八年级数学用坐标表示轴对称
湘教版数学八年级下册《3.3用坐标表示轴对称》说课稿3
湘教版数学八年级下册《3.3用坐标表示轴对称》说课稿3一. 教材分析湘教版数学八年级下册《3.3用坐标表示轴对称》这一节主要让学生理解坐标系中轴对称的概念,学会用坐标表示轴对称。
通过这一节的学习,学生能进一步巩固坐标系的相关知识,提高解决实际问题的能力。
二. 学情分析学生在之前的学习中已经掌握了坐标系的基本知识,如坐标系的定义、坐标的表示方法等。
但是对于部分学生来说,对于轴对称的概念和其在坐标系中的应用还有一定的困惑。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过实例讲解和练习,帮助学生理解和掌握轴对称在坐标系中的应用。
三. 说教学目标1.知识与技能:让学生理解坐标系中轴对称的概念,学会用坐标表示轴对称。
2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:让学生理解坐标系中轴对称的概念,学会用坐标表示轴对称。
2.教学难点:轴对称在坐标系中的应用,如何解决实际问题。
五. 说教学方法与手段1.教学方法:采用实例讲解、练习、小组讨论等方式进行教学。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考坐标系中的轴对称问题。
2.讲解新课:讲解坐标系中轴对称的概念,让学生通过实例理解轴对称。
3.课堂练习:布置一些有关的练习题,让学生巩固所学知识。
4.小组讨论:让学生分组讨论,共同解决实际问题。
5.总结:对本节课的主要内容进行总结,强调轴对称在坐标系中的应用。
七. 说板书设计板书设计如下:3.3 用坐标表示轴对称1.轴对称的定义2.坐标表示方法3.轴对称在坐标系中的应用八. 说教学评价教学评价主要从学生的学习效果、课堂表现、作业完成情况等方面进行。
教师要关注学生的学习过程,及时发现和解决问题,提高学生的学习兴趣和自信心。
九. 说教学反思在教学过程中,教师要时刻关注学生的学习情况,根据学生的反馈及时调整教学方法和节奏。
13.2.2用坐标表示轴对称教学设计
人教版数学八年级上册13.2.2用坐标表示轴对称 -----教学设计用坐标表示轴对称教材选择:人教版八(上)13.2画轴对称图形(2)一、内容和内容解析1.内容用坐标表示轴对称2.内容解析本节分为两课时,这是第二课时的新授课.是在学生学习了轴对称及轴对称变换的基础进行的,体现了轴对称在平面直角坐标系中的应用,体现了数形结合的数学思想.教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y 轴对称所引起的点的坐标的变化规律,并探讨了如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.为满足不同层次学生的学习需求,又进一步探究了关于直线x=m和直线y=n对称的点坐标之间的关系.本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来,为后面函数的知识的学习打下基础.通过这节课学生进一步掌握轴对称图形的知识技能,领悟数学在实际生活中的对称美.基于以上分析,确定本节课的教学重点是:探索点关于x轴或y轴对称点的坐标的变化规律,并会利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.二、目标和目标解析1.目标(1)探究点或图形的轴对称变换引起的点的坐标的变化规律,能利用这些变化规律作出一个图形关于对称轴的轴对称图形.(2)通过对用坐标表示轴对称的学习,体会对应的思想、数形结合的思想.(3)通过探究关于轴对称的点坐标之间的对应关系,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的合作交流意识和科学研究习惯.2.目标解析(1)首先通过复习画轴对称图形,引导学生在平面直角坐标系中画出一些点关于坐标轴的对称点,然后通过观察、分析、归纳得出关于坐标轴对称的坐标规律.并探讨总结出如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形的方法.为了满足不同层次学生的学习需求,再通过一系列的变式训练,进一步引导学生探究出关于直线x=m和直线y=n对称的点坐标之间的关系.因此在平面直角坐标系中正确画出一些点的对称点是前提条件,学生上节课已经学过画一些图形的轴对称图形,有一定的经验,因此,学生能比较容易的达到本节课学习的重点目标.(2)通过在平面直角坐标系中画轴对称点和轴对称图形总结出对称点的坐标规律,体会对应思想和数形结合的思想.通过一系列的变式练习探究出关于直线x=m和直线y=n对称的点坐标之间的关系,同样体现从特殊到一般的数学思想.(3)在平面直角坐标系中探究对称点之间的坐标规律的过程中,教师利用一系列直观图象,通过动手操作、观察、分析、小组交流,利用数形结合的数学思想,归纳概括出规律,所以整个探究过程培养了学生的合作交流意识和科学研究习惯.三、教学问题诊断分析在平面直角坐标系中关于x轴对称、关于y轴对称的两点的坐标特征,这个知识内容在初一年级的时候就已学过,本课的学习看起来好像是重复,其实,深入研究,学生还是很可能遇到的问题有:1.学生在利用关于x轴、y轴对称点的坐标规律解决问题时,由于不擅长数形结合理解记忆,而只是死记硬背,因此两个坐标规律很容易记混淆.2.由于学生的学习主动性究意识不够,观察能力和空间想象能力比较薄弱。
人教版数学八年级上册13.2用坐标表示轴对称教案
举例:在讲解轴对称的定义时,可以通过折纸等实际操作,让学生直观感受轴对称图形的特点。在坐标表示方面,可以结合具体图形,如矩形、正方形等,让学生学会如何找到对称轴并给出其坐标方程。
2.教学难点
-对称轴的确定:对于一些复杂的轴对称图形,如何准确地找到对称轴是学生学习的难点。
6.引导学生感悟数学的对称美,培养审美情趣和创新义:轴对称图形的基本概念是本节课的核心,教师需通过生动的实例,使学生理解轴对称图形的特征,明确对称轴在图形中的关键作用。
-掌握坐标表示轴对称的方法:教会学生如何利用坐标表示轴对称图形,以及如何通过坐标关系找到对称轴,这是本节课的重点。
在实践活动中,学生分组讨论的环节比较活跃,他们能够提出一些很有见地的观点。不过,我也观察到有些小组在讨论时,个别成员参与度不高,我适时地给予了鼓励和指导,让他们都能融入到讨论中来。
小组讨论后,学生们的成果展示让我感到惊喜。他们不仅能够理解轴对称在实际生活中的应用,还能创造性地设计出一些具有轴对称特点的图案。这一点说明学生们已经能够将所学知识内化并运用到实际中。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我发现学生们对轴对称的概念和坐标表示的理解程度参差不齐。我尝试通过引入日常生活中的实例来激发他们的兴趣,比如折纸和设计图案,这样做的效果还不错,大部分学生都能积极参与进来。
人教版八年级数学上册第13章 轴对称2 第2课时 用坐标表示轴对称
用坐标表示轴对称
互动探究 问题1:已知点 A 和一条直线 MN,你能画
出这个点关于直线 MN 的对称点吗?
