千题百炼——高中数学100个热点问题(三):第74炼 利用几何关系求解圆锥曲线问题
千题百炼——高中数学100个热点问题(三):第67炼 圆锥曲线的性质
第67炼 圆锥曲线的性质一、基础知识 (一)椭圆: 1、定义和标准方程:(1)平面上到两个定点12,F F 的距离和为定值(定值大于12F F )的点的轨迹称为椭圆,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距 (2)标准方程:①焦点在x 轴上的椭圆:设椭圆上一点(),P x y ,()()12,0,,0F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221x y a b+=,其中()2220,a b b a c >>=-②焦点在y 轴上的椭圆:设椭圆上一点(),P x y ,()()120,,0,F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221y x a b+=,其中()2220,a b b a c >>=-焦点在哪个轴上,则标准方程中哪个字母的分母更大2、椭圆的性质:以焦点在x 轴的椭圆为例:()222210x y a b a b+=>>(1)a :与长轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为长轴长 b :与短轴的顶点有关:()()120,,0,B b B b -,122B B b =称为短轴长 c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距 (2)对称性:椭圆关于x 轴,y 轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设()00,P x y ,则00,a x a b y b -≤≤-≤≤ (4)通径:焦点弦长的最小值 ① 焦点弦:椭圆中过焦点的弦② 过焦点且与长轴垂直的弦22b PQ a=说明:假设PQ 过()1,0F c -,且与长轴垂直,则()()00,,,P c y Q c y ---,所以2242002221c y b y a b a +=⇒=,可得20b y a =。
则22b PQ a= (5)离心率:ce a=,因为c a <,所以()0,1e ∈ (6)焦半径公式:称P 到焦点的距离为椭圆的焦半径① 设椭圆上一点()00,P x y ,则1020,PF a ex PF a ex =+=-(可记为“左加右减”) ② 焦半径的最值:由焦半径公式可得:焦半径的最大值为a c +,最小值为a c - (7)焦点三角形面积:122tan 2PF F S b θ= (其中12PF F θ=∠)证明:1212121sin 2PF F S PF PF F PF =⋅ 且222121212122cos F F PF PF PF PF F PF =+-()()212121221cos PF PF PF PF F PF =+-+()2212124421cos c a PF PF FPF ∴=-+ 2221212122221cos 1cos a c b PF PF F PF F PF -∴==++ 12212121212112sin sin 221cos PF F b S PF PF F PF F PF PF F =⋅=⋅+ 22121212sin tan 1cos 2F PF F PFb b F PF =⋅=+因为1200122PF F S c y c y =⋅⋅=⋅ ,所以2120tan 2F PFb c y =⋅,由此得到的推论: ① 12F PF ∠的大小与0y 之间可相互求出② 12F PF ∠的最大值:12F PF 最大⇔12PF F S 最大⇔0y 最大⇔P 为短轴顶点 (二)双曲线:1、定义:平面上到两个定点12,F F 距离差的绝对值为一个常数(小于12F F )的点的轨迹称为双曲线,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距;如果只是到两个定点12,F F 距离差为一个常数,则轨迹为双曲线的一支2、标准方程:① 焦点在x 轴:设双曲线上一点(),P x y ,()()12,0,,0F c F c -,设距离差的绝对值122PF PF a -=,则双曲线标准方程为:22221x y a b-=,其中()2220,0,a b b c a >>=-② 焦点在y 轴:设双曲线上一点(),P x y ,()()120,,0,F c F c -,设距离差的绝对值122PF PF a -=,则双曲线标准方程为:22221y x a b-=,其中()2220,0,a b b c a >>=-焦点在哪个轴上,则对应字母作为被减数2、双曲线的性质:以焦点在x 轴的双曲线为例:()222210,0x y a b a b-=>>(1)a :与实轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为实轴长 b :与虚轴的顶点有关:()()120,,0,B b B b -,122B B b =称为虚轴长 c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距 (2)对称性:双曲线关于x 轴,y 轴对称,且关于原点中心对称(3)双曲线上点坐标的范围:设()00,P x y ,则有0x a ≤-或0x a ≥,0y R ∈ (4)离心率:ce a=,因为c a > ,所以()1,e ∈+∞ (5)渐近线:当x →+∞或x →-∞时,双曲线在向两方无限延伸时,会向某条直线无限靠近,但不相交,则称这条直线为曲线的渐近线。
千题百炼——高中数学100个热点问题(三):第79炼 利用点的坐标解决圆锥曲线问题
解 设 P ( x0 , y0 )
Q PQ
x 轴平行,
∴ 设 Q ( x1 , y0 ) ,由 P, Q 所在椭圆和圆方程可得
2 2 x0 y0 2 2 =1 + x0 = 4 − 2 y0 ⇒ 2 2 4 2 x1 = 2 − y0 x2 + y 2 = 2 0 1
由椭圆可知
A ( −2,0 ) , B ( 2,0 )
2 y0 M 0, x0 + 2
∴ k AP =
第九章
第 79 炼 利用点的坐标处理解析几何问题
解析几何
第 79 炼 利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解 依赖于传统的 设点,联立,消元,韦达定理整体 入 骤,而是能够计算出交点的坐标,且点的坐标并 复杂,然后 点的坐标作为 心
去处理问题 一 令 将 基础知识 韦达定理的实质 在处理解析几何的问题时,韦达定理的运用最频繁的,甚 视为 必备结构 ,无论 有的学生
∴ QM ⊥ QN ,即 ∠MQN =
π
2
为定值 入手点 例如 AP ,以斜率 k 作 核心变 用k 表
思路二:本题还可以以 AP, BP 其中一条直线 量,直线 AP
椭圆交于 A, P 两点,已知 A 点坐标利用韦达定理可解出 P 点坐标
示 ,从而可进一 将 及的点的坐标都用 k 来进行表示,再计算 QM ⋅ QN = 0 也可以,计 算 解 所 骤如 : 设 P ( x0 , y0 ) ,由椭圆方程可得
千题百炼——高中数学100个热点问题(三):第94炼 极坐标与参数方程
第94炼 极坐标与参数方程极坐标与参数方程在高考中常以填空或选择的形式出现,在知识上结合解析几何,考查学生曲线方程的转化能力,以及解析几何的初步技能。
题目难度不大,但需要学生能够快速熟练的解决问题 一、基础知识: (一)极坐标:1、极坐标系的建立:以平面上一点为中心(作为极点),由此点引出一条射线,称为极轴,这样就建立了一个极坐标系2、点坐标的刻画:用一组有序实数对(),ρθ确定平面上点的位置,其中ρ代表该点到极点的距离,而θ表示极轴绕极点逆时针旋转至过该点时转过的角度,通常:[)0,0,2ρθπ>∈3、直角坐标系与极坐标系坐标的互化:如果将极坐标系的原点与直角坐标系的原点重合,极轴与x 轴重合,则同一个点可具备极坐标(),ρθ和直角坐标(),x y ,那么两种坐标间的转化公式为:222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪=+⎩,由点组成的直角坐标方程与极坐标方程也可按照此法则进行转化,例如:极坐标方程cos sin 11x y ρθρθ+=⇒+=(在转化成,x y 时要设法构造cos ,sin ρθρθ ,然后进行整体代换即可)(二)参数方程:1、如果曲线(),0F x y =中的变量,x y 均可以写成关于参数t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩,那么()()x f t y g t =⎧⎪⎨=⎪⎩就称为该曲线的参数方程,其中t 称为参数 2、参数方程与一般方程的转化:消参法 (1)代入消参:()323323x t y x y t =+⎧⇒=+-⎨=+⎩(2)整体消参:2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩,由222112t t t t ⎛⎫+=++ ⎪⎝⎭可得:22x y =+(3)平方消参:利用22sin cos 1θθ+=消去参数例如:22cos 3cos 312sin 94sin 2xx x y y y θθθθ⎧=⎪=⎧⎪⇒⇒+=⎨⎨=⎩⎪=⎪⎩ 3、常见图形的参数方程:(1)圆:()()222x a y b r -+-=的参数方程为:[)cos 0,2sin x a r y b r θθπθ=+⎧∈⎨=+⎩,,其中θ为参数,其几何含义为该圆的圆心角(2)椭圆:()222210x y a b a b +=>>的参数方程为[)cos 0,2sin x a y b θθπθ=⎧∈⎨=⎩,,其中θ为参数,其几何含义为椭圆的离心角(3)双曲线:()222210x y a b a b -=>>的参数方程为[)10,2cos tan x ay b θπθθ⎧=⎪∈⎨⎪=⎩,,其中θ为参数,其几何含义为双曲线的离心角(4)抛物线:()220y px p =>的参数方程为222x pt y pt⎧=⎨=⎩,其中t 为参数(5)直线:过(),M a b ,倾斜角为θ的直线参数方程为cos sin x a t t R y b t θθ=+⎧∈⎨=+⎩,,其中t 代表该点与M 的距离注:对于极坐标与参数方程等问题,通常的处理手段是将方程均转化为直角坐标系下的一般方程,然后利用传统的解析几何知识求解 二、典型例题:例1:已知直线参数方程为33x