米杆的影长为2米,则电线杆的高度约为 ▲ 米(结果保留根号).(第5题图) (第7题图) (第9题图)8.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值 为 ▲ .9. 一只排球从P 点打过球网MN ,已知该排球飞行距离x (米)与其距地面高度y (米)之间的关系式为23321212++-=x x y (如图).已知球网MN 距原点5米,运动员(用线段AB 表示)准备跳起扣球。
已知该运动员扣球的最大高度为 米,设他扣球的起跳点A 的横坐标 为k ,因球的高度高于他扣球的最大高度而导致扣球失败,则k 的取值范围是 ▲ .…………………密……………封……………线……………内……………不……………准……………答……………题……………………223cm 222cm 10. 已知a 、b 是关于x 的方程2(2)10x m x +-+=的两根,则(1+ma +a 2)(1+mb +b 2)的值是▲ .二、选择题:本大题共8小题,每小题3分,共24分. 11. 抛物线y = 2(x -1)2 + 3与y 轴的交点是A.(0,5) B .(0,3) C .(0,2) D .(2,1) 12. 用配方法解方程2420x x -+=,下列配方正确的是 A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=13. 如右图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为A .B .23cmC . 22cmD . 14.如果关于x 的一元二次方程kx x 2690-+=有两个不相等的实数根,那么k 的取值范围是 A .k <1 B .k ≠0 C .k k <≠10且D .k >115.已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为A .1B .2C .3D .416.已知a ,b ,c 是△ABC 的三条边长,且关于x 的方程0)()(2)(2=-+-+-b a x a b x b c 有两个相等的实数根,那么这个三角形是A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形 17.如右图,在△ABC 中,点D 在AC 上,DE ⊥BC ,垂足为点E .若AD =2DC ,AB =4DE ,则sin B 的值是 A .12 BCD .34 18.在同一坐标系中,函数2y ax b =+与2y bx ax =+的图象只可能是三、解答题:本大题共10小题,共76分.19.(本题5分)计算:02011(1)2cos 45()4π---+20. (本题5分)解方程:xx x x )2(322-=--21.(本题6分)如图,在△ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD =12,4sin 5B =.求:(1)线段DC 的长;(2) tan ∠EDC 的值.22.(本题8分) 如图二次函数y =ax 2+bx +c 的图像过A 、B 、C 三点.AECDB5-1 AC ·-3(1)求出抛物线解析式和顶点坐标; (2)当-2<x <2时,求函数值y 的范围;(3)根据图像回答,当x 取何值时,y >0?23.(本题6分)在研究性学习课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且AB =2米,△BCD 表示直角遮阳篷,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6°,最大夹角β为64.5°.请你根据以上数据,帮助小明同学计算出遮阳篷中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.6°=0.32,cos18.6°=0.95,tan18.6°=0.34,sin64.5°=0.90,cos64.5°=0.43,tan64.5°=2.1)α24.(本题6分)设x 1,x 2是关于x 的一元二次方程024222=-+++a a ax x 的两实根,当a 为何值时,x 12+x 22有最小值,最小值是多少?25.(本题6分)春秋旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:某单位组织员工去该风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去该风景区旅游?26.(本题6分)如图,一次函数y =x +k 图象过点A (1,0),交y 轴于点B ,C 为y 轴负半轴上一点,且OB =12BC ,过A ,C 两点的抛物线交直线AB 于点D ,且CD ∥x 轴.(1)求这条抛物线的解析式;(2)直接写出使一次函数值小于二次函数值时x 的取值范围.27.(本题8分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1)y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?28.(本题8分)已知:抛物线22)21(a x a x y +-+= ( a ≠0 )与x 轴交于点A(x 1,0)、B(x 2,0) ,且x 1≠x 2.(1)求a 的取值范围,并证明A 、B 两点都在原点O 的左侧;(2)若抛物线与y 轴交于点C ,是否存在这样的a 使得122-++=+OC OB OA OB OA 成立,若存在,求出a ,若不存在,说明理由.29.(本题12分)如图,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x轴,y 轴上,点B 坐标为((其中0m >),在BC 边上选取适当的点E 和点F ,将O C E △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得 OPG △是等腰三角形?若不存在,请说明理由;若存在,直接写出....所有满足条件的点P 的坐标.512参考答案一、填空题:本大题共10小题,每小题3分,共30分. 1、30o 2、x =-1 3、x =5 4、5.71821)25.7)(218(⨯⨯=--x x 5、84 6、03652=--x x 7、37+ 8、2009 9、 745+<<x 10、 4二、选择题:本大题共8小题,每小题3分,共24分.三、解答题:本大题共10小题,共76分.19.计算:(本题5分) 原式=41123+--……………………4分 =223+ …………………………1分 20.解方程:(本题5分) 解得23,321==x x ……………………4分 经检验:23,321==x x 是原方程的解。
华师大版九年级上册数学期中考试试题附答案
华师大版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列计算中正确的是( )A =B 3=-C 4=D =2.方程2x x =的解是( )A .1x =B .0x =C .11x =-,20x =D .11x =,20x =3.如果两个相似三角形的相似比是1 那么这两个相似三角形的面积比是A .2:1B .1C .1:2D .1:4 4.用配方法解方程2420x x -+=,下列变形正确的是( )A .()222x -=B .()242x -=C .()220x -=D .()241x -= 5.一元二次方程4x 2+1=3x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是 A .560(1+x )2=315B .560(1-x )2=315C .560(1-2x )2=315D .560(1-x 2)=3157.如图,在直角坐标系中,OAB ∆和OCD ∆是位似图形,O 为位似中心,若A 点的坐标为()1,1,B 点的坐标为()2,1,C 点的坐标为()3,3,那么点D 的坐标是( )A .()4,2B .()6,3C .()8,4D .()8,3 8.对于任意实数x ,代数式2610x x -+的值是一个( )A .非负数B .正数C .负数D .整数9.如图,在ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .则下列结论:①EG AG GC GD =;②EF BF FC FD =;③FC BF GF FD=;④2CF GF EF =⋅.其中正确的是( )A .①②③④B .①②③C .①③④D .①② 10.如图,双曲线k y x=经过Rt BOC ∆斜边上的点A ,且满足12AO AB =,与BC 交于点D ,8BOD S ∆=,则k 的值为( )A .19B .1C .2D .8二、填空题11,则a 的取值范围为___.12.计算:(=______.13.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围________.14.如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 是AD 的中点,若ABD ∆的周长为6,则DOE ∆的周长为______.15.如图,在△ABC 中,AB >AC ,D 、E 分别为边AB 、AC 上的一点,AC =3AD ,AB =3AE ,点F 为BC 边上一点,添加一个条件使△FDB 与△ADE 相似,则添加的一个条件是_________.三、解答题16.计算17.解方程:2x 2x 350+-=.18.先化简,再求值:2222a b ab b a aa ⎛⎫--÷- ⎪⎝⎭,其中2a =+2b = 19.如图,平行四边形ABCD 中,8BC =,3CD =,点E 在BA 的延长线上且1AE =,连结CE 交AD 于点F .(1)直接写出图中相似的三角形;(2)求DF 的长.20.关于x 的一元二次方程x 2﹣(2m ﹣3)x+m 2+1=0.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数,判断方程根的情况.21.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?22.如图,DE 是△ABC 的中位线,延长DE 至F ,使EF =DE ,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF =DC .23.如图,已知ABC 中,//86DE BC AD AC BD AE ===,,,,求BD 的长.24.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,6AD =,若OA ,OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >.(1)直接写出:OA =______,OB =______;(2)若点E 为x 轴正半轴上的点,且163AOE S ∆=; ①求经过D ,E 两点的直线解析式;②求证:AOE DAO ∆∆.(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A ,C ,F ,M 为顶点的四边形为菱形?若存在,直接写出F 点的坐标,若不存在,请说明理由.参考答案1.D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】AB |3|3=-=,故此选项不合题意;C ,故此选项不合题意;D ==.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.2.D【解析】试题分析:∵20x x -=,∴x (x ﹣1)=0,∴x=0或x ﹣1=0,∴11x =,20x =.故选D . 考点:解一元二次方程-因式分解法.3.C【解析】如果两个相似三角形的相似比是1 那么这两个相似三角形的面积比是1∶2. 故选C.点睛:若两个三角形相似,那么这两个三角形的面积比等于相似比的平方.4.A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】2420x x -+=移项,得:242x x -=-,配方:24424x x -+=-+,即()222x -=.故选A.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.A【分析】先求出△的值,再判断出其符号即可.【详解】解:原方程可化为:4x 2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A .6.B【详解】试题分析:根据题意,设设每次降价的百分率为x ,可列方程为560(1-x )²=315. 故选B7.B【分析】利用位似是特殊的相似,若两个图形△ABC 和△A′B′C′以原点为位似中心,相似比是k ,△ABC 上一点的坐标是(x ,y ),则在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(-kx ,ky ),进而求出即可.【详解】∵A 点的坐标为()1,1,C 点的坐标为()3,3,∴位似比3k =,∵B 点的坐标为()2,1,∴点D 的坐标是:()23,13⨯⨯,即()6,3.故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.B【分析】先进行配方得到x 2-6x+10=x 2-6x+9+1=(x-3)2+1,由于(x-3)2≥0,则有(x-3)2+1>0.【详解】22610691x x x x -+=-++()231x =-+,∵()230x -≥,∴()2310x -+>,即代数式2610x x -+的值是一个正数.故选B.【点睛】本题考查了配方法的应用:通过配方法把一个代数式变形为一个完全平方式,然后利用其非负数的性质解决问题.9.A【分析】根据平行四边形的性质和平行线分线段成比例定理即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴//BE CD ,//AD BC , ∴EG AG GC GD=,故①正确, ∴EF BF FC FD=,故②正确, FC BF GG FD=,故③正确, ∵CF DF GF EF BF CF ==, ∴2CF EF GF =⋅,故④正确,故选A.【点睛】本题考查相平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识.10.C【分析】作AE ⊥x 轴,易得S △AOE =S △DOC ,从而求出S 四边形BAEC =S △BOD =8,利用相似三角形的面积比等于相似比的平方,求出S △AOE =1,即可求出k 的值.【详解】作AE x ⊥轴,则AE BC ∥,∴AOE BOC ∆∆,∵AOE DOC S S ∆∆=,∴8BOD BAEC S S ∆==四边形,∵AOE BOC ∆∆, ∴221139AOE BOC S AO S BO ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴1AOE S ∆=,∴2k =.故选C.【点睛】本题考查了反比例函数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.11.a≤0.【解析】试题分析:﹣a ,∴a≤0.考点:二次根式的性质与化简.12.-【分析】根据二次根式的乘法法则求出即可.【详解】(=-=-故答案为:-.【点睛】本题考查了二次根式的乘法法则,能正确运用法则进行计算是解此题的关键,注意:结果化成最简根式.13.1k <且0k ≠【分析】分析:关于x 的一元二次方程2690kx x -+=有两个不相等的实数根所以k≠0且△=b²-4ac>0,建立关于k 的不等式组,解得k 的取值范围即可. 详解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴k≠0且△=b²-4ac=36-36k>0,解得k<1且k≠0.故答案为k<1且k≠0.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1) △>0⇔方程有两个不相等的实数根;(2) △=0⇔方程有两个相等的实数根;(3) △<0⇔方程没有实数根.【详解】请在此输入详解!14.3【分析】根据平行四边形的对边相等和对角线互相平分可得,BC=AD ,DC=AB ,AO=CO ,E 点是AD 的中点,可得OE 是△ACD 的中位线,可得OE=12CD .从而得到结果.【详解】∵四边形ABCD 是平行四边形,∴AO CO =,∴O 是AC 中点,又∵E 是AD 中点,∴OE 是ACD ∆的中位线, ∴12OE CD =, 即DOE ∆的周长12ACD =∆的周长, ∴DOE ∆的周长12DAB =∆的周长. ∴DOE ∆的周长1632=⨯=. 故答案为:3.【点睛】本题主要考查平行四边形的性质及三角形中位线的性质的应用,判断出△DOE 的周长=12△ACD 的周长是解答本题的关键.15.∠DFB=∠ADE【分析】根据题意及图易得△ADE ∽△ACB ,进而由相似三角形的性质可得∠C=∠ADE ,∠B=∠AED ,欲证△FDB 与△ADE 相似则需添加角相等即可.【详解】 解: AC =3AD ,AB =3AE ,∠A=∠A , ∴ADE ACB ∽,∴C ADE B AED ∠=∠∠=∠,, 又DFB ADE ∠=∠,∴FDB DAE ∽.故答案为DFB ADE ∠=∠.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.16.原式=3【解析】试题分析:先进行二次根式的乘除运算,再合并同类二次根式即可.==317.x 1=-7,x 2=5【分析】根据十字相乘法进行求解,即可得到答案.【详解】根据十字相乘法将2x 2x 350+-=变形得到(x 7)(x-5)0+=,解得x 1=-7,x 2=5.【点睛】本题考查解一元二次方程,解题的关键是掌握十字相乘法.18.3- 【分析】先将所求式子中括号内的进行通分,再把除法转化为乘法进行约分,再将a ,b 的值代入化简的结果中进行计算即可求解.【详解】2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭, ()()()222a ab b a b a b a a--++-=÷ ()()()2a b a b a aa b +-=⋅-- a b a b +=--.当2a =2b =原式==【点睛】本题考查了分式的化简求值,解题的关键是准确进行分式的化简,计算结果注意要分母有理化.19.(1)见解析;(2)6【分析】(1)利用平行四边形的性质以及相似三角形的判定即可解决问题.(2)由△AEF ∽△DCF ,可得AE AF DC DF =,由此构建方程即可解决问题. 【详解】(1)∵四边形ABCD 是平行四边形,∴AB ∥DC ,AD ∥BC ,即AE ∥DC ,AF ∥BC ,∴EAFEBC ∆∆,EAF CDF ∆∆, ∴CDF EBC ∆∆.所以,图中相似三角形有EAF EBC ∆∆,EAF CDF ∆∆,CDF EBC ∆∆.(2)∵四边形ABCD 是平行四边形,∴//AB CD ,8AD BC ==,∴AEFDCF ∆∆, ∴AE AF DC DF=, ∵3CD =,1AE =,183DF DF-=, 解得6DF =.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是正确寻找相似三角形解决问题.20.(1) 13m =-; (2)方程有两个不相等的实根. 【详解】分析:(1)由方程根的定义,代入可得到关于m 的方程,则可求得m 的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m 是方程的一个实数根,∴m 2-(2m-3)m+m 2+1=0,∴m =−13; (2)△=b 2-4ac=-12m+5,∵m <0,∴-12m >0.∴△=-12m+5>0.∴此方程有两个不相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.21.(1)24;(2)10.5万元或15万元【详解】解:(1)∵()130000100006-÷500=∴能租出30-6=24间(2)设每间商铺的年租金增加x 万元,则30103010.52750.50.50.5x x x x ⨯⨯⨯(-)(+)-(-)-= 221150x x -+=∴5x =或0.5x =∴每间商铺的年租金定为10.5万元或15万元22.(1)见解析;(2)见解析【分析】(1)由三角形中位线定理可得DE ∥AB ,AB=2DE ,由EF=DE ,可得DF=AB ,即可证四边形ABFD 是平行四边形;(2)由平行四边形的性质可得AD=BF ,可得BF=CD .【详解】(1)∵DE 是△ABC 的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.【点睛】本题主要考查了平行四边形的判定和性质以及三角形中位线定理,关键是掌握一组对边平行且相等的四边形是平行四边形.23.4.【解析】试题分析:由DE∥BC可得AD:AB=AE:AC,结合BD=AE,AD=8,AC=6,可得8:(8+BD)=BD:6,解此方程可得BD的长.试题解析:∵DE∥BC,∴AD:AB=AE:AC,又∵BD=AE,AD=8,AC=6,∴AB=8+BD,∴8:(8+BD)=BD:6即BD2+8BD-48=0.解得:BD=4或BD=-12(不合题意,舍去).24.(1)4,3;(2)①61655y x=-;,②证明见解析;(3)()13,0F-;()23,8F;37522,147F⎛⎫--⎪⎝⎭;44244, 2525F ⎛⎫-⎪⎝⎭.【分析】(1)解一元二次方程求出OA,OB的长度即可;(2)先根据三角形的面积求出点E的坐标,并根据平行四边形的对边相等的性质求出点D的坐标,然后利用待定系数法求解直线的解析式;分别求出两三角形夹直角的两对应边的比,如果相等,则两三角形相似,否则不相似;(3)根据菱形的性质,分AC 与AF 是邻边并且点F 在射线AB 上与射线BA 上两种情况,以及AC 与AF 分别是对角线的情况分别进行求解计算.【详解】(1)方程27120x x -+=,分解因式得:()()340x x --=,可得:30x -=,40x -=,解得:13x =,24x =,∵OA OB >,∴4OA =,3OB =;故答案为4,3;(2)①根据题意,设(),0E x ,则11164223AOE S OA x x ∆=⨯⨯=⨯=, 解得:83x =, ∴8,03E ⎛⎫⎪⎝⎭,∵四边形ABCD 是平行四边形,∴点D 的坐标是()6,4,设经过D 、E 两点的直线的解析式为y kx b =+, 则80364k b k b ⎧+=⎪⎨⎪+=⎩, 解得:65165k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴解析式为61655y x =-;②如图,在AOE ∆与DAO ∆中,43823OA OE ==,6342AD OA ==, ∴OA AD OE OA=, 又∵90AOE OAD ∠=∠=︒,∴AOE DAO ∆∆;(3)根据计算的数据,3OB OC ==,∵AO BC ⊥,∴AO 平分BAC ∠,分四种情况考虑:①AC 、AF 是邻边,点F 在射线AB 上时,5AF AC ==,∴点F 与B 重合,即()3,0F -;②AC 、AF 是邻边,点F 在射线BA 上时,M 应在直线AD 上,且FC 垂直平分AM , 此时点F 坐标为()3,8;③AC 是对角线时,做AC 垂直平分线L ,AC 解析式为443y x =-+,直线L 过3,22⎛⎫ ⎪⎝⎭,且k 值为34(平面内互相垂直的两条直线k 值乘积为-1), ∴L 解析式为3748y x =+, 联立直线L 与直线AB ,得:3748443y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:7514x =-,227y =-,∴7522,147F ⎛⎫-- ⎪⎝⎭; ④AF 是对角线时,过C 作AB 垂线,垂足为N ,∵111222ABC S BC OA AB CN ∆=⋅=⋅=, ∴245BC OA CN AB ⋅==, 在BCN ∆中,6BC =,245CN =,根据勾股定理得185BN ==,即187555AN AB BN =-=-=, 做A 关于N 的对称点,记为F ,1425AF AN ==, 过F 做y 轴垂线,垂足为G ,14342sin 5525FG AF BAO =∠=⨯=, ∴4244,2525F ⎛⎫- ⎪⎝⎭, 综上所述,满足条件的点有四个:()13,0F -;()23,8F ;37522,147F ⎛⎫-- ⎪⎝⎭;44244,2525F ⎛⎫- ⎪⎝⎭. 【点睛】此题考查了解一元二次方程,相似三角形的性质与判定,待定系数法求函数解析式,综合性较强,(3)求点F 要根据AC 与AF 是邻边与对角线的情况进行讨论,不要漏解.。
