精选广西来宾市2018-2019学年高一下期末数学试卷(有答案)

合集下载

广西来宾市高一下学期期末数学试卷

广西来宾市高一下学期期末数学试卷

广西来宾市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高一下·丽水月考) 与角终边相同的角是()A .B .C .D .2. (2分)设=(sinx,3),=(,2cosx),且,则锐角x为()A .B .C .D .3. (2分) (2017高二上·大庆期末) 下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;③异性电荷,相互吸引;④某人购买体育彩票中一等奖.A . ②④B . ①②④C . ①②③④D . ②③④4. (2分) (2016高二下·吉林期中) 三个人独立地破译一个密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译出的概率为()A .B .C .D . 不确定5. (2分)右边程序运行结果为()A . 7B . 6C . 5D . 46. (2分)在直角梯形中,,,,,点在线段上,若,则的取值范围是()A .C .D .7. (2分)当输入时,右面的程序运行的结果是()A .B .C .D .8. (2分)已知扇形的中心角为,半径为2,则其面积为()A .B .C .D .9. (2分)函数的最小正周期为π,则f(x)的单调递增区间可以是()B . (-,)C . (,)D . (,)10. (2分) (2016高二下·银川期中) 在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入()A . x>cB . c>xC . c>bD . c>a11. (2分)(2017·葫芦岛模拟) 福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为()81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49A . 12B . 33C . 06D . 1612. (2分) (2017高一上·新疆期末) 已知g(x)=sin2x,将g(x)的图象向左平移个单位长度,再将图象上各点的横坐标缩短到原来的,得到函数f(x)的图象,则()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2020高一下·大同月考) ________.14. (1分) (2016高二上·邹平期中) 某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.15. (1分)(2015·合肥模拟) 已知sin2α﹣2=2cos2α,则sin2α+sin2α=________.16. (1分) (2017高一下·桃江期末) 如图是某班50名学生身高的频率分布直方图,那么身高在区间[150,170)内的学生约有________人.三、解答题 (共6题;共65分)17. (5分)已知A(2,﹣4),B(﹣1,3),C(3,4),若=2+3,求点M的坐标.18. (10分)化简计算(1)计算:﹣lg(2)已知tan(π﹣α)=﹣2;求sin2(π+α)+sin(+α)cos(﹣α)的值.19. (15分) (2016高一下·黄山期末) 甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:甲8282799587乙9575809085(1)请用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)现要从中选派一人参加9月份的全国数学联赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.20. (10分)在一次抽样调查中测得样本的5个样本点,数值如表:x0.250.5124y1612521(1)作出散点图,并判断y与x之间是否具有相关关系.若y与x非线性关系,应选择下列哪个模型更合适?(y= +b,y=k•lnx+b,y=eax+b)(2)请利用前四组数据,试建立y与x之间的回归方程.(保留小数点后1位有效数字)21. (10分)设方程(为参数)表示曲线 .(1)写出曲线的普通方程,并说明它的轨迹;(2)求曲线上的动点到坐标原点距离的最小值.22. (15分) (2016高二上·襄阳期中) 某高校组织自主招生考试,其有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275).如图是按上述分组方法得到的频率分布直方图.(1)从这2 000名学生中,任取1人,求这个人的分数在255~265之间的概率约是多少?(2)求这2 000名学生的平均分数;(3)若计划按成绩取1 000名学生进入面试环节,试估计应将分数线定为多少?参考答案一、选择题 (共12题;共24分)1、答案:略2-1、3、答案:略4、答案:略5、答案:略6、答案:略7-1、8、答案:略9、答案:略10、答案:略11-1、12、答案:略二、填空题 (共4题;共4分)13、答案:略14、答案:略15、答案:略16-1、三、解答题 (共6题;共65分)17、答案:略18、答案:略19、答案:略20、答案:略21、答案:略22、答案:略。

2018-2019学年高一数学下学期期末考试试题(含解析)_44

2018-2019学年高一数学下学期期末考试试题(含解析)_44

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知三个内角、、的对边分别是,若,则等于( )A. B. C. D.【答案】A【解析】【分析】根据直角三角形中角所对的直角边等于斜边的一半求解【详解】由条件可知,故选.【点睛】本题考查解三角形,属于基础题.2.已知三个内角、、的对边分别是,若则的面积等于( )A. B. C. D.【答案】B【解析】根据三角的面积公式求解.详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.3.从总数为的一批零件中随机抽取一个容量为的样本,若每个零件被抽中的可能性为,则为( )A. B. C. D.【答案】C【解析】【分析】根据古典概型的概率公式求解.【详解】由,得.故选.【点睛】本题考查古典概型的概率,属于基础题.4.在等比数列中,若,则的值为()A. B. C. D.【答案】B【分析】根据等比数列的性质:若,则.【详解】等比数列中,,,故选B.【点睛】本题考查等比数列的通项公式和性质,此题也可用通项公式求解.5.已知三个内角、、的对边分别是,若,则等于( )A. B. C. D.【答案】D【解析】【分析】根据正弦定理把边化为对角的正弦求解.【详解】【点睛】本题考查正弦定理,边角互换是正弦定理的重要应用,注意增根的排除.6.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是( )A. B.C. D.【答案】B【解析】【分析】先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。

故选B.【点睛】本题考查直线的性质与方程,属于基础题.7.已知,若,则下列不等式成立的是 ( )A. B. C. D.【答案】C【解析】【分析】根据不等式的性质对每一个选项进行证明,或找反例进行排除.【详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.8.已知函数,则不等式的解集为( )A. B. C. D.【答案】B【解析】【分析】先判断函数的单调性,把转化为自变量的不等式求解.【详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.9.在长方体中,,,,则异面直线与所成角的大小为( )A. B. C. D. 或【答案】C【解析】【分析】平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.10.不等式的解集是( )A. B.C. D.【答案】D【解析】试题分析:且且,化简得解集为考点:分式不等式解法11.点关于直线的对称点的坐标为()A. B. C. D.【答案】D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.12.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯。

2018-2019学年高一数学下学期期末考试试题(含解析)_40

2018-2019学年高一数学下学期期末考试试题(含解析)_40

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.某学校A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A. 2B. 4C. 5D. 6【答案】B【解析】分析】分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。

【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。

故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。

2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得。

【详解】,可知,即,故选:B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目。

3.在△中,已知,,,则△的面积等于( )A. 6B. 12C.D.【答案】C【解析】【分析】通过A角的面积公式,代入数据易得面积。

【详解】故选:C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目。

4.以点为圆心,且经过点的圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆的标准方程,代入点即可。

【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:。

故选:B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目。

5.在区间随机取一个实数,则的概率为( )A. B. C. D.【答案】C【解析】【分析】利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。

【详解】因为的长度为3,在区间的长度为9,所以概率为。

故选:C【点睛】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。

2018-2019学年第二学期高一下学期期末考试数学试卷及答案解析

2018-2019学年第二学期高一下学期期末考试数学试卷及答案解析

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………2018-2019学年第二学期高一下学期期末考试数学试卷评卷人 得分一、选择题1、已知为角的终边上的一点,且,则的值为( )A .B .C .D .2、在等差数列中,,则( )A .B .C .D .3、若,则一定有( )A .B .C .D .4、已知等差数列的前项和为,若且,则当最大时的值是( )A .B .C .D .5、若,则的值为( )A .B .C .D .6、在中,已知,则的面积等于( )A .B .C .D .7、各项均为正数的等比数列的前项和为,若,则( ) A .B .C .D .……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………8、若变量满足约束条件,且的最大值为,最小值为,则的值是( ) A . B .C .D .9、在中,角所对的边分别为,且,若,则的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 10、当甲船位于处时获悉,在其正东方向相距海里的处,有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西相距海里处的乙船,乙船立即朝北偏东角的方向沿直线前往处营救,则的值为( )A .B .C .D .11、已知是内的一点,且,若和的面积分别为,则的最小值是( )A .B .C .D . 12、已知数列满足,则( ) A .B .C .D .评卷人 得分二、填空题13、已知,且,则__________。

2018-2019学年高一数学下学期期末考试试题(含解析)_9

2018-2019学年高一数学下学期期末考试试题(含解析)_9

2018-2019学年高一数学下学期期末考试试题(含解析)本试卷分第I卷(选择题)和第II卷(非选择题)两部分第I卷一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,集合为函数的定义域,则()A. B. C. D.【答案】B【解析】【分析】解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【点睛】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.2.已知a,b,c∈R,那么下列命题中正确的是 ( )A. 若a>b,则ac2>bc2B. 若,则a>bC. 若a3>b3且ab<0,则D. 若a2>b2且ab>0,则【答案】C【解析】【分析】根据不等式的性质,对A、B、C、D四个选项通过举反例进行一一验证.【详解】A.若a>b,则ac2>bc2(错),若c=0,则A不成立;B.若,则a>b(错),若c<0,则B不成立;C.若a3>b3且ab<0,则(对),若a3>b3且ab<0,则D.若a2>b2且ab>0,则(错),若,则D不成立.故选:C.【点睛】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单.两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A. 48里B. 24里C. 12里D. 6里【答案】C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选:C.4.若向量,的夹角为,且,,则向量与向量的夹角为()A. B. C. D.【答案】A【解析】,,设向量与向量的夹角为,,,故选A.5.函数的图象大致为()A. B. C. D.【答案】A【解析】【分析】先求出函数为偶函数,再根据函数值的变化趋势或函数的单调性即可判断.【详解】解:,为偶函数,的图象关于y轴对称,故排除B,C,当时,,故排除D,或者根据,当时,为增函数,故排除D,故选:A.【点睛】本题考查了函数图象的识别,关键是掌握函数的奇偶性和函数的单调性和函数值的变化趋势,属于基础题.6.已知,,,则的大小关系为()A. B. C. D.【答案】B【解析】【分析】根据对数函数的单调性可知都大于1,把化成后可得的大小,从而可得的大小关系.【详解】因为及都是上的增函数,故,,又,故,选B.【点睛】对数的大小比较,可通过寻找合适的单调函数来构建大小关系,如果底数不统一,可以利用对数的运算性质统一底数.不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递.7.已知四面体中,,分别是,的中点,若,,与所成角的度数为30°,则与所成角的度数为()A. 90°B. 45°C. 60°D. 30°【答案】A【解析】【分析】取的中点,利用三角形中位线定理,可以得到,与所成角为,运用三角形中位线定理和正弦定理,可以求出的大小,也就能求出与所成角的度数.【详解】取的中点连接,如下图所示:因为,分别是,的中点,所以有,因为与所成角的度数为30°,所以,与所成角的大小等于的度数.在中,,故本题选A.【点睛】本题考查了异面直线所成角的求法,考查了正弦定理,取中点利用三角形中位线定理是解题的关键.8.函数(其中,,)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A. 向右平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【答案】C【解析】【分析】通过图象可以知道:最低点纵坐标为,函数的图象与横轴的交点的坐标为,与之相邻的最低点的坐标为,这样可以求出和最小正周期,利用余弦型函数最小正周期公式,可以求出,把零点代入解析式中,可以求出,这样可以求出函数的解析式,利用诱导公式化为正弦型三角函数解析式形式,最后利用平移变换解析式的变化得出正确答案.【详解】由图象可知:函数的最低点的纵坐标为,函数的图象与横轴的交点的坐标为,与之相邻的最低点的坐标为,所以,设函数的最小正周期为,则有,而,把代入函数解析式中,得,所以,而,显然由向右平移个单位长度得到的图象,故本题选C.【点睛】本题考查了由函数图象求余弦型函数解析式,考查了正弦型函数图象之间的平移变换规律.9.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在点测得公路北侧山顶的仰角为30°,汽车行驶后到达点测得山顶在北偏西30°方向上,且仰角为45°,则山的高度为()A. B. C. D.【答案】D【解析】【分析】通过题意可知:,设山的高度,分别在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【详解】由题意可知:.在中,.在中,.中,由余弦定理可得:(舍去),故本题选D.【点睛】本题考查了余弦定理的应用,弄清题目中各个角的含义是解题的关键.10.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.【答案】B【解析】【分析】根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.11.已知数列的前项和为,若,则()A. B. C. D.【答案】A【分析】再递推一步,两个等式相减,得到一个等式,进行合理变形,可以得到一个等比数列,求出通项公式,最后求出数列的通项公式,最后求出,选出答案即可.【详解】因为,所以当时,,两式相减化简得:,而,所以数列是以为首项,为公比的等比数列,因此有,所以,故本题选A.【点睛】本题考查了已知数列递推公式求数列通项公式的问题,考查了等比数列的判断以及通项公式,正确的递推和等式的合理变形是解题的关键.12.已知函数,若方程有5个解,则的取值范围是()A. B. C. D.【答案】D【解析】利用因式分解法,求出方程的解,结合函数的性质,根据题意可以求出的取值范围.【详解】,,或,由题意可知:,由题可知:当时,有2个解且有2个解且,当时,,因为,所以函数是偶函数,当时,函数是减函数,故有,函数是偶函数,所以图象关于纵轴对称,即当时有,,所以,综上所述;的取值范围是,故本题选D.【点睛】本题考查了已知方程解的情况求参数取值问题,正确分析函数的性质,是解题的关键.第II卷二、填空题:本大题共4小题,每小题5分,共20分.把正确答案写在答题卡相应题的横线上13.计算:________【答案】【分析】用正弦、正切的诱导公式化简求值即可.【详解】.【点睛】本题考查了正弦、正切的诱导公式,考查了特殊角的正弦值和正切值.14.已知,若数列满足,,则等于________【答案】【解析】【分析】根据首项、递推公式,结合函数解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.15.已知,,两圆和只有一条公切线,则的最小值为________【答案】9【解析】【分析】两圆只有一条公切线,可以判断两圆是内切关系,可以得到一个等式,结合这个等式,可以求出的最小值.【详解】,圆心为,半径为2;,圆心为,半径为1.因为两圆只有一条公切线,所以两圆是内切关系,即,于是有(当且仅当取等号),因此的最小值为9.【点睛】本题考查了圆与圆的位置关系,考查了基本不等式的应用,考查了数学运算能力.16.(数学文卷·2017届广东省揭阳市届高三上学期期末调研考试第15题) 鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)【答案】【解析】表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球。