t y t =+⎧⎨=-⎩,圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩,则圆心到直线的距离为____________思路:将参数方程转化为一般方程:()22:6,:24l x y C x y +=+-=所以圆心为()0,2,到直线的距离为:d ==答案:例2:以直角坐标系的原点为极点,x 轴非负半轴为极轴,建立极坐标系,在两种坐标系中取相同的单位长度,点A的极坐标为4π⎛⎫⎪⎝⎭,曲线C 的参数方程为2cos 2sin x y θθ=+⎧⎨=-+⎩,则曲线C 上的点到点A 距离的最大值为___________思路:()()()222,2,:221A C x y -++=,故曲线上距离A 最远的距离为A 到圆心的距离加上半径,故5d = 答案:5例3:已知在平面直角坐标系xOy 中圆C的参数方程为:3cos 13sin x y θθ⎧=+⎪⎨=+⎪⎩,以Ox 为极轴建立极坐标系,直线极坐标方程为cos 06πρθ⎛⎫+= ⎪⎝⎭,则圆C 截直线所得弦长为__________ 思路:圆C的方程为:(()2219x y +-=,对于直线方程cos 06πρθ⎛⎫+= ⎪⎝⎭,无法直接替换为,x y ,需构造cos ,sin ρθρθ再进行转换:cos 06πρθ⎛⎫+= ⎪⎝⎭11sin 0022x y ρθθ⎫⇒-=⇒-=⎪⎝⎭再求出弦长即可:l =答案:例4:已知两曲线参数方程分别为()0sin x y θθπθ⎧=⎪≤<⎨=⎪⎩和254x ty t⎧=⎪⎨⎪=⎩,它们的交点坐标为_____________思路:曲线方程为222125:1,:54x C y C x y +==,联立方程可解得:1x y =⎧⎪⎨=⎪⎩或5x =-(舍)由[)0,θπ∈可得:0y >所以1x y =⎧⎪⎨=⎪⎩,坐标为⎛ ⎝答案:⎛ ⎝ 例5:在极坐标系中,直线()sin cos a ρθθ-=与曲线=2cos 4sin ρθθ-相交于,A B 两点,且AB =a 的值为_____________思路:先将直线与曲线转化为直角坐标方程:()sin cos a y x a ρθθ-=⇒-=,曲线222=2cos 4sin =2cos 4sin 24x y x y ρθθρρθρθ-⇒-⇒+=-,所以问题转化为直线:0l x y a -+=与圆()()22125x y -++=相交于,A B ,且AB =利用圆与直线关系可求得圆心到直线距离d ==即32a +=,解得5a =-或1a =-答案:5a =-或1a =-例6:以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的极坐标方程为()4R πθρ=∈,它与曲线12cos 22sin x y αα=+⎧⎨=+⎩(α为参数)相交于两点,A B ,则AB =_________思路:先将两个方程转化为直角坐标系下的普通方程。
千题百炼——高中数学100个热点问题(三):第85炼 几何概型
ADF − BCE 内自由飞翔,由它飞入几何体 F − AMCD 内的概率为
第十一章
第 85 炼 几何概型
概率
随机
A.
3 4
B.
2 3
C.
1 3
D.
1 2
视图可得 可 得
思路:所求概率为棱锥 F − AMCD 的体积 棱柱 ADF − BCE 体积的比值。由
AD = DF = CD = a VADF − BCE = S ADF ⋅ DC = S ADCM =
答案:D
,
且
AD, DF , CD
两
两
垂
直
,
1 1 1 AD ⋅ DF ⋅ DC = a 3 ,棱锥体积 VF − AMCD = DF ⋅ S ADMC ,而 2 2 3
1 3 1 V 1 AD ⋅ ( AM + CD ) = a 2 ,所以 VF − AMCD = a 2 。从而 P = F − AMCD = 2 4 4 VADF − BCE 2
第十一章
第 85 炼 几何概型
概率
随机
第 85 炼 几何概型
一 1 基础知识: 几何概型: 个 件发生的概率只 构成该 件区域的长度 面 为几何概型 或体 成比例, 这样的概
率模型为几何概率模型,简 2
对于一项试验,如果符合以 原 : 1 基本 件的个数为无限多个 2 基本 件发生的概率相同 通过建立几何模型,利用几何概型计算 件的概率
在题目 述中,判断是否运用几何概型处理,并确定题目中所用 个数确定几何模型:通常 →平面直角坐标系, 个 的个数 几何模型的 度相等:一个 →空间直角坐标系
→数轴,两个 2 类问题
从而将问题转化成为第
千题百炼——高中数学100个热点问题(三):第70炼 求点的轨迹方程
求点的轨迹问题一、基础知识:1、求点轨迹方程的步骤: (1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。
常见的曲线特征及要素有: ① 圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上 确定方程的要素:圆心坐标(),a b ,半径r② 椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹 确定方程的要素:距离和2a ,定点距离2c③ 双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹 注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支 确定方程的要素:距离差的绝对值2a ,定点距离2c④ 抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p 。
若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程。
千题百炼- 立体几何综合小题必刷100题(原卷版)
专题19 立体几何综合小题必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知正四棱锥的底面边长和侧棱长均为2,则该正四棱锥的体积为( )A B .C D .2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列说法正确的是( ) A .若//m n ,n ⊂α,则//m αB .若//m α,n ⊂α,则//m nC .若m α⊂,n β⊂,//m n ,则//αβD .若//αβ,m α⊂,则//m β3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-4.已知α,β,γ是三个不同的平面,m ,n 是两条不同的直线,下列命题为真命题的是( ) A .若//m α,//m β,则//αβB .若//m α,//n α,则//m nC .若m α⊥,n α⊥,则//m nD .若αγ⊥,βγ⊥,则//αβ5.已知四棱锥P ABCD -的正视图和侧视图均为边长为2(单位:cm )的正三角形,俯视图为正方形,则该四棱锥的体积(单位:3cm )是( )A .83BCD .436.在正方体1111ABCD A B C D -中,则直线1A D 与直线AC 所成角大小为( )A .30B .45C .60D .907.正方体1111ABCD A B C D -的棱长为2,P 为侧面11ABB A 内动点,且满足1PD △PBC 面积的最小值为( )A .1B C .2 D .2 8.在直三棱柱111ABC A B C -中,90ACB ∠=︒.1D 、1E 分别是11A B 、11A C 的中点,1CA CB CC ==,则1AE 与1BD 所成角的余弦值为( )A B C D9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,则以下结论错误的是( )A .BD ∥平面CB 1D 1 B .AD ⊥平面CB 1D 1C .AC 1⊥BDD .异面直线AD 与CB 1所成的角为45°10.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且//a b ,则实数m 的值等于( )A .32B .-2C .0D .32或-2 11.正方体ABCD A 1B 1C 1D 1中,E ,F 分别是线段BC ,CD 1的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直12.已知直三棱柱111ABC A B C -中,60ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A B .0 C D13.把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A .cmB .10 cmC .cmD .30 cm14.一种特殊的四面体叫做“鳖臑”,它的四个面均为直角三角形.如图,在四面体P -ABC 中,设E ,F 分别是PB ,PC 上的点,连接AE ,AF ,EF (此外不再增加任何连线),则图中直角三角形最多有( )A .6个B .8个C .10个D .12个15.在四棱锥P ABCD -中,底面是边长为4的正方形,且2,PA PB PD ===,则四棱锥外接球的表面积为( )A .4πB .8πC .36πD .144π二、多选题16.给出下列命题,其中正确的有( )A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .已知空间向量(1,0,1)a =,(2,1,2)b =-,则//a bD .已知空间向量(1,0,1)a =,(2,1,2)b =-,则向量a 在向量b 上的投影向量的坐标是848,,999⎛⎫- ⎪⎝⎭17.如图,正方体1111ABCD A B C D -的棱长为4,以下结论正确的是( )A .直线1B D 与1BC 是异面直线B .直线1A D 与1BC 平行C .直线1BD 与1BD 垂直D .三棱锥11A BC D -的体积为64318.如图,正方体1111ABCD A B C D -的棱长为1,点P 是棱1CC 上的一个动点(包含端点),则下列说法正确的是( )A .存在点P ,使//DP 面11AB DB .二面角1P BB D --的平面角大小为60︒C .1PB PD +D .P 到平面11AB D19.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面.下列说法中正确的是( ) A .