华师大版九年级上册数学期中考试试卷含答案
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列式子是最简二次根式的是( )A BC D2.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .±B .C .2或3 D3.已知∠A 是锐角,且满足3tanA 0,则∠A 的大小为( )A .30°B .45°C .60°D .无法确定 4.如图,太阳光线与水平线成70°角,窗子高AB =2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不能直接射入室内,则遮阳板DC 的长度至少是( )A .2tan 70︒米B .2sin70°米C . 2.2tan 70︒米D .2.2cos70°米 5.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( )A .3B .6C .9D .106.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有 A .500(12)320x -= B .2500(1)320x -=C .250032010x ⎛⎫= ⎪⎝⎭D .2500132010x ⎛⎫-= ⎪⎝⎭ 7.如图,已知△ABC ,任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,使OD =13AO ,OE =13BO ,OF =13CO ,得△DEF ,有下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△DEF 与△ABC 的周长比为1:3;④△DEF 与△ABC 的面积比为1:6.则正确的个数是( )A .1B .2C .3D .48.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =25°,则∠EPF 的度数是( )A .100°B .120°C .130°D .150°9.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a10.如图,在平面直角坐标系中,点A 坐标为(2,),作AB ⊥x 轴于点B ,连接AO ,绕原点B 将△AOB 逆时针旋转60°得到△CBD ,则点C 的坐标为( )A .(﹣1)B .(﹣2)C .,1)D .2)二、填空题11=________________. 12.一元二次方程3(x ﹣5)2=2(x ﹣5)的解是_____.13.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为51:,要使这块石头滚动,至少要将杠杆的A 端向下压_____cm .14.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.15.如图,已知▱ABCD 中,AB =16,AD =10,sinA =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_____.三、解答题16.计算或解方程(1﹣2cos30°+(12-)﹣2﹣|1|(2)解方程:3x 2x ﹣1=017.已知:关于x的方程x2+2x+k2﹣1=0.(1)试说明无论取何值时,方程总有两个不相等的实数根.(2)如果方程有一个根为3,试求2k2+12k+2019的值.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标.19.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,AB=米,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AC=米后,斜坡AB改造为斜坡CD,其坡坡度为1:;将斜坡AB的高度AE降低20度为1:4.求斜坡CD的长.(结果保留根号)20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正中央建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14,若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽21.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD的中点.(1)求证:△ADQ∽△QCP;(2)若PQ=3,求AP的长.22.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从B向A方向运动,Q到达A点后,P点也停止运动,设点P,Q运动的时间为t秒.(1)求P点停止运动时,BP的长;(2)P,Q两点在运动过程中,点E是Q点关于直线AC的对称点,是否存在时间t,使四边形PQCE为菱形?若存在,求出此时t的值;若不存在,请说明理由.(3)P,Q两点在运动过程中,求使△APQ与△ABC相似的时间t的值.23.(操作发现)如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD =45°,连接AC,BD交于点M.①AC与BD之间的数量关系为;②∠AMB的度数为;(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算ACBD的值及∠AMB的度数;(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE 组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC,求点A、D之间的距离.参考答案1.C【分析】根据最简二次根式即可求出答案.解:(A)原式=A不选;(B B不选;(D D不选;故选:C.【点睛】本题考查了二次根式的化简,正确掌握二次根式的化简是解题的关键.2.A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2-+=有两个相等的实根,230x kx∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.3.A【分析】直接利用特殊角的三角函数值进而计算得出答案.【详解】解:∵3tanA0,∴tanA=,3∴∠A=30°.【点睛】此题主要考查三角函数,解题的关键是熟知特殊角的三角函数值.4.C【分析】由已知条件易求DB 的长,在光线、遮阳板和窗户构成的直角三角形中,80°角的正切值=窗户高:遮阳板的宽,据此即可解答.【详解】解:∵DA =0.2米,AB =2米,∴DB =DA+AB =2.2米,∵光线与地面成70°角,∴∠BCD =70°.又∵tan ∠BCD =DBDC ,∴DC =DB tan BCD ∠= 2.2tan 70︒m .故选:C .【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义.5.D【分析】方程配方得到结果,即可作出判断.【详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-,90k ∴-,即9k ,则k 的值不可能是10,故选D .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.6.C【分析】设该店春装原本打x 折,根据原价及经过两次打折后的价格,可得出关于x 的一元二次方程,此题得解.【详解】解:设该店春装原本打x 折,依题意,得:500(10x )2=320. 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C【分析】直接利用位似图形的性质以及相似图形的性质分别分析得出答案.【详解】解:∵任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,OD =13AO ,OE =13BO ,OF =13CO , ∴△DEF 与△ABC 的相似比为:1:3,∴①△ABC 与△DEF 是位似图形,正确;②△ABC 与△DEF 是相似图形,正确;③△DEF 与△ABC 的周长比为1:3,正确;④△DEF 与△ABC 的面积比为1:9,故此选项错误.故选:C .【点睛】此题主要考查位似图形的性质,解题的关键是熟知位似的特点.8.C【解析】【分析】根据三角形中位线定理得到PE=12 AD ,PF=12BC ,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,∴PE=12AD ,PF=12BC , ∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C .【点睛】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.9.C【分析】根据相似三角形的判定定理得到ACDBCA ∆∆,再由相似三角形的性质得到答案. 【详解】∵CAD B ∠=∠,ACD BCA ∠=∠,∴ACD BCA ∆∆, ∴2ACD BCA S AC S AB ∆∆⎛⎫= ⎪⎝⎭,即14BCAa S ∆=, 解得,BCA ∆的面积为4a ,∴ABD ∆的面积为:43a a a -=,故选C .【点睛】本题考查相似三角形的判定定理和性质,解题的关键是熟练掌握相似三角形的判定定理和性质.10.A【分析】首先证明∠AOB =60°,∠CBE =30°,求出CE ,EB 即可解决问题.【详解】解:过点C 作CE ⊥x 轴于点E ,∵A (2,),∴OB =2,AB =∴Rt △ABO 中,tan ∠AOB∴∠AOB =60°,又∵△CBD 是由△ABO 绕点B 逆时针旋转60°得到,∴BC =AB =∠CBE =30°,∴CE =12BC BE =3,∴OE =1,∴点C 的坐标为(﹣1,故选:A .【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.11.【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=故答案为:【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.5或173【分析】根据因式分解法即可求出答案.【详解】解:∵3(x ﹣5)2=2(x ﹣5),∴3(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)[3(x ﹣5)﹣2]=0,∴x =5或x =173; 故答案为5或173 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.13.50.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A 向下压的长度.【详解】解:如图;AM BN 、都与水平线垂直,即//AM BN ;易知:ACM BCN ∽;AC AM BC BN∴=, 杠杆的动力臂AC 与阻力臂BC 之比为51:, 51AM BN ∴=,即5AM BN =; ∴当10BN cm ≥时,50AM cm ≥;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm .故答案为50.【点睛】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.14.2【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF 的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.15.4或8【解析】【分析】①当∠CDE=90°,如图1,根据折叠的性质得到MN⊥AB,AM=EM,得到AN=DN=1 2AD=5,设MN=3x,AN=5x=5,于是得到AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,根据相似三角形的性质得到DE CDHE DE=,由sinA=35,AD=10,得到DH=6,AH=8,设HE=x,根据勾股定理求出x的值,继而求得AE的值,从而得到AM的值,即可得到结论.【详解】当△CDE为直角三角形时,①当∠CDE=90°,如图1,∵在▱ABCD中,AB∥CD,∴DE⊥AB,∵将∠A沿直线MN翻折,点A落在线段AB上的点E处,∴MN⊥AB,AM=EM,∴MN∥DE,∴AN=DN=12AD=5,∵sinA=35 MNAN=,∴设MN=3x,AN=5x=5,∴MN=3,∴AM=4;②当∠DEC=90°,如图2,过D作DH⊥AB于H,∵AB∥CD,∴∠HDC=90°,∴∠HDC+∠CDE =∠CDE+∠DCE =90°,∴∠HDE =∠DCE ,∴△DHE ∽△CED , ∴DE CD HE DE=, ∵sinA =35,AD =10, ∴DH =6,∴AH =8,设HE =x ,∴DE =∵DH 2+HE 2=DE 2,∴62+x 2=16x ,∴x =8﹣x =不合题意舍去),∴AE =AH+HE =16﹣,∴AM =12AE =8,综上所述,AM 的长为4或8,故答案为4或8.【点睛】本题考查了翻折变换(折叠问题),平行四边形的性质,解直角三角形,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.(1)5;(2)x 1,x 2【分析】(1)根据特殊锐角三角函数的值以及负整数指数幂的意义即可求出答案;(2)根据公式法即可求出答案.【详解】解:(1)原式=﹣1)=5;(2)由题意可知:a =3,b ,c =﹣1,∴△=6+12=18,∴x∴x 1=6,x 2=6. 【点睛】此题主要考查实数的运算及一元二次方程的求解,解题的关键是熟知实数的性质及公式法求解方程.17.(1)见解析;(2)2003【分析】(1)计算判别式的值得到△=4,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)利用一元二次方程根的定义得到k 2+6k =﹣8,再把2k 2+12k+2019变形为2(k 2+6k )+2019,然后利用整体代入的方法计算.【详解】解:(1)∵△=(2k )2﹣4×1×(k 2﹣1)=4k 2﹣4k 2+4=4>0,∴无论k 取何值时,方程总有两个不相等的实数根;(2)把x =3代入x 2+2x+k 2﹣1=0的9+6k+k 2﹣1=0,∴k 2+6k =﹣8,∴2k 2+12k+2019=2(k 2+6k )+2019=﹣16+2019=2003.【点睛】此题主要考查根的判别式及根的定义,解题的关键是熟知根的判别式的应用.18.(1)见解析;(2)(﹣4,2) .【分析】(1)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A 1BC 1即为所求;(2)如图,△A 2B 2C 2,即为所求,A 2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.19.斜坡CD 的长是【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为1:,∴tan3ABE ∠==, ∴30ABE ∠=︒,∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.20.道路的宽为2米【分析】首先假设道路的宽为x 米,根据道路的宽为正方形边长的14,得出正方形的边长以及道路与正方形的面积进而得出答案.【详解】解:设道路的宽为x 米,则可列方程:x (24﹣4x )+x (40﹣4x )+16x 2=16×40×24, 即:x 2+8x ﹣20=0,解得:x 1=2,x 2=﹣10(舍去).答:道路的宽为2米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列出方程求解.21.(1)见解析;(2)【分析】(1)在所要求证的两个三角形中,已知的等量条件为:∠D=∠C=90°,若证明两三角形相似,可证两个三角形的对应直角边成比例;(2)证明AQ=2PQ,AQ⊥PQ即可解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠C=∠D=90°;又∵Q是CD中点,∴CQ=DQ=12 AD;∵BP=3PC,∴CP=14 AD,∴CQAD=CPDQ=12,又∵∠C=∠D=90°,∴△ADQ∽△QCP;(2)由(1)知,△ADQ∽△QCP,CQAD=PQQA=12,∴AQ=2PQ,∵PQ=3,∴AQ=6,∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=DAQ+AQD=90°,∴AQ⊥QP,∴∠AQP=90°,∴PA【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知正方形的性质及相似三角形的判定定理.22.(1(2)存在,t=3017s时,四边形PQCE是菱形;(3)t的值为3011s或5013s时△APQ与△ABC相似【分析】(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3﹣1中,当∠APQ=90°时,如图3﹣2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB=10,点Q运动到点A时,t=102=5,∴AP=5,PC=1,在Rt△PBC中,PB(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴35•2t=12(6﹣t),解得t=30 17.∴t=3017s时,四边形PQCE是菱形.(3)如图3﹣1中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴AQAB=APAC,∴10210t -=6t , ∴t =3011. 如图3﹣2中,当∠AQP =90°时,∵△AQP ∽△ACB , ∴AQ AC =AP AB, ∴1026t -=10t , ∴t =5013, 综上所述,t 的值为3011s 或5013s 时△APQ 与△ABC 相似. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据题意分情况讨论,找到对应线段成比例进行求解.23.【操作发现】①AC =BD ;②∠AMB =45°;【类比探究】AC BD =,∠AMB =90°;【实际应用】【分析】操作发现:如图(1),证明△COA ≌△DOB (SAS ),即可解决问题.类比探究:如图(2),证明△COA ∽△ODB ,可得AC CO BD OD==∠MAK =∠OBK ,已解决可解决问题.实际应用:分两种情形解直角三角形求出BE ,再利用相似三角形的性质解决问题即可.【详解】解:操作发现:如图(1)中,设OA 交BD 于K .∵∠AOB =∠COD =45°,∴∠COA =∠DOB ,∵OA =OB ,OC =OD ,∴△COA ≌△DOB (SAS ),∴AC =DB ,∠CAO =∠DBO ,∵∠MKA =∠BKO ,∴∠AMK =∠BOK =45°,故答案为AC =BD ,∠AMB =45°类比探究:如图(2)中,在△OAB 和△OCD 中,∵∠AOB =∠COD =90°,∠OAB =∠OCD =30°,∴∠COA =∠DOB ,OC ,OA , ∴OCOAOD OB =,∴△COA ∽△ODB ,∴ACCOBD OD ==∠MAK =∠OBK ,∵∠AKM =∠BKO ,∴∠AMK =∠BOK =90°.实际应用:如图3﹣1中,作CH ⊥BD 于H ,连接AD .在Rt△DCE中,∵∠DCE=90°,∠CDE=30°,EC=1,∴∠CEH=60°,∵∠CHE=90°,∴∠HCE=30°,∴EH=12EC=12,∴CH在Rt△BCH中,BH92 ==,∴BE=BH﹣EH=4,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=如图3﹣2中,连接AD,作CH⊥DE于H.同法可得BH=92,EH=12,∴BE=92+12=5,∵△DCA∽△ECB,∴AD:BE=CD:EC∴AD=【点睛】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
华师大版九年级上册数学期中考试试题含答案