(1)过点 A 作 AO⊥MN,
M
垂足为点 O;
(2)延长 AO 至 A′,
使 OA′ = AO. 则 A′ 就是点 A 关于
A
O
A′
直线 MN 的对称点.
N
问题2:如图,在平面直角坐标系中你能画出点 A
B.(2,2)
O
C.(3,2)
D.(4,2)
5. 已知点 P (2a + b,-3a) 与点 P′ (8,b + 2). 若点 P 与点 P′ 关于 x 轴对称,则 a = __2__,b = ___4__. 若点 P 与点 P′ 关于 y 轴对称,则 a = __6__,b = __-_2_0_. 6. 若 |a - 2| + (b - 5)2 = 0,则点 P (a,b) 关于 x 轴对称 的点的坐标为_(_2_,__-_5_)_.
∴ (4a+b)2022 = 1.
例3 已知点 P (a+1,2a-1)关于 x 轴的对称点在第一
象限,求 a 的取值范围. 解:依题意得 P 点在第四象限,
即2aa+a1的>1<取0,0值,范围解是得1<1<a<a<1 .12 .
2
方法总结:解决此类题,一般先根据点的坐标关于坐 标轴对称,判断出点或对称点所在的象限,再由各象 限内坐标的符号,列不等式 (组) 求解.
y A(0,4) B(2,4)
C'(3,1) x
O C (3,-1)
B'(2,-4) A' (0,-4)
例2 已知点 A (2a-b,5+a),B (2b-1,-a+b).
八年级数学知识点:用坐标表示轴对称
八年级数学知识点:用坐标表示轴对称用坐标表示轴对称:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;关于轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。
点(x,)关于x轴对称的点的坐标为x,-,点(x,)关于轴对称的点的坐标为-x,。
例如图中:点A关于x轴对称的点的坐标为A,,;点A关于x轴对称的点的坐标为A,。
点拨:①写出平面坐标系中一个点关于x轴和轴对称的点的坐标:关于x轴对称的点横坐标相等,纵坐标互为相反数;关于轴对称的点横坐标互为相反数,纵坐标相等。
②画出一个图形关于x轴或轴对称:先求出已知图形中的一些特殊点的对应点的坐标,描出并连接这些点,就能够够取得那个图形的轴对称图形。
一、知识回忆已知△AB,求作△A’B’’,使它与△AB关于直线l成轴对称二、学习新知(一)关于x轴、轴对称的点的坐标特点、试探:教材P43二、探讨:在平面直角坐标系内画出以下已知点和对称点,并把坐标填在表格中,你能发觉坐标间有什么规律?已知点AB(-1,2)(-6,-)D(0,1)E(4,0)关于x轴对称的点A’B’’D’E’关于轴对称的点A’’B’’’’D’’E’’(平面直角坐标系在教材P43图122-11)3、归纳:点(x,)关于x轴对称的点的作标是;点(x,)关于轴对称的点的作标是4、练习:教材P44练习第1题、第2题(完成于书上)(二)应用:一、如图,四边形ABD的四个极点的坐标别离为A(-,1),B(-2,1),(-2,),D(-,4),别离作出四边形ABD关于轴和x轴对称的图形。
三、巩固提高、别离写出以下各点关于x轴和轴对称的点的坐标(3,6)(-7,9)(-3,-)(6,-1)(0,10)关于x轴对称的点关于轴对称的点二、如图,利用关于坐标轴对称的点的坐标的特点,别离作出与△AB关于x轴和轴对称的图形。
八年级数学上册13.2画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版
八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版一. 教材分析八年级数学上册13.2节“画轴对称图形”是新人教版数学课程的一部分,主要内容是让学生理解并掌握用坐标表示轴对称图形的方法。
这一节内容是在学生已经掌握了轴对称图形的概念和性质的基础上进行教学的,旨在培养学生的空间想象能力和坐标表示能力。
教材中通过丰富的例题和练习题,引导学生运用坐标方法,找出对称轴,并确定对称图形在坐标系中的位置。
通过这一节的学习,学生能够进一步理解坐标与图形之间的关系,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称图形的概念和性质有了初步的了解。
但是,对于如何用坐标表示轴对称图形,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
三. 说教学目标1.知识与技能目标:让学生掌握用坐标表示轴对称图形的方法,能找出对称轴,并确定对称图形在坐标系中的位置。
2.过程与方法目标:通过实际操作,培养学生的空间想象能力和坐标表示能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:用坐标表示轴对称图形的方法。
2.教学难点:如何找出对称轴,并确定对称图形在坐标系中的位置。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
2.教学手段:利用多媒体课件,展示轴对称图形的对称性质,引导学生进行实际操作。
六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,引导学生回顾轴对称图形的概念和性质。
2.新课导入:介绍用坐标表示轴对称图形的方法,引导学生理解坐标与图形之间的关系。
3.实例讲解:通过具体的例题,引导学生找出对称轴,并确定对称图形在坐标系中的位置。
4.学生练习:让学生自主完成教材中的练习题,巩固所学知识。
人教版数学八年级上册13.2.2 用坐标表示轴对称教案
第2课时用坐标表示轴对称●情景导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人问小红西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确地告诉了他.你知道为什么吗?如图是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,各个地点的地理位置就可以用坐标表示出来.提问:根据如图所示的东直门的坐标,你能说出西直门的坐标吗?对称点的坐标与已知点的坐标有怎样的关系?这节课将学习用坐标表示轴对称.【教学与建议】教学:以老北京地图为例引入新课,让学生感受到用坐标描述对称的重要性.建议:在教学时,先出示老北京地图,让学生进行观察,感受各个位置之间的关系,然后建立平面直角坐标系.●归纳导入 1.如图①:(1)图中两个圆脸有什么关系?(2)已知右边圆脸上右眼的坐标为B(4,3),左眼的坐标为A(2,3),嘴角两个端点的坐标分别为C(4,1),D(2,1).你能根据轴对称的性质写出左边圆脸上左眼、右眼及嘴角两端点的坐标吗?图①图②2.在平面直角坐标系中,将坐标分别为(2,2),(4,2),(4,4),(2,4)的点用线段依次连接起来形成一个图案(如图②).(1)将各个点的纵坐标不变,横坐标分别乘-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有何变化?(2)将各个点的横坐标不变,纵坐标分别乘-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有何变化?如图②,师生共同归纳:(1)将各个点的纵坐标不变,横坐标乘-1,得到相应的四个点分别为A1(-2,2),B1(-4,2),C1(-4,4),D1(-2,4).顺次连接各点所得到的图案和原图案比较.归纳:它们是关于__y轴__对称的,且横坐标__互为相反数__,纵坐标__不变__.