12.提公因式法因式分解

合集下载

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。

在因式分解的过程中,有许多不同的方法可以使用。

下面将介绍因式分解的十二种常见方法。

一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。

它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。

例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。

二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。

通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。

例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。

三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。

例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。

五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。

它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。

根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。

它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。

例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。

提取公因式法分解因式的步骤

提取公因式法分解因式的步骤

提取公因式法分解因式的步骤公因式法是一种常用的因式分解方法,它通过提取多个代数式的公因式,将其进行合并简化,从而得到原始代数式的因式分解形式。

下面将介绍公因式法分解因式的具体步骤。

1.观察多项式中的各个项,寻找它们之间的公因式。

公因式是指可以同时整除多个项的代数式。

2.将找到的公因式提取出来,并用括号括起来。

提取公因式时,需要将公因式的系数和变量一同提取出来。

3.将原始多项式中的每一项除以提取出来的公因式。

这一步可以通过将每一项的系数与公因式的系数进行除法运算来实现。

4.将提取出来的公因式与上一步得到的商相乘,并将结果写在括号外面。

这一步是将公因式和商相乘,重新得到原始多项式。

5.最后,将括号外面的结果与原始多项式进行比较,确保两者相等。

这一步是为了验证因式分解的正确性。

通过以上步骤,我们可以完成对多项式的因式分解。

下面通过一个具体的例子来说明公因式法的应用。

假设我们要对多项式3x^2 - 6x进行因式分解。

第一步,观察多项式中的各个项,发现它们之间的公因式是3x。

第二步,将公因式3x提取出来,并用括号括起来,得到3x( ).第三步,将原始多项式中的每一项除以公因式3x,得到(3x^2)/(3x) - (6x)/(3x)。

第四步,将提取出来的公因式3x与上一步得到的商相乘,并将结果写在括号外面,得到3x((3x^2)/(3x) - (6x)/(3x))。

第五步,化简括号内的表达式,得到3x(x - 2)。

将括号外面的结果与原始多项式进行比较,发现它们相等,因此得到的因式分解形式为3x(x - 2)。

通过以上步骤,我们成功地将多项式3x^2 - 6x分解为公因式3x和商(x - 2)的乘积形式。

总结起来,提取公因式法分解因式的步骤包括观察多项式中的各个项,寻找公因式,提取公因式并用括号括起来,将每一项除以公因式得到商,将公因式与商相乘得到因式分解形式,最后验证分解结果的正确性。

这一方法简单实用,可以帮助我们快速进行因式分解运算。

因式分解题型提公因式法、公式法、分组分解法、十字相乘法

因式分解题型提公因式法、公式法、分组分解法、十字相乘法

1.因式分解概念:把一个多项式化成几个整式的 的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。

2.常用的因式分解方法:(1)提公因式法:对于ma mb mc ++, 叫做公因式, 叫做提公因式法。

①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

②公因式的构成:系数:各项系数的 ;字母:各项都含有的相同字母; 指数:相同字母的最低次幂。

(2)公式法:①常用公式平方差: 完全平方:立方和:3322a b (a+b)(a -ab+b )+= 立方差:②常见的两个二项式幂的变号规律: 22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数)(3)十字相乘法①二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成②二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。

(4)分组分解法①定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式或利用公式法,即可达到分解因式的目的。

例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。

②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。

因式分解的十二种方法(已整理)

因式分解的十二种方法(已整理)

因式分解的十二种方法(已整理)1. 提取公因式:将多项式中的公因子提取出来。

例如:4x^2 + 8x = 4x(x + 2)2. 平方差公式:将两个平方数的差表示为乘积形式。

例如:x^2 - 4 = (x + 2)(x - 2)3. 完全平方公式:通过平方根将平方项表示为乘积形式。

例如:x^2 + 6x + 9 = (x + 3)^24. 平方三项式:将三项式表示为两个平方的和或差。

例如:x^2 + 4x + 4 = (x + 2)^25. 相异平方差公式:将两个相异的平方根相乘,并加上或减去乘积的两倍。

例如:4x^2 - 25 = (2x + 5)(2x - 5)6. 完全立方公式:通过立方根将立方项表示为乘积形式。

例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)7. 立方和:将两个立方数的和表示为乘积形式。

例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)8. 左移、右移公式:通过改变变量的指数来分解多项式。

例如:x^3 - 8 = (x - 2)(x^2 + 2x + 4)9. 分组法:通过将多项式中的项分成组,然后分别进行分解。

例如:2x^3 + 3x^2 + 6x + 9 = x^2(2x + 3) + 3(2x + 3) = (x^2 + 3)(2x + 3)10. 精简法:通过合并多项式中的相似项来分解多项式。