华师大版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下面说法正确的是( )A 是最简二次根式 BC 的式子是二次根式D =a ,则a >02.下列计算正确的是( )A .5=B =C .=D =3.如图,数轴上点P 表示的数可能是( )A .B . 3.2-C .D .4.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5.下列四条线段中,不能成比例的是( )A .a =4,b =8,c =5,d =10B .a =2,b =c d =5C .a =1,b =2,c =3,d =4D .a =1,b =2,c =2,d =4 6.如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:①∠AED =∠B ,②∠ADE =∠C ,③AE DE AB BC=,④AD AE AC AB =,⑤AC 2=AD •AE ,使△ADE 与△ACB 一定相似的有( )A .①②④B .②④⑤C .①②③④D .①②③⑤7.如图,一艘潜艇在海面下500米A处测得俯角为30°的海底C处有一黑匣子发出信号,继续在同一深度直线航行4000米后,在B处测得俯角为60°的海底也有该黑匣子发出的信号,则黑匣子所在位置点C在海面下的深度为()A.2000米B.4000米C.2000米D.()米8.如图所示,在正方形网格上有6个三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中与①相似的是( )A.②③④B.③④⑤C.④⑤⑥D.②③⑥9.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm、、、、、、、分别是正方形各边的三等分点,要使中间阴影部10.如图,E F G H I J K N分的面积是5,那么大正方形的边长应该是()A B .C .D .二、填空题11.若0, 0ab a b >+<,那么下面各式:1=;③b =-;a =,其中正确的是______ (填序号) 12.如图,在△ABC 中,∠A=45°,∠B=30°,CD ⊥AB ,垂足为D ,CD=1,则AB 的长为_____.13.如图,已知点F 是△ABC 的重心,连接BF 并延长,交AC 于点E ,连接CF 并延长,交AB 于点D ,过点F 作FG ∥BC ,交AC 于点G .设三角形EFG ,四边形FBCG 的面积分别为S 1,S 2,则S 1:S 2=_____.14.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且3a 5BE =.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.15.如图,AB ⊥BD ,CD ⊥BD ,AB=6cm ,CD=4cm ,BD=14cm ,点p 在BD 上移动,当PB= ______ 时,△APB 和△CPD 相似.三、解答题16.我校校区正在修建,如图,按图纸规划,需要在一个长30m 、宽20m 的长方形ABCD 空地上修建三条同样宽的通道(AB=20m),使其中两条与AB 平行,另一条与AD 平行,其余部分种植草皮.要使草地总面积为468m 2,那么通道的宽应设计为多少m ?17.计算或解方程(1(1012cos3013-⎛-+ ⎝ (2)232x x +=(3)22310x x -+=(用配方法解)18.先化简,再求值:)其中a=17﹣19.正方形ABCD 的边长为4,M ,N 分别是BC ,CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:△ABM ∽△MCN ;(2)若△ABM 的周长与△MCN 周长之比是4:3,求NC 的长.20.如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请问一元二次方程x 2﹣6x +8=0是倍根方程吗?如果是,请说明理由.(2)若一元二次方程x 2+bx +c =0是倍根方程,且方程有一个根为2,求b 、c 的值.21.数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈ 1.73≈)22.某汽车销售公司11月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为19万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部.月底厂家再根据销售量返利给销售公司:销售量在5部以内(含5部),每部返利0.1万元;销售量在5部以上,每部返利0.4万元.(1)若该公司当月售出5部汽车,则每部汽车的进价为 万元;(2)若汽车的售价为19.8万元/部,该公司计划当月盈利18万元,则需售出多少部汽车? (盈利=销售利润+返利)23.如图,在ABC △中,90,8,6C AC cm BC cm ∠=︒==,点P 从点A 沿AC 向C 以2/cm s 的速度移动,到C 即停,点Q 从点C 沿CB 向B 以1/cm s 的速度移动,到B 就停.(1)若P Q 、同时出发,经过几秒钟22APCQ S cm =;(2)若点Q 从C 点出发2s 后点P 从点A 出发,再经过几秒PCQ ∆与ACB ∆相似.24.(1)观察发现;如图1,在Rt MBC ∆中,90B ∠=︒,点D 在边AB 上,过D 作//DE BC 交AC 于E ,5,3,4AB AD AE ===.填空:①ABC ∆与ADE ∆是否相似? (直接回答)______;②AC =_______; DE = .(2)拓展探究:将ADE ∆绕顶点A 旋转到图2所示的位置,猜想ADB △与AEC ∆是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将ADE ∆绕顶点A 旋转到点B D E 、、在同一条直线上时,直接写出线段BE 的长是 .图1 图2 图3参考答案1.A【分析】根据最简二次根式的定义以及同类二次根式的定义即可求出答案.【详解】A是最简二次根式,正确;B=,故B错误;C a≥0)的式子是二次根式,故C错误;D=a,则a≥0,故D错误.故选A.【点睛】本题考查了二次根式,解题的关键是正确理解二次根式的相关概念,本题属于基础题型.2.B【分析】题干要求判断计算正确的是,对各选项的根数进行运算依次判断即可.【详解】解:A. 5≠,排除A,B. , B 正确,C. =C,D. = D 故选B【点睛】本题考查实数的运算,对算术平方根进行化简求值,难度较小.3.D【分析】根据题干信息可知,结合数轴上P 点的位置可知-3<P<-2,对选项依次判断即可.【详解】解:数轴上P 点的位置可知-3<P<-2, -3<满足条件,故答案选D.【点睛】本题考查结合数轴判断点的值,对无理数进行估值满足条件即可.4.A【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.5.C【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得【详解】解:A 、4×10=5×8,能成比例;B 、2×C 、1×4≠2×3,不能成比例;D 、1×4=2×2,能成比例.故选C .【点睛】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.6.A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB ∽,成立. ③AE DE AB BC=,但AED 比一定与B 相等,故ADE 与ACD △不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB ∽,成立. ⑤由2AC AD AE =⋅,得AC AE AD AC =无法确定出ADE , 故不能证明:ADE 与ABC 相似.故答案为A .点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.7.D【解析】由C点向AB作垂线,交AB的延长线于E点,并交海面于F点,易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCE中,利用正弦函数求出CE的长.【详解】解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=4000(米),∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC−∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=4000(米).在Rt△BEC中,EC=BC⋅sin60°=4000×米).2∴CF=CE+EF米).故选D.【点睛】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.B【分析】先根据勾股定理计算出三角形各边的长度,再根据三边对应成比例两三角形相似进行判定即可.【详解】设第个小正方形的边长为1,则△ABC的各边长分别为则②△BCD的各边长分别为③△BDE的各边长分别为2,(为△ABC对应各边长的2倍),④△BFG的各边长分别为(为△ABC对应各边长的,⑤△FGH的各边长分别为2,(为△ABC对应各边长的,⑥△EFK的各边长分别为3,根据三组对应边的比相等的两个三角形相似得到与三角形①相似的是③④⑤.故选B.【点睛】本题主要考查相似三角形的判定定理,解决本题的关键是要熟练掌握相似三角形的判定方法. 9.B【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt△ABC中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C作CH⊥AB于点H,则易得△ABC∽△ACH.∴CH ACBC AB=,即AC BC3412CH CHAB55⋅⨯=⇒==.∴如图,点E(3,125),F(7,0).设直线EF的解析式为y kx b=+,则123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .10.C【分析】根据勾股定理即可计算AB 与AI 的比值,观察图形可以求得Al 的值,根据AI 的值即可求得AB 的值,即可解题.【详解】解:如图∵△BMI ~△ABI ,∴ MI=13BM , ∴AI=3MB+13MB=103MB , 又∵在直角△ABI 中,AB :AI=3,∴10,3AB MB = ∵MB 与小正方形的边长相等,∴AB ===故选C.【点睛】本题考查几何的综合问题,几何正方形性质、相似三角形的判定与性质以及勾股定理综合运用分析.11.②③【分析】题干要求判断正确性,首先由ab>0,a+b<0,判断出a 、b 的正负,然后分别计算各个的题目并判断即可.【详解】解:因为若ab>0,a+b<0﹐所以a<0,b<0.由于a<0,b<0, 无意义,所以①的变形错误;1b a a b ⋅= ,故②正确;ab ÷==b =,由于b<0,∴原式=-b ,故③正确;,aab a b ⋅===由于a<0,∴原式=-a ,故④计算错误.故答案为②③.【点睛】本题考查二次根式的乘除,掌握二次根式的乘除方法是解决问题的关键,难度较小.12.【详解】试题解析:在Rt BCD 中,301B CD ,,∠=︒= ∴22BC CD ==,根据勾股定理得:BD在Rt ACD △中,451A CD ∠=︒=,,∴1AD CD ==,则1AB AD DB =+=故答案为1 13.18. 【分析】由三角形的重心定理得出BF=2EF ,得出BE=3EF ,由平行线得出△EFG ∽△EBC ,∴得出21EBC S 11S 39⎛⎫== ⎪⎝⎭,即可得出结果. 【详解】∵点F 是△ABC 的重心,∴BF =2EF ,∴BE =3EF ,∵FG ∥BC ,∴△EFG ∽△EBC , ∴13EF BE =,1EBC S S =(13)219=, ∴S 1:S 2; 故答案为18. 【点睛】本题考查了三角形的重心定理、相似三角形的判定与性质;熟练掌握三角形的重心定理,证明三角形相似是解题的关键.14.53或3【分析】分两种情况:①点B '落在AD 边上,根据矩形与折叠的性质易得=AB BE ,即可求出a 的值;②点B '落在CD 边上,证明ADB B CE ''∆⋃∆,根据相似三角形对应边成比例即可求出a 的值.【详解】解:分两种情况:①当点B '落在AD 边上时,如图1.四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=,53a ∴=;②当点B '落在CD 边上时,如图2.∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,DB '∴,3255EC BC BE a a =-=-=.在ADB '∆与B CE '∆中,90A 90B AD EB C B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩,ADB B CE ''∴∆⋃∆,DB AB CE B E '''∴=,即12355a a =,解得1a =,20a =(舍去). 综上,所求a 的值为53故答案为53【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.15.8.4cm 或12cm 或2cm【分析】设出BP=xcm ,由BD-BP=PD 表示出PD 的长,若△ABP ∽△PDC ,根据相似三角形的对应边成比例可得比例式,把各边的长代入即可列出关于x 的方程,求出方程的解即可得到x 的值,即为PB 的长.【详解】由AB=6cm ,CD=4cm ,BD=14cm ,设BP=xcm ,则PD=(14-x )cm ,若△ABP ∽△PDC , 则614AB PD x=-, 即6=144x x -, 变形得:14x-x 2=24,即x 2-14x+24=0,因式分解得:(x-2)(x-12)=0,解得:x 1=2,x 2=12,所以BP=2cm 或12cm 时,△ABP ∽△PDC ;若△ABP ∽△CDP , 则AB BP CD DP=, 即6=414x x -, 解得:x=8.4,∴BP=8.4cm ,综上,BP=2cm 或12cm 或8.4cm 时,△ABP ∽△PDC .故答案为8.4cm 或12cm 或2cm .【点睛】此题考查了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,本题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件. 16.通道的宽应设计为2m .【分析】设通道的宽应设计为x m ,则六块草地可合成长(30-2x )m 、宽(20-x )m 的长方形,再根据草地总面积为468m 2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】设通道的宽应设计为xm ,根据题意得:(302)(20)468x x --=,整理,得:235660x x -+=,解得:122,33x x ==(不合题意,舍去).答:通道的宽应设计为2m .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.(1)1;(2) 1x =,2x =;(3) 12112x x =,= 【分析】(1)运用化简二次根式的技巧以及结合锐角三角函数值进行计算.(2)运用公式法解一元二次方程,注意a 、b 、c 的值,判定的值.(3)题干要求用配方法解一元二次方程,配方求解即可. 【详解】解:10 2cos30(1-︒-+-⨯11.(2)2320x x+-=,132a b c=,=,=-,2(27)341⨯=--=,x=,所以1x,2x=(用其他解法参照以上评分标准给分)(3)22310x x+-=,变形得:23122x x-=-,配方得:239121616x x-+=即231416x⎛⎫-=⎪⎝⎭,开方得:3144x-=±,解得:12112x x=,=.【点睛】本题考查二次根式的运算以及解一元二次方程,结合锐角三角函数和二次根式的运算以及解一元二次方程的方法技巧进行求值.18.214【分析】先将所求式子化简,再分别将a、b的值整理代入求解即可.【详解】原式=)=)=)∵a=17﹣2﹣2×3×(2=(3﹣2,b2+2×2=(2,∴原式【点睛】本题主要考查二次根式的性质与运算法则、分式的运算法则以及平方差公式的应用.19.(1)证明见解析(2)3 4【分析】(1)要证三角形ABM∽MCN,就需找出两组对应相等的角,已知两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似;(2)由△ABM∽△MCN,得出对应边成比例43BM ABCN CM==,求出MC、BM,即可求出NC;【详解】(1)证明:∵四边形ABCD是正方形,正方形ABCD的边长为4,∴AB=BC=4,∠B=∠C=90°,∵AM和MN垂直,∴∠AMN=90°,∴∠BAM+∠AMB=90°,∠NMC+∠BMA=180°﹣90°=90°,∴∠BAM=∠NMC,∵∠B=∠C,∴△ABM∽△MCN;(2)解:∵△ABM∽△MCN,∴AB BM CM CN=,∵△ABM∽△MCN,△ABM的周长与△MCN周长之比是4:3,∴△ABM的周长与△MCN边长之比也是4:3,∴43 AB BMCM CN==,∵AB=4,∴443 CM=,∴CM=3,∴BM=4﹣3=1,∴143 CN=,∴NC=34.【点睛】本题考查了正方形的性质和相似三角形的判定与性质,根据相似三角形得出与所求的条件相关的线段成比例是解题的关键.20.(1)该方程是倍根方程,理由见解析;(2)当方程根为1,2时,b=﹣3,c=2;当方程根为2,4时b=﹣6,c=8.【分析】(1)利用因式分解法求出方程的两根,再根据倍根方程的定义判断即可;(2)根据倍根方程的定义,倍根方程x2+bx+c=0有一个根为2时,另外一个根为4或1,再利用根与系数的关系求出b、c的值.【详解】(1)该方程是倍根方程,理由如下:x 2﹣6x +8=0,解得x 1=2,x 2=4,∴x 2=2x 1,∴一元二次方程x 2﹣6x +8=0是倍根方程;(2)∵方程x 2+bx +c =0是倍根方程,且方程有一个根为2,∴方程的另一个根是1或4,当方程根为1,2时,﹣b =1+2,解得b =﹣3,c =1×2=2; 当方程根为2,4时﹣b =2+4,解得b =﹣6,c =2×4=8. 【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a.也考查了学生的阅读理解能力与知识的迁移能力. 21.51【分析】 由三角函数求出tan34CE AC ︒=,得出BC AC AB =-,在Rt BCD ∆中,由三角函数得出CD =,即可得出答案.【详解】解:90ACE ︒∠=,34CAE ︒∠=,55CE m =,tan CE CAE AC∴∠=, 5582.1tan340.67CE AC m ︒∴==≈, 21AB m =,61.1BC AC AB m ∴=-=,在Rt BCD ∆中,tan60CD BC︒==1.7361.1105.7CD m ∴=≈⨯≈,105.75551DE CD EC m ∴=-=-≈,答:炎帝塑像DE 的高度约为51m .【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度适中.22.(1) 18.6万元; (2) 需售出9部汽车【分析】(1)题干要求每部汽车的进价,根据题意列出算式即可求值.(2)首先设需售出x 部汽车,分情况对15x ≤≤时以及5x >时列出一元二次方程,并求出其值即可.【详解】解:(1)18.6.190.156()118.⨯=--(万元). (2)设需售出x 部汽车,则每部汽车的销售利润为)19.8190.117[()](0.10.x x =+---万元.①当15x ≤≤时,根据题意得:()0.10.70.1 1.8x x x ++=,整理得:281800x x +-=,解得: 118x =-(舍去),210x =, 105>,210x ∴=舍去;②当5x >时,根据题意得:()0.10.70.418x x x ++=,整理得:2111800x x +=-,解得: 120x =-(舍去),29x =.答:需售出9部汽车(2)解法二:设需售出x 部汽车,若5x =,当月盈利为:5(19.818.65.)501 1.⨯+⨯=-万元18<万元 5x ∴>,每部汽车的销售利润为)19.8190.117[()](0.10.x x =+---万元,且每部返利0.4万元. 根据题意得:8()0.10.70.41x x x ++=,整理得:2111800x x +=-,0((20))9x x +=-,解得: 120x =-(舍去),29x =.答:需售出9部汽车.【点睛】本题考查一元二次方程的实际应用问题中的经济利润问题,根据题意列出一元二次方程并运算即可.23.(1) 则P Q 、同时出发,经过(2±2±秒钟22PCQ S cm =;(2) 点Q 从C 点出发2s 后点P 从点A 出发,再经过1.6秒或2611秒PCQ ∆与ACB ∆相似 【分析】(1)首先设经过时间为t 秒钟,根据题意22APCQ S cm =列出关于t 的一元二次方程,解出t 值即可求出.(2)先设点Q 从C 点出发2s 后,再经过x 秒PCQ △与ACB △相似,有两种情形,一种是当PCQ ACB ∽时分析求值,一种是当PCQ BCA ∽时分析解决即可.【详解】解:(1)设经过t 秒钟22PCQ S cm = 由题意得,282AP t CQ t PC t =,=,=-, 由题意得,182()22t t ⨯⨯-=, 整理得,2420t t +-=142a b c =,=-,=,2()44128⨯⨯=--=,22(4,24)22t t t t +=-=,-=22t =则P Q 、同时出发,经过(2±2±秒钟22PCQS cm =; (2)设点Q 从C 点出发2s 后,再经过x 秒PCQ △与ACB △相似,有两种情形.由题意得,22AP x CQ x +=,=,则82PC x =-,①当PCQ ACB ∽时,CP CQ CA CB =, 即82286x x -+=,解得, 1.6x =,②当PCQ BCA ∽时,CP CQ CB CA=, 即82268x x -+=, 解得,2611x =, 综上所述,点Q 从C 点出发2s 后点P 从点A 出发,再经过1.6秒或2611秒PCQ ∆与ACB ∆相似.【点睛】本题考查的是相似三角形的判定,一元二次方程的应用,掌握相似三角形即可.24.(1) ①A ABC DE ∽△△,见解析;②203AC =,DE =; (2) ADB AEC △∽△,见解析;(3) 线段BE 的长为4+4【分析】(1)①ABC ∆与ADE ∆有公共角以及//DE BC ,即可知A ABC DE ∽△△.②由//DE BC 结合勾股定理得到DE ,利用ADB AEC △∽△求得AC 的值.(2)猜想ADB AEC △∽△,利用A ABC DE ∽△△,建立相似比进而得到AD AE AB AC=从而证得猜想.(3)首先由题意可知将ADE 绕顶点A 旋转到点B D E 、、在同一条直线上时有两种情况,对两种情况依次讨论即可.【详解】解:(1)①相似(或A ABC DE ∽△△) //DE BC ABC ADE ∴,∽, ②203;//DE BC ,90ADE B ∴∠∠︒==,E D ∴=ABC ADE ∽,AD AE AB AC ∴=,即345AC=, 解得,203AC =, (2),ADB AEC △∽△证明:如图2,由旋转变换的性质可知,BAD CAE ∠∠=,由(1)得,A ABC DE ∽△△AD AE ABAC ∴=, AD AE ∴AB AC=, ADB AEC ∴∽;(3)线段BE 的长为44将ADE 绕顶点A 旋转到点B D E 、、在同一条直线上时有两种情况:①如图2,在Rt ADB 中,4BD ==点B D E 、、在同一条直线上,4BE BD DE ∴+==,②如图3,4BE BD DE =-=【点睛】本题考查的是相似三角形的判定和性质,旋转变换的性质,勾股定理的应用,掌握相似三角形判定定理和性质定理是解题的关键.。
华师大版九年级上册数学期中考试试题及答案