2018-2019学年高一数学下学期期末考试试题(含解析)_24

2018-2019学年高一数学下学期期末考试试题(含解析)_24

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )A. B=A∩CB. B∪C=CC. A CD. A=B=C【答案】B【解析】【分析】由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题B A,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即B C,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题2.已知角的终边经过点,则A. B. C. D.【答案】A【解析】【分析】根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.3.的值为()A. B. C. D.【答案】C【解析】试题分析:.考点:诱导公式4.已知中,,,为边上的中点,则( )A. 0B. 25C. 50D. 100【答案】C【解析】【分析】三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.5.在四边形中,,且·=0,则四边形是()A. 菱形B. 矩形C. 直角梯形D. 等腰梯形【答案】A【解析】【分析】由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.6.已知非零向量、且,,,则一定共线三点是()A. B. C. D.【答案】B【解析】【分析】根据向量共线定理,即可判断.【详解】因为,所以三点一定共线.故选:B.【点睛】本题主要考查利用平面向量共线定理判断三点是否共线,涉及向量的线性运算,属于基础题.7.已知向量,,则向量的夹角的余弦值为()A. B. C. D.【答案】C【解析】【分析】先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.8.已知,则( )A. B. C. D.【答案】C【解析】分析】利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【详解】由已知则故选C.【点睛】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.9.已知函数图象的一条对称轴是,则的值为()A. 5B.C. 3D.【答案】D【解析】【分析】化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.详解】函数f(x)=acosx+sinx sin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a ,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.10.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.【答案】D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.11.在中,角的对边分别为,已知,则的大小是()A. B. C. D.【答案】C【解析】∵,∴,又,∴,又为三角形的内角,所以,故.选C.12.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A. 2 B. 0 C. -2 D. 4【答案】C【解析】【分析】将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.13.已知函数,,若直线与函数的图象有四个不同的交点,则实数k的取值范围是_____.【答案】(0,1)【解析】【分析】画出函数f(x)在以及直线y=k的图象,数形结合可得k的取值范围.【详解】解:画出函数y=cosx+2|cosx|=,以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.14.已知,,,若,则__________.【答案】-3【解析】由可知,解得,15.若为锐角,,则__________.【答案】【解析】因为为锐角,,所以,.16.函数的定义域为__________;【答案】【解析】【分析】根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.17.已知,则 __________.【答案】【解析】18.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)【答案】②③④【解析】【分析】根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.19.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.【答案】(1)a+b=2;(2)(5,-3).【解析】【分析】(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.20.已知函数.(1)求函数的最小正周期;(2)求函数的单调区间.【答案】(1) 的最小正周期为 (2) 的单调增区间为【解析】试题分析:(1)化简函数的解析式得,根据周期公式求得函数的周期;(2)由求得的取值范围即为函数的单调增区间,由求得取值范围即为函数的单调减区间.试题解析:(Ⅰ)∴的最小正周期为.(Ⅱ)由,得∴的单调增区间为由得∴的单调减区间为21.设向量.(Ⅰ)若与垂直,求值;(Ⅱ)求的最小值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.22.已知函数f(x)=sin ωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为 .(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.【答案】(1)f(x)=sin.(2)【解析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin 2ωx+×-=sin 2ωx+cos 2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.所以g(x)=sin.由,得所以所求的单调减区间为2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )A. B=A∩CB. B∪C=CC. A CD. A=B=C【答案】B【解析】【分析】由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题B A,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即B C,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题2.已知角的终边经过点,则A. B. C. D.【答案】A【解析】【分析】根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.3.的值为()A. B. C. D.【答案】C【解析】试题分析:.考点:诱导公式4.已知中,,,为边上的中点,则( )A. 0B. 25C. 50D. 100【答案】C【解析】【分析】三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.5.在四边形中,,且·=0,则四边形是()A. 菱形B. 矩形C. 直角梯形D. 等腰梯形【答案】A【解析】【分析】由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.6.已知非零向量、且,,,则一定共线三点是()A. B. C. D.【答案】B【解析】【分析】根据向量共线定理,即可判断.【详解】因为,所以三点一定共线.故选:B.【点睛】本题主要考查利用平面向量共线定理判断三点是否共线,涉及向量的线性运算,属于基础题.7.已知向量,,则向量的夹角的余弦值为()A. B. C. D.【答案】C【解析】【分析】先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.8.已知,则( )A. B. C. D.【答案】C【解析】分析】利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【详解】由已知则故选C.【点睛】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.9.已知函数图象的一条对称轴是,则的值为()A. 5B.C. 3D.【答案】D【解析】【分析】化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.详解】函数f(x)=acosx+sinx sin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.10.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.【答案】D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.11.在中,角的对边分别为,已知,则的大小是()A. B. C. D.【答案】C【解析】∵,∴,又,∴,又为三角形的内角,所以,故.选C.12.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A. 2B. 0C. -2D. 4【答案】C【解析】【分析】将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.13.已知函数,,若直线与函数的图象有四个不同的交点,则实数k的取值范围是_____.【答案】(0,1)【解析】【分析】画出函数f(x)在以及直线y=k的图象,数形结合可得k的取值范围.【详解】解:画出函数y=cosx+2|cosx|=,以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.14.已知,,,若,则__________.【答案】-3【解析】由可知,解得,15.若为锐角,,则__________.【答案】【解析】因为为锐角,,所以,.16.函数的定义域为__________;【答案】【解析】【分析】根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.17.已知,则 __________.【答案】【解析】18.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)【答案】②③④【解析】【分析】根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.19.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.【答案】(1)a+b=2;(2)(5,-3).【解析】【分析】(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.20.已知函数.(1)求函数的最小正周期;(2)求函数的单调区间.【答案】(1) 的最小正周期为 (2) 的单调增区间为【解析】试题分析:(1)化简函数的解析式得,根据周期公式求得函数的周期;(2)由求得的取值范围即为函数的单调增区间,由求得取值范围即为函数的单调减区间.试题解析:(Ⅰ)∴的最小正周期为.(Ⅱ)由,得∴的单调增区间为由得∴的单调减区间为21.设向量.(Ⅰ)若与垂直,求值;(Ⅱ)求的最小值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.22.已知函数f(x)=sin ωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为 .(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.【答案】(1)f(x)=sin.(2)【解析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin 2ωx+×-=sin 2ωx+cos 2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.所以g(x)=sin.由,得所以所求的单调减区间为。

2018-2019学年高一数学下学期期末考试试题(含解析)_5

2018-2019学年高一数学下学期期末考试试题(含解析)_5

2018-2019学年高一数学下学期期末考试试题(含解析)注意事项:1. 本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页.2. 答题前,考生务必将自己的校名、姓名、准考证号填写在答题卷的相应位置上.3. 全部答案在答题卷完成,答在本卷上无效.第Ⅰ卷(选择题 60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卷的相应位置.1.直线的倾斜角为()A. B. C. D.【答案】B【解析】【分析】得到倾斜角为.【详解】故答案选B【点睛】本题考查了直线的倾斜角,属于简单题.2.某部门为了了解用电量(单位:度)与气温(单位:)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程,则()摄氏温度4()A. 12.6B. 13.2C. 11.8D. 12.8【答案】A【解析】【分析】计算数据中心点,代入回归方程得到答案.【详解】,,中心点为代入回归方程故答案选A【点睛】本题考查了回归方程,掌握回归方程过中心点是解题的关键.3.若平面和直线,满足,,则与的位置关系一定是()A. 相交B. 平行C. 异面D. 相交或异面【答案】D【解析】【分析】当时与相交,当时与异面.【详解】当时与相交,当时与异面.故答案为D【点睛】本题考查了直线的位置关系,属于基础题型.4.在中,角、、所对的边分别为、、,若,则是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【解析】【分析】利用正弦定理得到答案.【详解】故答案B【点睛】本题考查了正弦定理,意在考查学生的计算能力.5.圆被轴所截得的弦长为()A. 1B.C. 2D. 3【答案】C【解析】【分析】先计算圆心到轴的距离,再利用勾股定理得到弦长.【详解】,圆心为圆心到轴的距离弦长故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.6.在中,角、、所对的边分别为、、,,,,则()A. B. C. D.【答案】C【解析】【分析】利用正弦定理得到答案.【详解】故答案选C【点睛】本题考查了正弦定理,意在考查学生的计算能力.7.在正方体中,直线与直线所成角是()A. B. C. D.【答案】B【解析】【分析】直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.8.圆与圆的位置关系是()A. 相离B. 相交C. 相切D. 内含【答案】B【解析】【分析】计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.9.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A. 是互斥事件,不是对立事件B. 是对立事件,不是互斥事件C. 既是互斥事件,也是对立事件D. 既不是互斥事件也不是对立事件【答案】A【解析】【分析】事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.10.过点且与圆相切的直线方程为()A. B. 或C. 或D. 或【答案】C【解析】【分析】分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.11.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍.四边形为矩形,与都是等边三角形,,,则此“刍甍”的表面积为()A. B. C. D.【答案】A【解析】【分析】分别计算出每个面积,相加得到答案.详解】故答案选A【点睛】本题考查了图像的表面积,意在考查学生的计算能力.12.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卷的相应位置.13.已知直线:与直线:平行,则______.【答案】4【解析】【分析】利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.14.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.【答案】【解析】【分析】先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.15.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.【答案】2【解析】【分析】去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.16.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.【答案】【解析】【分析】先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或演算步骤.17.在中,已知点,边上的中线所在直线的方程为,边上的高所在直线的方程为.(1)求直线的方程;(2)求点的坐标.【答案】(1)(2)【解析】【分析】(1)先计算,过点,得到答案.(2)联立直线方程:解得答案.【详解】解:(1)由边上的高所在直线方程为得,则.又∵,∴直线的方程为,即(或).(2)因为边上的中线过点,则联立直线方程:.解得:,即点坐标为.【点睛】本题考查了直线方程,意在考查学生的计算能力. 18.在四棱锥中,四边形是正方形,平面,且,点为线段的中点.(1)求证:平面;(2)求三棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)证明得到平面.(2)先证明就是三棱锥的高,再利用体积公式得到三棱锥的体积.【详解】(1)证明:连结交于,连结.∵四边形是正方形,在中,为中点,又∵为中点∴.又∵平面,平面.∴平面.(2)解:取中点,连结.则且.∵平面,∴平面,∴就是三棱锥的高.在正方形中,.∴.【点睛】本题考查了线面平行,三棱锥体积,意在考查学生的空间想象能力和计算能力.19.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.【答案】(1)(2)【解析】【分析】(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【点睛】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.20.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照,,…,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计样本数据的中位数;(2)已知满意度评分值在内的男女司机人数比为,从中随机抽取2人进行座谈,求2人均为女司机的概率.【答案】(1),中位数的估计值为75(2)【解析】【分析】(1)根据频率和为1计算,再判断中位数落在第三组内,再计算中位数.(2)该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.排列出所有可能,计算满足条件的个数,相除得到答案.【详解】解:(1)根据频率和为1得.则.第一组和第二组的频率和为,则中位数落在第三组内.由于第三组的频率为0.4,所以中位数的估计值为75.(2)设事件:随机抽取2人进行座谈,2人均为女司机.的人数为人.∴该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.5人抽取2人进行座谈有:,,,,,,,,,共10个基本事件.其中2人均为女司机的基本事件为.∴.∴随机抽取2人进行座谈,2人均为女司机的概率是.【点睛】本题考查了中位数和概率的计算,意在考查学生的计算能力和应用能力.21.如图1,在中,,,,分别是,,中点,,.现将沿折起,如图2所示,使二面角为,是的中点.(1)求证:面面;(2)求直线与平面所成的角的正弦值.【答案】(1)见解析(2)【解析】【分析】(1)证明面得到面面.(2)先判断为直线与平面所成的角,再计算其正弦值.【详解】(1)证明:法一:由已知得:且,,∴面.∵,∴面.∵面,∴,又∵,∴,∵,,∴面.面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.法二:同法一得面.又∵,面,面,∴面.同理面,,面,面.∴面面.∴面,面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.(2)由(1)知面,∴为直线在平面上的射影.∴为直线与平面所成的角,∵且,∴二面角的平面角是.∵,∴,∴.又∵面,∴.在中,.在中,.∴在中,.【点睛】本题考查了面面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.22.已知过点且斜率为的直线与圆:交于,两点.(1)求斜率的取值范围;(2)为坐标原点,求证:直线与的斜率之和为定值.【答案】(1)(2)见解析【解析】【分析】(1)根据圆心到直线的距离小于半径得到答案.(2)联立直线与圆方程:.韦达定理得计算,化简得到答案.【详解】解:(1)直线的方程为:即.由得圆心,半径.直线与圆相交得,即.解得.所以斜率的取值范围为.(2)联立直线与圆方程:.消去整理得.设,,根据韦达定理得.则.∴直线与的斜率之和为定值1.【点睛】本题考查了斜率的取值范围,圆锥曲线的定值问题,意在考查学生的计算能力.2018-2019学年高一数学下学期期末考试试题(含解析)注意事项:1. 本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页.2. 答题前,考生务必将自己的校名、姓名、准考证号填写在答题卷的相应位置上.3. 全部答案在答题卷完成,答在本卷上无效.第Ⅰ卷(选择题 60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卷的相应位置.1.直线的倾斜角为()A. B. C. D.【答案】B【解析】得到倾斜角为.【详解】故答案选B【点睛】本题考查了直线的倾斜角,属于简单题.2.某部门为了了解用电量(单位:度)与气温(单位:)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程,则()摄氏温度4()A. 12.6B. 13.2C. 11.8D. 12.8【答案】A【解析】【分析】计算数据中心点,代入回归方程得到答案.【详解】,,中心点为代入回归方程故答案选A【点睛】本题考查了回归方程,掌握回归方程过中心点是解题的关键.3.若平面和直线,满足,,则与的位置关系一定是()A. 相交B. 平行C. 异面D. 相交或异面【解析】【分析】当时与相交,当时与异面.【详解】当时与相交,当时与异面.故答案为D【点睛】本题考查了直线的位置关系,属于基础题型.4.在中,角、、所对的边分别为、、,若,则是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【解析】【分析】利用正弦定理得到答案.【详解】故答案B【点睛】本题考查了正弦定理,意在考查学生的计算能力.5.圆被轴所截得的弦长为()A. 1B.C. 2D. 3【答案】C【解析】【分析】先计算圆心到轴的距离,再利用勾股定理得到弦长.【详解】,圆心为圆心到轴的距离弦长故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.6.在中,角、、所对的边分别为、、,,,,则()A. B. C. D.【答案】C【解析】【分析】利用正弦定理得到答案.【详解】故答案选C【点睛】本题考查了正弦定理,意在考查学生的计算能力.7.在正方体中,直线与直线所成角是()A. B. C. D.【答案】B【解析】【分析】直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.8.圆与圆的位置关系是()A. 相离B. 相交C. 相切D. 内含【答案】B【解析】【分析】计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.9.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A. 是互斥事件,不是对立事件B. 是对立事件,不是互斥事件C. 既是互斥事件,也是对立事件D. 既不是互斥事件也不是对立事件【答案】A【解析】【分析】事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.10.过点且与圆相切的直线方程为()A. B. 或C. 或D. 或【答案】C【解析】【分析】分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.11.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍.四边形为矩形,与都是等边三角形,,,则此“刍甍”的表面积为()A. B. C. D.【答案】A【解析】【分析】分别计算出每个面积,相加得到答案.详解】故答案选A【点睛】本题考查了图像的表面积,意在考查学生的计算能力.12.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卷的相应位置.13.已知直线:与直线:平行,则______.【答案】4【解析】【分析】利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.14.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.【答案】【解析】【分析】先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.15.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.【答案】2【解析】【分析】去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.16.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.【答案】【解析】【分析】先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或演算步骤.17.在中,已知点,边上的中线所在直线的方程为,边上的高所在直线的方程为.(1)求直线的方程;(2)求点的坐标.【答案】(1)(2)【解析】【分析】(1)先计算,过点,得到答案.(2)联立直线方程:解得答案.【详解】解:(1)由边上的高所在直线方程为得,则.又∵,∴直线的方程为,即(或).(2)因为边上的中线过点,则联立直线方程:.解得:,即点坐标为.【点睛】本题考查了直线方程,意在考查学生的计算能力.18.在四棱锥中,四边形是正方形,平面,且,点为线段的中点.(1)求证:平面;(2)求三棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)证明得到平面.(2)先证明就是三棱锥的高,再利用体积公式得到三棱锥的体积.【详解】(1)证明:连结交于,连结.∵四边形是正方形,在中,为中点,又∵为中点∴.又∵平面,平面.∴平面.(2)解:取中点,连结.则且.∵平面,∴平面,∴就是三棱锥的高.在正方形中,.∴.【点睛】本题考查了线面平行,三棱锥体积,意在考查学生的空间想象能力和计算能力.19.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.【答案】(1)(2)【解析】【分析】(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【点睛】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.20.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照,,…,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计样本数据的中位数;(2)已知满意度评分值在内的男女司机人数比为,从中随机抽取2人进行座谈,求2人均为女司机的概率.【答案】(1),中位数的估计值为75(2)【解析】【分析】(1)根据频率和为1计算,再判断中位数落在第三组内,再计算中位数.(2)该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.排列出所有可能,计算满足条件的个数,相除得到答案.【详解】解:(1)根据频率和为1得.则.第一组和第二组的频率和为,则中位数落在第三组内.由于第三组的频率为0.4,所以中位数的估计值为75.(2)设事件:随机抽取2人进行座谈,2人均为女司机.的人数为人.∴该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.5人抽取2人进行座谈有:,,,,,,,,,共10个基本事件.其中2人均为女司机的基本事件为.∴.∴随机抽取2人进行座谈,2人均为女司机的概率是.【点睛】本题考查了中位数和概率的计算,意在考查学生的计算能力和应用能力.21.如图1,在中,,,,分别是,,中点,,.现将沿折起,如图2所示,使二面角为,是的中点.(1)求证:面面;(2)求直线与平面所成的角的正弦值.【答案】(1)见解析(2)【解析】【分析】(1)证明面得到面面.(2)先判断为直线与平面所成的角,再计算其正弦值.【详解】(1)证明:法一:由已知得:且,,∴面.∵,∴面.∵面,∴,又∵,∴,∵,,∴面.面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.法二:同法一得面.又∵,面,面,∴面.同理面,,面,面.∴面面.∴面,面,∴.又∵且是中点,∴,∴,∴面.∵面,∴面面.(2)由(1)知面,∴为直线在平面上的射影.∴为直线与平面所成的角,∵且,∴二面角的平面角是.∵,∴,∴.又∵面,∴.在中,.在中,.∴在中,.【点睛】本题考查了面面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.22.已知过点且斜率为的直线与圆:交于,两点.(1)求斜率的取值范围;(2)为坐标原点,求证:直线与的斜率之和为定值.【答案】(1)(2)见解析【解析】【分析】(1)根据圆心到直线的距离小于半径得到答案.(2)联立直线与圆方程:.韦达定理得计算,化简得到答案.【详解】解:(1)直线的方程为:即.由得圆心,半径.直线与圆相交得,即.解得.所以斜率的取值范围为.(2)联立直线与圆方程:.消去整理得.设,,根据韦达定理得.则.∴直线与的斜率之和为定值1.【点睛】本题考查了斜率的取值范围,圆锥曲线的定值问题,意在考查学生的计算能力.。

