2012高中文科数学公式大全(完美攻略更新版)

合集下载

高中文科数学公式总结大全

高中文科数学公式总结大全

高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。

在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。

而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。

以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。

高中文科数学公式

高中文科数学公式

高中文科数学公式
以下是一些高中文科数学公式:
1. 二元一次方程的解:对于方程ax + by = c,解为x = (c - by)/a。

2. 一元二次方程的解:对于方程ax^2 + bx + c = 0,解为x = (-b ± √(b^2 - 4ac))/(2a)。

3. 两点间的距离:对于坐标平面上的两点A(x1, y1)和B(x2, y2),
其距离为d = √((x2 - x1)^2 + (y2 - y1)^2)。

4. 相似三角形的边比:对于两个相似三角形ABC和DEF,其对应
边的比为AB/DE = BC/EF = AC/DF。

5. 正弦定理:对于任意三角形ABC,有a/sin(A) = b/sin(B) =
c/sin(C),其中a、b、c分别表示三角形的三条边,A、B、C分别
表示相应的角。

6. 余弦定理:对于任意三角形ABC,有c^2 = a^2 + b^2 -
2ab*cos(C),其中a、b、c分别表示三角形的三条边,C表示夹角
c的对应角。

7. 极限定义:对于函数f(x),如果存在实数L,使得对于任意给定的正数ε,存在正数δ,当0 < |x - a| < δ时,有|f(x) - L| < ε,则称函数f(x)在点a处的极限为L,记作lim(x→a)f(x) = L。

这些公式是高中文科数学中常用的公式,可以帮助解决许多与数学相关的问题。

高中文科数学知识点全总结

高中文科数学知识点全总结

高中文科数学知识点全总结1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,备注:韦达定理。

(5)判别式1)b2-4a=0,备注:方程存有成正比的两实根。

2)b2-4ac\ue0,注:方程有一个实根。

3)b2-4ac\uc0,备注:方程存有共轭复数根。

2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。

(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。

(完整版)文科高中数学公式大全(超全完美)

(完整版)文科高中数学公式大全(超全完美)

高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

(完整版)高中文科数学公式汇总.docx

(完整版)高中文科数学公式汇总.docx

高中数学公式汇总(文科)一、三角函数、三角变换、解三角形、平面向量 1、同角三角函数的基本关系式2 2 sinsin cos 1,tan = .2、正弦、余弦的诱导公式k的正弦、 余弦,等于 的同名函数, 前面加上把 看成锐角时该函数的符号;k的正弦、余弦,等于 的余名函数,前2面加上把看成锐角时该函数的符号。

3、和角与差角公式sin( ) sin cos cos sin ;cos( ) cos cosmsin sin;tan()tantan.m1 tan tan4 、二倍角公式sin 2sin cos .cos 2cos2sin22cos21 1 2sin2tan22 tan.1 tan2公式变形:2 cos21 cos2 , cos21 cos2 ;2 2sin 21 cos2 , sin 21 cos2;25 、三角函数的周期 函 数y sin( x ) ,x ∈ R 及 函 数ycos( x) , x ∈ R(A, ω , 为常数,且 A ≠ 0,ω > 0) 的 周 期 T 2) , ; 函 数 y tan( x x k, k Z (A, ω, 为常数, 且 A ≠ 0,ω> 0)2的周期 T.6 函数 ysin( x) 的周期、最值、单调区间、图象变换 7、辅助角公式y a sin xb cosxa 2b 2 sin(x )其中 tan ba8、正弦定理a b c2R .sin Asin B sin C9、余弦定理a 2b 2c 2 2bc cos A ;b 2c 2 a 2 2ca cos B ; c 2a2b22ab cosC .10、三角形面积公式S1ab sin C1bc sin A 1ca sin B .2 2211、三角形内角和定理在△ ABC 中,有 A B CC (A B)二、函数、导数1、函数的单调性(1) 设 x 1、 x 2 [ a, b], x 1 x 2 那么f ( x 1 ) f ( x 2 )f ( x)在[ a, b] 上是增函数;f ( x 1 ) f ( x 2 ) 0 f ( x)在[a, b] 上是减函数 . (2) 设函数 y f ( x) 在某个区间内可导,若 f ( x) 0 ,则 f (x) 为增函数;若 f ( x) 0 ,则 f (x) 为减函数 .2 、函数的奇偶性x ,都有 f ( x)f ( x) ,则 f ( x)对于定义域内任意的 是偶函数;对于定义域内任意的 x ,都有 f ( x) f ( x) ,则 f ( x)是奇函数。