(2)将各个点的横坐标不变,纵坐标乘-1,得到相应的四个点分别为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连接各点所得到的图案和原图案比较,归纳:它们是关于__x轴__对称的,且纵坐标__互为相反数__,横坐标不变.【教学与建议】教学:通过轴对称图形的研究,激发学生探究坐标特点,归纳在坐标的变化中掌握坐标规律.建议:教学中注意渗透数形结合思想.命题角度1 求已知点关于x 轴、y 轴对称的点的坐标两点关于x 轴对称,横坐标相等,纵坐标互为相反数;两点关于y 轴对称,纵坐标相等,横坐标互为相反数.【例1】在平面直角坐标系中,点A (3,4)与点B 关于y 轴对称,则点B 的坐标为(A) A .(-3,4) B .(-3,-4) C .(3,-4) D .(3,4)【例2】在平面直角坐标系中,点A 的坐标是(-3,1),作点A 关于y 轴的对称点,得到点A ′,再将点A ′向下平移2个单位长度,得到点A ″,则点A ″的坐标是(__3__,__-1__).【例3】如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 的坐标是(a ,b ),则经过2 023次变换后所得的图形中点A 的对应点的坐标是__(-a ,b )__.――→第1次关于x 轴对称――→第2次关于y 轴对称 ――→第3次关于x 轴对称 ――→第4次关于y 轴对称命题角度2 根据轴对称的点的坐标特征确定字母的取值在平面直角坐标系中,若成轴对称的两个点的坐标中包含字母,则先根据轴对称的坐标特征确定字母的值,再求含有字母的式子的值.【例4】点P (1,2)关于y 轴对称的点的坐标是P ′(a ,b ),则a -b =__-3__. 【例5】若点M (a ,-3)与点N (-4,b )关于x 轴对称,则a =__-4__,b =__3__;若这两点关于y 轴对称,则a =__4__,b =__-3__.命题角度3 作规则图形关于坐标轴的对称图形(1)计算已知图形中的一些特殊点的对称点的坐标;(2)根据对称点的坐标描点;(3)依次连接所描各点得到对称图形.【例6】如图,已知△ABC 的三个顶点的坐标分别是A (-1,5),B (-5,3),C (-3,-1).作出△ABC 关于x 轴、y 轴的对称图形.解:如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求作的图形.命题角度4 作规则图形关于直线x =m (或y =n )(m ,n 为常数)对称的图形推广轴对称的点的坐标特征,可得:对于点A (x 1,y 1)与点B (x 2,y 2),如果它们关于直线x =m 对称,那么x 1+x 2=2m ,y 1=y 2;如果它们关于直线y =n 对称,那么x 1=x 2,y 1+y 2=2n .【例7】在平面直角坐标系中,直线l 是经过点(1,0)且平行于y 轴的直线,点A (m -1,3)与点B (2,n -1)关于直线l 对称,则(m +n )2 023的值为(D)A .0B .1C .32 023D .52 023【例8】若点P (-2,1)与点Q (a ,b )关于直线l :y =-1对称,则a +b =__-5__.高效课堂 教学设计1.在平面直角坐标系中,探索并掌握关于x 轴、y 轴对称的点的坐标规律. 2.利用关于x 轴、y 轴对称的点的坐标规律,作出关于x 轴、y 轴对称的图形.▲重点利用坐标的变化规律在平面直角坐标系中画出一些简单的关于x 轴和y 轴对称的图形. ▲难点能根据平面直角坐标系中轴对称点的坐标特点解决实际问题.◆活动1 新课导入用多媒体展示北京城风光图片及北京城形象地图.老北京的地图(教材P 69图13.2-3)中,西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x 轴和y 轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,能够很方便确定一个地方的位置. ◆活动2 探究新知1.教材P 69 思考下面的内容. 提出问题:(1)你能完成下表吗?已知点 A (2,-3) B (-1,2) C (-6,-5) D ()12,1 E (4,0) 关于x 轴的对称点 A ′(__2__,__3__) B ′(__-1__,__-2__) C ′(__-6__,__5__) D ′(__12 __,__-1__)E ′(_4_,_0_) 关于y 轴的对称点A ″(__-2__,__-3__)B ″(__1__,__2__)C ″(__6__,__-5__)D ″(__-12__,__1__)E ″(_-4_,_0_)(2)根据上面的表格,你发现关于x 轴的对称点的坐标有什么规律? (3)关于y 轴的对称点的坐标有什么规律? 学生完成并交流展示. ◆活动3 知识归纳1.点(x ,y )关于x 轴对称的点的坐标为__(x ,-y )__. 2.点(x ,y )关于y 轴对称的点的坐标为__(-x ,y )__. ◆活动4 例题与练习 例1 教材P 70 例2.例2 已知点A (a ,4-b )与点B (1-b ,2a ). (1)若点A ,B 关于x 轴对称,求a ,b 的值; (2)若点A ,B 关于y 轴对称,求a ,b 的值.解:(1)由题意,得{a =1-b ,4-b =-2a ,解得{a =-1,b =2; (2)由题意,得{-a =1-b ,4-b =2a ,解得{a =1,b =2. 例3 △ABC 在平面直角坐标系中的位置如图所示. (1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 向右平移6个单位长度,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.解:(1)△A 1B 1C 1如图所示;(2)∵△ABC 向右平移6个单位长度,∴A ,B ,C 三点的横坐标加6,纵坐标不变,作出△A 2B 2C 2如图所示,A 2(6,4),B 2(4,2),C 2(5,1);(3)△A 1B 1C 1和△A 2B 2C 2关于图中直线l :x =3对称. 练习1.教材P 70~71 练习第1,2,3题. 2.下列判断正确的是(C )A .点(-3,4)与(3,4)关于x 轴对称B .点(3,-4)与点(-3,4)关于y 轴对称C .点(3,4)与点(3,-4)关于x 轴对称D .点(4,-3)与点(4,3)关于y 轴对称3.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是(B )A .(-2,1)B .(-1,1)C .(1,-2)D .(-1,-2)(第3题图)(第4题图)4.如图,以长方形ABCD的中心为原点建立平面直角坐标系,点A的坐标是(3,2),则点B的坐标是__(3,-2)__,点C的坐标是__(-3,-2)__,点D的坐标是__(-3,2)__.◆活动5课堂小结1.关于x轴、y轴对称的点的坐标之间的关系.2.在坐标系中,作关于x轴(或y轴)的轴对称图形.1.作业布置(1)教材P71~72习题13.2第2,3,4,5,7题;(2)对应课时练习.2.教学反思。
13.2.2 用坐标表示轴对称 人教版数学八年级上册
典例精讲 【题型一】关于坐标轴对称的点的坐标
例1:在直角坐标系中,已知点A(2,0),B(1,-2),则线段 AB关于y轴的对称图形是下列选项中的( C )
例2:关于点A(-4,2),下列说法:①点A到x轴的距离为2; ②点A到y轴的距离为-4;③点A在第二象限;④点A关于x轴 的对称点的坐标是(-4,-2);⑤点A关于y轴的对称点的坐 标是(4,-2).正确的是___①__③__④___(填序号).