2018年广西高一(下)期末数学试卷

2018年广西高一(下)期末数学试卷

2018年广西高一(下)期末数学试卷一、选择题:1.下列四个结论:(1)两条直线都和同一个平面平行,则这两条直线平行;(2)两条直线没有公共点,则这两条直线平行;(3)两条直线都和第三条直线垂直,则这两条直线平行;(4)一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为()A.0 B.1 C.2 D.32.等腰三角形一腰上的高是,这条高与底边的夹角为60°,则底边长=()A.2 B.C.3 D.3.过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0 4.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a,b满足()A.a+b=1 B.a﹣b=1 C.a+b=0 D.a﹣b=05.设a>1>b>﹣1,则下列不等式中恒成立的是()A.B.C.a>b2D.a2>2b6.圆x2+y2+4x﹣6y﹣3=0的圆心和半径分别为()A.,16 C.,167.已知点A(m,n)在直线x+2y=1上,其中mn>0,则+的最小值为()A.B.8 C.9 D.128.如图在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1 则异面直线A1B与AC所成角的余弦值是()A.B.C.D.9.如图,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽略不计)()A.8+πB.8+4πC.16+πD.16+4π10.设S n是等差数列{a n}的前n项和,若,则=()A.B.C.D.11.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A.B.C.D.12.已知三角形的三边构成等比数列,且它们的公比为q,则q的取值范围是()A.B.C.D.二、填空题:本大题共4小题;每小题5分,共20分.请将答案填写在答题卷中的横线上.13.若直线ax+2y+1=0与直线x+y﹣2=0互相平行,那么a的值等于.14.设变量x,y满足约束条件则z=3x﹣2y的最大值为.15.不等式ax2+bx+2>0的解集为(﹣,),则a+b等于.16.在半径为2的球面上有不同的四点A,B,C,D,若AB=AC=AD=2,则平面BCD被球所截得图形的面积为.三、解答题:本大题共6小题;共70分.(2014开福区校级模拟)解关于x的不等式ax2﹣(a+1)x+1<0.18.如图,在△ABC中,已知AB=10,AC=14,B=,D是BC边上的一点,DC=6.(Ⅰ)求∠ADB的值;(Ⅱ)求sin∠DAC的值.19.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y ﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.20.已知数列{a n}为等差数列,且a1=1.{b n}为等比数列,数列{a n+b n}的前三项依次为3,7,13.求(1)数列{a n},{b n}的通项公式;(2)数列{a n+b n}的前n项和S n.21.如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=.(I)求证:AB⊥PC;(Ⅱ)求二面角B一PC﹣D的余弦值.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.2017-2018学年广西钦州市高一(下)期末数学试卷参考答案与试题解析一、选择题:1.下列四个结论:(1)两条直线都和同一个平面平行,则这两条直线平行;(2)两条直线没有公共点,则这两条直线平行;(3)两条直线都和第三条直线垂直,则这两条直线平行;(4)一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为()A.0 B.1 C.2 D.3【分析】根据线线平行、线面平行的判定和性质.即可得出正确结论.【解答】解::(1)两条直线都和同一个平面平行,那么这两条直线可能平行、相交、异面.故(1)不正确.(2)两条直线没有公共点,那么这两条直线可能平行、异面.故(2)不正确.(3)两条直线都和第三条直线垂,则这两条直线可能平行、相交、异面.故(3)不正确.(4)一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面可能平行、可能相交、可能在平面内.故选A【点评】此题考查学生对空间中点线面之间的位置关系的掌握与理解.考查学生的空间想象能力.2.等腰三角形一腰上的高是,这条高与底边的夹角为60°,则底边长=()A.2 B.C.3 D.【分析】设底边长为x,则由题意以及直角三角形中的边角关系可得cos60°=,由此解得x的值.【解答】解:若三角形为锐角三角形,如图所示:设底边长为x,AC边上的高CD=,则由题意以及直角三角形中的边角关系可得cos60°=,解得x=2,但此时,∠C=30°,∠B≠∠C,不满足条件.显然,三角形不能为直角三角形.若三角形为钝角三角形,如图所示,∠C为钝角,如图(2)所示,则∠ABC=∠CAB=30°,∠ACB=120°,此时,由cos60°=,x=2,故选:D.【点评】本题主要考查直角三角形中的边角关系的应用,体现了分类讨论的数学思想,属于中档题.3.过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0【分析】根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过定点坐标,由点斜式得所求直线方程.【解答】解:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过点(﹣1,3),由点斜式得所求直线方程为2x+y﹣1=0.【点评】本题考查直线垂直与斜率的相互关系,注意斜率不存在的特殊情况.4.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a,b满足()A.a+b=1 B.a﹣b=1 C.a+b=0 D.a﹣b=0【分析】由sinα+cosα=0,我们易得tanα=﹣1,即函数的斜率为﹣1,进而可以得到a,b的关系.【解答】解:∵sinα+cosα=0∴tanα=﹣1,k=﹣1,﹣=﹣1,a=b,a﹣b=0故选D.【点评】本题考查的知识点是同角三角函数关系及直线的倾斜角,根据已知求出直线的斜率,再根据倾斜角与斜率之间的关系是解答的关键.5.设a>1>b>﹣1,则下列不等式中恒成立的是()A.B.C.a>b2D.a2>2b【分析】通过举反例说明选项A,B,D错误,通过不等式的性质判断出C正确.【解答】解:对于A,例如a=2,b=此时满足a>1>b>﹣1但故A错对于B,例如a=2,b=此时满足a>1>b>﹣1但故B错对于C,∵﹣1<b<1∴0≤b2<1∵a>1∴a>b2故C正确对于D,例如a=此时满足a>1>b>﹣1,a2<2b故D错故选C【点评】想说明一个命题是假命题,常用举反例的方法加以论证.6.圆x2+y2+4x﹣6y﹣3=0的圆心和半径分别为()A.,16 C.,16【分析】将圆的方程配方成标准形式,结合圆心和半径的公式,即可得到本题答案.【解答】解:将圆x2+y2+4x﹣6y﹣3=0的方程化成标准形式,得(x+2)2+(y﹣3)2=16,∴圆x2+y2+4x﹣6y﹣3=0的圆心为C(﹣2,3),半径r=4,故选:A.【点评】本题给出圆的一般式方程,求圆的圆心和半径,着重考查了圆的一般方程、标准方程及其互化等知识,属于基础题.7.已知点A(m,n)在直线x+2y=1上,其中mn>0,则+的最小值为()A.B.8 C.9 D.12【分析】点A(m,n)在直线x+2y=1上,其中mn>0,可得m+2n=1,m,n>0.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵点A(m,n)在直线x+2y=1上,其中mn>0,∴m+2n=1,m,n>0.则+=(m+2n)=4+=8.当且仅当m=2n=时取等号.∴+的最小值为8.故选:B.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.8.如图在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1 则异面直线A1B 与AC所成角的余弦值是()A.B.C.D.【分析】由AC∥A1C1,知∠C1A1B是异面直线A1B与AC所成角,由此利用余弦定理能求出异面直线A1B与AC所成角的余弦值.【解答】解:在直三棱柱ABC﹣A1B1C1中,∵AC∥A1C1,∴∠C1A1B是异面直线A1B与AC所成角,∵∠ACB=90°,AA1=2,AC=BC=1,∴,,A1C1=1,∴cos=.∴异面直线A1B与AC所成角的余弦值是.故选:D.【点评】本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.9.如图,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽略不计)()A.8+πB.8+4πC.16+πD.16+4π【分析】根据几何体的三视图,得出该几何体是下部为长方体,上部为圆柱体的组合体,结合图中数据求出它的体积即可.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,上部为圆柱体的组合体,且下部长方体的长、宽、高分别为4、2、2,上部圆柱体的底面圆半径为1,高为1;∴该几何体的体积(容积)为V=V长方体+V圆柱体=4×2×2+π×12×1=16+π.故选:C.【点评】本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.10.设S n是等差数列{a n}的前n项和,若,则=()A.B.C.D.【分析】根据等差数列的前n项和公式,用a1和d分别表示出s3与s6,代入中,整理得a1=2d,再代入中化简求值即可.【解答】解:设等差数列{a n}的首项为a1,公差为d,由等差数列的求和公式可得且d≠0,∴,故选A.【点评】本题主要考查等比数列的求和公式,难度一般.11.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A.B.C.D.【分析】设A1C1∩B1D1=O1,根据线面垂直的判定定理可知B1D1⊥平面AA1O1,再根据面面垂直的判定定理可知故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过A1作A1H ⊥AO1于H,则A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,利用等面积法求出A1H即可.【解答】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,AO1=3,由A1O1A1A=hAO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.12.已知三角形的三边构成等比数列,且它们的公比为q,则q的取值范围是()A.B.C.D.【分析】设三边:a、qa、q2a、q>0则由三边关系:两短边和大于第三边a+b>c,把a、qa、q2a、代入,分q≥1和q<1两种情况分别求得q的范围,最后综合可得答案.【解答】解:设三边:a、qa、q2a、q>0则由三边关系:两短边和大于第三边a+b>c,即(1)当q≥1时a+qa>q2a,等价于解二次不等式:q2﹣q﹣1<0,由于方程q2﹣q﹣1=0两根为:和,故得解:<q<且q≥1,即1≤q<(2)当q<1时,a为最大边,qa+q2a>a即得q2+q﹣1>0,解之得q>或q<﹣且q>0即<q<1,综合(1)(2),得:q∈(,)故选D.【点评】本题主要考查了等比数列的性质,要注意分类讨论,属中档题.二、填空题:本大题共4小题;每小题5分,共20分.请将答案填写在答题卷中的横线上.13.若直线ax+2y+1=0与直线x+y﹣2=0互相平行,那么a的值等于2.【分析】根据它们的斜率相等,可得=﹣1,解方程求a的值.【解答】解:∵直线ax+2y+1=0与直线x+y﹣2=0互相平行,∴它们的斜率相等,∴=﹣1∴a=2故答案为:2.【点评】本题考查两直线平行的性质,两直线平行,斜率相等.14.设变量x,y满足约束条件则z=3x﹣2y的最大值为4.【分析】先根据约束条件画出可行域,设z=3x﹣2y,再利用z的几何意义求最值,只需求出直线z=3x﹣2y过可行域内的点A时,从而得到z=3x﹣2y的最大值即可.【解答】解:依题意,画出可行域(如图示),则对于目标函数z=3x﹣2y,当直线经过A(0,﹣2)时,z取到最大值,Zmax=4.故答案为:4.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.15.不等式ax2+bx+2>0的解集为(﹣,),则a+b等于﹣14.【分析】通过不等式解集转化为对应方程的根,然后根据韦达定理求出方程中的参数a,b,即可求出a+b【解答】解:∵不等式ax2+bx+2>0的解集为(﹣,)∴﹣,为方程ax2+bx+2=0的两个根∴根据韦达定理:﹣+=﹣①﹣×=②由①②解得:∴a+b=﹣14故答案为﹣14【点评】本题考查一元二次不等式解集的定义,实际上是考查一元二次不等式解集与所对应一元二次方程根的关系,属于中档题16.在半径为2的球面上有不同的四点A,B,C,D,若AB=AC=AD=2,则平面BCD被球所截得图形的面积为3π.【分析】先在球面选取A点,在球面上有B,C,D三点到A距离相等,可知B,C,D在同一截面上,且OA垂直于平面BCD.【解答】解:先在球面选取A点,在球面上有B,C,D三点到A距离相等,可知B,C,D在同一截面上,且OA垂直于平面BCD;如图:有AB=AC=AD=2,OB=OC=OD=OA=2,所以△OAB,△OAC,△OAD均为等边三角形.所以截面BCD所在圆的半径为r=;所以截面面积为:3π.故答案为3π.【点评】确定A,B,C,D在圆周上的位置是本题解答的关键.三、解答题:本大题共6小题;共70分.(2014开福区校级模拟)解关于x的不等式ax2﹣(a+1)x+1<0.【分析】当a=0时,得到一个一元一次不等式,求出不等式的解集即为原不等式的解集;当a≠0时,把原不等式的左边分解因式,然后分4种情况考虑:a小于0,a大于0小于1,a 大于1和a等于1时,分别利用求不等式解集的方法求出原不等式的解集即可.【解答】解:当a=0时,不等式的解为{x|x>1};当a≠0时,分解因式a(x﹣)(x﹣1)<0当a<0时,原不等式整理得:x2﹣x+>0,即(x﹣)(x﹣1)>0,不等式的解为{x|x>1或x<};当0<a<1时,1<,不等式的解为{x|1<x<};当a>1时,<1,不等式的解为{x|<x<1};当a=1时,不等式的解为∅.【点评】此题考查了一元二次不等式的解法,考查了分类讨论的数学思想,是一道综合题.18.如图,在△ABC中,已知AB=10,AC=14,B=,D是BC边上的一点,DC=6.(Ⅰ)求∠ADB的值;(Ⅱ)求sin∠DAC的值.【分析】(Ⅰ)利用余弦定理,即可得出结论;(Ⅱ)直接利用余弦定理求解即可.【解答】解:(Ⅰ)在△ADC中,由余弦定理可得BC=16,BD=10∴AD=10,∵cos∠ADC===﹣,…(3分)∴cos∠ADB=cos(180°﹣∠ADC)=﹣cos∠ADC=,…(5分)∴∠ADB=60°…(6分)(Ⅱ)cos∠DAC===,…(9分)可得sin∠DAC==.…(12分)【点评】本题考查余弦定理的应用,基本知识的考查.19.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC 边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.【分析】(1)设C(m,n),利用点与直线的位置关系、相互垂直的直线斜率之间的关系即可得出;(2)利用中点坐标公式、点斜式即可得出.【解答】解:(1)设C(m,n),∵AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.∴,解得.∴C(4,3).(2)设B(a,b),则,解得.∴B(﹣1,﹣3).∴k BC==∴直线BC的方程为y﹣3=(x﹣4),化为6x﹣5y﹣9=0.【点评】本题考查了点与直线的位置关系、相互垂直的直线斜率之间的关系、中点坐标公式、点斜式,考查了计算能力,属于基础题.20.已知数列{a n}为等差数列,且a1=1.{b n}为等比数列,数列{a n+b n}的前三项依次为3,7,13.求(1)数列{a n},{b n}的通项公式;(2)数列{a n+b n}的前n项和S n.【分析】(1)∵已知数列{a n}为等差数列,且a1=1.{b n}为等比数列,数列{a n+b n}的前三项依次为3,7,13,所以我们易得到三个关于b1和公差d及公比q的方程,解方程后,易得数列{a n},{b n}的通项公式;(2)由(1)易得数列{a n+b n}的通项公式,利用裂项法易得数列{a n+b n}的前n项和S n.【解答】解:①设公差为d,公比为q∵数列{a n+b n}的前三项依次为3,7,13∴又a1=1∴∴a n=2n﹣1,b n=2n②∵a n=2n﹣1,b n=2n∴a n+b n=(2n﹣1)+2n∴S n=(a1+a2+…+a n)+(b1+b2+…+b n)==n2+2n+1﹣2【点评】方程思想是解决数列问题的基本思想,通过公差(或公比)列方程(组)来求解基本量是数列中最基本的方法,同时在解题中也要注意数列性质的应用.若一个数列的通项可以分解为一个等差数列加上一个等比数列的形式,可用裂项法,将数列的和分为等差和等比两部分,分别代入对应的公式,进行求解.(如第二步)21.如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=.(I)求证:AB⊥PC;(Ⅱ)求二面角B一PC﹣D的余弦值.【分析】(Ⅰ)取AB的中点O,连接PO,CO,AC,由已知条件推导出PO⊥AB,CO⊥AB,从而AB⊥平面PCO,由此能证明AB⊥PC.(Ⅱ)由已知得OP⊥OC,以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角B一PC﹣D的余弦值.【解答】(Ⅰ)证明:取AB的中点O,连接PO,CO,AC,∵△APB为等腰三角形,∴PO⊥AB…(2分)又∵四边形ABCD是菱形,∠BCD=120°,∴△ACB是等边三角形,∴CO⊥AB…(4分)又CO∩PO=O,∴AB⊥平面PCO,又PC⊂平面PCO,∴AB⊥PC …(6分)(Ⅱ)解:∵ABCD为菱形,∠BCD=120°,AB=PC=2,AP=BP=,∴PO=1,CO=,∴OP2+OC2=PC2,∴OP⊥OC,以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,则A(0,﹣1,0),B(0,1,0),C(,0,0),P(0,0,1),D(,﹣2,0),=(,﹣1,0),=(),=(0,2,0),设平面DCP的法向量=(x,y,z),则,令x=1,得=(1,0,),设平面PCB的法向量=(a,b,c),,令a=1,得=(1,),cos<>==,∵二面角B一PC﹣D为钝角,∴二面角B一PC﹣D的余弦值为﹣.【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【分析】(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.【解答】解:(Ⅰ)设隔热层厚度为x cm,由题设,每年能源消耗费用为.再由C(0)=8,得k=40,因此.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令f'(x)=0,即.解得x=5,(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为.当隔热层修建5cm厚时,总费用达到最小值为70万元.【点评】函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.。