高中数学公式大全文科

高中数学公式大全文科

高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。

2012高中文科数学公式大全(完美攻略极品版)

2012高中文科数学公式大全(完美攻略极品版)

新课标高中文科数学公式总结一、函数、导数1.集合12{,,,}n a a a 的子集个数共有2n个;真子集有21n-个;非空子集有21n-个;非空的真子集有22n-个. 2. 真值表3. 充要条件(记p 表示条件,q 表示结论)(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

8.若奇函数在x =0处有意义,则一定存在()00f =;若奇函数在x =0处无意义,则利用()()x x f f -=-求解;9.多项式函数110()nn n n P x a x a xa --=++⋯+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.10. 常见函数的图像:11. 函数的对称性(1)函数()y f x=与函数()y f x=-的图象关于直线0x=(即y轴)(2)对于函数)(xfy=(Rx∈),)()(xafxaf-=+恒成立,则函数ax=(3)对于函数)(xfy=(Rx∈),)()(xbfaxf-=+恒成立,则函数2bax+=; 12. 由)(xf向左平移一个单位得到函数)1(+xf由)(xf向右平移一个单位得到函数)1(-xf由向上平移一个单位得到函数1)(+xf由)(xf向下平移一个单位得到函数1)(-xf若将函数)(xfy=的图象向右移a、再向上移b个单位,得到函数y的图象;若将曲线0),(=yxf的图象向右移a、向上移b个单位,得到曲线,(-axf.13. 函数的周期性(1))()(axfxf+=,则)(xf的周期T a=||;(2)()()f x a f x+=-,则)(xf的周期2T a=||(3)1()()f x af x+=,则)(xf的周期2T a=||(4)()()f x a f x b+=+,则)(xf的周期T a b=|-|;14. 分数指数(1)mna=0,,a m n N*>∈,且1n>).(2)1mnmnaa-==0,,a m n N*>∈,且1n>).15.根式的性质(1)n a=.(2)当n a=;当n,0||,0a aaa a≥⎧==⎨-<⎩.16.指数的运算性质(1) (0,,)r s r sa a a a r s Q+⋅=>∈ (2) (0,,r s r sa a a a r s-÷=>∈(3) ()(0,,)r s rsa a a r s Q=>∈ (4) ()(0,0,r r rab a b a b r=>>17. 指数式与对数式的互化式:log baN b a N=⇔=(0,1,a a N>≠>18.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1)log()log loga a aMN M N=+; (2) log log loga a aMMN=-(3)log log()na aM n M n R=∈; (4) log log(,mnaanN N n mm=(5)1log =a a (6)01log =a19. 对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).倒数关系式:1log log =⨯a b b a20. 对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).21. 零点存在定理:如果函数)(x f 在区间(a, b )满足()()0f a f b ⨯<,则)(x f 在区间(a, b )上存在零点。

高中数学公式大全

高中数学公式大全

高中数学公式大全高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。

5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。

6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。

7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。

8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、要养成良好的演算、验算习惯,提高运算能力。

高中文科数学公式大全(完整完全精华版)