华师大版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1)A.3 B.3-C.3±D.92有意义的条件是( )A.x≠2B.x>﹣2 C.x≥2D.x>23.一元二次方程230 4y y--=配方后可化为()A.2112y⎛⎫+=⎪⎝⎭B.2112y⎛⎫-=⎪⎝⎭C.21324y⎛⎫+=⎪⎝⎭D.21324y⎛⎫-=⎪⎝⎭4.下面四个等式:①=,=,=-④347=+=,其中正确的个数是( )A.1 B.2 C.3 D.45.已知34ab=,则下列等式不成立的是( )A.4a=3b B.74a bb+=C.43a b=D.37aa b=+6.如图,DE∥FG∥BC,DF=2FB,则下面结论错误的是( )A.EG=2GC B.DF=EGC.BF×EG=DF×GC D.DF FB EG GC=7.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为( )A.2 B.4 C.6 D.88.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=( )A.12 B.15 C.24 D.279.已知三角形的两边长分别为4和7,第三边长是方程x2﹣16x+55=0的根.则这个三角形的周长是( )A.16 B.22 C.16或22 D.010.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2019次变换后,点M的坐标变为( )A.(﹣2016,2) B.(﹣2016,﹣2) C.(﹣2017,2) D.(﹣2017,﹣2)二、填空题11是同类二次根式,则x的值为______.12.已知x:y=1:2,2y=3z,则23x yy z++=______.13.设(a2+a+1)2﹣2(a2+a+1)﹣3=0,则a=______.14.如图,在△ABC中,AB=8,AC=6,AM平分∠BAC,CM⊥AM于点M,N为BC 的中点,连结MN,则MN的长为______.15.如图,在△ABC中,AB=8,AC=16,点P从点A出发,沿AB方向以每秒2个长度单位的速度向点B运动:同时点Q从点C出发,沿CA方向以每秒3个长度单位的速度向点A运动,其中一点到达终点,则另一点也随之停止运动,当△ABC与以A、P、Q为顶点的三角形相似时,运动时间为______秒.三、解答题1).16.计算:2)×﹣3217.解方程:(1) 2x2﹣7x﹣4=0 (2) x2+4x+4=(3x+1)218.在所给格点图中,画出△ABC作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.(1)沿y轴正方向平移2个单位后得到△A1B1C1;(2)关于y轴对称后得到△A2B2C2.(3)以点B为位似中心,放大到2倍后得到△A3B3C3.19.已知关于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.(1)依据k的取值讨论方程解的情况.(2)若方程有一根为x=﹣2,求k的值及方程的另一根.20.某学校对毕业班同学三年来参加各项活动获奖情况进行统计,七年级时有48人次获奖,之后两年逐年增加,到九年级毕业时累计共有228人次获奖.求这两年中获奖人次的年平均增长率.21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若BFFC=12,请求出FCFH的值.23.在矩形ABCD中,E为DC边上一点,把ADE沿AE翻折,使点D恰好落在BC边上的点F.;(1)求证:ABF FCE(2)若AB=AD=4,求EC的长.24.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)如图1,当点E在线段AC上时,求证:△DEC∽△DFB.(2)当点E在线段AC的延长线上时,(1)中的结论是否仍然成立?若成立,请结合图2给出证明;若不成立,请说明理由;(3)若AC BC=DF=,请直接写出CE的长.参考答案1.A【解析】3==.故选A .考点:二次根式的化简2.D【分析】根据二次根式和分式有意义的条件可得x ﹣2>0,再解即可.【详解】解:由题意得:x ﹣2>0,解得:x >2,故选:D.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.3.B【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意, 把一元二次方程2304y y --=配方得:22113()()0224y ---=, 即21()102y --=,∴化成2()x a b +=的形式为21()12y -=.故选:B .【点睛】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.A【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:①×24,故此选项错误;=,正确;,故此选项错误;5,故此选项错误;故选:A.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5.C【分析】依据比例的基本性质,依次判断即可.【详解】解:A.由34ab =,可得4a =3b ,故本选项正确;B.由74a b b +=可得ab +1=74,即34ab =,故本选项正确;C.由4a =3b 可得a b =43,故本选项错误;D.由aa b +=37可得3b =4a ,即34a b =,故本选项正确;故选:C.【点睛】本题主要考查了比例的基本性质.6.B【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE∥FG∥BC,DF=2FB,∴DF EG2FB GC1==,故A正确;∴BF•EG=DF•GC,故C正确;∴DF FBEG GC=,故D正确;故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.7.D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=12AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.8.C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.9.A【分析】求出方程的解,即可得出三角形三边长,看看是否符合三角形三边关系定理即可.【详解】解:x2﹣16x+55=0,(x﹣11)(x﹣5)=0,x﹣11=0,x﹣5=0,x1=11,x2=5,①当三角形的三边是4,7,11,此时4+7=11,不符合三角形三边关系定理,②当三角形的三边是4,7,5,此时符合三角形三边关系定理,三角形的周长是4+7+5=16,故选:A.【点睛】本题考查了三角形三边关系定理,解一元二次方程的应用,关键是求出三角形的三边长.10.D【分析】根据轴对称判断出点M变换后在x轴下方,然后求出点M纵坐标,再根据平移的距离求出点M变换后的横坐标,最后写出坐标即可.【详解】解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为-2,横坐标为2﹣2019×1=﹣2017,∴点M的坐标变为(﹣2017,-2),故选:D.【点睛】本题考查了坐标与图形变化-平移,读懂题目信息,确定出连续2019次这样的变换得到点在x轴下方是解题的关键.11.1 2【分析】根据同类二次根式的定义得出方程x+2=3﹣x,求出方程的解即可. 【详解】解:由题意,得x+2=3﹣x解得x=1 2 .故答案是:1 2 .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.12.2 3【分析】依据比例的基本性质,即可得到2x=y,进而得出23x yy z++的值.【详解】解:∵x:y=1:2,∴2x=y,又∵2y=3z,∴23x yy z++=2y yy y++=23,故答案为:2 3 .【点睛】本题主要考查了比例的基本性质,根据性质变换求解即可.13.1或﹣2【分析】设a2+a+1=t,则原方程为t2﹣2t﹣3=0,利用因式分解法解方程求得t的值,然后再求关于a的一元二次方程即可.【详解】解:设a2+a+1=t,则原方程为t2﹣2t﹣3=0,所以(t﹣3)(t+1)=0.解得t=3或t=﹣1.所以a2+a+1=3,或a2+a+1=﹣1.所以a2+a﹣2=0或a2+a+2=0(无解).所以(a﹣1)(a+2)=0解得a=1或﹣2.故答案是:1或﹣2.【点睛】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.14.1【分析】延长CM交AB于H,证明△AMH≌△AMC,根据全等三角形的性质得到AH=AC=6,CM=MH,根据三角形中位线定理解答.【详解】解:延长CM交AB于H,∵AM平分∠BAC,∴MAH MAC ∠=∠在△AMH 和△AMC 中,MAH MAC AM AMAMH AMC 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△AMH ≌△AMC(ASA)∴AH =AC =6,CM =MH ,∴BH =AB ﹣AH =2,∵CM =MH ,CN =BN ,∴MN =12BH =1, 故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.15.4或167【分析】首先设t 秒钟△ABC 与以A 、P 、Q 为顶点的三角形相似,则AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,然后分两种情况当△ABC ∽△APQ 和当△ACB ∽△APQ 讨论.【详解】解:设运动时间为t 秒.AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,当△ABC ∽△APQ ,AP AQ AB AC=, 即2163816t t -=, 解得t =167; 当△ACB ∽△APQ ,AP AQ AC AB=,即2163 168t t-=,解得t=4,故答案为4或16 7.【点睛】本题考查了相似三角形的判定与性质,注意数形结合思想与分类讨论思想.16.【分析】先利用平方差公式、完全平方公式和二次根式的除法法则运算,然后合并即可. 【详解】解:原式=﹣3÷﹣(3﹣=2×(3﹣1)﹣3﹣=4+3﹣4.【点睛】此题主要考查了二次根式的混合运算,熟悉相关性质是解题的关键.17.(1)x1=4,x2=﹣12;(2)x1=12,x2=﹣34.【分析】(1)利用因式分解法求解即可;(2)开方,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:(1)2x2﹣7x﹣4=0,(x﹣4)(2x+1)=0,∴x﹣4=0或2x+1=0,∴x1=4,x2=﹣12;(2)x2+4x+4=(3x+1)2,(x+2)2=(3x+1)2,(x+2)=±(3x+1),解得:x1=12,x2=﹣34.【点睛】本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.18.(1)见解析;A1(0,0),B1(3,1),C1(2,3);(2)见解析;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)见解析,A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【分析】(1)将三角形的三点沿y轴正向平移2个单位,即是向上平移两个单位后得到新点,顺次连接得到新图;(2)分别将A,B,C向y轴作垂线,找对应点,顺次连接得到新图形;(3)延长BC、BA,并使其到点B的距离是他们的二倍,找到对应点A3,C3,然后顺次连接,即可得到新图.【详解】解:(1)如图所示,△A1B1C1即为所求;A1(0,0),B1(3,1),C1(2,3);(2)如图所示,△AB2C2即为所求;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)如图所示,△AB2C2即为所求;A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【点睛】本题主要考查了平移,轴对称,位似放大变换作图.注意:位似图形的对应点到位似中心的距离之比等于相似比.19.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x=﹣135﹣(﹣2)=﹣35.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k值.20.这两年中获奖人次的年平均年增长率为50%.【分析】设这两年中获奖人次的平均年增长率为x,根据到九年级毕业时累计共有228人次获奖,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=228,解得:x1=12=50%,x2=﹣72(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为50%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.旗杆AB的高度是11米.【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)27;(2)证明见解析;(3)FC FH =5. 【分析】(1)由四边形ABCD ,AEFG 是正方形,得到∠BAC =∠GAF =45°,于是得到∠BAF+∠FAC =∠FAC+∠GAC =45°,推出∠HAG =∠BAF =18°,由于∠DAG+∠GAH =∠DAC =45°,于是得到结论;(2)由四边形ABCD ,AEFG 是正方形,推出AD AC =AG AF =2,得AD AC =AG AF ,由于∠DAG =∠CAF ,得到△ADG ∽△CAF ,列比例式即可得到结果;(3)设BF =k ,CF =2k ,则AB =BC =3k ,根据勾股定理得到AF =k ,AC AB =k ,由于∠AFH =∠ACF ,∠FAH =∠CAF ,于是得到△AFH ∽△ACF ,得到比例式即可得到结论.【详解】解:(1)∵四边形ABCD ,AEFG 是正方形,∴∠BAC =∠GAF =45°,∴∠BAF+∠FAC =∠FAC+∠GAC =45°,∴∠HAG =∠BAF =18°,∵∠DAG+∠GAH =∠DAC =45°,∴∠DAG =45°﹣18°=27°,故答案为:27.(2)∵四边形ABCD ,AEFG 是正方形,∴AD AC =2,AG AF =2, ∴AD AC =AG AF, ∵∠DAG+∠GAC =∠FAC+∠GAC =45°,∴∠DAG =∠CAF ,∴△AFC ∽△AGD ;(3)∵BF FC =12, 设BF =k ,∴CF =2k ,则AB =BC =3k ,∴AF ,AC AB =,∵四边形ABCD ,AEFG 是正方形,∴∠AFH =∠ACF ,∠FAH =∠CAF ,∴△AFH ∽△ACF , ∴AF FH AC CF=,∴FCFH =5. 【点睛】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,找准相似三角形是解题的关键.23.(1)证明见解析;(2. 【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩, ∴ABF FCE ~;(2)设EC x =,由翻折的性质得:4AFAD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~, ∴CF ECAB BF=2x =,解得x =即3EC =. 【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)证明见解析;(2)成立,理由见解析;(3)CE =CE . 【分析】(1)首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(2)方法和(1)一样,首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(3)由(2)的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出EF ,再利用勾股定理,分三种情形分别求解即可.【详解】(1)证明:如图1中,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(2)结论成立.理由:如图2中,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∴∠DCE=∠A+90°,∠DBF=∠A+90°,,∴∠DCE=∠DBF,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(3)∵∠ACD=∠B,∠ADC=∠BDC,∴△ADC∽△CDB∴CDBD=ACBC=12,由(2)有,△CDE∽△BDF,∵DEDF=DCBD=12,∴ADCD=AECF=DEDF=12,∴CF=2AE,在Rt△DEF中,DE=,DF=,∴EF,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=CE),EF=,根据勾股定理得,CE2+CF2=EF2,∴CE2CE)]2=40∴CE=CE(舍)而AC CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=,EF=,根据勾股定理得,CE2+CF2=EF2,∴CE22=40,∴CE,或CE=﹣舍),③如图3中,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE,EF=,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE2=40,∴CE=CE(舍)即:CE=CE.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题.。
华师大版九年级数学第一学期期中检测题(含答案)
——第一学期九年级数学科期中检测题时间:100分钟 满分:100分 得分:一、选择题(每小题2分,共20分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1. 化简2)3(-的结果是A. 9B. -3C. 3D. ±3 2.下列二次根式中, 与32是同类二次根式的是 A. 12 B. 18 C. 23D. 48 3. 下列计算正确的是A .2553=-B .532=+C .326=÷D .3226=⨯ 4. 下列各组长度的线段,成比例线段的是A. 1cm, 2cm, 3cm ,6cmB. 3cm, 4cm, 5cm, 6cmC. 2cm, 4cm, 6cm, 8cmD. 10cm, 5cm, 6cm, 4cm A. 1 B. 2 C. 3 D. 4 6. 如图1,△ADB 与△AEC 相似,AB=3,DB=2,EC=6,则BC 等于A. 9B. 6C. 5D. 47.如果-4是一元二次方程c x =2的一个根,那么常数c 是A. 16B. ±4C. 4D. -168.用配方法解方程0162=--x x , 经过配方,得到A .()1032=+xB .()132=-xC .()432=-xD .()1032=-x 9. 下列方程中,两根分别为-2和3的方程是A .062=--x xB .0562=+-x xC .062=-+x xD .0652=--x x10.某药品经过两次降价,每瓶零售价比原来降低了36%,则平均每次降价的百分率是A .18%B .20%C .30%D .40%二、填空题(每小题3分,共24分)11.在函数x y 23-=中,自变量x 的取值范围是 . 12.计算:2045-= .13.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积. . 14.在比例尺为1:500000的地图上,量得甲、乙两地的距离是12厘米,则两地实际距离是 米.15. 已知312=-b b a ,则=b a .16.已知关于x 的方程022=+-m x x 的一个根是21-=x ,那么=m . 17.如图2,某单位在直角墙角处,用可建60米长围墙的建筑材料围成一个矩形堆物场地,中间 用同样的材料分隔为两间,问AB 为多长时,所 围成的矩形面积是450平方米.设AB 的长为x 米, 则可列方程为 . 18. 如图3,点P 把线段AB 分成两条线段AP 和BP ,× = 墙墙ABCDF E图2ABP图3如果AB AP AP PB =,那么称线段AB 被点P 黄金分割,AP 与AB 的比叫做黄金比.这个黄金比为 . 三、解答题(共56分)19. 计算(每小题4分,共12分) (1) 10218⨯ ; (2))2318(72-- ;(3) 624654--.20. 解下列方程(每小题6分,共12分)(1))3(4)3(2+=+x x ; (2)4)2(=+-y y y .21.(7分)如图4,四边形ABCD 和EFGH 相似,求∠α、∠β的大小和EH 的长度x .22.(7分)阅读下面的文字后,解答问题.某同学作业上做了这样一道题:“当=a 时,试求122+-+a a a 的值.”其中 是被墨水弄污的. 该同学所求得的答案为21,请你判断该同学答案是否正确,说出你的道理.23.(8分)将进货单价为40元的商品按50元售出时,就能卖出500个. 已知这种商品每图4AB DC18cm21cm78° 83° F 24cmEGH 118°个涨价2元,其销售量将减少20个,问为了赚得8000元,售价应定为多少?这时应进货多少个?24. (10分)已知:如图5所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm. 两个动点P、Q分别从B、C两点同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ 的长度等于5厘米?(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.QB图52007—2008学年度第一学期九年级数学科期中检测题参考答案一、CBDAC BADCB二、11.23≤x 12. 5 13.答案不唯一.( 如:3×32=6,(13-)×(13+)=2,…)14.60000 15.35 16.-1 17.x(x-2x)=450 18.251+- 三、19.(1)53;(2)229;(3)262+ . 20.(1)x 1=-3,x 2=1;(2)2171±=y . 21. ∠β=81°,∠α=83°,x=28.22.不正确,当1<a 时,21111122≠=-+=-+=+-+a a a a a a a ;当1≥a 时,211121122>≥-=-+=+-+a a a a a a .因此,该同学所求得的答案为21肯定是不正确的.23.设商品的单价是(50+x)元,则每个商品的润是[(50+x)-40]元,销售量是(500-10x)个.由题意,得[(50+x)-40](500-10x)=8000,即 x 2-40x+300=0,解得x 1=10,x 2=30故商品的单价可定为50+10=60元或50+30=80元.当商品每个单价定为60元时,其进货量只能是500-10×10=400个,当商品每个单价为80元时,其进货量只能是500-10×30=200个,24. (1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x. 由题意,得 42)5(21=⋅-x x ,整理,得x 2-5x+4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去.即经过1秒后,△PCQ 的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t)2+(2t)2=52.整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去).答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2.由题意,得1175212)5(21-⨯⨯=⋅-m m .整理,得m 2-5m+6.5=0. ∵△=(-5)2-4×6.5=-1<0, ∴方程没有实数根.即四边形ABPQ 的面积不可能等于11厘米2.。
(华师大版)初中数学九年级上册 期中测试 (含答案)