2018-2019学年高一数学下学期期末考试试题(含解析)_4

2018-2019学年高一数学下学期期末考试试题(含解析)_4

2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.平面向量与共线且方向相同,则的值为()A. B. C. D.【答案】C【解析】【分析】利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选:.【点睛】本题考查向量共线的坐标运算,是基础的计算题.2.直线的倾斜角是()A. B. C. D.【答案】D【解析】【分析】先求出直线的斜率,再求直线的倾斜角.【详解】由题得直线的斜率.故选:D【点睛】本题主要考查直线斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.3.已知关于的不等式的解集是,则的值是()A. B. C. D.【答案】A【解析】【分析】先利用韦达定理得到关于a,b方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.4.如果,且,那么下列不等式成立的是()A. B. C. D.【答案】D【解析】【分析】由,且,可得.再利用不等式的基本性质即可得出,.详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.5.等比数列的各项均为正数,且,则()A. B. C. D.【答案】B【解析】【分析】根据题意,由对数的运算性质可得,又由对数的运算性质可得,计算可得答案.【详解】根据题意,等比数列的各项均为正数,且,则有,则;故选:.【点睛】本题考查等比数列的性质以及对数的运算,属于基础题.6.已知实数满足约束条件,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【详解】由实数,满足约束条件:,作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最大值为-2+1=-1.故选:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.若,是夹角为两个单位向量,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选:.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.8.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.【答案】D【解析】分析】先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选:D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.【答案】B【解析】【分析】过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选:.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.10.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A. 或B. 或C. 或D. 或【答案】C【解析】【分析】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选:.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.11.已知正数、满足,则的最小值为()A. B. C. D.【答案】B【解析】【分析】由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.12.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选:.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.第二部分(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.直线与直线垂直,则实数的值为_______.【答案】【解析】【分析】由题得(-1),解之即得a 的值.【详解】由题得(-1),所以a=2.故答案为;2【点睛】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.14.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.【答案】【解析】【分析】根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为:,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.15.已知数列的通项公式,则_______.【答案】【解析】【分析】本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为:101.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.16.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.【答案】【解析】先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为:【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列中,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解方程组即得,即得数列的通项公式;(Ⅱ)利用裂项相消法求数列的前项和.【详解】(Ⅰ)由题意:,化简得,因为数列的公差不为零,,故数列的通项公式为.(Ⅱ)由(Ⅰ)知,故数列的前项和.【点睛】本题主要考查等差数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.【答案】(Ⅰ);(Ⅱ)或.【解析】【分析】(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值; (Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.【答案】(Ⅰ);(Ⅱ)4.【解析】【分析】(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,设,则,,在中,由余弦定理得:,即,解得,即.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设屋子的左右两面墙的长度均为米.(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求的取值范围.【答案】(Ⅰ)4米时, 28800元;(Ⅱ).【解析】【分析】(Ⅰ)设甲工程队的总造价为元,先求出函数的解析式,再利用基本不等式求函数的最值得解;(Ⅱ)由题意可得,对任意的恒成立.从而恒成立,求出左边函数的最小值即得解.【详解】(Ⅰ)设甲工程队的总造价为元,则.当且仅当,即时等号成立.即当左右两侧墙的长度为4米时,甲工程队的报价最低为28800元.(Ⅱ)由题意可得,对任意的恒成立.即,从而恒成立,令,又在为单调增函数,故.所以.【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.22.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.【答案】(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【解析】【分析】(Ⅰ)直接给n赋值求出,的值;(Ⅱ)利用项和公式化简,再利用定义法证明数列是等比数列,即得等比数列的通项公式;(Ⅲ)由(Ⅱ)知,再利用等比数列求和证明不等式.【详解】(Ⅰ),令,得,,;令,得,即,,.证明:(Ⅱ),①,②②①得:,,,从而当时,,④③④得:,即,,.又由(Ⅰ)知,,,.数列是以2为首项,以为公比的等比数列,则.(Ⅲ)由(Ⅱ)知,因为当时,,所以.于是.【点睛】本题主要考查等比数列性质的证明和通项的求法,考查等比数列求和和放缩法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.2018-2019学年高一数学下学期期末考试试题(含解析)第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.平面向量与共线且方向相同,则的值为()A. B. C. D.【答案】C【解析】【分析】利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选:.【点睛】本题考查向量共线的坐标运算,是基础的计算题.2.直线的倾斜角是()A. B. C. D.【答案】D【解析】【分析】先求出直线的斜率,再求直线的倾斜角.【详解】由题得直线的斜率.故选:D【点睛】本题主要考查直线斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.3.已知关于的不等式的解集是,则的值是()A. B. C. D.【答案】A【解析】【分析】先利用韦达定理得到关于a,b方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.4.如果,且,那么下列不等式成立的是()A. B. C. D.【答案】D【解析】【分析】由,且,可得.再利用不等式的基本性质即可得出,.详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.5.等比数列的各项均为正数,且,则()A. B. C. D.【答案】B【解析】【分析】根据题意,由对数的运算性质可得,又由对数的运算性质可得,计算可得答案.【详解】根据题意,等比数列的各项均为正数,且,则有,则;故选:.【点睛】本题考查等比数列的性质以及对数的运算,属于基础题.6.已知实数满足约束条件,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【详解】由实数,满足约束条件:,作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最大值为-2+1=-1.故选:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.若,是夹角为两个单位向量,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选:.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.8.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.【答案】D【解析】分析】先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选:D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.【答案】B【解析】【分析】过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选:.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.10.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A. 或B. 或C. 或D. 或【答案】C【解析】【分析】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选:.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.11.已知正数、满足,则的最小值为()A. B. C. D.【答案】B【解析】【分析】由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.12.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.【答案】C【解析】【分析】由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选:.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.第二部分(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.直线与直线垂直,则实数的值为_______.【答案】【解析】【分析】由题得(-1),解之即得a 的值.【详解】由题得(-1),所以a=2.故答案为;2【点睛】本题主要考查两直线垂直的斜率关系,意在考查学生对该知识的理解掌握水平和分析推理能力.14.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.【答案】【解析】【分析】根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为:,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.15.已知数列的通项公式,则_______.【答案】【解析】【分析】本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为:101.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.16.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.【答案】【解析】【分析】先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为:【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列中,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)解方程组即得,即得数列的通项公式;(Ⅱ)利用裂项相消法求数列的前项和.【详解】(Ⅰ)由题意:,化简得,因为数列的公差不为零,,故数列的通项公式为.(Ⅱ)由(Ⅰ)知,故数列的前项和.【点睛】本题主要考查等差数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.【答案】(Ⅰ);(Ⅱ)或.【解析】【分析】(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值; (Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.【答案】(Ⅰ);(Ⅱ)4.【解析】【分析】(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,设,则,,在中,由余弦定理得:,即,解得,即.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设屋子的左右两面墙的长度均为米.(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求的取值范围.【答案】(Ⅰ)4米时, 28800元;(Ⅱ).【解析】【分析】(Ⅰ)设甲工程队的总造价为元,先求出函数的解析式,再利用基本不等式求函数的最值得解;(Ⅱ)由题意可得,对任意的恒成立.从而恒成立,求出左边函数的最小值即得解.【详解】(Ⅰ)设甲工程队的总造价为元,则.当且仅当,即时等号成立.即当左右两侧墙的长度为4米时,甲工程队的报价最低为28800元.(Ⅱ)由题意可得,对任意的恒成立.即,从而恒成立,令,又在为单调增函数,故.所以.【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.22.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.【答案】(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【解析】【分析】(Ⅰ)直接给n赋值求出,的值;(Ⅱ)利用项和公式化简,再利用定义法证明数列是等比数列,即得等比数列的通项公式;(Ⅲ)由(Ⅱ)知,再利用等比数列求和证明不等式.【详解】(Ⅰ),令,得,,;令,得,即,,.证明:(Ⅱ),①,②②①得:,,,从而当时,,④③④得:,即,,.又由(Ⅰ)知,,,.数列是以2为首项,以为公比的等比数列,则.(Ⅲ)由(Ⅱ)知,因为当时,,所以.于是.【点睛】本题主要考查等比数列性质的证明和通项的求法,考查等比数列求和和放缩法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

广西来宾市高一下学期期末教学质量调研考试数学试题(解析版)

广西来宾市高一下学期期末教学质量调研考试数学试题(解析版)