若//m α,m β⊂,a n β⋂=,则//m n B .若//m n ,//m α,则//n α C .若a n β⋂=,αβ⊥,βγ⊥,则n γ⊥ D .若m α⊥,m β⊥,//αγ,则//βγ20.在下列条件中,不能使M 与A ,B ,C 一定共面的是( )A .OM =2OA -OB -OC ;B .111532OM OA OB OC =++; C .0MA MB MC ++=;D .OM +OA +OB +OC =0;21.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .22.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+23.在正三棱柱111ABC A B C -中,1AB =,12AA =,1BC 与1B C 交于点F ,点E 是线段11A B 上的动点,则下列结论正确的是( )A .1111222AF AB AC AA =++ B .存在点E ,使得AF BE ⊥C .三棱锥B AEF -D .直线AF 与平面11BCC B第II 卷(非选择题)三、填空题24.已知正方体ABCD A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、BC 的中点,则三棱锥N DMC 1的体积为___________.25.已知正三棱锥的底面边长是6,侧棱与底面所成角为60︒,则此三棱锥的体积为__.26.如图,在直三棱柱111ABC A B C -中,∠ACB =90°,11AA AC BC ===,则异面直线1A B 与AC 所成角的余弦值是__________________.27.已知圆台上底半径为1,下底半径为3,高为2,则此圆台的外接球的表面积为______.28.如图,已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,侧棱1AA 长为3,且11120A AB A AD ∠=∠=︒,则1AC =__.29.如图,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2OM MA =,N 为BC 的中点,则用向量,,a b c 表示向量MN =________.30.已知四棱锥P﹣ABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且P A⊥平面ABCD.若四棱锥P﹣ABCD的体积为163,则球O的表面积为___________.任务二:中立模式(中档)1-40题一、单选题1.在三棱锥P -ABC 中,3APB BPC CPA π∠∠∠===,△P AB ,△P AC ,△PBC 的面积分别记为123,,S S S ,且123322S S S === )A BC D 2.在立体几何探究课上,老师给每个小组分发了一个正四面体的实物模型,同学们在探究的过程中得到了一些有趣的结论.已知直线//AD 平面α,直线//BC 平面α,F 是棱BC 上一动点,现有下列三个结论:⊥若,M N 分别为棱,AC BD 的中点,则直线//MN 平面α;⊥在棱BC 上存在点F ,使AF ⊥平面α;⊥当F 为棱BC 的中点时,平面ADF ⊥平面α.其中所有正确结论的编号是( )A .⊥B .⊥⊥C .⊥⊥D .⊥⊥3.已知圆台上底面半径为3,下底面半径为4,高为7,若点A 、B 、C 在下底面圆的圆周上,且AB BC ⊥,点Р在上底面圆的圆周上,则222PA PB PC ++的最小值为( )A .246B .226C .208D .1984.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和,例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为π2π3π3-⨯=,故其总曲率为4π,则四棱锥的总曲率为( )A .2πB .4πC .5πD .6π5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且EF A BEF -的体积为( )A .112B .14 C D .不确定6.如图已知正方体1111ABCD A B C D -,点M 是对角线1AC 上的一点且1AM AC λ=,()0,1λ∈,则()A .当12λ=时,1AC ⊥平面1A DMB .当12λ=时,//DM 平面11CB DC .当1A DM 为直角三角形时,13λ=D .当1A DM 的面积最小时,13λ=7.如图所示,已知空间四边形的每条边和对角线长都等于a ,点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( )A .2BA •ACB .2AD •BDC .2FG •CAD .2EF •BC8.如图一,矩形ABCD 中,2BC AB =,AM BD ⊥交对角线BD 于点O ,交BC 于点M .现将ABD △沿BD 翻折至A BD '的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是( )A .BD CN ⊥B .AO '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD9.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA D D (包括边界)内运动,且1//PB 平面DMN ,则PC 的长度范围为( )A .B .⎣C .D .⎣10.如图,在正方体1111ABCD A B C D -中,点M 在线段1BC (不包含端点)上运动,则下列判断中正确的是( )①1//A M 平面1ACD ; ②异面直线1A M 与1AD 所成角的取值范围是,32ππ⎛⎤⎥⎝⎦;③AC ⊥平面11MB D 恒成立; ④三棱锥1D AMC -的体积不是定值. A .①③ B .①② C .①②③ D .②④11.在四面体S ABC -中,SA ⊥平面ABC ,6BAC π∠=,SB =4,2SC SA ==,则该四面体的外接球的表面积是( )A .253πB .100πCD .20π12.已知圆锥SO 的母线长为 )A .B .24C .36πD .4813.如图,四棱锥P ABCD -的底面为矩形,PD ⊥底面ABCD ,1AD =,2PD AB ==,点E 是PB 的中点,过A ,D ,E 三点的平面α与平面PBC 的交线为l ,则下列结论中正确的有( )(1)//l 平面PAD ;(2)//AE 平面PCD ;(3)直线PA 与l (4)平面α截四棱锥P ABCD -所得的上、下两部分几何体的体积之比为35.A .1个B .2个C .3个D .4个14.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且PAD △是边长为2的正三角形,ABCD 是正方形,则四棱锥P ABCD -外接球的表面积为( )A .293π B .643π C .263π D .283π15.已知在正四面体ABCD 中,E 是AD 的中点,P 是棱AC 上的一动点,BP +PE 四面体内切球的体积为( )A B .13πC . D16.在棱长为2的正方体1111ABCD A B C D -中,点E ,F ,G ,H 分别为棱AB ,BC ,11C D ,11A D 的中点,若平面//α平面EFGH ,且平面α与棱11A B ,11B C ,1B B 分别交于点P ,Q ,S ,其中点Q 是棱11B C 的中点,则三棱锥1B PQS -的体积为( ) A .1B .12C .13D .1617.已知球O ,过其球面上A ,B ,C 三点作截面,若点O 到该截面的距离是球半径的一半,且2AB BC ==,120B ∠=︒,则球O 的表面积为( )(注:球的表面积公式24)S r π=A .643π B .83πC .323π D .169π18.如图,在正三棱柱ABC A 1B 1C 1中,AC =CC 1,P 是A 1C 1的中点,则异面直线BC 与AP 所成角的余弦值为( )A .0B .13C D19.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h 、2h 、3h ,则123::h h h =( )A.2B . C 2:2 D 6:620.如图,二面角l αβ--的大小是60︒,线段AB α⊂.B l ∈,AB 与l 所成的角为30.直线AB 与平面β所成的角的正弦值是( )A B C D二、多选题21.如图,已知正方体1111ABCD A B C D -,则四个推断正确的是( )A .111AC AD ⊥B .11AC BD ⊥C .平面11//A C B 平面1ACD D .平面11A C B ⊥平面11BB D D22.正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 到平面AEF 的距离为2323.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则( ) A .截面可以是三角形B .PA 与底面ABCD 所成的角为60︒C .PA 与底面ABCD 所成的角为45︒D .当平面α经过侧棱PC 中点时,截面分四棱锥得到的上下两部分几何体体积之比为3:124.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,下列说法正确的是( )A .三棱锥E BCD -B .三棱锥E BCD -C .存在某个位置,使得AE BD ⊥D .设二面角D ABE --的平面角为θ,且0θπ<<,则DAE θ<∠25.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是( )A .1AC =B .BD ⊥平面1ACCC .向量1B C 与1AA 的夹角是60°D .直线1BD 与AC26.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为60C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为D .设正方体棱长为1,则过点E ,F ,A27.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M ,N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.