高中文科数学公式大全(完整完全精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

(完整版)高中文科数学公式大全(完美),推荐文档

(完整版)高中文科数学公式大全(完美),推荐文档

2
2
2
18、三角形内角和定理
在△ABC 中,有 A B C C ( A B)
19、 a 与 b 的数量积(或内积)
a b | a | | b | cos
20、平面向量的坐标运算
(1)设 A (x1, y1) ,B (x2 , y2 ) ,则 AB OB OA (x2 x1, y2 y1) .
4、几种常见函数的导数
① C ' 0 ;② (x n )' nx n1 ;
③ (sin x)' cos x ;④ (cos x)' sin x ;
⑤ (a x )' a x ln a ;⑥ (e x )' e x ;
⑦ (loga
x)'
1 x ln a
;⑧ (ln
x)'
1 x
5、导数的运算法则
(2) 如果在 x0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x0 是极小值.
二、三角函数、三角变换、解三角形、平面向量
8、同角三角函数的基本关系式
sin2 cos2 1, tan = sin . cos
9、正弦、余弦的诱导公式
k 的正弦、余弦,等于 的同名函数,前面加上把 看成锐角时该函数的符号; k 的正弦、余弦,等于 的余名函数,前面加上把 看成锐角时该函数的符号。
(1) (u v)' u' v' .
(2) (uv)' u'v uv' .
(3)
u ( v
)'
u'v uv' v2
(v
0)
.
6、会用导数求单调区间、极值、最值
7、求函数 y f x的极值的方法是:解方程 f x 0 .当 f x0 0 时:

高中文科数学公式大全(完美)

高中文科数学公式大全(完美)

高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

(整理)高中文科数学公式大全(完美攻略极品版).

(整理)高中文科数学公式大全(完美攻略极品版).

新课标高中文科数学公式总结一、函数、导数1.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 2. 真值表3. 充要条件(记p 表示条件,q 表示结论)(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

8.若奇函数在x =0处有意义,则一定存在()00f =;若奇函数在x =0处无意义,则利用()()x x f f -=-求解;9.多项式函数110()n n n n P x a x a x a --=++⋯+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 10. 常见函数的图像:11. 函数的对称性(1)函数()y f x=与函数()y f x=-的图象关于直线0x=(即y轴)(2)对于函数)(xfy=(Rx∈),)()(xafxaf-=+恒成立,则函数ax=(3)对于函数)(xfy=(Rx∈),)()(xbfaxf-=+恒成立,则函数2bax+=; 12. 由)(xf向左平移一个单位得到函数)1(+xf由)(xf向右平移一个单位得到函数)1(-xf由)(xf向上平移一个单位得到函数1)(+xf由)(xf向下平移一个单位得到函数1)(-xf若将函数)(xfy=的图象向右移a、再向上移b个单位,得到函数y的图象;若将曲线0),(=yxf的图象向右移a、向上移b个单位,得到曲线,(-axf.13. 函数的周期性(1))()(axfxf+=,则)(xf的周期T a=||;(2)()()f x a f x+=-,则)(xf的周期2T a=||(3)1()()f x af x+=,则)(xf的周期2T a=||(4)()()f x a f x b+=+,则)(xf的周期T a b=|-|;14. 分数指数(1)mna=0,,a m n N*>∈,且1n>).(2)1mnmnaa-==0,,a m n N*>∈,且1n>).15.根式的性质(1)n a=.(2)当n a=;当n,0||,0a aaa a≥⎧==⎨-<⎩.16.指数的运算性质(1) (0,,)r s r sa a a a r s Q+⋅=>∈ (2) (0,,r s r sa a a a r s Q-÷=>∈(3) ()(0,,)r s rsa a a r s Q=>∈ (4) ()(0,0,r r rab a b a b r=>>17. 指数式与对数式的互化式:log baN b a N=⇔=(0,1,a a N>≠>18.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1)log()log loga a aMN M N=+; (2) log log loga a aMMN=-(3)log log()na aM n M n R=∈; (4) log log(,mnaanN N n mm=(5)1log =a a (6)01log =a19. 对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).倒数关系式:1log log =⨯a b b a20. 对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).21. 零点存在定理:如果函数)(x f 在区间(a, b )满足()()0f a f b ⨯<,则)(x f 在区间(a, b )上存在零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高中文科数学公式总结一、函数、导数1.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 2. 真值表3. 充要条件(记p 表示条件,q 表示结论)(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数;对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