广西来宾市高一下学期期末教学质量调研考试数学试题一、单选题1.下列各角中与225︒角终边相同的是( ) A .45︒ B .135︒C .315︒D .585︒【答案】D【解析】写出与225︒终边相同的角,取k 值得答案. 【详解】解:与225︒终边相同的角为225360k α=︒+︒,k Z ∈, 取1k =,得585α=︒,585∴︒与225︒终边相同. 故选:D . 【点睛】本题考查终边相同角的表示法,属于基础题. 2.已知()0,1A -,()0,3B ,则AB =( )A .2 BC .4D .【答案】C【解析】先求出AB 的坐标,再利用向量的模的公式求解. 【详解】由题得AB =(0,4) 所以||04AB =+=. 故选C 【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.从数字0,1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( ) A .720B .716C .1320D .916【答案】B【解析】直接利用古典概型的概率公式求解. 【详解】从数字0,1,2,3,4中任取两个不同的数字构成一个两位数有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16个, 其中大于30的有31,32,34,40,41,42,43,共7个, 故所求概率为716P =. 故选B 【点睛】本题主要考查古典概型的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.4.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为( ) A .5 B .10 C .15 D .20【答案】B【解析】利用分层抽样的定义和方法求解即可. 【详解】设应抽取的女生人数为x ,则25360540360x =+,解得10x =. 故选B 【点睛】本题主要考查分层抽样的定义及方法,意在考查学生对这些知识的理解掌握水平,属于基础题.5.已知扇形AOB 的圆心角3AOB π∠=,弧长为2π,则该扇形的面积为( )A .6πB .12πC .6D .12【答案】A【解析】可先由弧长计算出半径,再计算面积. 【详解】设扇形半径为R ,则23R ππ=,6R =,12662S =⨯π⨯=π. 故选:A . 【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.6.函数的定义域是()A.B.C.D.【答案】D【解析】解不等式,即得函数的定义域.【详解】因为,所以,即,解得.故选:D【点睛】本题主要考查三角函数定义域的求法,考查解三角不等式,意在考查学生对这些知识的理解掌握水平,属于基础题.7.执行如图所示的程序框图,则输出的n ( )A.3 B.4 C.5 D.6【答案】C【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S 的值并输出相应变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】解:模拟程序的运行,可得 S =0,n =1 S =2,n =2满足条件S <30,执行循环体,S =2+4=6,n =3 满足条件S <30,执行循环体,S =6+8=14,n =4 满足条件S <30,执行循环体,S =14+16=30,n =5 此时,不满足条件S <30,退出循环,输出n 的值为5. 故选C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.已知向量(1,1)a =,6=b ,且a 与b 的夹角为56π,则a b +=( )A .B .2CD .14【答案】A【解析】首先求出a 、a b ,再根据222a b a a b b +=++计算可得; 【详解】解:(1,1)a =,211a =+∴=又6=b ,且a 与b 的夹角为56π,所以cos 32a b a b θ⎛==-=- ⎝⎭2222a b a a b b ∴+=++=+=故选:A 【点睛】本题考查平面向量的数量积以及运算律,属于基础题.9.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是( )A .87,9.6B .85,9.6C .87,5,6D .85,5.6【答案】D【解析】去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差. 【详解】 平均数8284848689855x ++++==,方差()()()()()22222282858485848586858985 5.65s -+-+-+-+-==,选D.【点睛】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.10.在边长为(a 2)a >的正方形内有一个半径为1的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为35,则用随机模拟的方法得到的圆周率π的近似值为( )A .235a B .225a C .25a D .35a【答案】A【解析】通过几何概型可得答案. 【详解】 由几何概型可知235a π=,则235a π=. 【点睛】本题主要考查几何概型的相关计算,难度中等. 11.57coscoscoscos 9399ππππ= ( ) A .18 B .18-C .116D .116-【答案】C【解析】利用诱导公式、二倍角公式把要求的式子化为8sin916sin9ππ,从而得出结论.【详解】 解:57142124coscoscoscos cos (cos )(cos )cos cos cos939929992999ππππππππππ=--= 242244482sin coscoscos sin cos cos sin cos sin19999999999164sin 4sin 8sin 16sin9999ππππππππππππππ=====. 故选:C 【点睛】本题主要考查诱导公式、二倍角公式的应用,属于中档题.12.对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M 的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=-+ ⎪⎝⎭,,6x m π⎡⎫∈-⎪⎢⎣⎭的“下确界”为12-,则m 的取值范围是( ) A .,62ππ⎛⎤- ⎥⎝⎦B .,62ππ⎛⎫- ⎪⎝⎭C .5,66ππ⎛⎤- ⎥⎝⎦D .5,66ππ⎛⎫- ⎪⎝⎭【答案】A【解析】由下确界定义,()3cos 213f x x π⎛⎫=-+ ⎪⎝⎭,,6x m π⎡⎫∈-⎪⎢⎣⎭的最小值是12-,由余弦函数性质可得. 【详解】由题意()3cos 213f x x π⎛⎫=-+ ⎪⎝⎭,,6x m π⎡⎫∈-⎪⎢⎣⎭的最小值是12-, 又21()3cos()13cos 163332f ππππ-=--+=+=-, 由13cos(2)132x π-+≥-,得1cos(2)32x π-≥-,22222333k x k πππππ-≤-≤+,,62k x k k Z ππππ-≤≤+∈, 0k =时,62x ππ-≤≤,所以62m ππ-<≤.故选:A . 【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.二、填空题13.已知向量()()322a m b m ==-+,,,,若a b ∥,则m =________. 【答案】65-【解析】直接利用向量平行性质得到答案. 【详解】()()322a m b m ==-+,,,,若63(2)25a b m m m ⇒+=-⇒=-∥故答案为65-【点睛】本题考查了向量平行的性质,属于简单题.14.当2a =,5b =时,执行完如图所示的一段程序后,x =______.【答案】32【解析】模拟程序运行,可得出结论. 【详解】2,5a b ==时,满足a b <,所以5232x ==.故答案为:32.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.15.若函数()23sin 2cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,则m 的取值范围是________. 【答案】[4,6)【解析】化简函数解析式为()4sin()26f x x π=-+,做出函数的图象,数形结合可得m的取值范围. 【详解】解:因为()23sin 2cos 2,[0,]f x x x x π=-+∈ 所以()23sin 2cos 24sin()26f x x x x π=-+=-+,[0,]x π∈,由[]0,x π∈,可得5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 则函数()f x ,[]0,x π∈的图象与直线y m =恰有两个不同交点,即方程4sin()26x m π-+=在[]0,x π∈上有两个不同的解,画出()f x 的图象如下所示:依题意可得46m ≤<时,函数()32cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,故答案为:[)4,6 【点睛】本题主要考查正弦函数的最大值和单调性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.16.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________. 【答案】16【解析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.三、解答题17.已知cos sin 2αα+=,(,)42αππ∈(1)求tan2α; (2)若tan()πβ-=,求tan(2)αβ+. 【答案】(1)(2【解析】(1)两边平方可得1sin24α=,根据同角公式可得cos24α=-,tan2α=;(2)根据两角和的正切公式,计算可得结果.【详解】(1)因为cos sinαα+=,所以225cos sin2sin1sin24αααα++=+=,即1sin24α=.因为,42⎛⎫∈ ⎪⎝⎭ππα,所以2,2παπ⎛⎫∈ ⎪⎝⎭,所以cos2α=故sin2tan2cos215ααα==-.(2)因为tan()5πβ-=-,所以tan5β=,所以tan2tantan(2)1tan2tanαβαβαβ++===-【点睛】本题考查了两角同角公式,二倍角正弦公式,两角和的正切公式,属于基础题.18.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资y(单位:元)与月销售产品件数x的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率. 【答案】(1)3500,300,305500,300,x x y x x x ≤∈⎧=⎨->∈⎩N N;(2)方案一概率为16,方案二概率为38.【解析】(1)利用一次函数和分段函数分别表示方案一、方案二的月工资y 与x 的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值. 【详解】解:(1)方案一:152000y x =+,x ∈N ;方案二:月工资为3500,300,30(300)3500,300,x x Ny x x x N ∈⎧=⎨-+>∈⎩, 所以3500,300,305500,300,x x y x x x ≤∈⎧=⎨->∈⎩NN.(2)方案一中推销员的月工资超过11090元,则152********x +>,解得606x >, 所以方案一中推销员的月工资超过11090元的概率为41249546P ==++++;方案二中推销员的月工资超过11090元,则30(300)350011090x -+>,解得553x >, 所以方案二中推销员的月工资超过11090元的概率为543249548P +==++++.【点睛】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题. 19.已知函数()3cos3f x x a x a =-+,且239f π⎛⎫=⎪⎝⎭. (1)求a 的值;(2)求()f x 的最小正周期及单调递增区间. 【答案】(1)1a =;(2)最小正周期为23T π=,单调递增区间为222,3939k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.【解析】(1)因为239f π⎛⎫=⎪⎝⎭223cos 3399a a ππ⎛⎫⎛⎫⨯-⨯+= ⎪ ⎪⎝⎭⎝⎭,化简解方程即得1a =.(2)由(1)可得()3cos312sin 316f x x x x π⎛⎫=-+=-+ ⎪⎝⎭求出函数的最小正周期,再利用复合函数和三角函数的图像和性质求函数的单调递增区间得解. 【详解】解:(1)因为239f π⎛⎫= ⎪⎝⎭223cos 3399a a ππ⎛⎫⎛⎫⨯-⨯+= ⎪ ⎪⎝⎭⎝⎭,所以3322a a ++=,即33322a +=,解得1a =.(2)由(1)可得()3cos312sin 316f x x x x π⎛⎫-+=-+ ⎪⎝⎭,则()f x 的最小正周期为23T π=. 令232262k x k πππππ-≤-≤+,k Z ∈,解得2223939k k x ππππ-≤≤+,k Z ∈, 故()f x 的单调递增区间为222,3939k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【点睛】本题主要考查三角恒等变换和三角求值,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.20.某销售公司通过市场调查,得到某种商品的广告费x (万元)与销售收入y (万元)之间的数据如下:(1)求销售收入y 关于广告费x 的线性回归方程y bx a =+;(2)若该商品的成本(除广告费之外的其他费用)为2x 万元,利用(1)中的回归方程求该商品利润W 的最大值(利润=销售收入-成本-广告费).参考公式:()()()1122211n niii ii i nniii i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)9.4 1.8y x =+;(2)19.44(万无)【解析】(1)先求出,x y ,然后求出回归系数,得回归方程;(2)由回归方程得估计销售收入,减去成本得利润,由二次函数知识得最大值. 【详解】(1)由题意124534x +++==,10224048304y +++==,所以22222(20)(1)(8)1102189.4(2)(1)12b -⨯-+-⨯-+⨯+⨯==-+-++,309.43 1.8a =-⨯=,所以回归方程为9.4 1.8y x =+;(2)由(1)229.4 1.88.4 1.8W x x x x x =+--=-++2( 4.2)19.44x =--+,所以 4.2x =(万元)时,利润最大且最大值为19.44(万元). 【点睛】本题考查求线性回归直线方程,考查回归方程的应用.考查了学生的运算求解能力. 21.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【答案】(1)1135AF m n =+(2)310CG CB = 【解析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可; 【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-,则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310CGCB=. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题. 22.函数2())6cos 3f x x x π=-+.(1)求函数()f x 的图象的对称轴方程; (2)当[,0]3x π∈-时,不等式2()()270f x mf x m -+-≤恒成立,求m 的取值范围.【答案】(1),122k x k Z ππ=+∈,(2)5319[,]102【解析】(1)首先利用二倍角公式及两角和差的正弦公式化简得到())33f x x π=++,再根据正弦函数的性质求出函数的对称轴; (2)由,03x π⎡⎤∈-⎢⎥⎣⎦,求出()f x 的值域,设()t f x =,则39,22t ⎡⎤∈⎢⎥⎣⎦.则当,03x π⎡⎤∈-⎢⎥⎣⎦时,不等式2()()270f x mf x m -+-≤恒成立,等价于2270t mt m -+-≤对于39,22t ⎡⎤∈⎢⎥⎣⎦恒成立,则2233270,2299270,22m m m m ⎧⎛⎫-+-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+-≤ ⎪⎪⎝⎭⎩解得即可; 【详解】解:(1)2())6cos 3f x x x π=-+3cos212cos2622x x x +=-+⨯32cos 232x x =++)33x π=++.即())33f x x π=++令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则()f x 图象的对称轴方程为,122k x k Z ππ=+∈, (2)当,03x π⎡⎤∈-⎢⎥⎣⎦时,2,333x πππ⎡⎤+∈-⎢⎥⎣⎦,则sin(2)3x π⎡+∈⎢⎣⎦,从而39(),22f x ⎡⎤∈⎢⎥⎣⎦, 设()t f x =,则39,22t ⎡⎤∈⎢⎥⎣⎦.当,03x π⎡⎤∈-⎢⎥⎣⎦时,不等式2()()270f x mf x m -+-≤恒成立, 等价于2270t mt m -+-≤对于39,22t ⎡⎤∈⎢⎥⎣⎦恒成立, 则2233270,2299270,22m m m m ⎧⎛⎫-+-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+-≤⎪⎪⎝⎭⎩解得5319 102m≤≤.故m的取值范围为5319,102⎡⎤⎢⎥⎣⎦.【点睛】本题考查两角和与差的正弦公式,考查三角变换与辅助角公式的应用,突出考查正弦函数的性质以及一元二次不等式在给定区间上恒成立问题,属于中档题.。

2018-2019学年高一数学下学期期末考试试题(含解析)_10

2018-2019学年高一数学下学期期末考试试题(含解析)_10

2018-2019学年高一数学下学期期末考试试题(含解析)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:人教A版必修1、必修2、必修3、必修4。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合,则A. B. C. D.【答案】B【解析】【分析】直接利用交集运算得到答案.【详解】因为,所以.故答案选B【点睛】本题考查了交集运算,属于简单题.2.已知,,则()A. 2B.C. 4D.【答案】C【解析】【分析】先求出坐标,再利用向量的模的公式求解.【详解】由题得=(0,4)所以.故选:C【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A. 5B. 10C. 4D. 20【答案】B【解析】【分析】直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.4.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.【答案】D【解析】【分析】先计算圆半径,然后得到圆方程.【详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【点睛】本题考查了圆方程,先计算半径是解题的关键.5.已知向量(2,0),||=1,1,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】直接利用向量夹角公式得到答案.【详解】解:向量(2,0),||=1,•1,可得cos,则与b的夹角为:.故选:A.【点睛】本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.6.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为()A. 2800B. 3000C. 3200D. 3400【答案】D【解析】【分析】先求出总的稿件的数量,再求出高三年级交稿数占总交稿数的比例,再求高三年级的交稿数.【详解】高一年级交稿2000份,在总交稿数中占比,所以总交稿数为,高二年级交稿数占总交稿数的,所以高三年级交稿数占总交稿数的,所以高三年级交稿数为.故选:D【点睛】本题主要考查扇形统计图的有关计算,意在考查学生对该知识的理解掌握水平,属于基础题.7.直线:与圆的位置关系为()A. 相离B. 相切C. 相交D. 无法确定【答案】C【解析】【分析】求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.8.已知之间的一组数据如下:15则线性回归方程所表示的直线必经过点A. (8,10)B. (8,11)C. (7,10)D. (7,11)【答案】D【解析】【分析】先计算的平均值,得到数据中心点,得到答案【详解】,线性回归方程所表示直线经必经过点,即(7,11).故答案选D【点睛】本题考查了回归方程,回归方程一定过数据中心点.9.已知圆柱的轴截面为正方形,且该圆柱的侧面积为,则该圆柱的体积为A. B. C. D.【答案】C【解析】【分析】设圆柱的底面半径,该圆柱的高为,利用侧面积得到半径,再计算体积.【详解】设圆柱的底面半径.因为圆柱的轴截面为正方形,所以该圆柱的高为因为该圆柱的侧面积为,所以,解得,故该圆柱的体积为.故答案选C【点睛】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.10.已知函数,则下列说法正确的是()A. 图像的对称中心是B. 在定义域内是增函数C. 是奇函数D. 图像的对称轴是【答案】A【解析】【分析】根据正切函数的图象与性质逐一判断即可.【详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选:.【点睛】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.11.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,10;乙:8,9,9,9,10.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.【答案】D【解析】【分析】分别计算平均值和方差,比较得到答案.详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.12.已知函数,若在区间内没有零点,则取值范围是()A. B. C. D.【答案】B【解析】【分析】由题得,再由题分析得到,解不等式分析即得解.【详解】因为,,所以.因为在区间内没有零点,所以,,解得,.因为,所以.因为,所以或.当时,;当时,.故选:B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.直线与的交点坐标为________.【答案】【解析】【分析】直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.14.已知向量,若,则________.【答案】【解析】【分析】直接利用向量平行性质得到答案.【详解】,若故答案为【点睛】本题考查了向量平行的性质,属于简单题.15.已知函数是定义在上的奇函数,当时,,则________.【答案】【解析】【分析】根据奇偶性,先计算,再计算【详解】因为是定义在上的奇函数,所以.因为当时,所以.故答案为【点睛】本题考查了奇函数的性质,属于常考题型.16.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.【答案】【解析】【分析】取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知.(1)化简;(2)若,且,求的值.【答案】(1);(2).【解析】【分析】(1)利用诱导公式化简即得;(2)利用同角的平方关系求出的值,即得解.【详解】解:(1).(2)因为,且,所以,所以.【点睛】本题主要考查诱导公式和同角的三角函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数30 0把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.【答案】(1);(2)方案一概率为,方案二概率为.【解析】【分析】(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【详解】解:(1)方案一:,;方案二:月工资为,所以.(2)方案一中推销员的月工资超过11090元,则,解得,所以方案一中推销员的月工资超过11090元的概率为;方案二中推销员的月工资超过11090元,则,解得,所以方案二中推销员的月工资超过11090元的概率为.【点睛】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19.已知函数,且.(1)求的值;(2)求的最小正周期及单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为,.【解析】【分析】(1)因为,所以,化简解方程即得.(2)由(1)可得求出函数的最小正周期,再利用复合函数和三角函数的图像和性质求函数的单调递增区间得解.【详解】解:(1)因为,所以,所以,即,解得.(2)由(1)可得,则的最小正周期为.令,,解得,,故的单调递增区间为,.【点睛】本题主要考查三角恒等变换和三角求值,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.20.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,.(1)求图中的值;(2)根据频率分布直方图,估计这200名学生的平均分;(3)若这200名学生数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如下表所示,求英语成绩在的人数.1:2【答案】(1)(2)分(3)140人【解析】【分析】(1)在频率分布直方图中所有小矩形的面积之和为1,由此可得;(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即为估计平均数;(3)求出这200名学生的数学成绩在,,的人数,然后计算出各分数段的英语人数即可.【详解】(1)由,解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.(3)由频率分布直方图可求出这200名学生的数学成绩在,,的分别有60人,40人,10人,按照表中给的比例,则英语成绩在,,的分别有50人,80人,10人,所以英语成绩在的有140人.【点睛】本题考查频率分布直方图,解题时注意频率分布直方图中所有小矩形的面积之和为1,估值时常用小矩形底边中点横坐标作为此矩形的估值进行计算.21.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.【答案】(1)见证明;(2)4【解析】【分析】(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为,故三棱锥的体积为.【点睛】本题考查了线面平行的判定定理、三棱锥体积的计算,在证明线面平行时需要构造平行四边形来证明,三棱锥的体积计算可以选用割、补等方法.22.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.【答案】(1)或;(2).【解析】【分析】(1)由题化简得.再解方程即得解;(2)由题得在上恒成立,再求不等式右边函数的最小值即得解.【详解】解:(1)因为,,所以.因为,所以.解得或.故的取值集合为.(2)由(1)可知,所以在上恒成立.因为,所以,所以在上恒成立.设,则.所以.因为,所以,所以.故的取值范围为.【点睛】本题主要考查三角恒等变换和解三角方程,考查三角函数最值的求法和恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.2018-2019学年高一数学下学期期末考试试题(含解析)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