则下列结论中正确的有( )A .当12a =时,ME 与CN 相交 B .MN 始终与平面BCE 平行 C .异面直线AC 与BF 所成的角为45︒D .当a =MN28.(多选)如图,ABCD A 1B 1C 1D 1为正方体,下面结论正确的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°29.已知四边形ABCD 为正方形,GD ⊥平面ABCD ,四边形DGEA 与四边形DGFC 也都为正方形,连接EF ,FB ,BE ,H 为BF 的中点,则下列结论正确的是( ) A .DE ⊥BFB .EF 与CH 所成角为3π C .EC ⊥平面DBFD .BF 与平面ACFE 所成角为4π30.下图中正方体1111ABCD A B C D -边长为2,则下列说法正确的是( )A .平面1C BD ⊥平面1A BDB .正方体1111ABCD A BCD -外接球与正四面体11A DBCC .正四面体11A DBCD .四面体1A ADB第II 卷(非选择题)三、填空题31.空间四面体ABCD 中,2AB CD ==,3AD BC ==,BD =BD 和AC 所成的角为3π,则该四面体的外接球的表面积为 __.32.如图,A 、B 、C 、D 、P 是球O 上5个点,ABCD 为正方形,球心O 在平面ABCD 内,PB PD =,2PA PC =,则P A 与CD 所成角的余弦值为______.33.已知圆锥、圆柱的底面半径和体积都相等,则它们的轴截面的面积之比的比值是___________34.中国有悠久的金石文化,印信是金石文化的代表之一.下左图是南北朝官员独孤信的印信,它是由正方形和正三角形围成.右图是根据这只印信作出的直观图,直观图的所有顶点都在一正方体的表面上(如果一个正八边形的八个顶点都在这个正方体同一个侧面的四条棱上,那么这个八边形的边长就等于这个直观图的棱长).__________.35.如图,在直三棱柱111ABC A B C -中,2BAC π∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的平方取值范围为__________.36.如图,在长方体1111ABCD A B C D -中,已知1AA =M ,N 分别在棱DA ,DC 上.二面角1D MN D --的大小为30°.若三棱锥1D DMN -,则三棱锥1D DMN -的外接球的表面积为___________.37.异面直线a 、b 所成角为3π,直线c 与a 、b 垂直且分别交于A 、B ,点C 、D 分别在直线a 、b 上,若1AC =,2AB =,3BD =,则CD =________.38.已知四棱锥S ﹣ABCD 的底面是边长为4的正方形,SD ⊥面ABCD ,点M 、N 分别是AD 、CD 的中点,P 为SD 上一点,且SD =3PD =3,H 为正方形ABCD 内一点,若SH ∥面PMN ,则SH 的最小值为__.39.如图,在ABC 中,AB AC ==1cos 3BAC ∠=-,D 是棱BC 的中点,以AD 为折痕把ACD △折叠,使点C 到达点C '的位置,则当三棱锥C ABD '-体积最大时,其外接球的表面积为___________.40.在如图所示的实验装置中,正方形框架的边长都是1,且平面ABCD ⊥平面ABEF ,活动弹子,M N 分别在正方形对角线,AC BF 上移动,若CM BN =,则MN 长度的最小值为__________.任务三:邪恶模式(困难)1-30题一、单选题1.已知四面体ABCD M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论: ①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围为;④FMN 1. 其中正确结论的为( ) A .①② B .②③C .③④D .①④2.已知三棱锥P ABC -,其中PA ⊥平面ABC ,2PA =,2AB AC ==,2BAC π∠=.已知点Q 为棱PA(不含端点)上的动点,若光线从点Q 出发,依次经过平面PBC 与平面ABC 反射后重新回到点Q ,则光线经过路径长度的取值范围为( )A .(1B .)4C .4⎫⎪⎭D .(3.如图,已知锐二面角l αβ--的大小为1θ,A α∈,B β∈,M l ∈,N l ∈,AM l ⊥,BN l ⊥,C ,D 为AB ,MN 的中点,若AM MN BN >>,记AN ,CD 与半平面β所成角分别为2θ,3θ,则( )A .122θθ<,132θθ<B .122θθ<,132θθ>C .122θθ>,132θθ<D .122θθ>,132θθ>4.在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与1A C 、不重合),有以下四个结论:⊥存在点M ,使得平面1A DM ⊥平面1BC D ; ⊥存在点M ,使得//DM 平面11B D C ;⊥若1A DM 的周长为L ,则L⊥若1A DM 的面积为S ,则S ∈⎝. 则正确的结论为( ) A .⊥⊥ B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥5.在棱长为1的正方体1111ABCD A B C D -中,点P 是正方体棱上一点,若满足1PB PC d +=的点P 的个数为4,则d 的取值范围为( )A .)2B .C .2,1⎡⎣D .(16.在三棱锥D ABC -中,222AD AB AC BC ===,点A 在面BCD 上的投影G 是BCD △的垂心,二面角G AB C --的平面角记为α,二面角G BC A --的平面角记为β,二面角G CD A --的平面角记为γ,则( )A .αβγ>>B .αγβ>>C .βγα>>D .γβα>>7.已知正方体1111ABCD A B C D -的棱长为1,E 是1AA 的中点,F 是棱BC 上一点(不包括端点),则下列结论错误的是( )A .三棱锥11CB EF -的体积为定值16B .存在点F ,使得直线EF 与直线1CD 相交C .当F 是棱BC 的中点时,直线EF 与直线1CD 所成的角为π6D .平面1D EF 截正方体所得的截面是五边形8.如图,在等边三角形ABC 中,,D E 分别是线段,AB AC 上异于端点的动点,且BD CE =,现将三角形ADE 沿直线DE 折起,使平面ADE ⊥平面BCED ,当D 从B 滑动到A 的过程中,则下列选项中错误的是( )A .ADB ∠的大小不会发生变化 B .二面角A BDC --的平面角的大小不会发生变化 C .BD 与平面ABC 所成的角变大 D .AB 与DE 所成的角先变小后变大9.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.如图所示,已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为( )A .2350cm 3πB .2700cm 3πC .2350cm πD 210.已知在Rt ABC △中,斜边2AB =,1BC =,若将Rt ABC △沿斜边AB 上的中线CD 折起,使平面ACD ⊥平面BCD ,则三棱锥A BCD -的外接球的表面积为( )A .13π3B .20π3C .10π3 D .7π311.如图,在长方体1111ABCD A B C D -中,3AB =,5AD =,14AA =,点F 是1AA 的中点,点E 为棱BC 上的动点,则平面1C EF 与平面11ABB A 所成的锐二面角正切的最小值是( )A .513BC D .13512.已知正方体1111ABCD A B C D -的棱长为M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB内,且三角形PMN 的面积PMN S =△P 的轨迹长度为( )A B C D13.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C D14.如图,等腰直角ABC 中,2AC BC ==,点P 为平面ABC 外一动点,满足PB AB =,2PBA π∠=,给出下列四个结论:①存在点P ,使得平面PAC ⊥平面PBC ; ②存在点P ,使得平面PAC ⊥平面PAB ; ③设PAC △的面积为S ,则S 的取值范围是(]0,4;④设二面角A PB C --的大小为α,则α的取值范围是π0,4⎛⎤⎥⎝⎦.其中正确结论是( ) A .①③ B .①④C .②③D .②④15.已知AB 、CD 是圆O 的两条直径,且60AOC ∠=︒,如图1,沿AB 折起,使两个半圆面所在的平面垂直,折到点D 位置,如图2.设直线BD '与直线OC 所成的角为θ,则( )A .90BD C '∠=︒且60θ>︒B .90BDC '∠=︒且60θ≤︒ C .90BD C '∠≠︒且60θ>︒ D .90BD C '∠≠︒且60θ≤︒二、多选题16.如图,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .点P 为半圆弧AD (不含A ,D 点)一动点.下列说法正确的是( )A .三梭锥P —ABD 的每个侧面三角形都是直角三角形B .三棱锥P —ABD 体积的最大值为83C .三棱锥P —ABD 外接球的表面积为定值32πD .直线PB 与平面ABCD17.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则( ) A .若112BF BC BD →→→⎛⎫=+ ⎪⎝⎭,则三棱锥的11-F B CC 的外接球表面积为4π B .若1//B F 平面1A BD ,则1B F 不可能垂直1CD C .若1C F ⊥平面1A CF ,则点F 的位置唯一D .若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半18.为弘扬中华民族优秀传统文化,某学校组织了《诵经典,获新知》的演讲比赛,本次比赛的冠军奖杯由一个铜球和一个托盘组成,如图⊥,已知球的体积为43π,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图⊥.则下列结论正确( )A .经过三个顶点,,ABC 的球的截面圆的面积为4π B .异面直线AD 与CF 所成的角的余弦值为58C .多面体ABCDEF 的体积为94D .球离球托底面DEF 119.