例如:3x^2 + 2x + 5x + 1 = x(3x + 2) + 1(5x + 1) = (x + 1)(3x + 2)11. 求和公式:将多个项相加,并使用求和公式进行分解。

例如:2x + 3y + 4x + 6y = (2x + 4x) + (3y + 6y) = 6x + 9y12. 配方法:对于二次多项式,使用配方法将其分解为两个一次多项式的乘积。

例如:2x^2 + 5x + 3 = (2x + 3)(x + 1)。

因式分解的9种方法

因式分解的9种方法

1. 提取公因式:这种方法比较常规、简单,必须掌握。

常用的公式:完全平方公式、平方差公式例一:0322=-x x解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程。

总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式,这对我们后面的学习有帮助。

2. 公式法常用的公式:完全平方公式、平方差公式。

注意:使用公式法前,部分题目先提取公因式。

例二:42-x 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2解:原式=(x+2)(x-2)3. 十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1•a2,把常数项c 分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果例三: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b ,即a 1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).这种方法要多实验,多做,多练。

因式分解十二种方法公式

因式分解十二种方法公式

因式分解十二种方法公式因式分解是数学中的一个重要概念,它可以将一个多项式分解为若干个因子的乘积。

在因式分解中,有许多不同的方法和公式可以使用。

下面将介绍十二种因式分解的方法和公式。

一、公式法公式法是一种较为常用和简便的因式分解方法。

它利用一些已知的公式,将多项式分解为更简单的形式。

例如,我们可以利用平方差公式将一个二次多项式分解为两个一次多项式的乘积。

又如,利用差平方公式可以将一个二次多项式分解为两个一次多项式的乘积。

二、提公因式法提公因式法是一种常见的因式分解方法。

它利用多项式中的公因式,将多项式分解为公因式和余项的乘积。

通过提取公因式,可以简化多项式的形式,便于后续的计算和分解。

三、配方法配方法是一种常用的因式分解方法,它适用于多项式中存在二次项的情况。

配方法通过将多项式中的一部分进行配方,从而将多项式分解为两个简化的多项式的乘积。

这种方法常用于分解二次多项式,可以将其分解为两个一次多项式的乘积。

四、分组分解法分组分解法是一种适用于四项多项式的因式分解方法。

它通过将多项式中的项进行分组,从而将多项式分解为多个简化的多项式的乘积。

这种方法常用于分解四项多项式,可以将其分解为两个二次多项式的乘积。

五、和差化积法和差化积法是一种常用的因式分解方法,它适用于多项式中存在和差项的情况。

和差化积法通过将多项式中的和差项进行化简,从而将多项式分解为简化的多项式的乘积。

这种方法常用于分解多项式中的高次项。

六、平方差公式平方差公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。

平方差公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。

七、差平方公式差平方公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。

差平方公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。

八、立方差公式立方差公式是一种常用的因式分解公式,它用于将一个立方多项式分解为两个一次多项式的乘积。

因式分解的12种方法精讲

因式分解的12种方法精讲

因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:L提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1.分解因式x3 -2x 2-xx,~x=x(x^_2x_ 1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2.分解因式a2 +4沥+4力2解:a2 +4ab+4b2 =(a+2b)23.分组分解法要把多项式am+cm+bm十bn分解因式,可以先把它前两项分成一组,并提出公因式。

,把它后两项分成一组,并提出公因式们从而得到ct(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2 +5n-mn-5m解:m2 +5n・mn・5m= m 2-5m-mn+5n =(m2 -5m )+(-mn+5n)4.十字相乘法对于mx2 ^px^-q形式的多项式,如果a^b=m, c^d=q且ac+bd=p,则多项式可因式分解为(ctx+d)(bx+c)例4.分解因式7x2 -19x-6分析:1 x7=7, 2x(-3)=-6 lx2+7x(.3)=・19解:7x2-19x-6=f7x+2;(x-3;5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5.分解因式+6x-40 解x2 +6x-40=x2 +6x+( 9) -(9 ) -40=(x+ 3)2 -(7 )2 =[(x+3)+7][(x+3) —7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6.分解因式bc(b^c)+ca(c-a)-ab(a+b)角学:bc(b+c)+ca(c-a)-ab(a^-b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)-^bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7 .换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