2018-2019学年高一数学下学期期末考试试题(含解析)_1

2018-2019学年高一数学下学期期末考试试题(含解析)_1

2018-2019学年高一数学下学期期末考试试题(含解析)(本试卷分为第Ⅰ卷和第Ⅱ卷两个部分,满分150分,考试用时120分钟)注意事项:1、答卷前,考生务必将自己的相关信息填写在答题卡相应的位置上.2、作答时,需将答案书写在答题卡上,写在试卷、草稿纸上均无效.3、考试结束后请将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】【分析】分别化简集合与集合,再求交集,即可得出结果.【详解】因为,,所以.故选B【点睛】本题主要考查集合的交集,熟记概念即可,属于常考题型.2.在等差数列中,,,则=()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】根据等差中项性质求得,进而得到;利用求得结果.【详解】由题意知:本题正确选项:【点睛】本题考查等差数列性质和通项公式的应用,属于基础题.3.某三棱锥的三视图如图所示,则该三棱锥的体积为A. B.C. D.【答案】B【解析】【分析】根据几何体的三视图,得出该几何体底面为直角三角形的三棱锥,且侧棱垂直于底面,求出它的体积即可.【详解】由三视图可知,该三棱锥如下图所示P-ABC,体积V=故选B【点睛】本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力与计算能力,是基础题目.4.若,,,则实数,,的大小关系为()A. B. C. D.【答案】A【解析】【分析】先求出a,b,c的范围,再比较大小即得解.【详解】由题得,,所以a>b>c.故选A【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.函数的零点所在的区间是()A B. C. D.【答案】C【解析】【分析】根据对数函数的性质可得而且,利用零点存在定理可得结果.【详解】因为函数在上单调递增且连续,而,,即,所以,函数的零点所在的区间是,故选C.【点睛】本题主要考查零点存在定理的应用,属于中档题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.6.要得到函数的图象,只需将函数的图象()A. 向右平移个单位B. 向右平移个单位C 向左平移个单位 D. 向左平移个单位【答案】D【解析】【分析】利用左加右减的平移原则可对ABCD四个选项逐一排查,如A选项中=2x,即可得到答案.【详解】=cos2x.=cos(2x-);=-cos2x;=cos(2x+);可排除A、B、C;故选D.【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,关键是掌握左加右减的平移原则及平移单位,属于中档题.7.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B. C. D.【答案】B【解析】【分析】利用长方体的体对角线为其外接球的直径计算即可得到答案.【详解】由已知,,所以长方体的外接球半径,故外接球的表面积为.故选:B【点睛】本题考查几何体的外接球的表面积,考查学生的空间想象能力、数学运算能力,是一道容易题.8.如图所示,已知,,,,则下列等式中成立的是()A. B. C. D.【答案】A【解析】分析】根据向量减法运算,将向量和转化为以为起点向量,可得答案.【详解】因为,所以,所以,即.故选:A.【点睛】本题考查了向量减法运算,属于基础题.9.若,且,则的最小值为( )A. 2B. 3C. 4D. 5【答案】C【解析】分析】由展开,再利用基本不等式即可求得最小值.【详解】因为,所以.因为,所以,.所以,当且仅当,即时等号成立.所以,即的最小值为.【点睛】本题考查由基本不等式求最值,考查了1的妙用,属于基础题.10.若不等式对一切实数都成立,则实数的取值范围为()A. 或B. 或C. D.【答案】C【解析】【分析】根据题意得出,由此求出的取值范围.【详解】解:显然a=0,不等式不恒成立,所以不等式对一切实数都成立,则,即,解得,所以实数的取值范围是.故选C.【点睛】本题主要考查了利用判别式解决一元二次不等式恒成立问题,是基础题.11.在中,已知,如果有两组解,则的取值范围是( )A. B. C. D.【答案】A【解析】【分析】已知,若有两组解,则,可解得的取值范围.【详解】由已知可得,则,解得.故选A.【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.若中,已知且为锐角,若,则无解;若或,则有一解;若,则有两解.12.函数在上是减函数,则a的取值范围是()A. B. C. D.【答案】B【解析】【分析】由题意,此分段函数是一个减函数,故一次函数系数为负,且在分段点处,函数值应是右侧小于等于左侧,由此得相关不等式,即可求解【详解】解:依题意,,解得,故选B.【点睛】本题考查函数单调性的性质,熟知一些基本函数的单调性是正确解对本题的关键,本题中有一易错点,忘记验证分段点处函数值的大小验证,做题时要注意考虑完全.第Ⅱ卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分;将正确答案填写在相应的横线上)13.已知实数,满足约束条件,求目标函数的最小值__________.【答案】-1【解析】【分析】首先画出约束条件的可行域,再求出可行域中各交点的坐标,即可求出目标函数的最小值.【详解】由实数,满足约束条件可得如图可行域:得到可行域为,点,,,由图可得目标函数过可行域内的点时的值最小,所以目标函数的最小值为-1.【点睛】本题主要考查线性规划问题,借助于平面区域特征,用几何方法处理代数问题,体现了数形结合思想、化归思想,属于基础题.14.已知向量与的夹角为,,则__________.【答案】【解析】【分析】根据向量模的运算可得,即可求解的值,得到答案.【详解】由题意,向量与的夹角为,,则,所以.【点睛】本题主要考查了向量的运算,以及向量的数量积的运算,其中解答中熟记向量模的运算,以及向量的数量积的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.15.直线与圆相交于两点,若,则实数的取值范围是 _____________.【答案】【解析】【分析】利用圆心到直线距离以及半径表示弦长,结合弦长的范围,即可求出的范围.【详解】因为圆:,直线:,而,则,解得:,所以的取值范围为.【点睛】本题主要考查了直线与圆的弦长问题,以及圆的性质,属于基础题.16.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题三、解答题(第17题10分,其余每题12分,共70分,解答应写出证明过程或演算步骤)17.已知是公差不为零的等差数列,,且,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】【分析】(1)先设的公差为,由,,成等比数列,求出,再由,求出首项和公差,即可得出结果;(2)根据(1)的结果,得到,用裂项相消法,即可得出结果.【详解】解:(1)设的公差为,因为,,成等比数列,可得,,,所以,又解得,,(2)【点睛】本题主要考查求等差数列的通项公式、以及数列的求和,熟记等差数列的通项公式、以及裂项相消法求数列的和即可,属于常考题型.18.已知函数的部分图象如图所示.求函数的解析式,并求出的单调递增区间:求出在上的值域.【答案】;递增区间为;.【解析】【分析】由函数图象得到半周期,进一步求得周期,再利用周期公式求的值,再由,结合的范围求得的值,进而求出函数解析式,进而得到函数的单调递增区间;根据的取值范围算出角的范围,进而求出值域即可.【详解】解:设函数的周期为,由图可知,,即,,上式中代入,有,得,.即,.又,,令,解得即的递增区间为.,,.的值域为【点睛】本题考查由的部分图象确定解析式,考查正弦型函数的递增区间的求法和值域的求法,属于中档题. 19.在中,角,,的对边分别为,,,已知.(1)求的值;(2)若,的面积为,求,的值.【答案】(1);(2).【解析】【分析】(1)正弦定理边化角,整理化简得到的值.(2)根据面积公式得到的关系,由余弦定理得到的关系,解出和的值.【详解】(1)因为,所以由正弦定理可得,又因所以,化简可得,即,所以,所以.(2)因为的面积为,所以,即,又,所以由余弦定理得,所以,结合.可得.【点睛】本题考查利用正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.在四棱锥P-ABCD中,底面ABCD是梯形,AB∥DC,AD⊥DC,AB=AD=2,DC=3,平面PDC⊥平面ABCD,E在棱PC上且PE=2EC.()证明:BE∥平面PAD;(1)若ΔPDC是正三角形,求三棱锥P-DBE的体积.【答案】(1) 见证明;(2)【解析】【分析】(1) 作EF∥DC交PD于点F,连接AF,利用PE=2EC可得FE=2,再利用AB∥DC即可证得四边形ABEF为平行四边形,问题得证.(2)利用平面PDC⊥平面ABCD及AD⊥DC即可证得:AD⊥平面PDC,利用体积转化可得:,再利用锥体体积计算公式即可得解.【详解】(1)证明:作EF∥DC交PD于点F,连接AF,因为E在棱PC上且PE=2EC,所以FE=DC=2,又因为AB∥DC,AB=2,所以AB∥FE,且AB=FE,所以四边形ABEF为平行四边形,从而有AF∥BE又因为BE平面PAD,AF平面PAD,所以BE∥平面PAD(2)因为平面PDC⊥平面ABCD,且交线为DC,AD⊥DC,AD 平面ABCD所以AD⊥平面PDC.因为PE=2EC所以即三棱锥P-DBE的体积为.【点睛】本题主要考查了线面平行的证明,还考查了面面垂直的性质,考查转化能力及锥体体积计算公式,属于中档题.21.已知函数是奇函数,且当时,,(1)求函数的表达式(2)求不等式的解集【答案】(1)(2)或【解析】【分析】(1)求出函数x<0的解析式,即得解;(2)分三种情况解不等式最后综合得解.【详解】解:(1)根据题意,函数是奇函数,则,当时,,则,又由函数为奇函数,则,则,(2)根据题意,,当时,,此时即,解可得,此时不等式的解集为,当时,,成立;此时不等式的解集为,当时,,此时即,解可得,此时不等式的解集为,综合可得:不等式的解集或.【点睛】本题主要考查函数解析式的求法,考查分类讨论解不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.已知圆,过点的直线与圆相交于不同的两点,.(I)判断是否为定值.若是,求出这个定值;若不是,请说明理由.(Ⅱ)若,求直线的方程.【答案】(I)见解析.(Ⅱ)或.【解析】【分析】(I)当直线的斜率不存在时可得定值,当直线的斜率存在时,设直线方程,将直线方程与圆的方程联立,写出韦达定理,利用向量的数量积的坐标运算进行计算即可得到定值;(Ⅱ)利用(I)的韦达定理进行数量积的坐标运算,可得方程.【详解】(I)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当直线与轴不垂直时,设的斜率为,直线的方程为.设,,联立消去得,则有,,.又,,所以.综上,为定值5.(Ⅱ).所以直线的方程为或.【点睛】本题考查直线与圆的位置关系的应用,考查韦达定理,数量积的坐标运算,考查计算能力,属于中档题.2018-2019学年高一数学下学期期末考试试题(含解析)(本试卷分为第Ⅰ卷和第Ⅱ卷两个部分,满分150分,考试用时120分钟)注意事项:1、答卷前,考生务必将自己的相关信息填写在答题卡相应的位置上.2、作答时,需将答案书写在答题卡上,写在试卷、草稿纸上均无效.3、考试结束后请将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】【分析】分别化简集合与集合,再求交集,即可得出结果.【详解】因为,,所以.故选B【点睛】本题主要考查集合的交集,熟记概念即可,属于常考题型.2.在等差数列中,,,则=()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】根据等差中项性质求得,进而得到;利用求得结果.【详解】由题意知:本题正确选项:【点睛】本题考查等差数列性质和通项公式的应用,属于基础题.3.某三棱锥的三视图如图所示,则该三棱锥的体积为A. B.C. D.【答案】B【解析】【分析】根据几何体的三视图,得出该几何体底面为直角三角形的三棱锥,且侧棱垂直于底面,求出它的体积即可.【详解】由三视图可知,该三棱锥如下图所示P-ABC,体积V=故选B【点睛】本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力与计算能力,是基础题目.4.若,,,则实数,,的大小关系为()A. B. C. D.【答案】A【解析】【分析】先求出a,b,c的范围,再比较大小即得解.【详解】由题得,,所以a>b>c.故选A【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.函数的零点所在的区间是()A B. C. D.【答案】C【解析】【分析】根据对数函数的性质可得而且,利用零点存在定理可得结果.【详解】因为函数在上单调递增且连续,而,,即,所以,函数的零点所在的区间是,故选C.【点睛】本题主要考查零点存在定理的应用,属于中档题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.6.要得到函数的图象,只需将函数的图象()A. 向右平移个单位B. 向右平移个单位C 向左平移个单位 D. 向左平移个单位【答案】D【解析】【分析】利用左加右减的平移原则可对ABCD四个选项逐一排查,如A选项中=2x,即可得到答案.【详解】=cos2x.=cos(2x-);=-cos2x;=cos(2x+);可排除A、B、C;故选D.【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,关键是掌握左加右减的平移原则及平移单位,属于中档题.7.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B. C. D.【答案】B【解析】【分析】利用长方体的体对角线为其外接球的直径计算即可得到答案.【详解】由已知,,所以长方体的外接球半径,故外接球的表面积为.故选:B【点睛】本题考查几何体的外接球的表面积,考查学生的空间想象能力、数学运算能力,是一道容易题.8.如图所示,已知,,,,则下列等式中成立的是()A. B. C. D.分析】根据向量减法运算,将向量和转化为以为起点向量,可得答案.【详解】因为,所以,所以,即.故选:A.【点睛】本题考查了向量减法运算,属于基础题.9.若,且,则的最小值为( )A. 2B. 3C. 4D. 5【答案】C【解析】分析】由展开,再利用基本不等式即可求得最小值.【详解】因为,所以.因为,所以,.所以,当且仅当,即时等号成立.所以,即的最小值为.【点睛】本题考查由基本不等式求最值,考查了1的妙用,属于基础题.10.若不等式对一切实数都成立,则实数的取值范围为()A. 或B. 或C. D.【分析】根据题意得出,由此求出的取值范围.【详解】解:显然a=0,不等式不恒成立,所以不等式对一切实数都成立,则,即,解得,所以实数的取值范围是.故选C.【点睛】本题主要考查了利用判别式解决一元二次不等式恒成立问题,是基础题.11.在中,已知,如果有两组解,则的取值范围是( )A. B. C. D.【答案】A【解析】【分析】已知,若有两组解,则,可解得的取值范围.【详解】由已知可得,则,解得.故选A.【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.若中,已知且为锐角,若,则无解;若或,则有一解;若,则有两解.12.函数在上是减函数,则a的取值范围是()A. B. C. D.【答案】B【解析】【分析】由题意,此分段函数是一个减函数,故一次函数系数为负,且在分段点处,函数值应是右侧小于等于左侧,由此得相关不等式,即可求解【详解】解:依题意,,解得,故选B.【点睛】本题考查函数单调性的性质,熟知一些基本函数的单调性是正确解对本题的关键,本题中有一易错点,忘记验证分段点处函数值的大小验证,做题时要注意考虑完全.第Ⅱ卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分;将正确答案填写在相应的横线上)13.已知实数,满足约束条件,求目标函数的最小值__________.【答案】-1【解析】【分析】首先画出约束条件的可行域,再求出可行域中各交点的坐标,即可求出目标函数的最小值.【详解】由实数,满足约束条件可得如图可行域:得到可行域为,点,,,由图可得目标函数过可行域内的点时的值最小,所以目标函数的最小值为-1.【点睛】本题主要考查线性规划问题,借助于平面区域特征,用几何方法处理代数问题,体现了数形结合思想、化归思想,属于基础题.14.已知向量与的夹角为,,则__________.【答案】【解析】【分析】根据向量模的运算可得,即可求解的值,得到答案.【详解】由题意,向量与的夹角为,,则,所以.【点睛】本题主要考查了向量的运算,以及向量的数量积的运算,其中解答中熟记向量模的运算,以及向量的数量积的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.15.直线与圆相交于两点,若,则实数的取值范围是 _____________.【答案】【解析】【分析】利用圆心到直线距离以及半径表示弦长,结合弦长的范围,即可求出的范围.【详解】因为圆:,直线:,而,则,解得:,所以的取值范围为.【点睛】本题主要考查了直线与圆的弦长问题,以及圆的性质,属于基础题.16.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题三、解答题(第17题10分,其余每题12分,共70分,解答应写出证明过程或演算步骤)17.已知是公差不为零的等差数列,,且,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】【分析】(1)先设的公差为,由,,成等比数列,求出,再由,求出首项和公差,即可得出结果;(2)根据(1)的结果,得到,用裂项相消法,即可得出结果.【详解】解:(1)设的公差为,因为,,成等比数列,可得,,,所以,又解得,,(2)【点睛】本题主要考查求等差数列的通项公式、以及数列的求和,熟记等差数列的通项公式、以及裂项相消法求数列的和即可,属于常考题型.18.已知函数的部分图象如图所示.求函数的解析式,并求出的单调递增区间:求出在上的值域.【答案】;递增区间为;.【解析】【分析】由函数图象得到半周期,进一步求得周期,再利用周期公式求的值,再由,结合的范围求得的值,进而求出函数解析式,进而得到函数的单调递增区间;根据的取值范围算出角的范围,进而求出值域即可.【详解】解:设函数的周期为,由图可知,,即,,上式中代入,有,得,.即,.又,,令,解得即的递增区间为.,,.的值域为【点睛】本题考查由的部分图象确定解析式,考查正弦型函数的递增区间的求法和值域的求法,属于中档题.19.在中,角,,的对边分别为,,,已知.(1)求的值;(2)若,的面积为,求,的值.【答案】(1);(2).【解析】【分析】(1)正弦定理边化角,整理化简得到的值.(2)根据面积公式得到的关系,由余弦定理得到的关系,解出和的值.【详解】(1)因为,所以由正弦定理可得,又因所以,化简可得,即,所以,所以.(2)因为的面积为,所以,即,又,所以由余弦定理得,所以,结合.可得.【点睛】本题考查利用正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.在四棱锥P-ABCD中,底面ABCD是梯形,AB∥DC,AD⊥DC,AB=AD=2,DC=3,平面PDC⊥平面ABCD,E在棱PC上且PE=2EC.()证明:BE∥平面PAD;(1)若ΔPDC是正三角形,求三棱锥P-DBE的体积.【答案】(1) 见证明;(2)【解析】【分析】(1) 作EF∥DC交PD于点F,连接AF,利用PE=2EC可得FE=2,再利用AB∥DC即可证得四边形ABEF为平行四边形,问题得证.(2)利用平面PDC⊥平面ABCD及AD⊥DC即可证得:AD⊥平面PDC,利用体积转化可得:,再利用锥体体积计算公式即可得解.【详解】(1)证明:作EF∥DC交PD于点F,连接AF,因为E在棱PC上且PE=2EC,所以FE=DC=2,又因为AB∥DC,AB=2,所以AB∥FE,且AB=FE,所以四边形ABEF为平行四边形,从而有AF∥BE又因为BE平面PAD,AF平面PAD,所以BE∥平面PAD(2)因为平面PDC⊥平面ABCD,且交线为DC,AD⊥DC,AD平面ABCD所以AD⊥平面PDC.因为PE=2EC所以即三棱锥P-DBE的体积为.【点睛】本题主要考查了线面平行的证明,还考查了面面垂直的性质,考查转化能力及锥体体积计算公式,属于中档题.21.已知函数是奇函数,且当时,,(1)求函数的表达式(2)求不等式的解集【答案】(1)(2)或【解析】【分析】(1)求出函数x<0的解析式,即得解;(2)分三种情况解不等式最后综合得解.【详解】解:(1)根据题意,函数是奇函数,则,当时,,则,又由函数为奇函数,则,则,(2)根据题意,,当时,,此时即,解可得,此时不等式的解集为,当时,,成立;此时不等式的解集为,当时,,此时即,解可得,此时不等式的解集为,综合可得:不等式的解集或.【点睛】本题主要考查函数解析式的求法,考查分类讨论解不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.已知圆,过点的直线与圆相交于不同的两点,.(I)判断是否为定值.若是,求出这个定值;若不是,请说明理由.(Ⅱ)若,求直线的方程.【答案】(I)见解析.(Ⅱ)或.【解析】【分析】(I)当直线的斜率不存在时可得定值,当直线的斜率存在时,设直线方程,将直线方程与圆的方程联立,写出韦达定理,利用向量的数量积的坐标运算进行计算即可得到定值;(Ⅱ)利用(I)的韦达定理进行数量积的坐标运算,可得方程.【详解】(I)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当直线与轴不垂直时,设的斜率为,直线的方程为.设,,联立消去得,则有,,.又,,所以.综上,为定值5.(Ⅱ).所以直线的方程为或.【点睛】本题考查直线与圆的位置关系的应用,考查韦达定理,数量积的坐标运算,考查计算能力,属于中档题.。