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '20.如图,ABC 是由具有公共直角边的两块直角三角板组成的三角形,4CAD π∠=,3BCD π∠=.现将Rt ACD △沿斜边AC 翻折成△11(D AC D 不在平面ABC 内).若M ,N 分别为BC 和1BD 的中点,则在ACD △翻折过程中,下列结论正确的是( )A .//MN 平面1ACDB .1AD 与BC 不可能垂直C .二面角1D AB C -- D .直线1AD 与DM 所成角的取值范围为(,)63ππ21.已知边长为a 的菱形ABCD 中,π3ADC ∠=,将ADC 沿AC 翻折,下列说法正确的是( ) A .在翻折的过程中,直线AD ,BC 可能相互垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折的过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '22.已知正方体1111ABCD A B C D -的棱长为2,O 是底面ABCD 的中心,P 是棱11B C 上一点(不与端点重合),则( )A .平面OCP 截正方体1111ABCD ABCD -所得截面一定是梯形 B .存在点P ,使得三棱锥1P ABD -的体积为23C .存在点P ,使得AP 与11CD 相交D .当P 是棱11B C 的中点时,平面OCP 截正方体1111ABCD A B C D -外接球所得截面圆的面积269π23.在四面体ABCD 中,AB AC ⊥,AC CD ⊥,直线AB ,CD 所成的角为60°,AB CD ==,4AC =,则四面体ABCD 的外接球表面积为( )A B .52π C .80π D .208π第II 卷(非选择题)三、填空题24θ,则当tan θ等于______时,侧面积最小.25.球面几何学是几何学的一个重要分支,在航海、航空、卫星定位等面都有广泛的应用,如图,A ,B ,C 是球面上不同的大圆(大圆是过球心的平面与球面的交线)上的三点,经过这三个点中任意两点的大圆的劣弧分别为,,AB BC CA ,由这三条劣弧围成的图形称为球面ABC .已知地球半径为R ,北极为点N ,P ,Q 是地球表面上的两点若P ,Q 在赤道上,且PQ =,则球面NPQ △的面积为________;若NP PQ QN R ===,则球面NPQ △的面积为________.26.如图,在矩形ABCD 中,2,4,AB BC E ==是边AD 的中点,将ABE △沿直线BE 折成A BE ∠',使得二面角A BE C '--的平面角为锐角,点F 在线段A B '上运动(包括端点),当直线CF 与平面A BE '所成角最大时,FBE 在底面ABCD 内的射影面积为___________.27.已知三棱锥A BCD -的三条侧棱两两垂直,AB 与底面BCD 成30角,P 是平面BCD 内任意一点,则AP BP的最小值是________.28.已知正方体1111ABCD A B C D -的棱长为2,点E 是棱AD 的中点,点,F G 在平面1111D C B A 内,若EF =CE BG ⊥,则FG 的最小值为_________.29.在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,得四边形1BFD E ,给出下列结论:①四边形1BFD E 有可能为梯形; ②四边形1BFD E 有可能为菱形; ③四边形1BFD E 在底面ABCD 内的投影一定是正方形; ④四边形1BFD E 有可能垂直于平面11BB D D ;⑤四边形1BFD E 其中正确结论的序号是_____________30.在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别是BC 和11C D 的中点,经过点A ,E ,F 的平面把正方体1111ABCD A B C D -截成两部分,则截面的周长为________.。
千题百炼——高中数学100个热点问题(三)第100炼利用同构特点解决问题
合用文档第 100 炼 利用同构特点解决问题一、基础知识:1、同构式:是指除了变量不同样,其余地方均同样的表达式2、同构式的应用:(1)在方程中的应用:若是方程f a 0 和 f b 0 表现同构特点,则 a,b 可视为方程f x 0的两个根( 2)在不等式中的应用:若是不等式的两侧表现同构特点,则可将同样的构造构造为一个函数,进而和函数的单调性找到联系。
可比较大小或解不等式(3)在解析几何中的应用: 若是 A x 1, y 1 ,B x 2 , y 2 满足的方程为同构式, 则 A,B 为方程 所表示曲线上的两点。
特其余,若满足的方程是直线方程,则该方程即为直线 AB 的方程( 4)在数列中的应用:可将递推公式变形为“依序同构”的特点,即关于a n ,n 与a n 1, n 1 的同构式,进而将同构式设为辅助数列便于求解二、典型例题:x 1 例 1:( 2015 天津十二校联考) 设 x, y R ,满足y1()552 x sin x1 3,则 x y2 y sin y11A.B.2C.4D. 6思 路 : 本 题 研 究 对 象 并 非 x, y , 而 是 x 1 , y1,进而可变形为x15 x1 sin x1 125,观察上下式子左边构造同样,进而可将同样的构造y 1 y 1 sin y112视为一个函数, 而等式右边两个结果互为相反数, 可联想到函数的奇偶性, 进而利用函数性质求解5x 1 解:5y 12x sin x1 3 x 15x 1 sin x 1 12 2 y sin y 11y 1 5y1 sin y112设 f tt 5 2t sin t ,可得 ft 为奇函数,由题意可得:f x 11 f y 1f y 1f x 11x 1y 1x y2答案: B例 2:若函数 fxx 1 m 在区间 a,b 上的值域为a ,b b a 1 ,则实数 m 的2 2取值范围是 _____________a 1 maa, f b思路:注意到f x 是增函数,进而获取f ab,即2,发现22b 1 mb2两个式子为 a,b 的同构式, 进而将同构式视为一个方程,而 a,b 为该方程的两个根, m 的取值只需要保证方程有两根即可解:f x 为增函数a1 aa mf ab2 , f bb221b m2a, b 为方程 x 1 mx 在 1,上的两个根,即 mx x 1 有两个不同样的根2 2令 tx 1 t 0xt 2 1所以方程变形为:m 1 t21 t1 t2 2t 1 ,结合图像可得:m0,1222答案: m0,12例 3:设 a,b ? R ,则 | “ a > b ”是“ a a > b b ”的( )A. 充分不用要条件B. 必要不充分条件C. 充要条件D. 既不充要又不用要条件思路:观察 a a > b b 可发现其同构的特点,所以将这种构造设为函数f xx x ,解析f xx xx 2 , xf x a > b ? f ( a )f( )其单调性。
高中数学圆锥曲线解题技巧方法总结及高考试题和答案(K12教育文档)
高中数学圆锥曲线解题技巧方法总结及高考试题和答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学圆锥曲线解题技巧方法总结及高考试题和答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学圆锥曲线解题技巧方法总结及高考试题和答案(word版可编辑修改)的全部内容。
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2。
圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>).方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A,B,C 同号,A ≠B ).若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>).方程22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号).如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
高考数学专题9平面解析几何74圆锥曲线中的综合热点问题文
【步步高】(江苏专用)2017版高考数学专题9平面解析几何74圆锥曲线中的综合热点问题文训练目标对圆锥曲线热点、难点集中研究,重点突破,规范训练解题格式、解题步骤•训练题型(1)范围、最值问题;(2)定点、定值问题;(3)探索性问题.解题策略(1)利用化归思想结合定义、性质,将问题转化为圆锥曲线常见问题;(2)利用函数与方程思想,寻找探索性问题的解题思路;(3)利用数形结合思想及圆锥曲线的几何性质,解决定值、定点问题•1. (2015 •浙江重点中学协作体上学期第二次适应性测试)已知椭圆a2+牯=1(a>b>0)的离心率为2,且经过点P(1 , 2)•过它的两个焦点F, F2分别作直线丨1与丨2,丨1交椭圆于A B(1)求椭圆的标准方程;⑵求四边形ACB啲面积S的取值范围.x2 y2 12. (2015 •深圳第二次调研)如图,椭圆E: :+ 1(a>b>0)的离心率为-,F为右焦点,a2 b2 2点A B分别为左,右顶点,椭圆E上的点到F的最短距离为1.(1)求椭圆E的方程;⑵设t € R且t工0,过点M(4 , t)的直线MA MB与椭圆E分别交于点P, Q求证:点P,F, Q共线.x2 y2a^ +需=1(a>b>0)的左,右焦点分别是(2015 •江西新余上学期期末)已知椭圆Cc, 0) , F2(c, 0),直线I : x= m什c与椭圆C交于M N两点,且当m=--的上顶点,且△ MFF2的周长为6.(2)设椭圆时,以线段4. (2015•(1)求椭圆C的方程;C的左顶点为A,直线AM AN与直线:x = 4分别相交于点P, Q问当m变化PQ为直径的圆被x轴截得的弦长是否为定值?若是,求出这个定值;若不是,说明理由.济南模拟)已知抛物线C的标准方程为y2= 2px(p>0), M为抛物线C上一动点,A(a, 0)( a^0)为其对称轴上一点,直线MA与抛物线C的另一个交点为N.当A为抛物线C的9焦点且直线MA与其对称轴垂直时,△ MON勺面积为^.