因式分解之提公因式和公式法

因式分解之提公因式和公式法

因式分解之提公因式和公式法因式分解是数学中的一种常见的运算方法,它可以把一个复杂的多项式表达式分解成更简单的因式乘积,从而更好地理解和运算。

一、因式分解的概念因式分解是指把一个多项式表达式写成因式的乘积形式的过程。

因式分解有两种主要的方法,一种是提公因式法,另一种是公式法。

1.1提公因式法提公因式法是指将多项式中的一个或多个公因式提取出来,使得多项式能够写成一个公因式乘以另外一个因式的形式。

提公因式法有以下几个步骤:步骤一:将多项式中的每一项按照公共因子进行分组。

步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。

步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。

步骤四:将每一组的结果再相乘,得到最终的结果。

例子1:将多项式4x^2-5x+2进行因式分解。

首先,我们观察多项式,发现每一项的系数都是正整数,所以可以将多项式因式分解为最简整数.步骤一:将多项式中的每一项按照公共因子进行分组。

4x^2-5x+2=(4x^2)+(-5x)+2步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。

=4x(x)+(-5x)+2步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。

=4x(x-5)+2步骤四:将每一组的结果再相乘,得到最终的结果。

=4x^2-20x+2例子2:将多项式2x^3+3x^2-4x-6进行因式分解。

步骤一:将多项式中的每一项按照公共因子进行分组。

2x^3+3x^2-4x-6=(2x^3)+(3x^2)+(-4x)+(-6)步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。

=2x(x^2)+3x(x)+(-4x)+(-6)步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。

=2x(x^2+1.5x-2-3)步骤四:将每一组的结果再相乘,得到最终的结果。

=2x^3+3x^2-4x-6通过这个例子我们可以看出,当多项式中存在公因子时,提公因式法能够帮助我们简化运算过程,从而更方便地处理多项式。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

因式分解的十二种方法(已整理)

因式分解的十二种方法(已整理)

因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法1. 公因式提取法:当代数表达式中的各项含有公共因子时,可以将公因式提取出来,从而简化计算。

例如,对于表达式2x+4xy,可以将2x提取出来得到2x(1+2y)。

2.公式法:当代数表达式满足特定的公式时,可以直接应用公式进行因式分解。

例如,表达式a^2-b^2满足差平方公式:a^2-b^2=(a+b)(a-b)。

3.平方差公式法:当代数表达式为两个数的平方差时,可以应用平方差公式进行因式分解。

例如,表达式a^2-b^2可以分解为(a+b)(a-b)。

4. 完全平方公式法:当代数表达式满足完全平方公式时,可以直接应用公式进行因式分解。

例如,表达式a^2+2ab+b^2满足完全平方公式:a^2+2ab+b^2=(a+b)^25.因式定理法:当代数表达式是两个或多个一次式的乘积时,可以应用因式定理进行因式分解。

例如,表达式x^2-4可以分解为(x-2)(x+2)。

6. 分组分解法:对于一些多项式,可以通过分组的方式拆分为若干个因式的乘积形式。

例如,对于表达式ax+ay+bx+by,可以将ax+ay和bx+by进行分组,得到a(x+y)+b(x+y),再将公因式(x+y)提取出来,得到(x+y)(a+b)。