期中测试一、选择题(共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点(1,2)M -与点N 关于原点对称,则点N 的坐标为( ) A .()2,1-B .()1,2-C .()2,1-D .()1,2-2.已知m 是方程2270x x +-=的一个根,则代数式22m m +=( )A .7-B .7CD .3.如图,点A 为函数()0ky x x=>图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果AOB △的面积为2,那么k 的值为( )A .1B .2C .3D .44.如图,将ABC △绕点C 顺时针方向旋转40︒,得''A B C △,若''AC A B ⊥,则A ∠等于( )A .50︒B .60︒C .70︒D .80︒5.将抛物线2y x =向上平移2个单位后,所得的抛物线的函数表达式为( ) A .2y x 2=+B .22y x =-C .()22y x =+D .()22y x =-6.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( )A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短7.如图,某人从O 点沿北偏东30︒的方向走了20米到达A 点,B 在O 点的正东方,且在A 的正南方,则此时AB 间的距离是( )A .10米B .米C .D 米 8.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是( )A .15x -<<B .5x >C .1x -<且5x >D .1x -<或5x >9.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是( ) A .()115n n -=B .()115n n +=C .()130n n -=D .()130n n +=10.有两个全等的含30︒角的直角三角板重叠在一起,如图,将A B C '''△绕AC 的中点M 转动,斜边A B ''刚好过ABC △的直角顶点C ,且与ABC △的斜边AB 交于点N ,连接AA '、C C '、AC '.若AC 的长为2,有以下五个结论:①1AA '=;②C C A B '⊥'';③点N 是边AB 的中点;④四边形AACC ''为矩形;⑤12A NBC '='=,其中正确的有( )A .2个B .3个C .4个D .5个二、填空题(共6小题,每小题4分,满分24分) 11.若22(2) 10mm x mx ---+=是一元二次方程,则m 的值为________.12.在①正方形;②长方形;③等边三角形;④线段;⑤锐角;⑥平行四边形中,绕某个点旋转180︒后能与自身重合的有________个.13.已知两个相似三角形相似比是3:4,那么它们的面积比是________.14.抛物线2()0y ax bx c a =++>过点()1,0-和点()0,3-,且顶点在第四象限,则a 的取值范围是________.15.直角三角形两直角边的长分别为x ,y ,它的面积为3,则y 与x 之间的函数关系式为________. 16.如图,一段抛物线()(5)05y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;…如此进行下去,得到一“波浪线”,若点()2018,P m 在此“波浪线”上,则m 的值为________.三、解答题(共9小题,满分86分) 17.(8分)计算:2cos30sin45tan60︒+︒-︒.18.(8分)如图,ABC △中,DE BC ∥,如果2AD =,3DB =,4AE =,求AC 的长.19.(8分)解下列方程: (1)()()3323x x x +=+ (2)22630x x --=20.(8分)如图,在平面直角坐标系xOy 中,直线1y x =+与双曲线ky x=的一个交点为(),2P m . (1)求k 的值;(2)()2,M a ,(),N n b 是双曲线上的两点,直接写出当a b >时,n 的取值范围.21.(8分)已知关于x 的一元二次方程22(20)1m m x mx --+=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为整数且3m <,a 是方程的一个根,求代数式22212324a a a +--+的值.22.(10分)如图,已知ABC △和AEF △中,B E ∠=∠,AB AE =,BC EF =,25EAB ∠=︒,57F ∠=︒; (1)请说明EAB FAC ∠=∠的理由;(2)ABC △可以经过图形的变换得到AEF △,请你描述这个变换; (3)求AMB ∠的度数.23.(10分)如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF DE ⊥交BC 于点F ,连接DF ,已知4cm AB =,2cm AD =,设A ,E 两点间的距离为cm x ,DEF △面积为2cm y . 小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整: (1)确定自变量x 的取值范围是________;(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如表:(说明:补全表格时相关数值保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF △面积最大时,AE 的长度为________cm .24.(12分)如图,90BAD ∠=︒,AB AD =,CB CD =,一个以点C 为顶点的45︒角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC . (1)在FCE ∠旋转的过程中,当FCA ECA ∠=∠时,如图1,求证:AE AF =;(2)在FCE ∠旋转的过程中,当FCA ECA ∠≠∠时,如图2,如果30B ∠=︒,2CB =,用等式表示线段AE ,AF 之间的数量关系,并证明.图1图225.(14分)把函数21230()C y ax ax a a =--≠:的图象绕点0(),P m 旋转180︒,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(0)t ,. (1)填空:t 的值为________(用含m 的代数式表示)(2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90︒,得到它的对应线段A D '',若线A D ''与2C 的图象有公共点,结合函数图象,求a 的取值范围.期中测试 答案解析一、 1.【答案】D【解析】解:点2(1,)M -与点N 关于原点对称, 点N 的坐标为()1,2-, 故选:D . 2.【答案】B 【解析】解:m 是方程2270x x +-=的一个根,2270m m ∴+-=, 227m m ∴+=.故选:B . 3.【答案】D【解析】解:根据题意可知:122AOB S k ==△, 又反比例函数的图象位于第一象限,0k >, 则4k =. 故选:D . 4.【答案】A 【解析】解:如图,ACB △绕点C 顺时针方向旋转40︒得A CB ''△,点B 与B '对应,40BCB ACA ∴∠'=∠'=︒,A A ∠=∠',AC A B ⊥'',90CDA ∴∠'=︒,904050A ∴∠'=︒-︒=︒,50A A ∴∠=∠'=︒.故选:A .5.【答案】A【解析】解:抛物线2y x =向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为22y x =+.故选:A . 6.【答案】A【解析】解:小亮在路灯下由远及近向路灯靠近时,其影子应该逐渐变短,故选:A . 7.【答案】B【解析】解:根据题意知60AOB ∠=︒、20OA =(米),则sin 20sin 6020AB OA AOB =∠=︒=, 故选:B . 8.【答案】D【解析】解:由对称性得:抛物线与x 轴的另一个交点为()1,0-, 由图象可知不等式20ax bx c ++<的解集是:1x -<或5x >, 故选:D .9.【解析】解:设有n 支球队参加篮球比赛,则此次比赛的总场数为12()1n n -场,根据题意列出方程得:52()111n n -=,整理,得:即1(30)n n -=,故选:C .10.【解析】解:①点M 是线段AC 、线段AC ''的中点,2AC =,1AM MC A M MC ∴=='='=,30MAC ∠'=︒,30MCA MAC ∴∠'=∠'=︒,1803030120A MC ∴∠'=︒-︒-︒=︒,180********A MA A MC ∴∠'=︒-'=︒-︒=︒,60AMA C MC ∴∠'=∠'=︒, AA M ∴'△是等边三角形,1AA AM ∴'==,故①正确;②30ACM ∠'=︒,60MCC ∠'=︒,90ACA ACM MCC ∴∠'=∠'+∠'=︒,CC AC ∴'⊥',故②正确;③30ACA NAC ∠'=∠=︒,60BCN CBN ∠=∠=︒,AN NC NB ∴==,故③正确;④AA M C CM ''△≌△,AA CC ∴'=',60MAA C CM ∠'=∠'=︒,AA CC ∴''∥,∴四边形AACC ''是平行四边形,90AAC AA M MAC ∠'=∠'+∠'=︒,四边形AACC ''为矩形,故④正确;⑤12AN AB == 30NAA ∠'=︒,90AA N ∠'=︒,12'A N AN ∴=故选:C . 二、11.【答案】2-【解析】解:根据题意得:22022m m -≠⎧⎪⎨-=⎪⎩, 解得:2m =-. 故答案是:2-. 12.【答案】4【解析】解:①正方形是中心对称图形; ②长方形是中心对称图形; ③等边三角形不是中心对称图形; ④线段是中心对称图形; ⑤锐角,不是中心对称图形; ⑥平行四边形是中心对称图形; 所以,①②④⑥共4个. 故答案为:4. 13.【答案】9:16【解析】解:两个相似三角形的相似比是3:4,∴它们的面积为9:16.故答案为9:16. 14.【答案】03a <<【解析】解:抛物线2()0y ax bx c a =++>过点()1,0-和点()0,3-,3a b c c -+=⎧∴⎨=-⎩,所以,3a b -=,3b a =-,顶点在第四象限,202404b aac b a ⎧-⎪⎪∴⎨-⎪⎪⎩><, 即302a a-->①,24(3)(3)04a a a⋅---<②,解不等式①得,3a <, 不等式②整理得,()230a +>, 所以,3a ≠-,所以,a 的取值范围是03a <<. 故答案为:03a <<. 15.【答案】6y x=【解析】解:根据题意知132xy =, 则6xy =,6y x∴=, 故答案为:6y x=. 16.【答案】6-【解析】解:一段抛物线:()(5)05y x x x =--≤≤,∴图象与x 轴交点坐标为:()0,0,()5,0,将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ; 将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ; …如此进行下去,由201854033÷=可知抛物线404C 在x 轴下方,∴抛物线404C 的解析式为()()20152020y x x =--,()2018,P m 在第404段抛物线404C 上,()()20182015201820206m ∴=--=-.故答案为6-.三、17.【答案】解:原式222=⨯+2=,=.18.【答案】解:DE BC ∥,AD AE DB EC ∴=,即243EC=, 解得:6EC =,4610AC AE EC ∴=+=+=;19.【答案】解:(1)()()3323x x x +=+,()()3320x x ∴+-=,3x ∴=-或23x =. (2)22630x x --=,2a ∴=,6b =-,3c =-,362460∴=+=△,x ∴=. 20.【答案】解:(1)直线1y x =+与双曲线k y x =的一个交点为(),2P m .212m k m =+⎧⎪∴⎨=⎪⎩1m ∴=,2k =(2)2k =,∴双曲线每个分支上y 随x 的增大而减小,当N 在第一象限时,a b >,2n ∴>,当N 在第三象限时,0n ∴<,综上所述:2n >或0n <.21.【答案】解:(1)由题意有:()2220440m m m m m ⎧-≠⎪⎨--⎪⎩>, 解得0m >且1m ≠;(2)0m >且1m ≠,而m 为小于3的整数,2m ∴=,当2m =时,方程化为22410x x -+=, a 是方程的一个根,22410a a ∴-+=,即2241a a =-,∴原式41141324a a a -+=---+ 12a a =--+1=.22.【答案】解:(1)B E ∠=∠,AB AE =,BC EF =,ABC AEF ∴△≌△,C F ∴∠=∠,BAC EAF ∠=∠,BAC PAF EAF PAF ∴∠-∠=∠-∠,25BAE CAF ∴∠=∠=︒;(2)通过观察可知ABC △绕点A 顺时针旋转25︒,可以得到AEF △;(3)由(1)知57C F ∠=∠=︒,25BAE CAF ∠=∠=︒,572582AMB C CAF ∴∠=∠+∠=︒+︒=︒.23.【答案】(1)04x ≤<(2)3.8 4.0(3)描点,连线,画出如图所示的图象:(4)0 2【解析】解:(1)点E 在AB 上,04x ∴≤<,故答案为:04x ≤<;(2)四边形ABCD 是矩形,2BC AD ∴==,4CD AB ==,90A B ∠=∠=︒,90ADE AED ∴∠+∠=︒,EF DE ⊥,90AED BEF ∴∠+∠=︒,ADE BEF ∴∠=∠,90A B ∠=∠=︒,ADE BEF ∴△∽△,90A B ∠=∠=︒,ADE BEF ∴△∽△,AD AE BE BF∴=, AE x =,4BE AB AE x ∴=-=-,24x x BF∴=-, (4)2x x BF -∴=, 当1x =时,32BF =, 22312CF BC BF ∴=-=-=, 11311282134 3.75 3.22822ADE BEF CDF ABCD y S S S S =---=-⨯⨯-⨯⨯-⨯⨯=≈△△△矩形, 当2x =时,2BF =,0CF BC BF ∴=-=,此时,点F 和点C 重合,1182222 4.022ADE BEF ABCD y S S S =--=-⨯⨯-⨯⨯=△△矩形 故答案为:3.8,4.0(3)描点,连线,画出如图所示的图象:(4)由图象可知,当0x =或2时,DEF △面积最大,即:当DEF △面积最大时,0AE =或2,故答案为0,2.24.【解析】(1)证明:AB AD =,CB CD =,AC AC =,()ABC ADC SSS ∴△≌△,45BAC DAC ∴∠=∠=︒,135FAC EAC ∴∠=∠=︒,FCA ECA ∠=∠,()ACF ACE ASA ∴△≌△,AE AF ∴=.(2)证明:作CG AB ⊥于G .2BC =,30B ∠=︒,112CG BC ∴==, 1AG AC ==,AC ∴135FAC EAC ∠=∠=︒,45ACF F ∴∠+∠=︒,45ACF ACE ∠+∠=︒,F ACE ∴∠=∠,ACF AEC ∴△∽△AC AF AE AC∴=, 2AC AE AF ∴=⋅,2AE AF ∴⋅=.图1 图2 25.【解析】解:(1)()2212314C y ax ax a a x a =--=--:,顶点()1,4a -围绕点(),0P m 旋转180︒的对称点为()21,4m a -, ()22214C y a x m a =--++:,函数的对称轴为:21x m =-, 21t m =-,故答案为:21m -;(2)1a =-时,()2114C y x =--+: ①当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值()2114y t =--+,则()212151414y y t -=--+-=,无解; ②312t ≤≤时, 1x =时,有最大值14y =,12x =时,有最小值()2214y t =--+, 12114y y -=≠(舍去); ③当32t >时, 1x =时,有最大值14y =,x t =时,有最小值()2214y t =--+,()21211y y t -=-=,解得:0t =或2(舍去0),故()222244C y x x x =--=-:;(3)0m =, ()2214C y a x a =-++:,点A 、B 、D 、A '、D '的坐标分别为()1,0、()3,0-、()0,3a 、()0,1、()3,0a -, 当0a >时,a 越大,则OD 越大,则点D '越靠左,当2C 过点A '时,()20141y a a =-++=,解得:13a =, 当2C 过点D '时,同理可得:1a =, 故:103a <≤或1a ≥;当0a <时,当2C 过点D '时,31a -=,解得:13a =-, 故:13a -≤; 综上,故:103a <≤或1a ≥或13a -≤.。
华师大版九年级上册数学期中考试试卷及答案
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列式子属于最简二次根式的是()A B C>0) D2a的取值范围是()A.a≥-1 B.a≠2C.a≥-1且a≠2D.a>23.若关于x的方程kx2﹣3x﹣94=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1 C.k≥﹣1且k≠0D.k>﹣14.若关于x的一元二次方程2x2x k10--+=有两个不相等的实数根,则一次函数y kx k=-的大致图象是()A.B.C.D.5.如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE 并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.26.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个7.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .68.在平面直角坐标系中,以原点O 为位似中心,把△ABC 放大得到△A 1B 1C 1,使它们的相似比为1:2,若点A 的坐标为(2,2),则它的对应点A 1的坐标一定是( ) A .(﹣2,﹣2)B .(1,1)C .(4,4)D .(4,4)或(﹣4,﹣4)9.如图所示,ABC 的顶点是正方形网格的格点,则sin A 的值为( )A .12BCD 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠A .4个B .3个C .2个D .1个二、填空题11_____.12.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm变成了2cm,那么它的面积会由原来的6cm2变为________.13.如图,在平行四边形ABCD中,AB=3,AD=4 ,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为________.14.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.15.已知a,b为直角三角形两边的长,满足2a40-,则第三边的长是_三、解答题16.(1)计算:(12)-2)0(2)解方程:2x2+5x=3.17.已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为2,求m的值及方程的另一个根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.18.阅读下列材料,并解决相应问题:222===应用:用上述类似的方法化简下列各式:;(2)若a 3a的值.19.已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.20.如图,面积为48cm2的正方形,四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的体积.21.如图,点C在△ADE的边DE上,AD与BC相交于点F,∠1=∠2,AB AD AC AE=.(1)试说明:△ABC ∽△ADE;(2)试说明:AF•DF=BF•CF.22.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.23.已知:如图,ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1/cm s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间()t s,解答下列各问题:()1经过25秒时,求PBQ△的面积;()2当t为何值时,PBQ△是直角三角形?()3是否存在某一时刻t,使四边形APQC的面积是ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.参考答案1.B【解析】分析:根据最简二次根式的定义即可求出答案.详解:A.原式A不是最简二次根式;B.是最简二次根式;C.原式=C不是最简二次根式;D.原式D不是最简二次根式;故选B.点睛:本题考查了最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.C【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,a10,a2+≥≠解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.3.B【分析】讨论: ①当k=0时,方程化为一次方程, 方程有一个实数解; 当k≠0时,方程为二次方程,Δ≥0,然后求出两个中情况下的的公共部分即可.【详解】解:①当k=0时,方程化为-3x-94=0,解得x=34;当k≠0时,Δ=29(3)4()4k --⨯⨯-≥0,解得 k≥-1,所以k 的范围为k≥-1.故选B.【点睛】本题主要考查一元二次方程根的判别式,注意讨论k 的取值.4.B【分析】首先根据一元二次方程有两个不相等的实数根确定k 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】∵关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k +1)>0,即k >0,∴﹣k <0,∴一次函数y =kx ﹣k 的图象位于一、三、四象限.故选B .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k 的取值范围,难度不大.5.C【分析】作DH ∥BF 交AC 于H ,根据等腰三角形的性质得到BD=DC ,得到FH=HC ,根据平行线分线段成比例定理得到HF DE 2FA EA==,计算即可. 【详解】解:作DH ∥BF 交AC 于H ,∵AB=AC ,AD ⊥BC ,∴BD=DC ,∴FH=HC ,∵DH ∥BF , ∴HF DE 2FA EA==, ∴AF=15AC=2.4.故选C.【点睛】考查的是等腰三角形的性质、平行线分线段成比例定理,掌握等腰三角形的三线合一、平行线分线段成比例定理是解题的关键.6.B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.7.A【详解】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.8.D【解析】【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9.B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为1,∵∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt ADC 中,AC =,CD =,则sin CD A AC ===故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.10.B【解析】试题解析:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F ,∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE =12AD =12BC , ∴12AF CF =,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有2b a a b =,即b ,∴tan ∠CAD =2CD b AD a ==.故④不正确; 故选B .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.11【详解】解:原式 12.24cm 2【解析】【分析】复印前后的多边形按照比例放大或缩小,因此它们是相似多边形,按照相似多边形的性质求解即可.【详解】由题意可知,相似多边形的边长之比=相似比=1:2,∴面积之比=(1:2)2=1:4,∴它的面积会由原来的6cm2变为:6×4=24cm2,故答案为:24cm2.【点睛】本题考查的知识点是相似多边形的性质,解题的关键是熟练的掌握相似多边形的性质. 13.【详解】试题分析:由两线段平行,同位角相等,即可证出三角形相似,根据相似三角形的对应边成比例,结合已有的量即可解决本题.解:∵四边形ABCD为平行四边形,∴AB=CD=3,BC∥AD,∵E为BC上一点,∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴==,又∵CD=3,CF=1,AD=4,∴CE=,故答案为.