轴对称图形专项练习题84

合集下载

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

以下是一些轴对称图形的练习题及答案。

练习题1:判断下列图形是否为轴对称图形,并找出对称轴。

1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。

2. 等边三角形是轴对称图形,有3条对称轴。

3. 矩形是轴对称图形,有2条对称轴。

4. 等腰梯形是轴对称图形,有1条对称轴。

5. 五角星是轴对称图形,有5条对称轴。

练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。

请找出下列图形的对称轴数量。

1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。

2. 菱形有2条对称轴。

3. 正六边形有6条对称轴。

4. 半圆形有1条对称轴。

5. 等腰三角形有1条对称轴。

练习题3:在下列图形中,找出不是轴对称图形的图形。

1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。

练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。

根据这个定义,判断下列点是否在对称轴上。

1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。

2. 点B不在对称轴上。

3. 点C在对称轴上。

4. 点D不在对称轴上。

练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。

这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。

通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。

典型的轴对称图形练习题(带答案)

典型的轴对称图形练习题(带答案)

典型的轴对称图形练习题一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3C .2D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.AO PAECB D13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.OB22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案第一章轴对称图形1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C 11.212.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。

典型的轴对称图形练习题带答案

典型的轴对称图形练习题带答案

典型的轴对称图形练习题带答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个C .3个D .4个2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个C .3个D .4个3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形; C .等边三角形 D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是( ) A .45° B .55° C .60° D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小 的底角是( )度. A .45° B .30° C .60° D .90°6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定 7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,PAECBD则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( )A .4B .3C .2D .19.∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5 C .PQ <5 D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( )A .3cm 或5cmB .3cm 或7cmC .3cmD .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D到AB 的距离是__________.14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________.15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为AO60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB离相等.20.如图:AD 为△ABC 的高,∠B=2∠C轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF的长.22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长; ② 若BC=4,求△BCD 的周长.23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC BP=CQ ,问 △APQ参 考 答 案第一章 轴对称图形1.A 2.B 3.C 4.C 5.A6.D7.C8.C9.B10.C 11.2 12.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。

(完整版)轴对称图形习题(附答案)

(完整版)轴对称图形习题(附答案)

初中数学轴对称与轴对称图形复习题【同步达纲练习】一、判断题(4分×6=24分)( )1.全等的两图形必须关于某一直线对称.( )2.关于某一条直线对称的两个图形叫轴对称图形.( )3.等腰三角形底边中线是等腰三角形的对称轴.( )4.若两个三角形三个顶点分别关于同一直线对称则两个三角形关于该直线轴对称.( )5.轴对称图形的对称轴有且只有一条.( )6.正方形的对称轴有四条.二、选择(5分×6=30分)1.△ABC中∠C=Rt∠,有一点既在BC的对称轴上,又在AC对称轴上,则该点一定是( )A.C点B.BC中点C.AC中点D.AB中点2.在角、线段、等边三角形、钝角三角形中,轴对称图形有( )A.1个B.2个C.3个D.4个3.下列说法正确的是( )A.等边三角形只有一条对称轴B.等腰三角形对称轴为底边上的高C.直线AB不是轴对称图形D.等腰三角形对称轴为底边中线所在直线4.下列图不是轴对称图形的是( )A.圆B.正方形C.直角三角形D.等腰三角形5.O为锐角△ABC的∠C平分线上一点,O关于AC、BC的对称点分别为P、Q,则△POQ一定是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形6.下列各命题的逆命题成立的是( )A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线B.两图形若关于某直线对称,则两图形全等.C.等腰三角形是轴对称图形D.线段对称轴有二条三、填空(5分×6=30分)1.两图形关于直线对称,则两个图形一定.2.若两图形关于直线对称,则图形上的对应点连线段被对称轴.3.等边三角形的对称轴有条.4.轴对称图形是对个图形而言的,而轴对称是对个图形而言的.5.两图形关于某直线对称,若它们的对应线段相交,交点必在上.6.线段的对称轴除了它的中垂线外,还有.四、解答(8分×2=16分)1.如图3.15-7,线段AB的对称轴为直线MN.P、Q在MN上,求证△PAQ≌△PBQ.图3.15-72.如图3.15-8,AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC 周长记为P A,△EBC周长记为P E.求证P E>P A.图3.15-8【素质优化训练】1.A、B为直线MN外两点,且在MN异侧,A、B到MN的距离不相等,试求一点P,满足下条件:①P在MN上,②|PA-PB|最大.2.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.【生活实际运用】1.以树干为对称轴,画出树的另一半如图(3.15-9)图3.15-92.草原上两个居民点A 、B 在河流l 的同旁(如图3.15-10)汽车从A 点出发到B ,途中需要到河边加水,汽车在哪一点加水,可使行驶路程最短,在图中画出该点.3.15-10参考答案【同步达纲练习】一、× × × √ × √二、D C D C B A三、1.全等 2.垂直平分 3.三 4.两,一 5.对称轴 6.它本身四、1.由已知可得PA=PB ,QA=QB PQ=PQ ∴△PAQ ≌△PBQ(SSS)2.延长BA 至C ′使AC=AC ′ 连C ′E ∵∠BAD=∠DAC.AD ⊥MN∴∠BAD+∠C ′AE=∠DAE=90°=∠DAC+∠CAE ∴∠CAE=∠C ′AE又C ′A=CA AE=AE ∴△C ′AE ≌△CAE(SAS) ∴EC=EC ′C ′E+EB >BC ′ ∴BE+EC >BA+AC. ∴P E >P A .【素质优化训练】1.作B 关于MN 的对称点B ′再作直线AB ′交MN 于P.P 即为所求 此时|PA-PB |=|PA-PB ′|=PB ′,另取MN 上一点P ′,连P ′A ,PB ,P ′B ′ ∴P ′B ′=P ′B.|P ′B-P ′A |=|P ′B ′-P ′A |<|PA-PB ′|(三角形两边之差小于第三边) ∴P 为所求.2.分别作P 关于OM 、ON 的对称点P 1,P 2,连P 1P 2交OM 于A ,ON 于B.则△PAB 为合条件的三角形.∠MON=40°∴∠P 1PP 2=140°. ∠P 1PA=21∠PAB ∠P 2PB=21PBA. ∴21(∠PAB+∠PBA)+ ∠APB=140° ∠PAB+∠PBA+2∠APB=280° ∴∠APB=100°【生活实际运用】1.(略)2.作A 关于l 的对称点A ′连A ′B 交l 于C 点,则C 为所求的点.。