(1)求抛物线C的标准方程;1 1⑵记t = Aj诂AN若t的值与M点位置无关,则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.5. (2015 •湖北七市4月联考)在矩形ABC[中, AB= 2 ■'3, AD= 2,四条边的中点,以HF GE所在直线分别为x, y轴建立直角坐标系E, F, G H分别为矩形(如图所示),若R, Rx2 2—+ y = 1 上;OR CR 1 且OF="CF =n,M是椭圆C2GM 与直线GN 的斜率之积为3,求证:直线 MN 过定3占 八、、♦答案解析 C 1 2 2 2 21.解 (1)由-=亍? a = 2c ,所以 a = 4c , b = 3c , a 2将点P 的坐标代入椭圆方程得C 2= 1,(2)若I 1与I 2中有一条直线的斜率不存在,则另一条直线的斜率为 0,此时四边形的面积S = 6.若I 1与I 2的斜率都存在,设I 1的斜率为k ,1则I 2的斜率为一匸, 则直线11的方程为y = k (x + 1).设 A (X 1, y 1), B (x 2, y 2),y = k x + 1消去 y 并整理得(4 k 2+ 3) x 2+ 8k 2x + 4k 2— 12= 0.①8k2 4k2 — 12 :x1+x2= — 4^,x1x2=花輛,12pk2 + 1A|x1 — x21= 4k2 + 3,-------- 12 k2 +1 - --A* 11 + k21 x i — X 2| = 4k2 + 3,②注意到方程①的结构特征和图形的对称性,1可以用一1代替②中的k ,172 1 + k2 2 S=— AB- CD=24k2 + 3-3k2 + 4'2令 k = t € (0 ,+ I ,M N 为曲线Q 上的两点,且直线故所求椭圆方程为 x2 y24 +_3 = 1.联立方程组 x2 y27 + J = 1,得CD=12 k2 + 1 3k2 + 4 S =72 1+1 24t + 3- 3t + 46 12t2 + 25t + 12 —6t12t2 + 25t + 126 6 288=6 ——49,12 4912t +-p + 25当且仅当t = 1时等号成立,288• S C[49,6),综上可知,四边形ABCD勺面积S G】2 3 4^, 6].12. (1)解由椭圆E的离心率为^,得£=舟即有a= 2c,a 2x2 y2• E的方程可化为花+忘=1, 设椭圆上的动点H(x o, y o)( —2c< x°W2c),2 3即y0= 3c —4x2,②②代入①整理可得,x0 —4c 2( —2c W X oW2 c),•••当X o= 2c 时,HFn in= c= 1.x2 y2故所求椭圆E的方程为-+三=1.⑵证明由⑴可知A—2,0) , B(2,0),所以k MA= 6 , k MB= 2,故MA勺方程为y = 6(x+ 2),ty = x+2 ,6联立方程组x2 y2+ —= 14 十3 1,•/ F( c, 0) , • HF= :x0 —c 2+ y0,①又由月+鶉=1,4c2 3c2H&2 2 2 2得(27 + t )x + 4t x + (4t — 108) = 0,—4t2 54 — 2t2 …X P = — X A =27 +12 27+ t22t2 — 6 同理,可求得点Q 3 + t2,3 +t2「不(t2 — 9— 6t )Q= (3+ t2,3 + t2 ),工〜 3 3+12 T 而 PF =27+12 FQ••• t € R 且t 工0时,点P, F , Q 三点共线.又△ MFF 2的周长为6,2a + 2c = 6 , 所以c=cos 60 ax2 y2所以椭圆方程是7+= j当m= 0时,直线I 的方程为x = 1,N 的坐标分别是(1 , |) , (1 , — |),又点A 的坐标是(一2,0),由图可以得到 P, Q 两点坐标分别是(4,3) , (4 , — 3), 以PQ 为直径的圆过右焦点,被 x 轴截得的弦长为6 , 猜测当m 变化时,以PQ 为直径的圆恒过焦点 F 2 ,被x 轴截得的弦长为定值6.证明如下:设点M N 的坐标分别是(x i , y i ), (X 2, y 2),3 .解⑴当m ^ — ,直线的倾斜角为 12 0° ,代入MA 的方程,得y p = 6(X P + 2)18t27 + t2, •••点只54—讐,27+ t2 18t 、 27 + t2 ), —6t ),于是P 乍=严—27 —18t27 + t2,27 + t2 ),解得 a = 2, c = 1 , ? b = 3 , 此时,点My x + 2则直线人⑷勺方程是y=口 x = my + 1,2 2 2 2得 3(my + 1) + 4y = 12? (3m + 4) y + 6my-9 = 0,从而 F2P • F2Q= (4 — 1)(4 — 1) +=9 |3盼2my1+ 3 my2+ 336y1y2=9 +m2y1y2+ 3m y1 + y2 + 9—9X 369 —p 0于 一 9m2- 18m2^ 27m2+ 36 ,所以,以PQ 为直径的圆一定过右焦点 F 2,被x 轴截得的弦长为定值 6.4.解 (1)由题意知,当 A 为抛物线C 的焦点且直线 MA 与其对称轴垂直时,1 亠 1 p p2 9&MON F • OA- MN= •云・2 p = — = ^, 二 P = 3,2 故抛物线C 的标准方程为y = 6x .(2)设 Mi y 1), N(X 2, y 2), 直线MN 的方程为x = my — a ,x = my — a , 联立y2 = 6x , 得 y -6my-6a = 0,2••• A = 36m + 24a >0,y 1 + y 2 = 6m y 1y 2=— 6a.由对称性,不妨设 m>0 , ①当 a <0 时,T y 1y 2= — 6a >0,所以点 P 的坐标是(4 ,同理,点 Q 的坐标是(4 ,6y2) x2 +由方程组x2 y2~4 + ~3 1, 所以y 1 + y 2 =—6m3m2+ 4一 9 y1y2= 3m2+ 4,36y1y2 x1 + 2 x2 + 2• y1, y2 同号,又G 0,1),则直线GR 的方程为y —-盘x + 1.①又 t =丄+1= _______________ +AMAN 寸 i + m2|y1| 寸 1 + m2|y2|'」 1 、, yi + y2 2■ ■ t/\1 + m2 y1y2 21 36m2x -1 + m2 36a21 1a2(1 1 + m2,不论a 取何值,t 均与m 有关, 即当a <0时,A 不是“稳定点”. ②当a >0时,讨旳2— — 6a <0,■- y 1, y 2异号,1 1 又 t —-4-—又—AM T AN■'1 + m2|y1| 十’1 + m2|y2| ' 21 y1 — y2 2■ t ---------- x—1 + m2 y1y2 21 x y1 + y2 2 — 4y1y2 1 + m2 y1y2 21 36m2+ 24ax - 36a2 1 + m21—a2(1 2 3a -1 + 1 +m2,所以当且仅当3a - 1 — 0, 3即a — 时,t 与m 无关,此时A :|, 0)为抛物线C 的焦点,即抛物线C 的对称轴上仅有焦点这一个“稳定点”.5•证明OR CR 1 ⑴「O F—击—n , ■尺卡,0) , R( . 3,n — 1 "V )•设 MN x = t (—帀<t <取), 则 Ml '\ \ 1 — 3 ), N (t ,—, 1 — 3 ),1k GM ・ k GN = 3,不合题意,②当直线MN 的斜率存在时,设 MN y = kx + b ,Mx 1, yj , N (x 2, y 2),y = kx + b ,联立方程组x2亍 + y2 = 1,222得(1 + 3k )x + 6kbx + 3b — 3 = 0,2 2贝U A = 12(3 k — b + 1)>0 , —6kb3b2 — 3x i + X 2=1 * 3k2,乂风二仆 3k2., y1 — 1 y2 — 1 k2x1x2 + k b — 1 x1 + x2 + b — 1 2 2k GN = • ==—,x1 x2 x1x23'又E (0,- 1),则直线ER 的方程为)由①②得P 2 3 n n2 - 1 n2+ 1, n2 + 1 2 3nn2 + 1 3~2-+ ( n2— 1 2 4n 2+ n2 — 1n2+ 1) = n2+ 1 __2 2 -=1,MN 的斜率不存在时,Q : X2 + y 2 = 1 上.3又k Gi11 / 92 2即(3 k —2) X1X2 + 3k(b—1)( X i + X2) + 3( b—1) = 0,- —6kb 3b2 — 3 、口将Xi+ X2= i + 3k2 , XlX2= i + 3k2代入上式得b=—3,•••直线过定点T(0,—3).。
高中数学《圆锥曲线》解答题解法汇总
高中数学圆锥曲线解答题解法题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结)题型二:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB=21k=+d=22122kk k+=解得k=53x=。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。
千题百炼——高中数学100个热点问题(三):第74炼 利用几何关系求解圆锥曲线问题
的相互转化 4 在椭圆中 利用两条焦半径的和为常数 可将一条焦半径转移至另一条焦半径 5 在 曲线中 利用两条焦半径的差为常数 意点在 曲线的哪一支 3 1 圆相关的最值问题 已知圆 C 及圆外一定点 P 设圆 C 的半径为 r 则圆 点到 P 点
A
可将一条焦半径转移至另一条焦半径 注
距离的最小值为 PM = PC − r 结 PC 并延长
'
'
点共线时,
( PA
答案
'
+ PB
)
min
= A' B = 41 ,即 ( PA + PB )min = 41
41
1 点共线取得最值的条件 动点位于两定点之间时,则距离和取到最小
小炼有话说
值。同理 当动点位于两定点同一侧时,距离差的绝对值取到最大值。 2 处理线段和 差 最值问题时,如果已知线段无法找到最值关系,则可考虑利用 线
段转移法 ,将某一线段替换成另一长度相等线段,从而构造出取得最值的条件 例 2 设抛物线 y 2 = 4 x 的距离为 d 2 A. 思路 一点 P 到此抛物线准线的距离为 d1 到直线 l : 3 x + 4 y + 12 = 0
则 d1 + d 2 的最小值为 B.
3
16 5
C.
18 5
D.