考点:相似三角形的判定与性质;平行四边形的性质.14.50°或90°【详解】分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.详解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为50°或90°.点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.15.【分析】根据非负数的性质可求出a 和b 的值,再分别讨论不同的斜边情况下的第三边长.【详解】∵2a 40-≥0,2a 40-+=∴2a 4=0-解得a=2或2-,b=2或3,因为a 、b 为边长,则a=-2舍去.当a=2,b=2当a=2,b=3若b 为斜边,a综上,第三边的长是【点睛】本题考查非负数的性质,注意题目没有说明直角边斜边的情况,需要进行分类讨论. 16.(1)1;(2)x 1=12,x 2=-3. 【分析】(1)根据负指数,算术平方根,零次幂和三角函数值的运算进行计算即可.(2)将方程变为一般式,利用求根公式解方程.【详解】解:(1)原式=2-1=1. (2)解:2x 2+5x -3=0,这里a =2,b =5,c =-3,∵b 2-4ac =49>0,∴x =574-±, 则x 1=12,x 2=-3. 【点睛】本题考查实数的混合运算和解一元二次方程,实数的运算需要记住几个常考点:负指数、算术平方根、零次幂和特殊角度的三角函数.17.(1)m=﹣13,x1=-53;(2)见解析.【解析】【分析】(1)把x=2代入原方程求得m的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】解:(1)将x=2代入方程x2+mx+m﹣3=0得4+2m+m﹣3=0,解得m=﹣13,方程为x2﹣13x﹣103=0,即3x2﹣x﹣10=0,解得x1=-53,x2=2故答案为m=﹣13,另一个根为-53(2)∵△=m2﹣4(m﹣3)=m2﹣4m+12=(m﹣2)2+8>0,∴不论m取何实数,该方程都有两个不相等的实数根.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.【分析】(1)直接找出分母有理化因式进而化简求出答案;(2)直接表示出a的值,进而化简求出答案.【详解】(2).∵∴3∴=3.a【点睛】此题主要考查了分母有理化,正确表示出有理化因式是解题关键.19.(1)见解析;(2)DC=1或DC=2.【解析】试题分析:(1)△ABC是等边三角形,得到∠B=∠C=60°,AB=AC,推出∠BAD=∠CDE,得到△ABD∽△DCE;(2)由△ABD∽△DCE,得到=,然后代入数值求得结果.(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)解:由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,∴DC=1或DC=2.考点:相似三角形的判定与性质.20.3【分析】由大正方形的面积可求出边长,再由小正方形面积求出边长,然后由底面积乘以高得到盒子体积.【详解】解:∵大正方形面积为48cm2,∴,∵小正方形面积为3cm2,∴,∴长方体盒子的体积=(23.【点睛】本题考查二次根式的计算,根据条件找出盒子的底面边长,和高是关键.21.(1)见解析;(2)见解析.【分析】(1)由∠1=∠2易得∠BAC=∠DAE,再根据对应边成比例,可判定相似;(2)由△ABC ∽△ADE得到∠B=∠D,再由对顶角相等可得△ABF ∽△CDF,最后列出比例式得出结论.【详解】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵ABAC=ADAE,∴ABAD=ACAE,∴△ABC ∽△ADE;(2)证明:∵△ABC ∽△ADE,∴∠B=∠D,∵∠BFA =∠DFC,∴△ABF ∽△CDF,∴BFDF=AFCF,∴AF•DF=BF•CF.【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形的判定定理是解题的关键. 22.(1)见解析(2)当1AC AB2=或AB=2AC时,四边形DCBE是平行四边形.【分析】(1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB.(2)当1AC AB2=或AB=2AC时,四边形DCBE是平行四边形.若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°进而得到∠B=30°,再根据三角函数可推出答案.【详解】解:(1)证明:连结CE,∵点E为Rt△ACB的斜边AB的中点,∴CE=12AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,AD DC {DE DE AE CE===,∴△ADE≌△CDE(SSS)∴∠ADE=∠CDE=30°∵∠DCB=150°∴∠EDC+∠DCB=180°∴DE∥CB(2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=ACAB,即sin30°=AC1AB2=∴1AC AB 2=或AB=2AC . ∴当1AC AB 2=或AB=2AC 时,四边形DCBE 是平行四边形. 【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.23.(1)50;(2)当1t =秒或2t =秒时,PBQ △是直角三角形(3)无论t 取何值,四边形APQC 的面积都不可能是ABC 面积的23. 【分析】(1)根据路程=速度×时间,求出BQ ,AP 的值,再求出BP 的值,然后利用三角形的面积公式进行解答即可;(2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP 中根据BP ,BQ 的表达式和∠B 的度数进行求解即可;(3)本题可先用△ABC 的面积-△PBQ 的面积表示出四边形APQC 的面积,即可得出y ,t 的函数关系式,然后另y 等于三角形ABC 面积的三分之二,可得出一个关于t 的方程,如果方程无解则说明不存在这样的t 值,如果方程有解,那么求出的t 值即可.【详解】()1经过25秒时,22AP cm BQ cm 55==,, ABC 是边长为3cm 的等边三角形,AB BC 3cm B 60,∠∴===, 213BP 3cm 55∴=-=,PBQ ∴的面积11132BP BQ sin B 2255∠=⋅⋅=⨯⨯= ()2设经过t 秒PBQ 是直角三角形,则AP tcm BQ tcm ==,, ABC 中,AB BC 3cm B 60∠===,,()BP 3t cm ∴=-, PBQ 中,()BP 3t cm BQ tcm ,=-=,若PBQ 是直角三角形,则BQP 90∠=或BPQ 90∠=,当BQP 90∠=时,1BQ BP 2=, 即()1t 3t t 1(2=-=,秒),当BPQ 90∠=时,1BP BQ 2=,13t t t 2(2,-==秒),答:当t 1=秒或t 2=秒时,PBQ 是直角三角形.() 3过P 作PM BC ⊥于M ,BPM 中,PMsin B PB ∠=,)PM PB sin B 3t ∠∴=⋅=-,)PBQ 11S BQ PM t 3t 22∴=⋅=⋅-,)2ABC PBQ 11y S S 3t 3t 22∴=-=⨯⨯-2=+y ∴与t 的关系式为2y t t 444=-+,假设存在某一时刻t ,使得四边形APQC 的面积是ABC 面积的23, 则ABC APQC 2S S 3=四边形,2221t 332=⨯⨯ 2t 3t 30∴-+=,2(3)4130--⨯⨯<,∴方程无解,∴无论t 取何值,四边形APQC 的面积都不可能是ABC 面积的23. 【点睛】:本题考查的是等边三角形的性质、直角三角形的判定与三角形面积公式,根据题意作出辅助线,利用数形结合求解是解答此题的关键.。
华东师大版九年级数学上册期中考试卷(附答案与解析)
华东师大版九年级数学上册期中考试卷(附答案与解析)(满分:120分;考试时长:90分钟)姓名班级学号成绩一.选择题(共8小题,满分24分,每小题3分)1.如图是一个机器的零件,则下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图均不相同2.175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.1.75×1011元D.17.5×109元3.若关于x的不等式(a+2020)x>a+2020的解为x<1,则a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20204.如图,在数轴上对应的点可能是()A.点A B.点B C.点C D.点D5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠C=34°,则∠ABD=()A.66°B.56°C.46°D.36°6.如图,为测量一根与地面垂直的旗杆AH的高度,在距离旗杆底端H10米的B处测得旗杆顶端A的仰角∠ABH=α,则旗杆AH的高度为()A.10sinα米B.10cosα米C.米D.10tanα米7.用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再是分别以E,F为圆心,以大于EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不正确的是()A.AF=DF B.∠BAD=∠CAD C.∠AFD=∠AED D.DE=DF8.如图,平面直角坐标系中,已知A(3,3),B(0,﹣1),将线段AB绕点A顺时针旋转90°得到线段AB′,点B'恰好在反比例函数y=的图象上,则k等于()A.6B.﹣6C.7D.﹣7二.填空题(共6小题,满分18分,每小题3分)9.分解因式:a2b﹣18ab+81b=.10.若关于x的一元二次方程ax2+3x+2=0有两个不相等的实数根,则a的取值范围为.11.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”中,如图是一个三阶幻方(即每行、每列、每条对角线上的三个数之和都相等),则x的值为.12.将等腰直角三角板ABC与量角器按如图方式放置,其中A为半圆形量角器的0刻度线,直角边BC与量角器相切于点D,斜边AB与量角器相交于点E,若量角器在点D的读数为120°,则∠DAE的度数是°.13.如图,正八边形ABCDEFGH内接于⊙O,点P是上的任意一点,则∠CPE的度数为.14.若点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上,则y1y2.三.解答题(共10小题,满分78分)15.先化简,再求值:(x+3)(x﹣3)+x(4﹣x),其中x=.16.某电脑公司现有A,B两种型号的甲品牌电脑和C,D,E三种型号的乙品牌电脑.树人中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,请用列表法或画树状图法求C型号电脑被选中的概率;(2)现知树人中学购买甲、乙两种品牌电脑共30台(价格如图所示),恰好用了10万元人民币,其中乙品牌电脑为C型号电脑,请直接写出购买的C型号电脑有台.17.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?18.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,2),B(3,4),C(4,1).(1)请画出与△ABC关于x轴对称的△A1B1C1;(2)△ABC绕O点逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出线段OA 在旋转过程中扫过的图形的面积.19.如图,在△ABC中,AB=AC,AE是中线,点D是AB的中点,连接DE,且BF∥DE,EF∥DB.(1)求证:四边形BDEF是菱形;(2)若AC=3,BC=2,直接写出四边形BDEF的面积.20.现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用表示5月份的方差;用表示3月份的方差,比较大小:;比较3月份与5月份,月份的更稳定.21.盐城市初级中学为了缓解校门口的交通堵塞,倡导学生步行上学.小丽步行从家去学校,图中的线段表示小丽步行的路程s(米)与所用时间t(分钟)之间的函数关系.试根据函数图象回答下列问题:(1)小丽家离学校米;(2)小丽步行的速度是米/分钟;(3)求出m的值.22.(1)如图①,矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心.直线l经过点O,与矩形的边AD,BC分别交于点M,N,请判断线段OM与ON的数量关系,并说明理由;(2)如图②,将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合,请判断直线l是否经过矩形ABCD的几何中心,并说明理由;(3)如图③,在(2)的条件下,AB=6,BC=8,在线段EF上有一点P,若点P到矩形ABCD一边的距离与OP的长都等于a,请直接写出a的所有可能的值.23.问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=;②直线AE与DF所夹锐角的度数为.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.24.如图1,直线y=ax2+4ax+c与x轴交于点A(﹣6,0)和点B,与y轴交于点C,且OC =3OB.(1)直接写出抛物线的解析式及直线AC的解析式;(2)抛物线的顶点为D,E为抛物线在第四象限的一点,直线AE解析式为y=﹣x﹣2,求∠CAE﹣∠CAD的度数.(3)如图2,若点P是抛物线上的一个动点,作PQ⊥y轴垂足为点Q,直线PQ交直线AC于E,再过点E作x轴的垂线垂足为R,线段QR最短时,点P的坐标及QR的最短长度.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:该几何体的主视图与左视图相同,底层是一个矩形,上层的中间是一个矩形;俯视图是两个同心圆.故选:A.2.解:175亿=175****0000=1.75×1010.故选:B.3.解:∵关于x的不等式(a+2020)x>a+2020的解为x<1∴a+2020<0解得:a<﹣2020.故选:B.4.解:∵1<3<4∴1<<2∴A点符合题意.故选:A.5.解:∵AB为⊙O的直径∴∠ADB=90°∴∠DAB+∠ABD=90°∵∠DAB=∠BCD=34°∴∠ABD=90°﹣34°=56°故选:B.6.解:∵BH=10m,∠ABH=α∴tanα=∴AH=BH•tanα=10tanα(米)故选:D.7.解:由基本作图方法可得:AF=AE,FD=DE在△AFD和△AED中∴△AFD≌△AED(SSS)∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D正确,不合题意;无法得出AF=DF故选项A错误,符合题意.故选:A.8.解:作AC⊥y轴于点C,B′D⊥AC于D,如图所示∵∠BAB′=90°,∠ACB=90°,AB=AB′∴∠BAC+∠ABC=90°,∠BAC+∠B′AD=90°∴∠ABC=∠B′AD∴△ABC≌△B′AD∴AC=B′D,BC=AD∵A(3,3),B(0,﹣1)∴BC=AD=4,AC=B′D=3∴CD=4﹣3=1∴B′(﹣1,6)∵点B'恰好在反比例函数y=的图象上∴k=﹣1×6=﹣6故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:a2b﹣18ab+81b=b(a2﹣18a+81)=b(a﹣9)2.故答案为:b(a﹣9)2.10.解:根据题意得a≠0且Δ=32﹣4×a×2>0 解得a<且a≠0即a的取值范围为a<且a≠0.故答案为:a<且a≠0.11.解:依题意得:4+3+8=8+5+x解得:x=2.故答案为:2.12.解:如图,连接OD、DF由D为切点可知:OD⊥BC∵AC⊥BC∴OD∥AC由题意可得:∠AOD=120°∴∠DOF=∠CAO=60°∴∠BAO=60°﹣45°=15°∵∠DAO=30°∴∠DAE=∠DAO﹣∠BAO=15°故答案为:15.13.解:连接OD、OC、OE,如图所示:∵八边形ABCDEFGH是正八边形∴∠COD=∠DOE==45°∴∠COE=45°+45°=90°∴∠CPE=∠COE=45°.故答案为:45°.14.解:∵点A(﹣,y1)、B(,y2)都在二次函数y=﹣x2+2x+m的图象上∴y2﹣y1=﹣()2+2×+m﹣[﹣(﹣)2+2×(﹣)+m]=﹣(2﹣)2+2×(2﹣)+(﹣)2+=﹣4+﹣()2+4﹣+()2+=>0∴y1<y2故答案为:<.三.解答题(共10小题,满分78分)15.解:原式=x2﹣9+4x﹣x2=4x﹣9当x=时原式=1﹣9=﹣8.16.解:(1)画树状图得:共有6种等可能的结果,其中C型号电脑被选中的结果有2种∴C型号电脑被选中的概率为=;(2)①选用方案AC时设购买C型号电脑x台,A型号电脑y台由题意得:解得:(不合题意舍去);②选用方案BC时设购买C型号电脑a台,B型号电脑b台由题意得:解得:综上所述,购买的C型号电脑有20台故答案为:20.17.解:设张老师用骑公共自行车方式上班平均每小时行驶x千米,则用自驾车的方式上班平均每小时行驶(x+45)千米依题意得:=4×解得:x=15经检验,x=15是原方程的解,且符合题意∴﹣=﹣=(小时).答:张老师用骑公共自行车方式上班比用自驾车的方式上班多用小时.18.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;∵OA2=12+22=5,∠AOA2=90°∴S==π答:线段OA在旋转过程中扫过的图形是扇形△OAA2,面积是.19.(1)证明:∵BF∥DE,EF∥DB∴四边形BDEF是平行四边形∵AB=AC,AE是中线∴AE⊥BC∴∠AEB=90°∵点D是AB的中点∴DE=AB=BD∴四边形BDEF是菱形;(2)解:∵AE⊥BC,BE=BC=1,AC=3∴AE===2∴△ABE的面积=BE×AE=×1×2=∵点D是AB的中点∴△BDE的面积=△ADE的面积=△ABE的面积∵菱形BDEF的面积=2△BDE的面积∴四边形BDEF的面积=△ABE的面积=.20.解:(1)最低气温14℃的有3天所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃)故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比5月份最低气温波动小所以S32<,3月份更稳定故答案为<,3.21.解:(1)根据题意可知,小丽家离学校1000米故答案为:1000;(2)小丽步行的速度是:1000÷10=100(米/分钟)故答案为:100;(3)m=4×100=400.22.解:(1)线段OM与ON的数量关系为:OM=ON,理由:∵四边形ABCD为矩形∴AO=CO,AD∥BC∴∠MAC=∠NCA.在△AOM和△CON中∴△AOM≌△CON(ASA)∴OM=ON;(2)直线l经过矩形ABCD的几何中心,理由:连接AC,AC交EF于点G,如图∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴l为AC的垂直平分线∴AG=CG∵矩形ABCD的对角线相交于点O,点O称为矩形ABCD的几何中心∴OA=OC.∴点G与点O重合∴直线l经过矩形ABCD的几何中心O;(3)①当点P到矩形ABCD的边BC的距离与OP的长都等于a时,连接AC,则AC经过EF的中点O,如图∴AC===10∴AO=CO=AC=5.由题意:OE⊥AC∴∠AOE=∠D=90°.∵∠OAE=∠DAC∴△AOE∽△ADC∴∴∴OE=.∴OF=OE=.由题意:PH⊥BC,OP=PH=a∴PF=﹣a.过点O作OM⊥BC于点M,则OM为△ABC的中位线∴OM=AB=3.∵PH⊥BC,OM⊥BC∴PH∥OM∴△FPH∽△FOM∴∴解得:a=.同理可求:②当点P到矩形ABCD的边AD的距离与OP的长都等于a时,a=;③当点P到矩形ABCD的边AB的距离与OP的长都等于a时,PH⊥AB,PH=OP=a 连接AC,则AC经过EF的中点O,过点P作PG⊥BC于点G,过点OP作OM⊥BC于点M,如图由①知:OF=,PF=﹣a,OM为△ABC的中位线∴BM=BC=4.∵将矩形ABCD以直线l为对称轴翻折,使点C的对应点与点A重合∴∠D′=∠D=90°,AD′=CD=AB,DE=D′E,∠FAD′=90°∵∠BAD=90°∴∠BAF=∠D′AE.在△BAF和△D′AE中∴△BAF≌△D′AE(ASA)∴BF=D′E.设D′E=DE=x,则AE=8﹣x在Rt△AED′中∵AE2=D′E2+AD′2∴(8﹣x)2=x2+62解得:x=.∴BF=D′E=.∵PH⊥AB,PG⊥BC,∠B=90°∴四边形PHBG为矩形∴BG=PH=a∴FG=BG﹣BF=a﹣,FM=BM﹣BF=4﹣=.∵PG⊥BC,OM⊥BC∴PG∥OM∴△FPG∽△FOM∴∴解得:a=.同理可求:④当点P到矩形ABCD的边CD的距离与OP的长都等于a时,a=.综上,若点P到矩形ABCD一边的距离与OP的长都等于a,a的所有可能的值为和.23.解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA∴cos∠ABD==如图2,设AB与DF交于点O,AE与DF交于点H∵△BEF绕点B按逆时针方向旋转90°∴∠DBF=∠ABE=90°∴△FBD∽△EBA∴=,∠BDF=∠BAE又∵∠DOB=∠AOF∴∠DBA=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°故答案为:,30°;(2)结论仍然成立理由如下:如图3,设AE与BD交于点O,AE与DF交于点H∵将△BEF绕点B按逆时针方向旋转∴∠ABE=∠DBF又∵=∴△ABE∽△DBF∴=,∠BDF=∠BAE又∵∠DOH=∠AOB∴∠ABD=∠AHD=30°∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°∴BE=,AD=2,DB=4∵∠EBF=30°,EF⊥BE∴EF=1∵D、E、F三点共线∴∠DEB=∠BEF=90°∴DE===∵∠DEA=30°∴DG=DE=由(2)可得:=∴∴AE=∴△ADE的面积=×AE×DG=××=;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G同理可求:△ADE的面积=×AE×DG=××=;故答案为:或.24.解:(1)∵y=ax2+4ax+c=a(x+2)2﹣4a+c ∴抛物线的对称轴为直线x=﹣2∵A(﹣6,0)∴B(2,0)∴OB=2∴OC=3OB=6∴C(0,6)将B、C两点坐标代入y=ax2+4ax+c∴解得∴抛物线的解析式为y=﹣x2﹣2x+6设直线AC的解析式为y=kx+m∴∴∴直线AC的解析式为y=x+6;(2)∵y=﹣x2﹣2x+6=﹣(x+2)2+8∴顶点D(﹣2,8)过D作DM⊥y轴于M则M(0,8)∵C(0,6)∴DM=CM=2∴∠MCD=45°,CD=2∵OA=OC=6∴∠OCA=45°∴∠ACD=90°,AC=Rt△ACD中,∵直线AE与y轴交点N(0,﹣2)∴ON=2∴tan∠BAE==∴∠CAD=∠BAE∴∠CAE﹣∠CAD=∠CAE﹣∠BAE=∠OAC=45°;(3)∵PQ⊥y轴,ER⊥x轴∴∠OQE=∠ROQ=∠QOR=90°∴四边形OQER为矩形∴QR=OE∴当OE⊥AC时,QR=OE最短∵OA=OC=6∴△AOC为等腰直角三角形,此时E为线段AC的中点∴最短长度QR=OE=AC=3∵E(﹣3,3),PQ⊥y轴∴P点纵坐标也为3∴﹣x2﹣2x+6=3解得∴点P的坐标为(﹣2+,3)或(﹣2﹣,3)∴QR的最短长度为.。