7. 十字相乘法:对于形如ab+ad+cb+cd的多项式,可以应用十字相乘法进行因式分解。

这种方法主要适用于四项的多项式。

例如,对于表达式ab+ad+cb+cd,可以通过十字相乘法将其分解为(a+c)(b+d)。

8. 二次三项全图算法:对于二次三项的多项式,可以通过这种算法进行因式分解。

例如,对于表达式ax^2+bx+c,通过这个算法可以找到其因式分解形式。

9. 因数分解法:对于一些特殊的多项式,可以通过因式分解法进行因式分解。

例如,对于表达式x^3+y^3,可以通过因式分解法将其分解为(x+y)(x^2-xy+y^2)。

10.配方法:对于一些高次多项式,可以应用配方法来进行因式分解。

《提取公因式法》因式分解

《提取公因式法》因式分解

规划上,应该根据自己的实际情况和学习进度,合理 安排时间进行学习和练习。同时,要注重系统性学习 ,把相关的知识点串联起来,形成完整的知识体系。
感谢您的观看
THANKS
04
习题与解析
习题一:提取公因式法
详细描述
2. 将公因式提取出来,可以使用 乘法分配律。
总结词:提取公因式法是因式分 解的一种基本方法,通过找到多 项式中的公因式,将其提取出来 ,使多项式得到简化。
1. 找到多项式中的公因式,通常 是最简公分母或同类项的系数。
3. 将提取公因式后的多项式进行 因式分解,得到若干个单项式。
因式分解的应用
01
02
03
解决数字计算问题
通过因式分解可以解决一 些数字计算问题,例如简 化计算、求值、整除性问 题等。
解决几何问题
因式分解在几何中也有广 泛的应用,例如解三角形 的问题。
解决方程问题
通过因式分解可以解决一 些方程问题,例如解一元 二次方程等。
03
提取公因式法与因式分解 的关系
提取公因式法是因式分解的一种方法
对于初学者来说,提取公因式法可能比较抽 象,难以理解,尤其是当多项式项数较多时 ,更容易出现错误。
解决这个问题的方法包括:多看例题、多做 练习题,通过大量的实践来加深对提取公因 式法的理解和掌握。同时,要学会总结和归 纳提取公因式法的各种情况,以便更好地掌
握这种方法。
对后续学习的展望和规划
掌握提取公因式法之后,可以进一步学习其他的因式 分解方法,如分组分解法、十字相乘法等。同时,通 过不断的学习和实践,可以逐渐提高自己的数学水平 。
习题二:因式分解
总结词:因式分解是将一个多项式分解 为若干个单项式的乘积,每个单项式是 多项式的因式。

高中数学因式分解方法大全(十二种)

高中数学因式分解方法大全(十二种)

因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x-2x-xx-2x–x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a+4ab+4b解:a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5m解:m+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-19解:7x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

因式分解16种方法

因式分解16种方法

因式分解16种方法因式分解是代数学中的一项重要内容,它是将一个多项式写成几个因子相乘的形式。

在代数中,我们可以使用不同的方法来进行因式分解,下面将介绍16种常用的因式分解方法。

一、常数公因子法:当多项式中的每一项都有一个相同的因子时,可以将这个公因子提取出来。

二、提公因式法:可以将多项式中的公因子提取出来,并分别乘在每一项的前面。

三、平方差公式:平方差公式可以将两个平方差分解为两个因子相乘的形式。

四、求和差公式:求和差公式可以将两个数的和或差分解为两个因子相乘的形式。

五、特殊公式:特殊公式是一些特定形式的因式分解规律,如完全平方公式、立方差公式等。

六、分组法:将多项式中的项分成若干组,每一组内部有一个公因子,然后进行合并、提公因子的操作。

七、配方法:如果多项式中存在二次项或一次项,可以使用配方法将其转化为完全平方或完全立方。

八、三项因式分解法:将三个项的多项式进行因式分解,可以根据其特征进行分解,如完全平方三项式、卷积三项式等。

九、因式分解公式:在代数学中,有一些常见的因式分解公式,如平方差公式、和差的立方公式等。

十、分式因式分解法:将分式分解为最简形式,可以进行因式分解,然后进行约分、合并等操作。

十一、二次三项式分解法:将二次三项式进行因式分解,可以根据特定的形式进行分解,如完全平方三项式、卷积三项式等。

十二、差的立方公式:差的立方公式可以将两个数的差分解为两个因子相乘的形式。

十三、平方根的平方差公式:平方根的平方差公式可以将平方根的平方差分解为两个因子相乘的形式。

十四、特殊三项式分解法:特殊三项式分解法是针对特定形式的三项式进行因式分解,如完全平方三项式、卷积三项式等。

十五、分场因子法:将多项式中的每一项提取出一个因子,并按照对应的规律进行提取。

十六、根与系数的关系:多项式的根与系数之间存在一定的关系,可以通过观察根与系数之间的关系进行因式分解。

以上是常用的16种因式分解方法,每一种方法都适用于特定的情况和形式的多项式。

因式分解的12种方法的详细解析

因式分解的12种方法的详细解析

因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。

在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。

以下是因式分解的12种常见方法的详细解析。

1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。

这种方法常用于求解关系式和化简分式等问题。

2.公式法:利用一些常用的公式进行因式分解。

例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。

这种方法常用于解决关于二次方程、三角函数等问题。

3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。

例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。

这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。

4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。

例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。

5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。

例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。

6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。

例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。

7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。

例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。

8.根的关系法:利用多项式的根的关系进行因式分解。

例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。

(完整版)因式分解的十二种方法(已整理)

(完整版)因式分解的十二种方法(已整理)

因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)、 0.84× 12+来自2× 0.6- 0.44× 12.
987 987 987 ( 2) 、 123× +264× -387× 1368 1368 1368
再见
• (1).利用提公因式法因式分解,关键是找 准 .• 在找最大公因式时应注意: • (2). 如果多项式的第一项的系数是负的, 一般要提出“-”号,使括号内的第一项的系 数是正的. • (3).因式分解应注意分解彻底,也就是说, 分解到不能再分解为止.
1、本节课你有哪些收获? 2、运用提公因式法进行因式分 解进行计算应注意哪些事项?有 哪些易错、易忽略的事项? 技巧: 各项有“公”先提“公”, 首项有负常提负. 某项提出莫漏1. 括号里面分到“底”.