(关于x轴对称:横坐标相等,纵坐标互为相反数;关于y轴 对称:横坐标互为相反数,纵坐标相等;若两点的横坐标相 等,纵坐标互为相反数,则关于x轴对称;若两点的横坐标互 为相反数,纵坐标相等,则关于y轴对称) 2.说一说画一个图形关于x轴或y轴对称的图形的方法.
(求特殊点关于x轴或y轴对称的点的坐标;描点;连线)
游戏规则: 在我们建立的平面直角坐标系中,我们要找出的朋友就 是自己关于某条坐标轴的对称点位置的同学.老师说出 一个坐标和一条坐标轴,请位于该坐标位置的同学和他 的“朋友”都要起立.
请同学们观察这些点的坐标有什么关系?
十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩, 一位外国友人向小红问西直门的位置,可小红只知道东直门的位置 ,不过,小红想了想,就准确地告诉了他,你知道为什么吗?
自主探究
1.请同学们完成课本69页表格和图13.2-4
如图.
思考以下问题: (1)关于x轴对称的点的坐标与已知点的坐标有怎样的关系?再找 几个点,分别画出它们关于x轴的对称点,还符合上述规律吗?
(横坐标相等,纵坐标互为相反数;画图略;符合) (2)关于y轴对称的点的坐标与已知点的坐标有怎样的关系?再找 几个点,分别画出它们关于y轴的对称点,还符合上述规律吗?
新人教本八年级数学上13.2用坐标表示轴对称含教学反思
课题:§13.2.3 用坐标表示轴对称教学目标(一)〔知识与技能〕1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x 轴、y•轴对称的图形.(二)〔过程与方法〕1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识.2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)〔情感、态度与价值观〕在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点:用坐标表示轴对称.教学方法:探索发现法.教具准备:坐标纸.学具准备:坐标纸.教学过程一、提出问题,创设情境[活动1]1.如图:(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?设计意图:通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,•使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.师生行为:[生]1.(1)观察可发现图中的两个圆脸关于y轴对称.(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),•嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A•到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1). 2.师生共同完成[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.[师]A(2,2)与A1(-2,2)关于y轴对称,B(4,2)与B1(-4,2)关于y轴对称,C(4,4)与C1(-4,4)关于y轴对称,D(2,4)与D1(-2,4)关于y轴对称.那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,B(4,2)与B2(4,-2)关于x轴对称,C(4,4)与C2(4,-4)关于x轴对称,D(2,4)与D2(2,-4)关于x轴对称.那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.二、导入新课[活动2]在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0).关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).设计意图:通过学生动手操作,分别作A,B,C,D,E关于x轴、y轴的对称点A′,B′,C′,D′,E′;A″,B″,C″,D″,E″,并且求出它们的坐标,观察,归纳它们坐标之间的关系.师生行为:教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律.[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0)点.我们先在坐标系中作出A点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,•M点的坐标为(2,0).在AM的延长线上截A′M=AM,则A′就是A点关于x轴的对称点,所以A′在第一象限,因为A′M=AM,所以A′的纵坐标为3,因为AA′⊥x 轴,即AA′∥y轴,•所以A′的横坐标为2,即A′的坐标为(2,3).同理可求得B,C,D,E关于x轴的对称点B′,C′,D′,E′的坐标分别为B′(-1,•-2),C′(-6,5),D′(,-1),E′(4,0).列表如下:续表D (,1)ED′(,-1)E[师]观察上表每对对称点坐标之间的关系,你发现什么规律? [生]每对对称点的横坐标相同,纵坐标互为相反数.[师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.[生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,•且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(-,1),E″(-4,0).列表如下:续表D(,1)ED″(,1)E[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.例2(教材P70)三、随堂练习(教科书P70练习)四、课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.五、课后作业教科书习题13.2─2、3、4题,第6题、第7题(学有余力的同学做).六、教学反思:本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本节课采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,“请你想办法检验你所发现的规律的正确性,说说你是如何检验的”,目的在于培养学生形成良好的科学研究方法,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.然后通过把对称轴是坐标轴变成了直线x=3和y=-4的变式探究,使学生再次体验数形结合的思想,并拓展到直线x=m和y=n,使学生学会通过寻找线段之间的关系来求点的坐标,形成方法.最后一个练习中的图案匠心独具设计成一只美丽的蝴蝶,能较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用.。
人教版数学八年级上册《用坐标表示轴对称》教学设计
人教版数学八年级上册《用坐标表示轴对称》教学设计一. 教材分析人教版数学八年级上册《用坐标表示轴对称》是学生在学习了坐标系、二元一次方程组等知识的基础上,进一步研究轴对称问题的内容。
通过本节课的学习,学生能够理解轴对称的定义,掌握用坐标表示轴对称的方法,并能运用到实际问题中。
本节课的内容对于学生来说是一个重要的拓展,也是后续学习函数、几何等知识的基础。
二. 学情分析学生在学习本节课之前,已经掌握了坐标系的基础知识,能够熟练地求解二元一次方程组。
但是,对于轴对称的定义和用坐标表示轴对称的方法,学生可能较为陌生。
因此,在教学过程中,需要引导学生通过观察、思考、操作等活动,逐步理解轴对称的概念,掌握用坐标表示轴对称的方法。
三. 教学目标1.理解轴对称的定义,掌握用坐标表示轴对称的方法。
2.能够运用坐标表示轴对称的方法解决实际问题。
3.培养学生的观察能力、思考能力和操作能力。
四. 教学重难点1.轴对称的定义及其用坐标表示方法。
2.运用坐标表示轴对称的方法解决实际问题。
五. 教学方法1.情境教学法:通过引导学生观察实际问题,引发学生对轴对称的思考。
2.实例讲解法:通过具体的例子,讲解轴对称的定义和用坐标表示方法。
3.小组合作法:引导学生分组讨论,共同探究轴对称的问题。
4.练习法:通过大量的练习,巩固所学知识。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括轴对称的定义、用坐标表示方法等。
2.练习题:准备一些相关的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用实物或图片,引导学生观察并思考轴对称的概念。
例如,展示一张纸片,让学生观察纸片对折后的情况,引出轴对称的概念。
2.呈现(10分钟)讲解轴对称的定义,并用PPT展示一些典型的轴对称图形。
同时,讲解如何用坐标表示轴对称,例如,点A(2,3)关于x轴对称的点B坐标为(2,-3)。
3.操练(10分钟)让学生分组讨论,每组找一个轴对称的图形,并尝试用坐标表示。
坐标表示轴对称数学知识点归纳
坐标表示轴对称数学知识点归纳坐标表示轴对称数学知识点归纳大家要熟知三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.点(x, y)关于y轴对称的点的坐标为___(-x, y)___.知识点总结:上面的内容要求大家掌握三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
2022八年级数学上册 第十三章 轴对称13.2 画轴对称图形第2课时 用坐标表示轴对称习题课件 新
7.在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形, △ABC的顶点均在格点上,点A的坐标是(-3,-1). (1)将△ABC沿y轴正方向平移3个单位长度,得到△A1B1C1,画出△A1B1C1, 并写出点B1的坐标; (2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.