八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题

八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。

例题1:下列图形中,是轴对称图形的是()A. 平行四边形。

B. 三角形。

C. 梯形。

D. 正方形。

解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。

2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。

3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。

4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。

答案为D。

例题2:正六边形的对称轴有()条。

A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。

2. 所以正六边形的对称轴有6条。

答案为B。

二、线段垂直平分线性质的例题。

例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。

2. 已知△BCE的周长为14,即BE + EC+BC = 14。

3. 又因为AE = BE,所以AC+BC=14。

4. 已知BC = 6,所以AC = 14 - 6=8。

5. 因为AB = AC,所以AB = 8。

答案为C。

例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。

B. l平分但不垂直AB。

C. l垂直且平分AB。

D. l与AB相交但不一定垂直平分。

解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。

2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。

生活中的轴对称(经典例题)

生活中的轴对称(经典例题)

班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。

小学二年级数学题《轴对称图形问题大全及答案》

小学二年级数学题《轴对称图形问题大全及答案》

小学二年级数学题《轴对称图形问题大全及答案》姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、下列图案中是轴对称图形的有()a.1个b.2个c.3个d.4个答案与解析:a2、下列图形中,不对称的是[ ]a.b.c.d.答案与解析:b3、下面的图形哪些是对称的?画出它们的对称轴。

答案与解析:“略”4、正方形有几条对称轴?[ ]a.1b.2c.4d.无数答案与解析:c5、红领巾有几条对称轴?[ ]a.1b.2c.无数答案与解析:a6、下面物品中不对称的是[ ]a.大桥b.电话机c.鱼d.蛋糕答案与解析:b7、找出镜子里看到的图像。

(连一连)答案与解析:8、请你按对称轴画出另一半,并说一说像什么物体?答案与解析:“略”9、第1行的四个图形顺着虚线对折合后会变成第2行的哪一个图形?答案与解析:10、写出四个你学过的汉字,而且是对称的。

答案与解析:王、工、大、一(答案不唯一)11、在数字1~9中,哪些是对称图形?答案与解析:1,3,812、小华站在镜子面前向后退一步,镜子里的她会()。

答案与解析:向后退一步13、对称轴位于对称图形的[ ]a.上边b.下边c.中间d.两边答案与解析:c14、任何图形都不可能有无数条对称轴。

[ ]答案与解析:错误15、按照对称轴画出它们的另一半,并说说它们像什么?像()像()答案与解析:“略”16、下列图形哪些是对称的?画出它们的对称轴。

答案与解析:“略”17、这个图是由()条线段围成的。

请你画出这个图的对称轴。

答案与解析:8;图“略”18、小明今天遇上了这么一件事,你可以告诉他是怎么回事吗?他今天早晨起床锻炼时,从镜子看到的时间如下图所示,回家时从钟表上看到的时问也如下图所示。