华师大版九年级上册数学期中考试试卷及答案
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列二次根式中,是最简二次根式的是A B C D 2.一元二次方程x 2﹣8x+20=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .只有一个实数根D .有两个不相等的实数根3.一个多边形的边长为2,3,4,5,6,另一个和它相似的多边形的最长边为24,则这个多边形的最短边长为( )A .6B .8C .12D .104.用配方法解方程2210x x --=,变形结果正确的是( )A .213 ()24x -=B .213 ()44x -=C .2117 ()416x -=D .219 ()416x -= 5.如图,线段CD 两个端点的坐标分别为C(4,4),D(6,2),以原点O 为位似中心,在第一象限内将线段CD 缩小为原来的一半后得到线段AB ,则端点A 的坐标为( )A .(2,2)B .(3,3)C .(3,1)D .(4,1) 6.近几年,手机支付用户规模增长迅速,据统计2016年手机支付用户约为4.69亿人,连续两年增长后,2018年手机支付用户达到约5.83亿人,如果设这两年手机支付用户的年均增长率为x ,则根据题意可以列出方程为( )A .4.69(1+x )=5.83B .4.69(1+2x )=5.83C .4.69(1+x )2=5.83D .4.69(1﹣x )2=5.837.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1D .18.比较大小错误的是( )A B 1C .72->﹣6 D .9.如图,在ABC 中,点D ,E 分别在AC ,AB 上且//DE BC ,若:2:3ADE BDE SS =,则:(ADE ACB S S = )A .2:3B .4:9C .4:25D .4:1910.如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于37BC .等于34D .随点E 位置的变化而变化二、填空题11.将方程2x 2=1-3x 化为一般形式是______.12.比例尺为1∶4000000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为________km.13x x 的和是_____.14.如图,河宽CD 为C 处测得对岸A 点在C 点南偏西30°方向、对岸B 点在C 点南偏东45°方向,则A 、B 两点间的距离是_____米.(结果保留根号)15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是_________.三、解答题161⎛ ⎝17.解下列方程;(1)4x 2﹣121=0;(2)2x (x ﹣1)+6=2(0.5x+3);(3)4x 2﹣8x ﹣1=018.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD :AB =3:1,CE 垂直y 轴于点E .(1)求证:CDE DAO ∽△△;(2)直接写出点B 和点C 的坐标.19.黄河,既是一条源远流长、波澜壮阔的自然河,又是一条孕育中华民族灿烂文明的母亲河,数学课外实践活动中,小林和同学们在黄河南岸小路上的A ,B 两点处,用测角仪分别对北岸的观景亭D 进行测量.如图,测得∠DAC =45°,∠DBC =65°.若AB =200米,求观景亭D 到小路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)20.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.21.(1)问题情境:如图1,Rt ABC 中,∠ACB =90°,CD ⊥AB ,我们可以利用ABC 与ACD △相似证明AC 2=AD•AB ,这个结论我们称之为射影定理,试证明这个定理. (2)结论运用:如图2,正方形ABCD 的边长为6,点O 是对角线AC ,BD 的交点,点E 在CD 上,过点C 作CF ⊥BE ,垂足为F ,连接OF ,试利用射影定理证明BOF BED ∽.22.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.41).23.如图1,在Rt ABC中,∠B=90°,AB=4,BC=2,点D,E分别是边BC,AC的中点,连接DE.将CDE△绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AEBD=;②当α=180°时,AEBD=;(2)拓展探究试判断当0°<α<360°时,AEBD的大小有无变化?请仅就图2的情形给出证明;(3)问题解决当CDE△绕点C逆时针旋转至A,B,E三点在同一条直线上时,求线段BD的长.参考答案1.B【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【详解】A=不是最简二次根式,错误;B是最简二次根式,正确;C=D=故选B.【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:()1被开方数不含分母;()2被开方数不含能开得尽方的因数或因式.2.A【分析】先计算出△,然后根据判别式的意义求解.【详解】∵△=(-8)2-4×20×1=-16<0,∴方程没有实数根.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设这个多边形的最短边是x ,∵两个多边形相似, 则6242x=, 解得x=8故选B【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边成比例是解题的关键. 4.D【分析】将原方程二次项系数化为1后用配方法变形可得结果.【详解】根据配方法的定义,将方程2210x x --=的二次项系数化为1, 得:211022x x --=,配方得21111216216x x -+=+, 即:219()416x -=. 本题正确答案为D.【点睛】本题主要考查用配方法解一元二次方程.5.A【分析】根据位似变换的性质进行计算,即可得出结论.【详解】解:∵以原点O 为位似中心,在第一象限内将线段CD 缩小为原来的一半后得到线段AB ,点C 的坐标为(4,4),∴点A 的坐标为(4×12,4×12),即(2,2). 故选:A .【点睛】本题考查了位似变换的性质,掌握平面直角坐标系内以原点为位似中心的坐标变换的性质是解答此题的关键.6.C【分析】设平均每次增长的百分率为x ,根据“由原来4.69亿人增长到5.83亿人”,根据增长后的量=增长前的量×(1+增长率)增长次数即可得出方程. 【详解】设这两年手机支付用户的年均增长率为x ,∴4.69×(1+x)2=5.83故选C.【点睛】本题考查由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.正确找出等量关系是解题关键.7.D【分析】过B 作BC ⊥桌面于C ,由题意得AB=10cm,BC=5cm,再由勾股定理得AC=然后由坡度的定义即可得出答案.【详解】解:如图,过B 作BC ⊥桌面于C ,由题意得:AB =10cm ,BC =5cm ,∴=∴这个斜坡的坡度i =BCAC =1,故选:D .【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.8.D根据正整数算术平方根的大小估算,继而进行大小比较即可做出判断.【详解】解:∵5<7,A不符合题意;∵56,∴7<8,∵910,∴81<9,1,因此选项B不符合题意;∵45,∴11<12,∴5.5<<6,2∴﹣6<﹣<﹣5.5,因此选项C不符合题意;2∵∴D符合题意;故选:D.【点睛】本题考查无理数的估算,二次根式的大小比较,解题的关键是熟练掌握正整数算术平方根的大小比较方法.9.C【分析】根据题意可以求得△ADE和△ACB的相似比,从而可以求得两个三角形的面积之比,本题得以解决.解:∵S △ADE :S △BDE =2:3,DE ∥BC ,设点A 到DE 的距离为a ,点E 到BC 的距离为b ,∴2322DE a DE b ⋅⋅=::,∴a :b =2:3,∴点A 到DE 的距离与点A 到BC 的距离的比值是2:5,∴224525ADE ACB S S==(). 故选C .【点睛】 本题考查了相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.10.A【分析】根据题意推知EF ∥AD ,EH ∥CD ,由该平行线的性质推知△AEH ∽△ACD ,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【详解】∵EF ∥AD ,EH ∥CD ,∴∠AFE=∠FAG ,△AEH ∽△ACD ,∴34EH CD AH AD ==. 设EH=3x ,AH=4x ,∴HG=GF=3x , ∴tan ∠AFE=tan ∠FAG=33347GF x AG x x ==+. 故选A .【点睛】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE 的正切值转化为求∠FAG 的正切值来解答的.11.2x 2+3x-1=0【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0).【详解】解:方程2x 2=1-3x 化为一般形式是:2x 2+3x-1=0.故答案是:2x 2+3x-1=0.【点睛】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.120【详解】试题解析:根据比例尺公式:比例尺=图上距离/实地距离,得到:实地距离=图上距离/比例尺,即:133400000012000000cm=120km.4000000÷=⨯=故答案为120.13.2【分析】x得答案.【详解】解:∵﹣21,2<3,∴x1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【点睛】本题主要考查无理数大小的估算,比较简单,正确理解是解题的关键.14.【分析】根据正切的定义求出AD,根据等腰直角三角形的性质求出BD,进而得到AB的长.【详解】在Rt△ACD中,tan∠ACD=AD CD,则AD=CD×tan∠ACD=×3=100(米),在Rt△CDB中,∠BCD=45°,∴BD=CD=,∴AB=AD+BD=(故答案为:(.【点睛】本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.2或12 7【分析】设BF=x,根据折叠的性质用x表示出B′F和FC,然后分两种情况进行讨论(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根据两三角形相似对应边成比例即可求解.【详解】设BF=x,则由折叠的性质可知:B′F=x,FC=4x-,(1)当△B′FC∽△ABC时,有B F FC AB BC=',即:434x x-=,解得:127x=;(2)当△B′FC∽△BAC时,有B F FC BA AC=',即:433x x-=,解得:2x=;综上所述,可知:若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是2或12 7故答案为2或127.【点睛】本题考查了三角形相似的判定和性质,解本题时,由于题目中没有指明△B′FC和△ABC相似时顶点的对应关系,所以根据∠C是两三角形的公共角可知,需分:(1)△B′FC∽△ABC;(2)△B′FC∽△BAC;两种情况分别进行讨论,不要忽略了其中任何一种.16.112+ 【分析】根据二次根式的运算、立方根及算术平方根进行求解即可.【详解】解:原式=31139122-+-+= 【点睛】本题主要考查二次根式的运算、立方根及算术平方根,熟练掌握二次根式的运算、立方根及算术平方根是解题的关键.17.(1)1112x =, 2112x =-;(2)1x =0 ,232x =;(3)11x =+, 21x = 【分析】(1)移项后可用直接开平方法求方程的解,(2)整理后可用因式分解法求方程的解,(3)利用求根公式可求方程的解.【详解】解:(1)2421=1x ,2=11x ∴或2=11x - , 解得:1112x =,2112x =-; (2)∵方程整理得223=0x x - ,(23)0x x ∴-=,则=0x 或23=0x - ,解得:1=0x ,232x =. (3)2481=0x x --,∴=4=8=1a b c ,-,- ,∴224=(8)44(1)=80b ac ---⨯⨯- ,∴8= = =1282b x a -±,∴11x =,21x =. 【点睛】 本题考查的是解一元二次方程,解决本题的关键是熟练掌握一元二次方程的解法,只有对每一种解法都非常熟练,才能对任何形式的一元二次方程采用最合适的方法进行求解.18.(1)见解析;(2)B(5,1),C(2,7)【分析】(1)由题意易得∠DCE=∠ADO ,根据判定定理可得结论(2)利用相似三角形的性质求得DE 、CE 可得C 点坐标,从而可得B 点的坐标【详解】解:(1)证明:∵四边形ABCD 是矩形,∴CD=AB ,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO ,∴△CDE ∽△ADO .(2)解:∵△CDE ∽△DAO , ∴CEOD =DEOA =CDAD ,∵OD=2OA=6,AD :AB=3:1,∴OA=3,CD :AD=13,∴CE=13OD=2,DE=13OA=1,∴OE=7,∴C (2,7),利用平移的性质可得B (5,1)..【点睛】本题主要考查相似三角形的判定及性质,熟练掌握三角形相似的判定定理及性质是解决本题的关键19.约为375米【分析】过点D 作DE⊥AC,垂足为E ,设BE = x,根据AE = DE ,列出方程即可解决问题.【详解】解:如图,过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DE BE.∵∠DBC=65°,∴DE=xtan65°,又∵∠DAC=45°,∴AE=DE.∴200+x=xtan65°,解得x≈175.4,∴DE=200+x≈375(米)∴观景亭D到小路AC的距离约为375米.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解決问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题.20.(1)6m <且2m ≠;(2)12x =-,243x =-【分析】 (1)根据题意可得20m -≠且()()()22423m m m ∆=--+()460m >=--,由此即可求得m 的取值范围;(2)在(1)的条件下求得m 的值,代入解方程即可.【详解】(1)关于x 的一元二次方程()22230m x mx m -+++=有两个不相等的实数根, 20m ∴-≠且()()()22423m m m ∆=--+()460m >=--.解得6m <且2m ≠.m ∴的取值范围是6m <且2m ≠.(2)在6m <且2m ≠的范围内,最大整数为5.此时,方程化为231080x x ++=.解得12x =-,243x =-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 21.(1)见解析;(2)见解析.【分析】(1)由AA 证明Rt ACD Rt ABC ,再结合相似三角形对应边成比例即可解题; (2)根据正方形的性质及射影定理解得BC 2=BO•BD ,BC 2=BF•BE ,再运用SAS 证明△BOF ∽△BED 即可.【详解】证明:(1)如图1,90CD AB ADC ⊥∴∠=︒CAD BAC ∠=∠Rt ACD Rt ABC ∴::AC AB AD AC ∴=2AC AD AB ∴=⋅(2)如图2,∵四边形ABCD为正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即BO BF BE BD,而∠OBF=∠EBD,∴△BOF∽△BED..【点睛】本题考查射影定理、相似三角形的判定与性质、正方形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.约为12.3m【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到答案.【详解】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AEC=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE=16xx≈0.40,解得:x≈10.7(m),经检验x≈10.7是原分式方程的解∴AD≈10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.(1)(2)不变,见解析;(3【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的AEBD值是多少.②α=180°时,可得AB∥DE,然后根据ACAE=BCDB,求出AEBD的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据ECDC=ACBC△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AB的延长线上时,②如图3﹣2中,当点E 在线段AB上时,分别求解即可.【详解】解:(1)①当α=0°时,∵Rt △ABC 中,∠B =90°,∴AC ∵点D 、E 分别是边BC 、AC 的中点,∴AE =12AC BD =12BC =1,∴AEBD②如图1中,当α=180°时,可得AB ∥DE , ∵ACAE =BCBD ,∴AE BD =ACBC故答案为:(2)如图2,当0°≤α<360°时,AEBD 的大小没有变化,∵∠ECD =∠ACB ,∴∠ECA =∠DCB ,又∵ECDC =ACBC∴△ECA ∽△DCB ,∴AEBD =ECDC(3)①如图3﹣1中,当点E 在AB 的延长线上时,在Rt △BCE 中,CE BC =2,∴BE 1,∴AE =AB+BE =5,∵AEBD∴BD②如图3﹣2中,当点E 在线段AB 上时,BE =1,AE =AB-BE =4﹣1=3,∵AE BD∴BD=5,综上所述,满足条件的BD的长为5【点睛】本题属于几何变换综合题,考查了旋转变换,相似三角形的判定和性质,平行线的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.21。
华师大版九年级上册数学期中考试试卷带答案
华师大版九年级上册数学期中考试试卷带答案(文章正文)华师大版九年级上册数学期中考试试卷带答案第一部分:选择题(共40分,每小题2分)1. 甲乙两个数的和是82,差是28,求甲的两倍加乙的两倍的值是多少?【解析】设甲为x,乙为y,则有x+y=82,x-y=28,解方程组得x=55,y=27。
所以甲的两倍加乙的两倍的值是55×2+27×2=220。
2. 输人下列各题,选择正确的答案:( )(1)(2x+2)- (3-5x) =6的解是:A. x=6/7B. x=7/6C. x=1/7D. x=1/6【解析】将已知的等式两边进行计算合并得到剩下的x项有一个,然后解方程,最后检查列表所给答案,验证哪个正确。
经过计算合并,得到二次方程5x+4x+1=6也就是 9x+1=6 ,解这个方程,记得最后要检验答案,验证哪个正确,所以最后x=1/7是 A选项是正确答案。
3. 下列各选项,哪项回一个解的讨解为全部实数。
A. x^2-4x-12= 0;B. 3x^2-12x-9=0;C. x^2-5x+6=0;D. 2x^2 – 4x +2= 0;【解析】求解每个方程,对每一个方程的二次项系数 A ,判别式D,根据判别式D的大小,判断是无解,还是一个解还是两个解。
A. x^2-4x-12= 0; A=1 ,D=(-4)^2-4×1×(-12)=16+48=64,D=64>0,方程有两个解,即它全部实数解;B. 3x^2-12x-9=0;A=3,D=(-12)^2-4×3×(-9)=144+108=252,D=252>0,方程有两个解,即它的全部实数解;C. x^2-5x+6=0;A=1,D=(-5)^2-4×1×6=25-24=1,D=1>0,方程有两个解,即他的全部实数解;D. 2x^2 – 4x +2= 0;A=2,D=(-4)^2-4×2×2=16-16=0,D=0,方程,有一个解,而没有两个解,即这个方程为一个解。
华师大版九年级上册数学期中考试试卷带答案