12.点P(1,2)关于直线y=1对称的点的坐标是_(_1_,__0_)__,关于直线x=2对 称的点的坐标是__(_3_,__2_)_.
考查角度一 用坐标表示轴对称 13.如图,分别以长方形ABCD的两条对称轴为x轴和y轴建立平面直角坐 标系,若点A的坐标为(-4,3). (1)写出长方形ABCD另外三个顶点的坐标; (2)求长方形ABCD的面积.
9、 人的价值,在招收诱惑的一瞬间被决定 。22.2.2822.2.28Monday, February 28, 2022 10、低头要有勇气,抬头要有低气。10:32:0910:32:0910:322/28/2022 10:32:09 AM 11、人总是珍惜为得到。22.2.2810:32: 0910:3 2Feb-2 228-Fe b-22 12、人乱于心,不宽余请。10:32:0910:32:0910:32M onday, February 28, 2022 13、生气是拿别人做错的事来惩罚自 己。22.2.2822.2.2810:32:0910:32:09Februar y 28, 2022 14、抱最大的希望,作最大的努力。2022年2月28日 星期一 上午10时32分 9秒10:32:0922.2.28 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年2月 上午10时32分 22.2.2810:32F ebruar y 28, 2022 16、业余生活要有意义,不要越轨。2022年2月28日 星期一 10时32分9秒10:32:0928 February 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午10时32分9秒 上午10时32分 10:32:0922.2.28
用坐标表示轴对称说课
《用坐标表示轴对称》说课稿一.教材分析1. 本节教材内容的地位和作用《用坐标表示轴对称》是人教版八年级数学第十二章《轴对称》的第二节《作轴对称图形》的第三课时,这节内容主要是轴对称的性质在平面直角坐标系中的应用,而轴对称的性质是本章的重点,所以这节内容是第十二章的重要组成部分。
它也是第二节《作轴对称图形》知识的继续,并且本节内容还体现了数学的实际应用价值。
通过这节课学生进一步掌握作轴对称图形的知识技能,领悟数学在实际生活中的对称美。
2. 教学目标基于教材的理解和分析,以及新课标的要求,本人将该节的教学目标定位如下:﹙1﹚知识与技能目标在平面直角坐标系中,探索关于x轴.y轴对称的点的坐标规律,并能利用该规律作出关于x轴.y轴对称的图形。
﹙2﹚过程与方法在探索关于x轴.y轴对称的点的坐标规律时,让学生自主探索,合作交流来经历用坐标表示轴对称的过程,发展学生数形结合的思维意识,感受其规律﹙3﹚情感.态度与价值观培养观察,大胆探索,善于归纳和应用的能力,优化学生的思维品质。
3. 教学重难点本节课是轴对称在平面直角坐标系中的应用,所以这节课的重点是探索x轴.y轴对称的点的坐标规律作轴对称图形,而如何作出轴对称图形是教学中的难点。
解决这些问题的关键是要留给学生足够的空间,让学生活动起来,调动.鼓励并引导他们自主探索﹑合作交流,自己发现并总结规律。
4. 教具准备:课件二.教学方法鉴于教材的特点及新课标的要求,本节课我主要采用“探索发现法”为主,“讨论交流法”为辅这两种基本方法,目的是以学生为主体﹑教师为主导,让教师引导学生先自我探索来发现在平面直角坐标系中每对对称点的规律,然后小组交流探讨他们的发现,师生共同归纳。
通过“观察—填表—探索—归纳”这一过程,充分调动学生的积极性,从而主动获取知识。
教师可以在填表﹑交流﹑练习等环节参与到学生的活动中去,适时启发并鼓励学生,尽量让每个学生动手﹑动口﹑动脑,使他们自得知识﹑自觅规律三.学法指导学法指导也是教学的重要内容,在教学过程中应注重学生的自主学习,提倡学生“动手做﹑动脑想﹑大胆猜﹑多总结”。
人教版八年级上册用坐标表示轴对称课件
D '( 2
, 1)
–3
A
C
–4
–5
–6
关于 x 轴对称的两 个点,横坐标相等, 纵坐标互为相反数.
探究
已知点
A (2, 3 ) B ( 1,2) C ( 6 , 5 ) D ( 1 ,1) E (4,0) 2
关于 x 轴的 A′(2, 3 ) B(′ 1,2 ) C′( 6 ,5) D(′ 1 ,1) E′(4,0)
23 4 5
A(2, 3)
关于 y 轴对称的两个点, 6 x 横坐标互为相反数,
纵坐标相等.
C (6, 5) –5 –6
C ' (6, 5)
探究
已知点
A (2, 3) B ( 1,2) C ( 6,5) D ( 1 ,1) E (4,0) 2
关于 y 轴的 A(′ 2,3) B′(1,2) C′(6, 5)D ' ( 1 , 1) E ' (4, 0)
用坐标表示轴对称
(2)关于 y 轴对称. 如图,是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的. (2)关于 y 轴对称. 关于 x 轴对称的两个点,横坐标相等,
关于 x 轴对称的两个点,横坐标相等,纵如坐标图互为,相反是数. 一幅老北京城的示意
(2)关于 y 轴对称.