4
通过作图可观察到直接求 d1 + d 2 的最值比较困难,所以考虑转移某个距离,由已知
C
垂足为 P
CP
圆 C 交于 M
其
l
P M
4 已知圆 C 和圆外的一条直线 l 线 解 线长的最小值为 PM
则过直线 l
的点作圆的
千题百炼——高中数学100个热点问题(三)第71炼求圆锥曲线方程Word版含解析
第71炼 求曲线(或直线)的方程一、基础知识:1、求曲线(或直线)方程的思考方向大体有两种,一个方向是题目中含几何意义的条件较多(例如斜率,焦距,半轴长,半径等),那么可以考虑利用几何意义求出曲线方程中的要素的值,从而按定义确定方程;另一个方向是若题目中没有明显的几何条件,主要依靠代数运算,那么就考虑先用待定系数法设出方程(未知的部分用字母代替),从而该方程便可参与题目中的运算,再利用题目条件求出参数的值,即可确定方程。
可以说两个方向各有侧重,一个倾向于几何意义,另一个倾向于代数运算,下面将对两个方向涉及到的知识进行详细梳理2、所学方程中字母的几何意义(1)直线::斜率;()00,x y :直线所过的定点 (2)圆:(),a b :圆心的坐标; :r 圆的半径(3)椭圆:2a :长轴长,焦半径的和;2:b 短轴长;2c :焦距 (4)双曲线:2a :实轴长,焦半径差的绝对值;2:b 虚轴长;2c :焦距注:在椭圆和双曲线中,很多几何性质也围绕着,,a b c 展开,通过这些条件也可以求出,,a b c 的值,从而确定曲线方程。
例如(椭圆与双曲线共有的):离心率:ce a=;通径(焦点弦长的最小值):22b a 等(5)抛物线::p 焦准距 3、待定系数法中方程的形式: (1)直线与曲线方程通式:① 直线:y kx m =+,x my t =+ ② 圆:220x y Dx Ey F ++++= ③ 椭圆:标准方程:()222210x y a b a b +=>>(或()222210y x a b a b+=>>,视焦点所在轴来决定)椭圆方程通式:()2210,0mx ny m n +=>>④ 双曲线:标准方程:()222210,0x y a b a b -=>>(或()222210,0y x a b a b-=>>,视焦点所在轴决定)双曲线方程通式:()2210mx ny mn -=> ⑤ 抛物线:标准方程:()220y px p =>等 抛物线方程通式:2y mx =,2x my =(2)曲线系方程:具有一类特征的曲线的集合,通常曲线方程中含有参数。
千题百炼——高考数学100个热点问题
千题百炼——高考数学100个热点问题第四章第26炼求未知角的三角函数值三角函数与解三角形第26炼求未知角的三角函数值在三角函数的解答题中,经常要解决求未知角的三角函数值,此类问题的解决方法大体上有两个,一是从角本身出发,利用三角函数关系列出方程求解,二是向已知角(即三角函数值已知)靠拢,利用已知角将所求角表示出来,再利用三角函数运算公式展开并整体代换求解,本周着力介绍第二种方法的使用和技巧一、基础知识:1、与三角函数计算相关的公式:(1)两角和差的正余弦,正切公式:① sin sin cos sin cos② sin sin cos sin cos③ cos cos cos sin sin④ cos cos cos sin sin⑤ tan tan tan tan tan⑥ tan1tan tan1tan tan(2)倍半角公式:① sin22sin cos② cos2cos sin2cos112sin③ tan222222tan 1tan2,其中tan(3)辅助角公式:asin bcos2、解决此类问题的方法步骤: b a(1)考虑用已知角表示未知角,如需要可利用常用角进行搭配(2)等号两边同取所求三角函数,并用三角函数和差公式展开(3)利用已知角所在象限和三角函数值求出此角的其他函数值(4)将结果整体代入到运算式即可3、确定所涉及角的范围:当已知角的一个三角函数值求其他三角函数值时,角的范围将决定其他三角函数值的正负,所以要先判断角的范围,再进行三角函数值的求解。
确定角的范围有以下几个层次:(1)通过不等式的性质解出该角的范围(例如:5,则) 612243(2)通过该角的三角函数值的符号,确定其所在象限。
千题百炼——高考数学100个热点问题(一):第3炼 利用数轴解决集合运算问题
第3炼 利用数轴解决集合运算问题数形结合是解决高中数学问题的常用手段,其优点在于通过图形能够直观的观察到某些结果,与代数的精确性结合,能够快速解决一些较麻烦的问题。
在集合的运算中,涉及到单变量的取值范围,数轴就是一个非常好用的工具,本文将以一些题目为例,来介绍如何使用数轴快速的进行集合的交并运算。
一、基础知识:1、集合运算在数轴中的体现::A B 在数轴上表示为,A B 表示区域的公共部分 :A B 在数轴上表示为,A B 表示区域的总和:U C A 在数轴上表示为U 中除去A 剩下的部分(要注意边界值能否取到)2、问题处理时的方法与技巧:(1)涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系(2)在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域。
(3)涉及到多个集合交并运算时,数轴也是得力的工具,从图上可清楚的看出公共部分和集合包含区域。
交集即为公共部分,而并集为覆盖的所有区域(4)在解决含参数问题时,作图可先从常系数的集合(或表达式)入手,然后根据条件放置参数即可3、作图时要注意的问题:(1)在数轴上作图时,若边界点不能取到,则用空心点表示;若边界点能够取到,则用实心点进行表示,这些细节要在数轴上体现出来以便于观察(2)处理含参数的问题时,要检验参数与边界点重合时是否符合题意。
二、例题精析:例1:(2009 安徽)集合{}21213,03x A x x B x x +⎧⎫=-<=<⎨⎬-⎩⎭,则A B =_______思路:先解出,A B 的解集,()()11,2,,3,2A B ⎛⎫=-=-∞-+∞ ⎪⎝⎭,作出数轴,则A B 即为它们的公共部分。
11,2A B ⎛⎫=--⎪⎝⎭答案:11,2A B ⎛⎫=--⎪⎝⎭例2:设集合{}{}23,|8,S x x T x a x a S T R =->=<<+= ,则a 的取值范围是____ 思路:可解出()(),15,S =-∞-+∞ ,而T 集合含有参数,作出数轴,先从容易作图的集合做起,即画出S 的范围,由于S T R = ,而数轴上有一部分区域没有被S 包含,那说明T 集合负责补S 空缺的部分,由于参数决定其端点位置,所以画出图像,有图像观察可得只需要:185a a <-⎧⎨+>⎩ 即可,解得:31a -<<-答案:31a -<<-小炼有话说:(1)含有参数的问题时,可考虑参数所起到的作用,在本题中参数决定T 区间的端点(2)含有参数的问题作图时可先考虑做出常系数集合的图像,再按要求放置含参的集合 (3)注意考虑端点处是否可以重合,通常采取验证的方法,本题若3a =-或1a =-,则端点处既不在S 里,也不在T 里,不符题意。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的探索性问题(解析版)
圆锥曲线中的探索性问题“肯定顺推法”解决探索性问题,即先假设结论成立,用待定系数法列出相应参数的方程,倘若相应方程有解,则探索的元素存在(或命题成立),否则不存在(或不成立).考法1 点、线的存在性问题【例1】(2022·长沙一中模拟预测)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. 【解题指导】【解析】(1)设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0, 故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P .思路引导母题呈现由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点(,)3mm 的坐标代入直线l 的方程得b =m 3-k 3,因此x M =k k -3m3k 2+9.四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km3k 2+9=2×k k -3m 3k 2+9,解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.【解题技法】存在性问题的求解方法(1)解决存在性问题通常采用“肯定项推法”,将不确定性问题明朗化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用几何关系求解最值问题一、基础知识:1、利用几何关系求最值的一般思路:(1)抓住图形中的定点与定长,通常与求最值相关(2)遇到线段和差的最值,经常在动点与定点共线的时候取到。
因为当动点与定点不共线时,便可围成三角形,从而由三角形性质可知两边之和大于第三边,两边之差小于第三边,无法取得最值。
所以只有共线时才有可能达到最值。
要注意动点与定点相对位置关系。
一般的,寻找线段和的最小值,则动点应在定点连成的线段上;若寻找线段差的最小值,则动点应在定点连成的线段延长线上。
(3)若所求线段无法找到最值关系,则可考虑利用几何关系进行线段转移,将其中某些线段用其它线段进行表示,进而找到最值位置(4)处理多个动点问题时,可考虑先只让一个动点运动,其他动点不动,观察此动点运动时最值选取的规律,再根据规律让其他点动起来,寻找最值位置。