华师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列各式中,一定是二次根式的是( )A B C D 2.方程x 2﹣9=0的解是( )A .x=3B .x=9C .x=±3D .x=±9 3.下列计算正确的是( )A =B =C =D .3=- 4.用配方法解方程2850x x -+=,将其化为2()x m n +=的形式,正确的是( ) A .2(4)11x += B .2(4)21x += C .2(8)11x -= D .2(4)11x -=5.当0xy <等于( )A .-B .C .D .- 6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 7.已知34x y =,那么下列等式中,不成立的是( ) A .37x x y =+ B .14x y y C .3344x y +=+ D .4x=3y8.如图,在Rt △ABC 中,∠C=90°.CD 是斜边AB 上的高,若得到CD 2=BD•AD 这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断9.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.在四边形ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点H 为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )A.B.C.D.二、填空题11有意义,则x的取值范围是__.12.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是_____.13.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有__________支.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.在等腰三角形ABC 中,4AB AC ==,3BC =,将ABC ∆的一角沿着MN 折叠,点B 落在AC 上的点D 处,如图所示,若ABC ∆与DMC ∆相似,则BM 的长度为__________.三、解答题16.计算:(1(211)(1()3--17.解下列方程(1)3(2)2(2)x x x -=-(2)231060x x -+=(配方法).18.先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,其中a =3b =319.已知关于x 的一元二次方程22(21)10x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)在(1)的结论下,若m 取最小整数,求此时方程的两个根.20.如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD ,线段BE 与CD 相交于点F .(1)求证:PC CE CD CB=; (2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩 (1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场查发现,当“早黑宝”的售价为20元千克时,每天售出200千克,售价每降价1元,每天可多售出50千克,为了推广直传,基地决定降价促销,同时减存已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”天获利1750元,则售价应降低多少元?22.如图1,在矩形ABCD 中,2AB =,5BC =,1BP =,90MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F ,当PN 旋转至PC 处时,MPN ∠停止旋转.(1)特殊情形:如图2,发现当PM 过点A 时,PN 也恰巧过点D ,此时ABP ∆ PCD ∆(填“≌”或“∽”);(2)类比探究:如图3,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由.23.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:C D 为△ABC 的完美分割线.(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB的度数.(3)如图2,△ABC 中,AC =2,BC CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.参考答案1.D【分析】a≥)的式子叫二次根式,根据定义判断即可.【详解】解:A a表示任意实数,不是二次根式,故本选项错误;B被开方数-10<0,不是二次根式,故本选项错误;C a+1表示任意实数,不是二次根式,故本选项错误;D被开方数a2+1为非负数,即a2+1>0,是二次根式,故本选项正确.故选D【点睛】本题考查对二次根式的定义的应用,对二次根式定义的条件的理解是解答此题的关键. 2.C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.3.C【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【详解】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式C选项正确;D 、原式=3,所以D 选项错误.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【分析】先把5移到方程的右边,然后方程两边都加16,最后把左边根据完全平方公式写成完全平方的形式,然后两边同时开平方即可.【详解】2850x x -+=,移项得285x x -=-,配方得2816516x x -+=-+,即2(4)11x -=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.5.A【分析】a =,再根据绝对值化简法则进行化简.【详解】∵0xy <,且2xy 为非负数,∴x>0,y<0,y y x .故选A【点睛】本题考查二次根式的化简,a =化简此题是关键之处. 6.C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.7.B【详解】【分析】根据比例的基本性质逐项进行求解即可.【详解】A ,∵x 3y 4=,∴x 3x y 7=+,此选项正确,不合题意;B ,∵x 3y 4=,∴x y y-=–14,此选项错误,符合题意;C ,∵x 3y 4=,∴x 33y 44+=+,此选项正确,不合题意;D ,∵x 3y 4=,∴4x=3y ,此选项正确,不合题意, 故选B .【点睛】本题考查了比例的性质,熟练掌握和应用比例的性质是解题的关键.8.C【解析】 试题分析:根据题意可得:CD AD BD CD=,结合∠ADC=∠CDB 可得:△ADC ∽△CBD. 9.B【详解】试题分析: ①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线10.D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴AD AH AC AB=,∴24yx=,∴y=8x,∵AB<AC,∴x<4,∴图象是D.故选D.11.x≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】∵有意义,∴:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.12.x1=﹣1,x2=﹣3.【解析】【分析】换元法即可求解,见详解.【详解】令2x+3=t,则方程(2x+3)2+2(2x+3)﹣3=0化为t2+2t﹣3=0,解得:t=1或-3,即2x+3=1或2x+3=-3解得:x1=﹣1,x2=﹣3.【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键. 13.20支【分析】设参赛队伍有x支,根据参加比赛采用双循环制(每两队之间都进行2场比赛),共有比赛380场,可列出方程,求解即可.【详解】解:设参赛队伍有x支,根据题意得,x x1380解得,x1=20,x2=-19(不符合题意,舍去)∴参赛队伍有20支.故答案为:20【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.14.57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案. 【详解】如图,AE与BC交于点F,由BC //ED 得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15.32或127【分析】根据折叠得到BM=ND,根据相似三角形的性质得到CM MDCB AB或CM MDAC AB,设BM=x,则CM=3-x,即可求出x的长,得到BM的长. 【详解】解:∵△BMN沿MN折叠,B和D重合,∴BM=DM,设BM=x,则CM=3-x,∵当△CMD∽△CBA,∴CM MD CB AB,∴334x x,解得:x=127,即BM=127;∵当△CMD∽△CAB,∴CM MD CA AB,∴344x x,解得:x=32,即BM=32;∴BM=32或127.故答案为:32或127【点睛】本题主要考查相似三角形性质以及图形的折叠问题,根据相似三角形的性质列出比例式是解答此题的关键.16.(12)4【分析】(1)化简各项二次根式,再合并同类二次根式;(2a=化简绝对值,利用平方差公式(a+b)(a-b)=a2-b2,根据负指数幂1ppaa-=进行计算.【详解】(1)解:原式223=⨯-==(2)原式2(13)=-224==【点睛】进行实数的运算,要明确有理数的运算法则及性质在实数范围内仍然成立.特别地,碰到化简绝对值的运算,首先判断绝对值符号里代数式整体的正负,再根据绝对值的意义,整体取正或负.17.(1)12x =,223x =-(2)153x =,253x = 【分析】(1)利用因式分解法解方程;(2)方程两边同时除以3,使二次项系数为1,利用配方法解方程.【详解】(1)移项,得3(2)2(2)0x x x ---=方程左边分解因式,得(2)(32)0x x -+=∴20x -=或320x +=∴12x =,223x =- (2)移项,得23106x x -=-方程两边同时除以3,得21023x x -=- 配方,得2221055()2()333x x -+=-+ 即257()39x -=.直接开平方,得53x -=.∴153x +=,253x = 【点睛】本题考查了解一元二次方程,根据方程系数特征,选用恰当的方法解方程是解答此题的关键.18.2a b-【分析】先将括号里的分式进行通分,再将括号里分式进行相减,最后再根据分式的除法法则计算,最后代入数值即可求解.【详解】原式=222222222a b a b ab a b ab ab ab ⎛⎫-+÷- ⎪+⎝⎭, =()()()()22a b a b a b ab a b ab ⎛⎫+-- ⎪÷ ⎪+⎝⎭, =2a b-, 把a =3b =3:原式【点睛】本题主要考查分式的化简求值,解决本题的关键是要熟练掌握分式的通分,分式减法和分式的除法法则.19.(1)54m >-(2)10x =,21x = 【分析】(1)根据方程的系数和根的判别式Δ=b 2-4ac>0,列出关于m 的不等式,求出解集即可解答;(2)在m 的解集中,确定m 的最小整数后再确定原方程,求根即可.【详解】解:(1)∵方程22(21)10x m x m +++-=有两个不相等的实数根,∴22(21)4(1)450m m m +--=+> 解得54m >- ∴当54m >-时,方程有两个不相等的实数根. (2)由(1),得54m >-,故m 的最小整数值是-1 当1m =-时,原方程为20x x -=解得10x =,21x =即此时方程的两个根分别为10x =,21x =【点睛】本题考查了一元二次方程根的差别式,明确由一元二次方程根的判别式和方程实数根的个数关系及正确解方程是解答此题的关键.20.(1)证明见解析;(2)AC∥BD,理由见解析.【分析】(1)证明△BCE∽△DCP,相似三角形的对应边成比例;(2)由△PCE∽△DCB,证∠CBD=∠CEP=90°.【详解】(1)∵,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵PC CECD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.【点睛】本题考查了相似三角形的判定与性质,判定两个三角形相似的方法有:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;②三边成比例的两个三角形相似;③两边成比例且夹角相等的两个三角形相似;④有两个角相等的三角形相似.21.(1)40%(2)3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得关于x的一元二次方程,解方程,然后根据问题的实际意义作出取舍即可;(2)设售价应降低y元,根据每千克的利润乘以销售量,等于1750,列方程并求解,再结合问题的实际意义作出取舍即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x 1=0.4=40%,x 2=−2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(200+50y )千克根据题意,得(20−12−y )(200+50y )=1750整理得,y 2−4y +3=0,解得y 1=1,y 2=3∵要减少库存∴y 1=1不合题意,舍去,∴y =3答:售价应降低3元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程,是解题的关键.22.(1)∽(2)PE PF 的值为定值12,详见解析 【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过同角的余角相等得出BAP CPD ∠=∠,由此即可得出ΔABP ∽ΔPCD;(2)过点F 作FG ⊥PC 于点G ,根据矩形的性质以及角的关系找出∠B=∠FGP=90°,∠BEP=∠FPG,由此得出△EBP ≌△PGF,根据相似三角形的性质找出边与边之间的关系,即可得出结论.【详解】(1)∽,理由如下:∵90MPN ∠=,90B =∠,∴90BAP APB CPD APB ∠+∠=∠+∠=∴BAP CPD ∠=∠又∵B C ∠=∠∴ABP ∆∽PCD ∆(2)在旋转过程中,PE PF的值为定值理由如下:过点F 作FG BC ⊥于点G ,如图所示,则B FGP ∠=∠∵90,90MPN B ∠=∠=∴90BEP EPB CPF EPB ∠+∠=∠+∠=∴BEP CPF ∠=∠∴EBP ∆∽PGF ∆ ∴PE PB PF FG= 在矩形ABGF 中,2FG AB ==,1PB = ∴12PB FG = ∴12PE PF =,即PE PF 的值为定值12. 【点睛】本题考查相似三角形的性质和判定的综合应用,以及矩形性质和旋转性质,证明三角形相似用其性质列出对应边成比例是解答此题的关键.23.(1)证明见解析;(2)∠ACB =96°或114°;(3【分析】(1)根据完美分割线的定义只要证明①△ABC 不是等腰三角形,②△ACD 是等腰三角形,③△BDC ∽△BCA 即可.(2)分三种情形讨论即可①如图2,当AD =CD 时,②如图3中,当AD =AC 时,③如图4中,当AC =CD 时,分别求出∠ACB 即可.(3)设BD =x ,利用△BCD ∽△BAC ,得BC BD BA BC=,列出方程即可解决问题. 【详解】(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线.(2)①当AD =CD 时,如图2,∠ACD =∠A =45°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°.②当AD =AC 时,如图3中,∠ACD =∠ADC =(180°-48°)÷2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°.③当AC =CD 时,如图4中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃,∴∠ACB =96°或114°.(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BD BA BC=设BD =x ,∴2(2)x x =+),∵x >0,∴x 1,∵△BCD ∽△BAC ,∴CD BD AC BC =,∴CD ×2=【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.。
华东师大版九年级数学上册期中测试卷及答案【完整】
华东师大版九年级数学上册期中测试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)14=____________.2.因式分解:a 3-a =_____________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、B6、C7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a (a -1)(a + 1)3、20204 5、12.6、(,6)三、解答题(本大题共6小题,共72分)1、4x =2、3x3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m ,1,2. 4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)50;(2)见解析;(3)16.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
第一学期华师大版九年级数学期中考试题及答案
FED C BAA C BD九年级学年第一学期期中考试数学试卷 一、仔细填一填 (本题共10题, 每空2分,共20分)1.当x 时,2-x 有意义。
2.已知a 、b 、c 、d 是成比例线段,其中a =5cm ,b=3cm ,c=6cm .则线段d=___________cm .3.若x ∶y =1∶2,则yx y x +-=_____________.4.请你写一个能先提公因式、再运用公式来分解因式来解的方程,并写出方程的解 . 5.设x 1,x 2是方程x(x-1)+3(x-1)=0的两根,则2212x x += 。
X Kb 1.C om 6.等腰梯形的周长是36cm ,腰长是7cm ,则它的中位线长为________cm .7.如图,在ABC △中,90ACB ∠=,CDAB =,则CD 为 _____. 8.在平面直角坐标系中,将线段AB 平移到A ′B ′,若点A 、B 、 A ′的坐标(-2,0)、(0,3)、(2,1),则点B ′的坐标是 。
9.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.10. 已知,如图所示,在△ABC 中,P 为AB 上一点,在下列四个条件中:①B ACP ∠=∠;②ACB APC ∠=∠;③AP AC =2·AB ;④AB ·AP CP =·CB 。
其中,能满足△ABC 和△ACP 相似的条件是 。
(填序号)二.精心选一选(本题共8题,每题3分,共24分)11.下列方程中一定是一元二次方程的是( ) A .ax 2-bx =0 B .2x 2+2x2-2=0C .(x -2)(3x +1)=0D .3x 2-2x =3(x +1)(x -2)12. 下列运算正确的是( )。
A. 232a a a =+ B.94)9()4(-⨯-=-⨯-C. ()63293a a= D. +=13. 如果2是一元二次方程x 2=x+c 的一个根,那么常数c 是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007——2008学年度第一学期
九年级数学科期中检测题
时间:100分钟 满分:100分 得分:
一、选择题(每小题2分,共20分)
在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.
1. 化简2)3(-的结果是
A. 9
B. -3
C. 3
D. ±3 2.下列二次根式中, 与32是同类二次根式的是
A. 12
B. 18
C. 23
D. 48
3. 下列计算正确的是
A .2553=-
B .532=+
C .326=÷
D .3226=⨯ 4. 下列各组长度的线段,成比例线段的是
A. 1cm, 2cm, 3cm ,6cm
B. 3cm, 4cm, 5cm, 6cm
C. 2cm, 4cm, 6cm, 8cm
D. 10cm, 5cm, 6cm, 4cm
5. 下列说法:①所有的等腰直角三角形都相似;②所有的矩形都相似;③所有的菱形都相
似;④所有的正方形都相似;⑤所有的正六边形都相似. 其中,正确命题的个数为 A. 1 B. 2 C. 3 D. 4 6. 如图1,△ADB 与△AEC 相似,AB=3,DB=2,EC=6,则BC 等于
A. 9
B. 6
C. 5
D. 4
A
B C D E
图1
7.如果-4是一元二次方程c x =2的一个根,那么常数c 是
A. 16
B. ±4
C. 4
D. -16 8.用配方法解方程0162=--x x , 经过配方,得到
A .()1032=+x
B .()132=-x
C .()432=-x
D .()1032=-x 9. 下列方程中,两根分别为-2和3的方程是
A .062=--x x
B .0562=+-x x
C .062=-+x x
D .0652=--x x
10.某药品经过两次降价,每瓶零售价比原来降低了36%,则平均每次降价的百分率是
A .18%
B .20%
C .30%
D .40%
二、填空题(每小题3分,共24分)
11.在函数x y 23-=中,自变量x 的取值范围是 . 12.计算:2045-= .
13.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好
为有理数,并写出它们的积. . 14.在比例尺为1:500000的地图上,量得甲、乙两地的距离是12厘米,则两地实际距离
是
米.
15. 已知3
12=-b b a ,则=b a
.
16.已知关于x 的方程022=+-m x x 的一个根是21-=x ,那么=m . 17.如图2,某单位在直角墙角处,用可建60米长
围墙的建筑材料围成一个矩形堆物场地,中间 用同样的材料分隔为两间,问AB 为多长时,所 围成的矩形面积是450平方米.设AB 的长为x 米, 则可列方程为 .
× = 墙
图2
18. 如图3,点P 把线段AB 分成两条线段AP 和BP ,
如果AB AP AP PB =,那么称线段AB 被点P 黄金分割,
AP 与AB 的比叫做黄金比.这个黄金比为 . 三、解答题(共56分)
19. 计算(每小题4分,共12分) (1) 10218⨯ ; (2))2
318(72-- ;
(3) 624654--.
20. 解下列方程(每小题6分,共12分)
(1))3(4)3(2+=+x x ; (2)4)2(=+-y y y .
A
B
P
图3
21.(7分)如图4,四边形ABCD 和EFGH 相似,求∠α、∠β的大小和EH 的长度x .
22.(7分)阅读下面的文字后,解答问题.
某同学作业上做了这样一道题:
“当=a
时,试求122+-+a a a 的值.” 其中是被墨水弄污的. 该同学所求得的答案为2
1
,请你判断该同学答案是否正确,说出你的道理.
图4
A
D
18cm
21cm
78° 83° β
24cm
E
H 118°
α
x
23.(8分)将进货单价为40元的商品按50元售出时,就能卖出500个. 已知这种商品每个涨价2元,其销售量将减少20个,问为了赚得8000元,售价应定为多少?这时应进货多少个?
24. (10分)已知:如图5所示,在△ABC 中,∠C=90°,BC=5cm ,AC=7cm. 两个动点P 、Q
分别从B 、C 两点同时出发,其中点P 以1厘米/秒的速度沿着线段BC 向点C 运动,点Q 以2厘米/秒的速度沿着线段CA 向点A 运动.
(1)P 、Q 两点在运动过程中,经过几秒后,△PCQ 的面积等于4厘米2
?经过几秒后PQ
的长度等于5厘米?
(2)在P 、Q 两点在运动过程中,四边形ABPQ 的面积能否等于11厘米2?试说明理由.
P
Q
图5
2007—2008学年度第一学期
九年级数学科期中检测题参考答案
一、CBDAC BADCB 二、11.2
3
≤
x 12. 5 13.答案不唯一.( 如:3×32=6,(13-)×(13+)=2,…) 14.60000 15.35 16.-1 17.x(x-2x)=450 18.
2
51+- 三、19.(1)53;(2)2
29;(3)262+ .
20.(1)x 1=-3,x 2=1;(2)2
17
1±=
y . 21. ∠β=81°,∠α=83°,x=28. 22.不正确,当1<a 时,2
1111122≠=-+=-+=+-+a a a a a a a ;
当1≥a 时,211121122>≥-=-+=+-+a a a a a a .
因此,该同学所求得的答案为2
1肯定是不正确的.
23.设商品的单价是(50+x)元,则每个商品的润是[(50+x)-40]元,销售量是(500-10x)
个.由题意,得[(50+x)-40](500-10x)=8000,
即 x 2
-40x+300=0,解得x 1=10,x 2=30
故商品的单价可定为50+10=60元或50+30=80元.
当商品每个单价定为60元时,其进货量只能是500-10×10=400个,当商品每个单价为80元时,其进货量只能是500-10×30=200个,
24. (1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2
,此时,PC=5-x ,CQ=2x.
由题意,得 42)5(21
=⋅-x x ,整理,得x 2-5x+4=0. 解得x 1=1,x 2=4.
当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去.
即经过1秒后,△PCQ 的面积等于4厘米2
.
(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t)2+(2t)2=52
.
整理,得t 2
-2t=0. 解得t 1=2,t 2=0(不合题意,舍去).
答:经过2秒后PQ 的长度等于5厘米.
(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2
.由题意,得
11752
1
2)5(21-⨯⨯=⋅-m m .整理,得m 2-5m+6.5=0. ∵△=(-5)2
-4×6.5=-1<0, ∴方程没有实数根.
即四边形ABPQ 的面积不可能等于11厘米2
.。