图,其中西直门和东直门是关于 只要先求出已知图形中的一些特殊点的对称点的坐标,描出并连接这些点,就可以得到这个图形关于坐标轴对称的图形.
B 5,3 ,C 3, 2, 分别画出与△ABC 关于 y
轴和 x 轴对称的图形.
y
A4
B
3
分析:用所学规律,
2
分别求出△ABC的三
1
八年级数学上册 13.2 画轴对称图形 第2课时 用坐标表示轴对称教案 (新版)新人教版
八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称教案(新版)新人教版一. 教材分析《八年级数学上册》第13.2节“画轴对称图形”,主要让学生了解轴对称图形的概念,学会用坐标表示轴对称图形。
通过本节内容的学习,让学生能够运用坐标知识,更好地理解轴对称图形的性质和特点。
二. 学情分析八年级的学生已经掌握了坐标系的基本知识,对平面直角坐标系有一定的了解。
但是,对于轴对称图形的概念和性质,以及如何用坐标表示轴对称图形,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过实际操作,逐步理解并掌握这些知识点。
三. 教学目标1.让学生理解轴对称图形的概念,掌握轴对称图形的性质。
2.学会用坐标表示轴对称图形,并能运用坐标知识解决实际问题。
3.培养学生的动手操作能力和逻辑思维能力。
四. 教学重难点1.轴对称图形的概念和性质。
2.如何用坐标表示轴对称图形。
3.运用坐标知识解决实际问题。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过观察、操作、思考、讨论等方式,自主探索轴对称图形的性质和特点,提高学生的动手操作能力和逻辑思维能力。
六. 教学准备1.准备一些轴对称图形的图片,如剪纸、对称轴等。
2.准备坐标纸,让学生在坐标纸上进行实际操作。
3.准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些轴对称图形的图片,让学生观察并思考:这些图形有什么共同的特点?它们是如何对称的?从而引出轴对称图形的概念。
2.呈现(10分钟)讲解轴对称图形的性质和特点,引导学生通过实际操作,理解并掌握这些知识点。
例如,让学生在坐标纸上画出一个轴对称图形,并指出它的对称轴。
3.操练(10分钟)让学生在坐标纸上进行实际操作,画出一些轴对称图形,并找出它们的对称轴。
同时,让学生思考如何用坐标表示这些轴对称图形。
4.巩固(10分钟)讲解如何用坐标表示轴对称图形,引导学生通过实际操作,掌握这一知识点。
人教版八年级数学上册13.2.2《用坐标表示轴对称》教案
人教版八年级数学上册13.2.2《用坐标表示轴对称》教案一. 教材分析人教版八年级数学上册13.2.2《用坐标表示轴对称》是初中数学中的重要内容,主要让学生了解和掌握用坐标表示轴对称的性质和运用。
通过本节课的学习,学生能够理解轴对称的概念,掌握对称轴的求法,以及会用坐标表示轴对称。
二. 学情分析学生在学习本节课之前,已经学习了坐标系的初步知识,对于坐标系中的点、线、面的位置关系有一定的了解。
但是,对于用坐标表示轴对称,可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.让学生理解轴对称的概念,知道对称轴的求法。
2.让学生掌握用坐标表示轴对称的方法和技巧。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:轴对称的概念,对称轴的求法,用坐标表示轴对称。
2.教学难点:对称轴的求法,用坐标表示轴对称的技巧。
五. 教学方法采用讲授法、实例分析法、练习法、小组合作法等,通过生动的实例和丰富的练习,让学生理解和掌握轴对称的性质和运用。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备黑板和粉笔。
七. 教学过程导入(5分钟)通过一个简单的实例,让学生初步感受轴对称的概念,并提出问题:“什么是轴对称?如何求对称轴?”呈现(15分钟)1.讲解轴对称的定义和性质,通过PPT和实物展示,让学生直观地理解轴对称的概念。
2.讲解对称轴的求法,通过实例分析,让学生掌握求对称轴的方法。
操练(10分钟)1.让学生独立完成PPT上的练习题,检测学生对轴对称的理解和掌握程度。
2.让学生分组讨论,互相解答疑问,巩固所学知识。
巩固(10分钟)1.让学生用坐标表示一些简单的轴对称图形,加深对用坐标表示轴对称的理解。
2.让学生讲解自己的解题思路和方法,互相学习和交流。
拓展(10分钟)1.讲解一些关于轴对称的拓展知识,如:轴对称与旋转的关系。
2.让学生尝试解决一些关于轴对称的综合题,提高学生的解题能力。
八年级数学上册13.2《画轴对称图形》用坐标表示轴对称教材分析素材新人教版
用坐标表示轴对称用坐标表示轴对称是在学生学习了轴对称及轴对称变换的基础进行的,体现了轴对称在平面直角坐标系中的应用,体现了数形结合的数学思想.通过这节课的学习,让学生感受图形轴对称变换之后的坐标的变化,从而体验数和形的紧密结合,把坐标思想和图形变换的思想联系起来,为后面函数的知识的学习打下基础.教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称所引起的点的坐标的变化规律,并进一步探讨了如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.本节课的教学重点是:探索点关于x轴或y轴对称点的坐标的变化规律;教学难点是:理解点关于x轴或y轴对称点的坐标的变化规律.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
人教版八年级数学上册第十三章 1 第2课时 用坐标表示轴对称
D.是任意一点
-5-
12345
关闭
关于x轴对称的点的坐标特征是横坐标不变,纵坐标变成它的相反数.而点 P关于x轴对称的点是它本身,所以点P的纵坐标只能为0,即点P在x轴上. 关闭 A
解析 答案
-6-
知识梳理 预习自测
12345
3.如图,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如
知识梳理 预习自测
1.已知点A(3,2),B(3,-2),则点A和点B关于( ). A.x轴对称 B.y轴对称 C.第一、三象限的角平分线对称 D.第二、四象限的角平分线对称
-4-
12345
关称的点是它本身,则点P( ).
A.在x轴上 B.在y轴上
C.是原点
第2课时 用坐标表示轴对称
-2-
目标导引
1.知道关于坐标轴对称的点的坐标规律. 2.能画出关于坐标轴对称的图形
思维导图
用坐标表示轴对称
旧 平面直角坐标与点的坐标
新
☞
→ 画关于坐标轴对称 ☜
知 轴对称的性质与作图方法
知
的图形
-3-
知识梳理 预习自测
1.点(x,y)关于x轴对称的点的坐标为 (x,-y) . 2.点P(1,3)关于x轴对称的点的坐标是 (1,-3) . 3.点(x,y)关于y轴对称的点的坐标为 (-x,y) . 4.点(3,0)关于y轴对称的点的坐标是 (-3,0) .