2、常见的线段转移:(1)利用对称轴转移线段(详见例1)(2)在圆中,可利用与半径相关的直角三角形(例如半弦,圆心到弦的垂线,半径;或是切线,半径,点与圆心的连线)通过勾股定理进行线段转移。
(3)在抛物线中,可利用“点到准线的距离等于该点到焦点的距离”的特点进行两个距离的相互转化。
(4)在椭圆中,利用两条焦半径的和为常数,可将一条焦半径转移至另一条焦半径 (5)在双曲线中,利用两条焦半径的差为常数,也可将一条焦半径转移至另一条焦半径(注意点在双曲线的哪一支上) 3、与圆相关的最值问题:(1)已知圆C 及圆外一定点P ,设圆C 的半径为r 则圆上点到P 点距离的最小值为PM PC r =-,最大值为PN PC r =+(即连结PC 并延长,M 为PC 与圆的交点,N 为PC 延长线与圆的交点 (2)已知圆C 及圆内一定点P ,则过P 点的所有弦中最长的为直径,最短的为与该直径垂直的弦MN解:,弦长的最大值为直径,而最小值考虑弦长公式为AB =AB 最小,则d 要取最大,在圆中CP 为定值,在弦绕P 旋转的过程中, d CP ≤,所以d CP =时,AB 最小(3)已知圆C 和圆外的一条直线l ,则圆上点到直线距离的最小值为C l PM d r -=-,距离的最大值为C l PN d r -=+(过圆心C 作l 的垂线,垂足为P ,CP 与圆C 交于M ,其反向延长线交圆C 于N(4)已知圆C 和圆外的一条直线l ,则过直线l 上的点作圆的切线,切线长的最小值为PM解:PM =PM 最小,则只需CP 最小即可,所以P 点为过C 作l 垂线的垂足时,CP 最小∴过P 作圆的切线,则切线长PM 最短4、与圆锥曲线相关的最值关系:(1)椭圆:设椭圆方程为()222210x y a b a b+=>>① 焦半径:焦半径的最大值为a c +,最小值为a c -② 焦点弦:焦点弦长的最小值称为通径,为22b a ,此时焦点弦与焦点所在的坐标轴垂直(2)双曲线:设双曲线方程为()222210,0x y a b a b-=>>① 焦半径:焦半径的最小值为a c -,无最大值② 焦点弦:焦点弦长的最小值称为通径,为22b a,此时焦点弦与焦点所在的坐标轴垂直(3)抛物线:设抛物线方程为22y px =① 焦半径:由抛物线的焦半径公式可知:焦半径的最小值为原点到焦点的距离,即2p ② 焦点弦:当焦点弦与焦点所在坐标轴垂直时,弦长最小,为2pN二、典型例题:例1:已知在平面直角坐标系中,点()()1,1,3,4A B -,P 为x 轴上一动点,则PA PB +的最小值为___________思路:从所求可联想到三点不共线时,三角形两边之和大于第三边(而三点共线时可能相等),由已知可得:5AB =,但从图像上发现无论P 在何处,PA PB AB +>,无法取到等号。
(即使,,P A B 共线时等号也不成立),为了取到最值。
考虑利用对称转移所求线段。
作A 关于x 轴的对称点'A ,从而有'AP A P =,所以PA PB +转化为'PA PB +,可知当',,A P B 三点共线时,()''minPAPBA B +==()min PA PB +=小炼有话说:(1)三点共线取得最值的条件:动点位于两定点之间时,则距离和取到最小值。
同理;当动点位于两定点同一侧时,距离差的绝对值取到最大值。
(2)处理线段和(差)最值问题时,如果已知线段无法找到最值关系,则可考虑利用“线段转移法”,将某一线段替换成另一长度相等线段,从而构造出取得最值的条件例2:设抛物线24y x =上一点P 到此抛物线准线的距离为1d ,到直线:34120l x y ++=的距离为2d ,则12d d +的最小值为( ) A. 3 B.165 C. 185D. 4 思路:通过作图可观察到直接求12d d +的最值比较困难,所以考虑转移某个距离,由已知可得1d 为P 到准线的距离,所以可根据抛物线定义转移为PF (其中F 是抛物线的焦点,()1,0F ),所以122d d PF d +=+,观察图像可得:2311235F l PF d d -⋅++≥==答案:A例3:已知过抛物线24y x =的焦点F 的弦与抛物线交于,A B 两点,过,A B 分别作y 轴的垂线,垂足分别为,C D ,则AC BD +的最小值为__________ 思路:设抛物线的准线为l ,由抛物线24y x =可知:1l x =- ,观察图像可知1,1A l B l AC d BD d --=-=-。
而由抛物线定义可得:,A l B l d AF d BF --==,所以112A C B D A F B F A B+=-+-=-,即要求出AC BD +的最小值,只需求出AB 的最小值,即抛物线焦点弦的最小值,由抛物线性质可知当AB x ⊥轴时,AB 最小,min 24AB p ==,所以()m i n 2AC BD +=答案:2例4:已知点3,12P ⎛⎫- ⎪⎝⎭在抛物线()2:20E x py p =>的准线上,过点P 作抛物线的切线,若切点A 在第一象限,F 是抛物线的焦点,点M 在直线AF 上,点N 在圆()()22:221C x y +++=上,则MN 的最小值为( )A.15 B. 65C. 2D.1- 思路:由图像可知,固定M 点,则圆C 上到M 距离的最小值1CM r CM -=-,所以只需在直线上找到与圆心C 距离最小的点,即C 到直线AF 的距离。
需要确定抛物线方程和A 点坐标,由3,12P ⎛⎫- ⎪⎝⎭可得准线方程为1y =-,所以2p =,抛物线方程为22144x y y x =⇒=,焦点()0,1F 设21,4A a a ⎛⎫ ⎪⎝⎭,则'12y x =,切线斜率12k a =,从而211144322a k a a a +==⇒=-,即()4,4A,413404AF k -==-,所以直线AF方程:3440x y -+=,从而m i 4115MN =-=答案:A例5:抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A.14 B. 43 C. 85D. 3 思路一:直接利用点到直线距离公式得到距离关于x 的函数,设抛物线上的点()2,P x x -,则22220343833201455353P l x x x d -⎛⎫-+⎪--⎝⎭==≥⋅=,所以最小值为43思路二:本题也可将直线进行平移,平移至与抛物线相切,则两直线之间的距离即为所求最小值。
所以只需求与已知直线平行且与抛物线相切的直线,设切点坐标为()00,x y ,所求函数的导数'2y x =-,因为切线与4380x y +-=平行,所以0423x -=-,可得023x =,进而20049y x =-=-,故切线方程为:442933y x ⎛⎫+=-- ⎪⎝⎭,整理后可得:44303x y +-=,所以两直线距离483453d ⎛⎫--- ⎪⎝⎭==,即抛物线上的点到距离的最小值 答案:B例6:已知点M 是抛物线24y x =的一点,F 为抛物线的焦点,A 在圆()()22:411C x y -+-=上,则MA MF +的最小值为( )A. 2B. 3C. 4D. 5 思路:本题含两个动点,M A ,先固定一个点不动,寻找最小值的规律。
考虑固定M ,则圆上距离M 最近的点为MC 与圆的交点,即min 1MA MC r MC =-=-,所以只需考虑MC MF +的最小值即可,通过移动M 可知,无论M 位于何处,MC MF CF +>,所以CF 不是最小值。
考虑转移线段,抛物线的准线:1l x =-,则M l MF d -=,所以5M l C l MC MF MC d d --+=+≥=(即C到准线的距离,所以114C l MA MF MC MF d -+≥-+≥-=答案:C例7:已知动点(),P x y 在椭圆2212516x y +=上,若点A 的坐标为()3,0,1,0AM PM AM =⋅=,则PM 的最小值是( )A.B. C. 2 D. 3思路:由椭圆方程可知A 即为椭圆的焦点,由1AM =可知M 是以A 为圆心,半径为1的圆上的点,P 在圆外,且由0PM AM ⋅=可得PM AM ⊥,所以PM 即为圆上的切线,PM 的最小值即切线长的最小值,由圆的性质可得:PM ==所以只需找到PA 的最小值即可,由椭圆性质可知:min 532PA a c =-=-=,故minPM==答案:B例8:设1F 是椭圆2212516x y +=的左焦点,P 是椭圆上的任意一点,点M 的坐标为()6,4,则1PM PF +的最大值为___________ 思路:先作出椭圆图像,标出定点1,M F 的位置,若从1F M 入手,则由图发现无论P 在何处,11PM PF F M +>。
与所求最大值不符。
考虑进行线段转移,发现1PF 为左焦半径,所以考虑作出右焦点()23,0F ,利用12210PF PF a +==进行线段转移。
即1210PM PF PM PF +=+-,只需求出()2maxPMPF -,结合图像可得22PM PF F M-≤,且25F M ==,从而可得:()12max1015PM PF F M +=+=答案:15例9:设P 是椭圆22195x y +=上一点,,M N 分别是两圆()221:21C x y ++=和2:C ()2221x y -+=上的点,则PM PN +的最小值和最大值分别为( )A. 4,8B. 2,6C. 6,8D. 8,12 思路:本题有三个动点,,P M N ,但观察可得,PM PN 之间没有联系,所以若PM PN +达到最小,则只需,PM PN 分别达到最小即可。