小明起床的时间是()时()分;他锻炼了()小时。

答案与解析:5时30分;1小时19、正方形只有一条对称轴。

有关轴对称图形练习题

有关轴对称图形练习题

第一章 轴对称图形 单元测评卷一、选择题1、下列图形中一定是轴对称图形的是 ( ) A 、梯形 B 、直角三角形 C 、角 D 、平行四边形2.下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴:③关于某直线对称的两个三角形一定是全等三角形;④两个图形关于某直线对称,对称点一定在直线的两旁,其中正确的个数是 ( )A .4B .3C .2D .13.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴.若∠AFC +∠BCF =150°,则∠AFE +∠BCD 的度数是 ( )A .150°B .300°C .210°D .330°4.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在 ( )A .△ABC 三条中线的交点B .△ABC 三边的垂直平分线的交点 C .△ABC 三条角平分线的交点D .△ABC 三条高所在直线的交点 5.三角形的一个外角平分线平行于三角形的一边,则这个三角形是 ( ) A .等腰三角形 B .锐角三角形 C .直角三角形 D .等腰直角三角形6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图①).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图②)的对应点所具有的性质是 ( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 7.在如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两个格点,若C 也是图中的格点,且使得△ABC 为等腰三角形, 则点C 的个数是 ( )A .6B .7C .8D .9 二、填空题(每题4分,共28分)1、如下左1图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=2、如上左2图把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间的数量关系保持不变,请找一找这个规律,你发现的规律是3、如上左3图,把矩形ABCD 沿EF 对折,若∠1=50°,则∠AEF 等于 °4、如上右4图,❒ABC 的内部有一点P ,且D 、E 、F 是P 分别以AB 、BC 、AC 为对称轴的对称点。

八年级轴对称经典题型

八年级轴对称经典题型

八年级轴对称经典题型一、选择题(每题3分,共15分)1. 下列图形中,是轴对称图形的是()A. 平行四边形。

B. 三角形。

C. 圆。

D. 梯形。

解析:- 圆沿着任意一条直径所在的直线折叠,直线两旁的部分都能完全重合,所以圆是轴对称图形。

- 平行四边形无论沿哪条直线折叠,直线两旁的部分都不能完全重合,不是轴对称图形。

- 三角形不一定是轴对称图形,只有等腰三角形和等边三角形是轴对称图形。

- 梯形不一定是轴对称图形,只有等腰梯形是轴对称图形。

所以答案是C。

2. 点P(3, - 2)关于x轴对称的点的坐标是()A. (3,2)B. (-3, - 2)C. (-3,2)D. (2, - 3)- 关于x轴对称的点,横坐标相同,纵坐标互为相反数。

- 点P(3, - 2)关于x轴对称的点的坐标是(3,2)。

所以答案是A。

3. 等腰三角形的一个内角为50^∘,则这个等腰三角形的顶角为()A. 50^∘B. 80^∘C. 50^∘或80^∘D. 40^∘或65^∘解析:- 当50^∘的角为顶角时,答案就是50^∘。

- 当50^∘的角为底角时,因为等腰三角形两底角相等,根据三角形内角和为180^∘,则顶角为180^∘-50^∘×2 = 80^∘。

所以这个等腰三角形的顶角为50^∘或80^∘,答案是C。

4. 如图,在ABC中,AB = AC,∠ A = 30^∘,DE垂直平分AC,则∠ BCD的度数为()A. 80^∘B. 75^∘C. 65^∘D. 45^∘- 因为AB = AC,∠ A=30^∘,所以∠ B=∠ ACB=(1)/(2)(180^∘-∠A)=(1)/(2)(180^∘ - 30^∘) = 75^∘。