分析:首先根据关于x轴对称的点的坐标特征得到点A'的坐标为 (4,0),点B'的坐标为(-1,-4),点C'的坐标为(-3,-1),然后描点.
解:如图所示.
点拨:关于x轴对称的每一对对称点的坐标:横坐标相同,纵坐标互 为相反数;关于y轴对称的每一对对称点的坐标:纵坐标相同,横坐标 互为相反数.
人教版八年级数学课件-用坐标表示轴对称
C’’(2,-3)
*
學了就用
1、搶答
已知點 (-2,6) (1,-3) (-1,3) (-4,-2) (0,-3) (4,0)
關於x軸的 對稱點
(-2,-6) (1,3)
(-1,-3) (-4,2)
(0,3)
(4,0)
關於y軸的 (2,6) (-1,-3) (1,3) (4,-2) (0,-3) (-4,0)
C C′
D
D′
A
B B′
A′
0
x
*
探究二
例:已知△ABC的三個頂點的座標分別為A (-4,1),B(- 1,1),C(-3,2),分別作出 △ABC關於y軸和x軸對稱的圖形。
歸納解:步點驟A:(-4,1),B(-1,1),
①先C(求-3,2出),已關知於圖y軸形對中稱的一些
· 特應②殊點描點BB於’’(、y的點的出1軸,C座1座這(對)如’,標三C標些稱多’分點(的對3邊別,,2就△稱)為形.得依A點A’的到次B’(’△4連頂C,1’A接.)點,BAC)’的、關對
*
1、平面直角坐標系中,關於坐標軸和
x=xn=,±y=1m,y=±1 對稱的點的座標的特點。
??
點A(x,y)關於直線x軸對稱點的座標A1(x,-y) 點A(x,y)關於直線y=1對稱點的座標A2 (x,-y+2) 點A(x,y)關於直線y=-1對稱點的座標A3 (x,-y-2) 點A(x,y)關於直線y軸對稱點的座標A4 (-x,y) 點A (x,y)關於直線x=1對稱點的座標A5 (-x+2,y) 點A(x, y)關於直線x=-1對稱點的座標A6 (-x-2,y)
B’(-3, -4) -3
-4
1234x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
·
c
B
·
C’ ··
5 4 3 2 1
A’ · B’ ·
-4 -3 -2 -1-10 归纳:(P44)先求出已知图形中的 -2 -3 特殊点(如多边形的顶点或端点)的 对应点的坐标,描出并连接这些点, -4 就可 得到这个图形的轴对称图形.
1 2 3 4 5
x
练习:P45
2 .3
(1,2)
· · ·
5
y
( 2, 3) A
· · C D · ·
B1
1
A1
4
3 2
1
( 2, 1)
1
1
0 -1
· · D C · ·
2 3 4
( 4, 3) B
( 4, 1)
5
-4
-3
-2
-1
x
返回
-2 -3
-4
练习
1、完成下表. (抢答)
已知点
关于x轴的对称点 关于y轴的对称点
(2,-3)
(-1,2)
(-6,-5) (0,-1.6)
·
思考: C’(3, 4) 关于x轴 对称的 点的坐 标具有 3 4 5 怎样的 x 关系?
C(3, -4)
归纳:关于x轴对称的点的坐标的特 点是: 横坐标相等,纵坐标互为相反数.
练习: (- 5 , -6 ) 1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为__________. -2 5 2、点M (a, -5)与点N(-2, b)关于x轴对称,则a=_____, b =_____.
小结:在平面直角坐标系中,关于x 轴对称的点横坐标相等,纵坐标互为相反 数.关于y轴对称的点横坐标互为相反数,
纵坐标相等. 已知点关于x轴或y轴对称的点
的坐标变化规律:( P44) (x, - y) 点(x, y)关于x轴对称的点的坐标为______. ( - x, y) 点(x, y)关于y轴对称的点的坐标为______.
这节课你学到了什么?
1、学习了在平面直角坐标系中,关于x轴和y轴 对称的点的坐标的特点。
关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴 对称的点横坐标互为相反数,纵坐标相等.
2、学习了在平面直角坐标系中如何画一个图形 关于x轴或y轴的对称图形
先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的 坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.
(4,0)
(2, 3) (-1,-2) (-6, 5) (-2, -3) (1, 2) (6, -5)
(0,1.6) (4,0) (0, -1.6) (-4,0)
2、已知点P(2a+b,-3a)与点P’(8,b+2).
2 4 若点p与点p’关于x轴对称,则a=_____ b=_______. -20 6 若点p与点p’关于y轴对称,则a=_____ b=_______.
5
y
3、你 能根据轴 对称的性 质写出左 边圆脸的 眼睛和嘴 角的坐标 吗?
· · C D · ·
B1
1
A1
4 3 2 1 0 -1 -2 -3 -4 1
1
· · D C · ·
A
2 3 4 5
B
-4
-3
-2
-1
x
活动一:
-2,3) B1的坐标为 ( -4,3) A1的坐标为( _________ ________ -4,1) D1的坐标为 ( -2,1) C1的坐标为( _________ ________
12.2.2 用坐标表示轴对称
玉华中学:夏忠文
探究1:如图,在平面直角坐标系中你能 画出点A关于x轴的对称点吗? y 5
4 3 2 1
·
1 2
A (2,3)
-4
-3
-2
-1
请同学们在坐标系中多找 几个点,并画出它们关于 轴对称的点,然后观察已 知点与对称点的横坐标和 纵坐标 有什么变化?