• •
合作交流
(一)、两人对子互查,交流自研自探中问题1 • 1、完成探究中的填空。并归纳因式分解的定义,思考:因式分 解与整式乘法的关系。 • 2、认真看例1、例2上面的内容,思考: • (1)、什么是多项式的公因式,怎样确定一个多项式的公因式 呢?确定公因式该从哪几个方面进行考虑? 提公因式后,怎样确 定另一个因式? • (2)、 例1中如果提出公因式4ab,另一个因式是否还有公因式? (二)、小组讨论解决问题2、3、4 • 3、你能归纳出提公因式法进行因式分解的一般步骤吗?如何检 查因式分解是否正确呢? • 4、根据例1、例2,思考运用提公因式法进行因式分解进行计算 应注意哪些事项?有哪些易错、易忽略的事项?
达标训练(堂清作业)独立完成
一.必做题:
(一) 、 课本 115 页练习 2,3 课本 119 页习题 14.3 第 1 题 第 4 题(1) 第6题 (二) 、补充习题 1、将下列多项式分解因式 ( 1) 、 3mx-6mx2 ( 2) 、 4a2 +10ah ( 3) 、 x2 y + xy2 ( 4) 、 16a3 b2- 4a3 b2- 8ab4 2、用简便的方法计算:
展示提升
• 2、小组代表展示自研自探中问题2,并指出下列各 多项式中各项的公因式: • ax+ay+a 4 x 2 -8 x 6 12xyz-9x2y2 • 找最大公因式的方法: • 归纳: • ①一看系数:公因式的系数取各项系数 的 ; • ②二看字母:公因式字母取各项 的字母, • ③三看指数:公因式字母的指数取相同字母的最 次幂.
自研自探:(一定要用心)
• • • • • 按要求自学第114—115页练习上内容,看文字,独立自学,安 静思考,独立完成探究中的内容,注意下面的问题并把答案记 录下来,以备交流。 1、独立完成探究中的填空。并归纳因式分解的定义,思考: 因式分解与整式乘法的关系。 2、认真看例1、例2上面的内容,思考: (1)、什么是多项式的公因式,怎样确定一个多项式的公因 式呢?确定公因式该从哪几个方面进行考虑? 提公因式后,怎 样确定另一个因式? (2)、 例1中如果提出公因式4ab,另一个因式是否还有公因 式? 3、你能归纳出提公因式法进行因式分解的一般步骤吗?如何 检查因式分解是否正确呢? 4、根据例1、例2,思考运用提公因式法进行因式分解进行计 算应注意哪些事项?有哪些易错、易忽略的事项? (自研时间:7分钟)
展示提升
• • • • 3、小组代表展示自研自探中问题3 4、板演 课本P115练习1 5、结合板演及例1、例2,思考运用提公因式 法进行因式分解进行计算应注意哪些事项?有 哪些易错、易忽略的事项? (一个小组展示,其他小组质疑、补充、评价)
• 找最大公因式的方法: • ①一看系数:公因式的系数取各项系数 的 ; • ②二看字母:公因式字母取各项 的字母, • ③三看指数:公因式字母的指数取相同字母的 最 次幂.
14.3.1 提公因式法 因式分解
复习:
请同学们完成下列计算,看谁算得又准又快 (1)76×(-3)+24×(-3) (2)1012-992 (3)572+2×57×43+432
学习目标
1.理解因式分解的定义 2.掌握公因式的定义,能找出一 个多项式的公因式 3.能熟练应用提公因式法进行因 式分解
展示提升
• 1、书面展示 • 小组代表展示自研自探中问题1,并判断 下列由左到右的变形,是否因式分解,为什么? • (1).(x+2)(x-2)=x2-4 • (2).x2-4=(x+2)(x-2) • (3).x2-4+3 x =( x +2)( x -2)+3 x
几个整式的乘积 形 把一个多项式划成了___________ 式,这样的式子变形叫做把多项式 ________ 因式分解
相关文档
最新文档