2018-2019学年高一数学下学期期末考试测试试题(含解析)

2018-2019学年高一数学下学期期末考试测试试题(含解析)

2018-2019学年高一数学下学期期末考试测试试题(含解析)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名、考试科目、班级和考生号等信息填写在答题卡上,并用2B 铅笔将考号在答题卡相关的区域内涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应的答案符号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将答题卡答卷交给监考老师。

第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分,四个选项中,只有一项符合要求)1.直线的倾斜角的大小为().A. B. C. D.【答案】B【解析】由直线方程可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.2.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A. ①③B. ①④C. ②③D. ①②【答案】B【解析】试题分析::∵两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④.考点:变量间的相关关系3.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 400,40B. 200,10C. 400,80D. 200,20【答案】A【解析】【分析】由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.4.直线与直线平行,则=()A. B. C. -7 D. 5【答案】D【解析】【分析】由两直线平行的条件计算.【详解】由题意,解得.故选D.【点睛】本题考查两直线平行的条件,直线与平行的条件是:在均不为零时,,若中有0,则条件可表示为.5.若圆和圆相切,则等于( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题. 两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.6.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C. 2 D. 3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!7.中,角所对的边分别为,若,则为( )A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形【答案】B【解析】【分析】由已知结合正弦定理可得sinC<sinBcosA利用三角形的内角和及诱导公式可得,sin(A+B)<sinBcosA整理可得sinAcosB+sinBcosA<0从而有sinAcosB<0结合三角形的性质可求.【详解】∵A是△ABC的一个内角,0<A<π,∴sinA>0.∵<cosA,由正弦定理可得,sinC<sinBcosA∴sin(A+B)<sinBcosA∴sinAcosB+sinBcosA<sinBcosA∴sinAcosB<0 又sinA>0∴cosB<0 即B为钝角故选:B.8.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.【答案】B【解析】【分析】根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选:B.【点睛】本题考查两组数据平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.9.对于平面、、和直线、、、,下列命题中真命题是( )A. 若,则B. 若,则C. 若则D. 若,则【答案】C【解析】试题分析:对于平面、、和直线、,真命题是“若,,,则”.考点:考查直线与直线,直线与平面,平面与平面的位置关系.10.圆柱形容器内盛有高度为6 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】C【解析】【分析】设出球的半径,根据题意得三个球的体积和水的体积之和,等于柱体的体积,结合体积公式求解即可.【详解】设球半径为,则由,可得,解得,故选C.【点睛】本题主要考查了几何体的体积公式的应用,考查学生空间想象能力以及计算能力,是基础题.11.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为( )A. B. C. D.【答案】C【解析】【分析】配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【点睛】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.12.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A. 2B. 4C.D.【答案】D【解析】【分析】由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【点睛】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.【答案】0.75【解析】【分析】根据随机模拟的方法,先找到20组数据中至少含有2,3,4,5,6,7,8,9中的3个数字的组数,然后根据古典概型求出概率.【详解】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次击中3次的有:7527,0293,9857,0347,4373,8636,6947,4698,6233,2616,8045 ,3661,9597,7424,4281,共15组随机数,所以所求概率为.【点睛】本题考查随机模拟的应用,考查理解能力和运用能力,解题时读懂题意是解题的关键,然后在此基础上确定基本事件总数和所求概率的事件包含的基本事件的个数,再根据古典概型的概率公式求解.14.若某圆锥的轴截面是面积为的等边三角形,则这个圆锥的侧面积是__________.【答案】【解析】【分析】由轴截面面积求得轴截面边长,从而得圆锥的底面半径和母线长.【详解】设轴截面等边三角形边长为,则,,∴.故答案为.【点睛】本题考查圆锥的侧面积,掌握侧面积计算公式是解题基础.15.已知直线与圆相交于A、B两点,则∠AOB大小为________.【答案】60°【解析】【分析】由垂径定理求得相交弦长,然后在等腰三角形中求解.【详解】圆心到直线的距离为,圆心半径为,∴,∴为等边三角形,.【点睛】本题考查直线与圆相交弦长问题.求直线与圆相交弦长一般用垂径定理求解,即求出弦心距,则有.16.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.【答案】45°【解析】【分析】先确定直线PA与平面ABCD所成的角,然后作两异面直线PA和BE所成的角,最后求解.【详解】∵四棱锥P-ABCD是正四棱锥,∴就是直线PA 与平面ABCD所成的角,即=60°,∴是等边三角形,AC=PA=2,设BD与AC交于点O,连接OE,则OE是的中位线,即,且,∴是异面直线PA与BE所成的角,正四棱锥P-ABCD中易证平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴异面直线PA与BE所成的角是45°.故答案为45°.【点睛】本题考查异面直线所成的角,考查直线与平面所成的角,考查正四棱锥的性质.要注意在求空间角时,必须作出其“平面角”并证明,然后再计算.三、解答题:17.已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.【答案】(1)x+2y-4=0.(2)2x-3y+6=0.(3)y=2x+2.【解析】试题分析:(1)直线方程的两点式求出所在直线的方程;(2)先求BC的中点D坐标为(0,2),由直线方程的截距式求出AD所在直线方程;(3)求出直线)BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由截距式求出DE的方程。

【高一数学试题精选】2018年来宾市高一下学期数学期末试卷(含解析)

【高一数学试题精选】2018年来宾市高一下学期数学期末试卷(含解析)

2018年来宾市高一下学期数学期末试卷(含解析)
c 2018学年广西宾市高一(下)期末数学试卷
参考答案与试题解析
一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的
1.已知角α∈(,2π),则下列结论正确的是()
A.sinα>0B.csα<0c.tanα>0D.sinαcsα<0
【考点】三角函数值的符号.
【分析】根据象限角的符号,判断即可.
【解答】解∵α∈(,2π),
∴sinα<0,csα>0,tanα<0,
∴sinαcsα<0,
故选D.
2.若sinα= ,α∈[ ,π],则sin( +α)的值为()
A.﹣ B. c.﹣ D.
【考点】同角三角函数基本关系的运用;运用诱导式化简求值.【分析】由已知利用同角三角函数基本关系式可求csα的值,根据诱导式化简所求即可得解.
【解答】解∵sinα= ,α∈[ ,π],
∴csα=﹣ =﹣,
∴sin( +α)=csα=﹣.
故选c.
3.在△ABc中,D是Bc的中点,则 + 等于()
A.2 B.2 c.2 D.2
【考点】向量的加法及其几何意义.
【分析】由向量加法的平行四边形法则即可求出.。