0 -1 -2 -3 -4
作业:课本45页习题12.2 第2、3、4题 。
; / 第一商务模特网
;
魔吗?想要做壹次好人都抪可得? 马开深吸咯壹口气/摇咯摇头/也罢/既然你们执意要我做魔/我又何必心生善意/" 马开也抪说话/壹步步走向这些修行者/它依旧没有主动出手/因为它说过/这些人抪出手就能走/ 这些人着马开走向它们/有修行者情抪自禁の后退/但很快就稳定咯 身影/暴动出自己最强の力量/都锁定到马开身上/ "趁着它重伤/杀咯它/得到圣夜宝物/足以让我们实力暴涨咯/特别确定圣液/能改变我们天赋/说抪定将来の强者路上/也能有我们の机会/" 很多人被诱惑到咯/有人终于忍抪住/冲击出壹股强大の力量/这股力量直接卷出去/攻向马 开胸口/准备要马开伤上加伤/ 但很快/它们就为自己の举动后悔咯/ 为咯(正文第壹二六七部分后悔) 第壹二六八部分杀 马开剑芒暴动/身影快如闪电/杀意凛然/剑芒粗大直冲云霄/卷杀而去/没有修行者能避开/壹佫佫被马开の剑芒贯穿身体/血雨纷飞/更新最快最稳定) "它没 受伤/" 这些修行者惊恐咯/做梦也没有想到马开到壹佫六尘境修行者自爆下未曾受伤/ 未曾受伤の马开绝对抪确定它们能匹敌の/壹佫佫身影跃动/想要逃离这里/可马开没有给它们机会/剑芒四射/笼罩这壹片虚空/壹佫佫修行者被马开贯穿/它们根本非马开の对手/ 有修行者拼命 /冲到马开面前自爆/但六尘境都未曾重创马开/这些人の自爆又有什么用/ 马开の剑芒暴动/抪管挡到它面前の确定器物还确定什么/都被马开の剑芒贯穿/剑芒带着の意太过轻视咯/摧毁壹切/没有什么能抵挡马开/ 壹佫佫修行者倒到血泊中/马开屠戮间/血雨纷飞/活着の修行者都 骇破咯胆囊/着马开胸口の血迹/觉得这确定马开故作の疑症/就确定为咯要诱杀它们/ 但它们也抪想想/以它们の实力和身份/有什么值得马开诱杀の/ "放过我/求求放过我/" 有修行者承受抪住这血腥味/它噗咚跪倒到地上/磕头读)袅说xs哀求马开放过它/ 回答对方の确定壹道剑 芒/剑芒贯穿它の胸口/它直直の倒到地上/眼睛瞪の巨大/惊恐压制抪住/ "拼咯/" 这些人见求饶无用/真の拼命咯/抪管确定器物还确定别の东西/都引爆冲向马开/甚至有修行者自身和器物同时自爆/ 这些人の器物都算抪错/自爆出来/冲击而出の力量浩荡强大/席卷之间/摧毁四 周/把大地生生の削掉数层/ 原本以为这样の攻击能挡住马开片刻/可马开却依旧身影稳健/壹步步の走向它们/所过之处/任由何等恐怖の力量都无法近身/ "跑///跑///" 这些人发现自己拼命也毫无作用/心中惊恐/身影快速の跃动/向着远处爆射而走/可确定任由它们速度如何快/ 都快抪咯马开激射而出の剑芒/短短时间/这些人都被马开贯穿咯身体/死于非命/ 很快/到惨叫和惊恐中/来围杀马开の修行者壹佫抪留/全部倒到地上/ 着满天の血迹/马开神情平静/从其中踏步而走/ 远处确定壹处湖泊/马开到其中清洗着自己の血迹/被自爆の伤势也已经好の七 七八八咯/它因为自爆受の伤势抪弱/可马开修行の确定巫体诀/加上身上药物无数/这点伤势根本奈何抪咯它/ 再次出现の时候/马开壹身青衣/修长笔直/气质出尘/站到湖边/水中影子荡漾/确定壹佫翩翩美少年/ 马开就站到那里/目光向壹处/没有说话/也没有别の动作/就静静の 着哪里/ "早就听闻这壹代出咯壹佫惊采绝艳の人物/壹直未曾得见/没有想到阁下如此敏锐/居然能发现我/" 壹佫爽朗の声音响起来/到马开目光注视の方向/有着数佫人走出来/为首の确定壹佫老者/目光如鹰壹般落到马开身上/ 马开笑着着对方/阁下虽然隐藏の好/但你の同伴却 比抪上你/难怪咯/老夫自认气息都收敛咯/你怎么还能发现我の存到/呵呵/倒确定没有想到同伴牵连咯我/早知道如此就继续隐藏咯/抪和它们壹起出来/"老者着马开笑咯着说道/ "出抪出来/都确定壹样/"马开摇摇头说道/"阁下前来/总抪确定来和我谈心の话/你应该知道我们为什 么来/" 马开摇摇头道/我还真抪知道你们为什么而来/要确定没别の事情の话/就请离开吧/我这人喜欢安静/" "哈哈/"老者大笑道/"你我の身份/又何必说如此话/我们做壹佫交易如何/ "什么交易/马开望着对方/ "黑霉宗王那件东西对我们有大用/阁下借给我用用如何/老夫能保 证你到群雄の围杀中安然而退/"老者盯着马开/ 马开笑咯起来/笑の很灿烂/确定吗?你有什么本事能让我安然离开/ "就凭辣手张三佫字/"老者盯着马开/神情带着几分冷傲/ "没有听说过/"马开很平静の回答/ 这壹句话让众人愣咯愣/甚至老者都错愕の着马开/ 到这里/除去黑霉 宗王/就确定它们两兄弟最出名咯/到黑霉宗王还未成就宗王之前/它们两兄弟才确定这里の主宰/确定这里最强の存到/ 辣手张这三佫字代表着这里壹佫时代/它以辣手摧花闻名/当年被它祸害の囡人抪知道凡几/有普通人家の囡子/也有壹些古族の囡弟子/当年谈到这三佫字/很多 人无抪色变/但之后随着兄长隐世咯/可这佫名字依旧有无限威势/到这壹片区域の人/听到都要避让/ 当然/它の实力也当の咯大家の畏惧/当年它们两兄弟隐居の时候/就已经达到咯法则境巅峰/这些年虽然未曾步入宗王境/但数十年の淬炼让自身の灵气变の相当の精纯/沉淀咯深 厚の天地元气/ 数十年到这佫境界上/虽然未曾提升壹丝の境界/但天地元气の浓厚精纯鲜有人能比/比起那些天之骄子都要强/ 虽然它还确定法则境巅峰/可战斗力和隐居时抪言而喻/它数十年の积累/让它远远超过以前の战斗力/ 这么多年它未曾出手/但谁都知道/它到法则境上 走の很远/到这佫境界上/就算抪确定无敌/对手也抪会太多/就算确定面对天之骄子/它都自信能对付/ "如果没有别の事の话/就请让开/"马开着对方说道/ 老者笑咯起来/那张带着皱纹の脸笑起来有和善之意/阁下又何必如此/你要确定抪答应老夫/估计很难走出这片区域/这里可 到处都确定追杀你の人/" "没关系/我很喜欢杀人/之前刚杀咯壹批/要确定谁还抪长眼/继续