8.若奇函数在x =0处有意义,则一定存在()00f =;若奇函数在x =0处无意义,则利用()()x x f f -=-求解;9.多项式函数110()n n n n P x a x a x a --=++⋯+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 10. 常见函数的图像:(5)1log =a a (6)01log =a19. 对数的换底公式 :log log log m a m N N a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).倒数关系式:1log log =⨯a b b a20. 对数恒等式:log aNa N =(0a >,且1a ≠, 0N >).21. 零点存在定理:如果函数)(x f 在区间(a, b )满足()()0f a f b ⨯<,则)(x f 在区间(a, b )上存在零点。

22. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.23. 几种常见函数的导数(1) 0='C (C 为常数) (2) '1()()n n x nx n Q -=∈(3) x x cos )(sin =' (4) x x sin )(cos -=' (5) xx 1)(ln =' (6) ax x aln 1)(log='(7) x x e e =')( (8) a a a x x ln )(='. 24. 导数的运算法则(1)'''()u v u v ±=± (2)'''()uv u v uv =+ (3)'''2()(0)uu v uv v vv-=≠25. 复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.26. 求切线方程的步骤:① 求原函数的导函数)(x f '② 把横坐标0x 带入导函数)(x f ',得到)(0x f ',则斜率)(0x f k '= ③ 点斜式写方程))((000x x x f y y -'=- 27. 求函数的单调区间① 求原函数的导函数)(x f '② 令0)(>'x f ,则得到原函数的单调增区间。

② 令0)(<'x f ,则得到原函数的单调减区间。

28. 求极值常按如下步骤:① 求原函数的导函数)(x f ';② 令方程)(x f '=0的根,这些根也称为可能极值点③ 检查在方程的根的左右两侧的符号,确定极值点。

(可以通过列表法) 如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值;如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.④ 将极值点带入到原函数中,得到极值。

29. 求最值常按如下步骤:① 求原函数的极值。

② 将两个端点带入原函数,求出端点值。

③ 将极值与端点值相比较,最大的为最大值,最小的为最小值。

二、三角函数、三角变换、解三角形、平面向量30. 同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .31. 正弦、余弦的诱导公式奇变偶不变,符号看象限。

32. 和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.33. 二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形:;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=34. 三角函数的周期函数sin()y x ωϕ=+,周期2T πω=; 函数cos()y x ωϕ=+,周期2T πω=;函数tan()y x ωϕ=+,周期T πω=. 35. 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换(熟记) 36. 辅助角公式(化一公式))sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan36. 正弦定理2sin sin sin a b c R ABC===.37. 余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.38. 三角形面积公式111sin sin sin 222S ab C bc A ca B ===.39. 三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ sin()sin A B C += 40. a 与b 的数量积(或内积) θcos ||||b a b a ⋅=⋅ 41. 平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(2)设a =11(,)x y ,b =22(,)x y ,则b a +=),(2121y y x x ++. (3)设a =11(,)x y ,b =22(,)x y ,则b a -=),(2121y y x x --. (4)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (5)设a =),(y x ,则22yx a +=42. 两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则 222221212121cos y x y x y y x x ba b a +⋅++=⋅=θ43. 向量的平行与垂直b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.44. 向量的射影公式若,a 与b 的夹角为θ,则b 在a 的射影为θcos ||b三、数列45. 数列}{n a 的通项公式与前n 项的和的关系(递推公式)11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).46. 等差数列}{n a 的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;47. 等差数列}{n a 的前n 项和公式1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.48. 等差数列}{n a 的中项公式 112n n n a a a -++=49. 等差数列}{n a 中,若m n p q +=+,则m n p q a a a a +=+ 50. 等差数列}{n a 中,n s ,2n n s s -,32n n s s -成等差数列 51. 等差数列}{n a 中,若n 为奇数,则12n n s na +=52. 等比数列的通项公式1*11()n n n a a a qq n N q-==⋅∈;53. 等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.当1q =时,1n a na = 54. 等比数列}{n a 的中项公式 211n n n a a a -+=⨯55. 等比数列}{n a 中,若m n p q +=+,则m n p q a a a a ⨯=⨯ 56. 等比数列}{n a 中,n s ,2n n s s -,32n n s s -成等比数列四、均值不等式57. 均值不等式:如果+∈R b a ,,那么ab b a 2≥+。

相关文档
最新文档