- 因为DE垂直平分AC,所以AD = CD,∠ A=∠ ACD = 30^∘。

- 则∠ BCD=∠ ACB-∠ ACD=75^∘-30^∘=45^∘。

所以答案是D。

5. 下列说法正确的是()A. 两个全等的三角形一定关于某条直线对称。

小学二年级数学轴对称图形练习题

小学二年级数学轴对称图形练习题

小学二年级数学轴对称图形练习题1. 问题描述:小明在数学课上学习了轴对称图形的概念,老师布置了一些练习题来巩固学生的理解。

请你帮助小明解答以下轴对称图形的问题。

2. 题目一:请你画出一个关于坐标轴原点对称的图形。

解答:(需要插入图形,请根据实际绘图情况来绘制相关图形,注意图形的对称性)3. 题目二:请你找出以下图形中的轴对称图形,并在图中标出对称轴。

图1:(需要插入图形,请根据实际绘图情况来绘制相关图形)(需要画出对称轴,请根据实际绘图情况来描绘对称轴)图2:(需要插入图形,请根据实际绘图情况来绘制相关图形)(需要画出对称轴,请根据实际绘图情况来描绘对称轴)图3:(需要插入图形,请根据实际绘图情况来绘制相关图形) (需要画出对称轴,请根据实际绘图情况来描绘对称轴) 4. 题目三:请你完成以下图形的轴对称图形。

图4:(需要插入图形,请根据实际绘图情况来绘制相关图形) (需要画出对称轴,请根据实际绘图情况来描绘对称轴) (需要在对称图形旁边标注对称轴经过的点坐标)图5:(需要插入图形,请根据实际绘图情况来绘制相关图形) (需要画出对称轴,请根据实际绘图情况来描绘对称轴) (需要在对称图形旁边标注对称轴经过的点坐标)图6:(需要插入图形,请根据实际绘图情况来绘制相关图形) (需要画出对称轴,请根据实际绘图情况来描绘对称轴) (需要在对称图形旁边标注对称轴经过的点坐标)5. 结论:通过本次练习,小明掌握了轴对称图形的概念和特点,并能够准确地找出和绘制轴对称图形。

轴对称图形在日常生活和数学中都有广泛的应用,继续多做练习可以提高对轴对称图形的理解和应用能力。

以上是小学二年级数学轴对称图形练习题的解答。

希望对你有所帮助!。

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形练习题及答案在数学学科中,轴对称图形是一种非常重要的概念。

轴对称图形是指可以通过某条直线将图形分成两个完全相同的部分的图形。

轴对称图形不仅在几何学中有广泛的应用,也常常出现在生活中的各个方面。

下面,我们来看一些轴对称图形的练习题及答案。

练习题一:请画出下列图形的轴对称线,并判断图形是否具有轴对称性。

1. 正方形2. 长方形3. 五角星4. 圆形5. 三角形答案一:1. 正方形:具有四条轴对称线,分别是连接对角线的两条线和连接中点的两条线。

因此,正方形具有轴对称性。

2. 长方形:具有两条轴对称线,分别是连接对角线的线。

因此,长方形具有轴对称性。

3. 五角星:具有五条轴对称线,分别是连接对角线的线。

因此,五角星具有轴对称性。

4. 圆形:具有无数条轴对称线,因为圆形的任意直径都可以作为轴对称线。

因此,圆形具有轴对称性。

5. 三角形:具有零条或一条轴对称线。

如果三角形的三条边相等,则具有三条轴对称线,分别是连接各边中点的线。

如果三角形的三条边不相等,则没有轴对称线。

因此,三角形可能具有轴对称性,也可能不具有轴对称性。

练习题二:请找出下列图形的轴对称图形,并画出轴对称线。

1. 矩形2. 正五边形3. 椭圆4. 等腰梯形5. 菱形答案二:1. 矩形的轴对称图形是自身,因为矩形具有四条轴对称线,分别是连接对角线的两条线和连接中点的两条线。

2. 正五边形的轴对称图形是自身,因为正五边形具有五条轴对称线,分别是连接对角线的线。

3. 椭圆的轴对称图形是自身,因为椭圆具有无数条轴对称线,因为椭圆的任意直径都可以作为轴对称线。

4. 等腰梯形的轴对称图形是自身,因为等腰梯形具有一条轴对称线,即连接两个底边中点的线。

5. 菱形的轴对称图形是自身,因为菱形具有两条轴对称线,分别是连接对角线的两条线。

通过以上练习题,我们可以更好地理解和掌握轴对称图形的概念和性质。

轴对称图形在几何学中有着广泛的应用,例如在设计中常常使用轴对称图形来增加美感和平衡感。

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。

下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。

练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。

练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。

练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。

答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。

因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。

练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。

对于任何点(x,y)在图形上,其对称点是(y,x)。

因此,图形的中心点是对称轴与原点的交点,即(0,0)。

练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。

由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。

通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档