2018-2019学年高一数学下学期期末考试试题(含解析)_36

2018-2019学年高一数学下学期期末考试试题(含解析)_36

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】B【解析】【分析】利用诱导公式得到答案.详解】故答案选B【点睛】本题考查了诱导公式,属于简单题.2.在中,若,,,则角的大小为()A. 30°B. 45°或135°C. 60°D. 135°【答案】B【解析】【分析】利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.3.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.【答案】D【解析】【分析】古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:故答案选D【点睛】本题考查了概率的计算,属于简单题.4.已知,则()A. B. C. D.【答案】C【解析】【分析】利用齐次式,上下同时除以得到答案.【详解】故答案选C【点睛】本题考查了三角函数值的计算,上下同时除以是解题的关键.5.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为()A. 84,85B. 85,84C. 84,85.2D. 86,85【答案】A【解析】【分析】剩余数据为:84.84,86,84,87,计算中位数和平均数.【详解】剩余数据为:84.84,86,84,87则中位数为:84平均数为:故答案为A【点睛】本题考查了中位数和平均数的计算,属于基础题型.6.已知向量,.且,则()A. 2B.C.D.【答案】B【解析】【分析】通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A. 50%B. 30%C. 10%D. 60%【答案】A【解析】【分析】甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.8.已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3【答案】C【解析】【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9.在中,若,则的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰三角形或直角三角形【答案】D【解析】【分析】,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.10.函数的图象如图所示,为了得到的图象,可将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】A【解析】【分析】函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.11.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.【答案】D【解析】【分析】设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.12.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.【答案】B【解析】【分析】计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.二、填空题.13.已知三个事件,,两两互斥,且,,,则_______.【答案】0.9【解析】【分析】先计算,再计算【详解】故答案为:0.9【点睛】本题考查了互斥事件的概率,属于基础题型.14.己知函数,,则的值为______.【答案】1【解析】【分析】将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.15.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.【答案】【解析】【分析】直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.16.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).【答案】②④【解析】【分析】根据三角函数性质,逐一判断选项得到答案.【详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知向量,满足,,且.(1)求;(2)在中,若,,求.【答案】(1) (2)【解析】【分析】(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量夹角,向量的加减计算,意在考查学生的计算能力.18.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.【答案】(1) (2)【解析】【分析】(1)根据计算,,代入公式得到答案.(2)根据,得到,根据计算得到答案.【详解】解:(1)因为是锐角,且,在单位圆上,所以,,,∴(2)因为,所以,且,所以,,可得:,且,所以,.【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用.19.的内角,,的对边分别为,,,设.(1)求;(2)若,求.【答案】(1) (2)【解析】【分析】(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元18)销量(册61)(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.【答案】(1) (2) 当单价应定为22.5元时,可获得最大利润【解析】【分析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:.(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润.【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.【答案】(1) ;(2) 第1组2人,第3组3人,第4组1人;(3)【解析】【分析】(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取2人来自同一个组的概率.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.22.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.【答案】(1) T=π,单调增区间为, (2)【解析】【分析】(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,,所以,综上所述,的范围为.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】B【分析】利用诱导公式得到答案.详解】故答案选B【点睛】本题考查了诱导公式,属于简单题.2.在中,若,,,则角的大小为()A. 30°B. 45°或135°C. 60°D. 135°【答案】B【解析】【分析】利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.3.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.【答案】D【解析】【分析】古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:【点睛】本题考查了概率的计算,属于简单题.4.已知,则()A. B. C. D.【答案】C【解析】【分析】利用齐次式,上下同时除以得到答案.【详解】故答案选C【点睛】本题考查了三角函数值的计算,上下同时除以是解题的关键.5.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为()A. 84,85B. 85,84C. 84,85.2D. 86,85【答案】A【解析】【分析】剩余数据为:84.84,86,84,87,计算中位数和平均数.【详解】剩余数据为:84.84,86,84,87则中位数为:84平均数为:【点睛】本题考查了中位数和平均数的计算,属于基础题型.6.已知向量,.且,则()A. 2B.C.D.【答案】B【解析】【分析】通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A. 50%B. 30%C. 10%D. 60%【答案】A【解析】【分析】甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.8.已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3【答案】C【解析】【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9.在中,若,则的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰三角形或直角三角形【答案】D【解析】【分析】,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.10.函数的图象如图所示,为了得到的图象,可将的图象()A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】A【解析】【分析】函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.11.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.【答案】D【解析】【分析】设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.12.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.【答案】B【解析】【分析】计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.二、填空题.13.已知三个事件,,两两互斥,且,,,则_______.【答案】0.9【解析】【分析】先计算,再计算【详解】故答案为:0.9【点睛】本题考查了互斥事件的概率,属于基础题型.14.己知函数,,则的值为______.【答案】1【解析】【分析】将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.15.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.【答案】【解析】【分析】直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.16.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).【答案】②④【解析】【分析】根据三角函数性质,逐一判断选项得到答案.【详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知向量,满足,,且.(1)求;(2)在中,若,,求.【答案】(1) (2)【解析】【分析】(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量夹角,向量的加减计算,意在考查学生的计算能力.18.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.【答案】(1) (2)【解析】【分析】(1)根据计算,,代入公式得到答案.(2)根据,得到,根据计算得到答案.【详解】解:(1)因为是锐角,且,在单位圆上,所以,,,∴(2)因为,所以,且,所以,,可得:,且,所以,.【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用.19.的内角,,的对边分别为,,,设.(1)求;(2)若,求.【答案】(1) (2)【解析】【分析】(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价18(元)销量61(册)(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.【答案】(1) (2) 当单价应定为22.5元时,可获得最大利润【解析】【分析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:.(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润.【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.【答案】(1) ;(2) 第1组2人,第3组3人,第4组1人;(3)【解析】【分析】(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取2人来自同一个组的概率.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.22.已知函数.(1)求的最小正周期和上的单调增区间:(2)若对任意的和恒成立,求实数的取值范围.【答案】(1) T=π,单调增区间为, (2)【解析】【分析】(1)化简函数得到,再计算周期和单调区间.(2)分情况的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数故的最小正周期.由题意可知:,解得:,因为,所以的单调增区间为,(2)由(1)得∵∴,∴,若对任意的和恒成立,则的最小值大于零.当为偶数时,,所以,当为奇数时,,所以,综上所述,的范围为.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.。

2018-2019学年广西壮族自治区来宾市三里中学高一数学理期末试卷含解析

2018-2019学年广西壮族自治区来宾市三里中学高一数学理期末试卷含解析

2018-2019学年广西壮族自治区来宾市三里中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在平面直角坐标系中,△ABC的顶点B,C坐标为(-2,0),(2,0),中线AD的长度是3,则顶点A的轨迹方程是( )A. B.C. (y≠0)D. (x≠0)参考答案:C【分析】根据已知条件可知,到原点的距离为常数,故的轨迹为圆,再根据不在直线上,可求得的轨迹方程.【详解】由于的中点为坐标原点,故到原点的距离为常数,故的轨迹为圆,圆的圆心为原点,半径为.由于围成三角形,故不在直线上,所以点的轨迹方程为.故选C.【点睛】本小题主要考查圆的定义,考查轨迹方程的求法,属于基础题.2. 已知内一点满足,若的面积与的面积之比为1:3,的面积与的面积之比为1:4,则实数的值为()A. B. C. D.参考答案:A3. △ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30°B.45°C.60°D.90°参考答案:A【考点】HR:余弦定理.【分析】先根据正弦定理把2R(sin2A﹣sin2C)=(a﹣b)sinB中的角转换成边可得a,b和c的关系式,再代入余弦定理求得cosC的值,进而可得C的值.【解答】解:△ABC中,由2R(sin2A﹣sin2C)=(a﹣b)sinB,根据正弦定理得a2﹣c2=(a﹣b)b=ab﹣b2,∴cosC==,∴角C的大小为30°,故选A.4. 设,用二分法求方程在内的近似解的过程中,有,则该方程的根所在的区间为()A. B. C. D. 不能确定参考答案:B∵,∴该方程的根所在的区间为。

选B5. 中,,,若点满足,则( )A. B. C. D.参考答案:D略6. 右图是水平放置的的直观图,轴,,则是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形参考答案:C7. 设m,n是不同的直线,α,β是不同的平面,则下列条件能使n⊥α成立的是()A.α⊥β,n?β B.α⊥β,n⊥βC.α⊥β,n∥β D.m∥α,n⊥m参考答案:B8. 数列的前25项和为()A. B. C. D.参考答案:B【分析】根据已知数的结构可写出数列的前25项,然后求和即可.【详解】由于,所以数列的前25项的和为:故选:B【点睛】本题考查数列求和的方法,考查分析推理和计算能力,属于中档题.9. 若函数y=f(x)的值域是[,3],则函数F (x)=f(x)+的值域是:A.[,3] B.[2,] C.[,] D.[3,]参考答案:B10. 求值=()A.1 B.2 C.D.参考答案:C【考点】GO:运用诱导公式化简求值.【分析】需利用公式1﹣sin2α=(sinα﹣cosα)2、cos2α=cos2α﹣sin2α、cosαcosβ+sinαsinβ=cos(α﹣β)解决.【解答】解:原式=======.故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图为记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为 .参考答案:8略12. 设为实常数,是定义在上的奇函数,当时,,若对一切成立,则的取值范围为_______.参考答案:解析式为:;因为对一切成立,;,,由,所以,解得;13. 设数列满足(),其中为其前项和.(1)求证:数列是等比数列;(2)若且对任意的正整数,都有,求实数的取值范围.参考答案:(也可直接证明).略14. 已知图像上有一最低点,若图像上各点纵坐标不变,横坐标缩为原来的倍,再向左平移1个单位得,又的所有根从小到大依次相差3个单位,则的解析式为__________.参考答案:【分析】将函数整理为;代入可将函数整理为:;根据三角函数平移变换可得:;根据的所有根从小到大依次相差个单位可知过曲线的最高点或最低点,或经过所有的对称中心;利用周期排除掉过最高点或最低点的情况,利用过所有的对称中心可求得,进而得到解析式.【详解】由题意得:,其中,是图象的最低点横坐标缩为原来的倍得:向左移动1个单位得:的所有根从小到大依次相差个单位可知与的相邻交点间的距离相等过曲线的最高点或最低点,或经过所有的对称中心①当过曲线的最高点或最低点时,每两个根之间相差一个周期,即相差,不合题意;②当过曲线所有的对称中心时,则,满足题意本题正确结果:【点睛】本题考查根据三角函数的性质、平移变换求解三角函数解析式的问题,关键是能够通过平行于轴的直线与曲线的交点情况确定直线所经过的点的位置,从而根据点的位置来求解参数值.15. 设,其中为非零常数. 若,则 .参考答案:略16. 已知向量,,则________,________.参考答案:(-2,2) 1【分析】根据向量数乘运算和数量积运算法则求解即可.【详解】;本题正确结果:;【点睛】本题考查向量坐标运算中的数乘运算和数量积运算,属于基础题.17. 设x、y∈R+且=1,则x+y的最小值为.参考答案:16【考点】7F:基本不等式.【分析】将x、y∈R+且=1,代入x+y=(x+y)?(),展开后应用基本不等式即可.【解答】解:∵ =1,x、y∈R+,∴x+y=(x+y)?()==10+≥10+2=16(当且仅当,x=4,y=12时取“=”).故答案为:16.三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年广西来宾市高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的1.已知角α∈(,2π),则下列结论正确的是()A.sinα>0 B.cosα<0 C.tanα>0 D.sinαcosα<02.若sinα=,α∈[,π],则sin(+α)的值为()A.﹣B.C.﹣D.3.在△ABC中,D是BC的中点,则+等于()A.2 B.2 C.2 D.24.如图所示为某篮球队员身高的茎叶图,则身高不低于180cm的人数为()A.4 B.5 C.7 D.85.某程序框图如图所示,该程序运行输出的结果为()A.3 B.4 C.5 D.66.已知=(1,2),=(x,﹣1),且满足(+)∥(﹣),则x的值为()A.﹣B.2 C.D.﹣27.从6个篮球、2个气排球中任选3个球,则下列事件中,是必然事件的是()A.3个都是篮球B.至少有1个是气排球C.3个都是气排球 D.至少有1个是篮球8.已知f(x)=cos(2x﹣),x∈R,则f(x)的其中一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)9.一个袋子中装有大小相同的3个白球,2个红球,现从中同时任取两个,则取出的两个球中至多有1个是白球的概率为()A.B.C.D.10.在某次测量中得到E的样本数据如下:80,82,82,84,84,84,84,86,86,86,86.若F的样本数据恰好是E的样本数据都减去2后得到的数据,则关于E,F两样本数据特征的下列说法中,正确的是()A.E,F样本数据的众数为84 B.E,F样本数据的方差相同C.E,F样本数据的平均数相同D.E,F样本数据的中位数相同11.已知与为单位向量,且满足(4﹣3)•(2+)=6,则与的夹角为()A.B.C.D.12.已知函数f(x)=ln(cosx),则下列说法中,错误的是()①f(x)在定义域上存在最小值;②f(x)在定义域上存在最大值③f(x)在定义域上为奇函数;④f(x)在定义域上为偶函数.A.①③B.②④C.①②D.③④二、填空题:本大题共4小题,每小题5分,共20分)13.化简: +﹣+= .14.将一个总体分为A,B,C三个层次,已知A,B,C的个体数之比为5:3:2,若用分层抽样法抽取容量为150的样本,则B中抽取的个体数应该为个.15.设集合A={1,2,4},B={1,2,3},分别从集合A与B中随机抽取一个数a与b,并记“y=a+2b ≥7”为事件A,则P(A)= .16.已知函数f(x)=sinx﹣2cosx,当x=α时f(x)取得最大值,则cosα= .三、解答题:本大题共6小题,70分)17.已知sinα=,0<α<.(1)求sin2α的值;(2)若cos(α﹣β)=,0<α<β<,求cosβ的值.18.某高中高一六班共有60名同学,学校为了解该班级数学科段考成绩的基本情况,将该班级所有同学的数学科段考成绩绘制频率分布直方图,其中成绩分布分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100)(60分以下为不及格,满分为100分)请你回答下列问题(1)求出该班级这次段考数学科的及格率;(2)请根据频率直方图,估计该班级60名同学这次段考数学科成绩的平均分.19.已知=(sinx,2cosx),=(3,﹣),x∈R.(1)若f(x)=•,试求f(x)的值域;(2)若x=,且满足2﹣与+相互垂直,求λ的值.20.已知函数f(x)=Asin(ωx+φ),|φ|<,图象如下,请回答下列问题.(1)求该函数的解析式;(2)求f(x)在x∈[π,2π]上的单调递增区间.21.从某学校随机抽取10名老师,获得第i名老师的月收入xi (千元)与月消费yi(千元)的数据资料,算得果, xi =30, yi=10, xiyi=54, xi2=170.(1)已知月收入x与月消费y之间具有线性相关关系,求x与y的线性回归方程,并判断x 与y之间是正相关还是负相关;(2)若该学校某老师的月收入为2.5(千元),预测该老师的月储蓄(月储蓄=月收入﹣月消费).(附:在线性回归方=x+中, =, =﹣.22.如图所示,圆O的半径为R,A、B、C为圆O上不同的三点,圆心O在线段AC上.(1)当AB=4,BC=3时,在圆O内任取一点P,求所取点P恰好位于△ABC内的概率;(2)当R=1,B点为圆O上的动点时,此时在圆O内任取一点Q,求点Q位于△ABC内的概率的取值范围.2018-2019学年广西来宾市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的1.已知角α∈(,2π),则下列结论正确的是()A.sinα>0 B.cosα<0 C.tanα>0 D.sinαcosα<0【考点】三角函数值的符号.【分析】根据象限角的符号,判断即可.【解答】解:∵α∈(,2π),∴sinα<0,cosα>0,tanα<0,∴sinαcosα<0,故选:D.2.若sinα=,α∈[,π],则sin(+α)的值为()A.﹣B.C.﹣D.【考点】同角三角函数基本关系的运用;运用诱导公式化简求值.【分析】由已知利用同角三角函数基本关系式可求cosα的值,根据诱导公式化简所求即可得解.【解答】解:∵sinα=,α∈[,π],∴cosα=﹣=﹣,∴sin(+α)=cosα=﹣.故选:C.3.在△ABC中,D是BC的中点,则+等于()A.2 B.2 C.2 D.2【考点】向量的加法及其几何意义.【分析】由向量加法的平行四边形法则即可求出.【解答】解:根据条件:.故选:B.4.如图所示为某篮球队员身高的茎叶图,则身高不低于180cm的人数为()A.4 B.5 C.7 D.8【考点】茎叶图.【分析】由茎叶图,能求出身高不低于180cm的人数.【解答】解:由茎叶图,得身高不低于180cm的人有:(单位:cm)183,185,186,188,189,190,192,193,共8人.故选:D.5.某程序框图如图所示,该程序运行输出的结果为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,当S=12时不满足条件S<10,退出循环,输出k的值为3.【解答】解:模拟程序的运行,可得k=0,S=0满足条件S<10,执行循环体,S=4,k=1满足条件S<10,执行循环体,S=8,k=2满足条件S<10,执行循环体,S=12,k=3此时,不满足条件S<10,退出循环,输出k的值为3.故选:A.6.已知=(1,2),=(x,﹣1),且满足(+)∥(﹣),则x的值为()A.﹣B.2 C.D.﹣2【考点】平面向量共线(平行)的坐标表示.【分析】根据向量的坐标运算和向量平行计算即可.【解答】解:∵=(1,2),=(x,﹣1),∴+=(1+x,1),﹣=(1﹣x,3),∵(+)∥(﹣),∴3(1+x)=1﹣x,解得x=﹣,故选:A.7.从6个篮球、2个气排球中任选3个球,则下列事件中,是必然事件的是()A.3个都是篮球B.至少有1个是气排球C.3个都是气排球 D.至少有1个是篮球【考点】随机事件.【分析】必然事件是在一定条件下一定发生的事件,根据定义解答即可.【解答】解:从6个篮球、2个气排球中任选3个球,A、B、C是随机事件,D是必然事件,故选:D.8.已知f(x)=cos(2x﹣),x∈R,则f(x)的其中一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)【考点】余弦函数的图象.【分析】利用余弦函数的图象的对称性求得f(x)的其中一个对称中心.【解答】解:对于知f(x)=cos(2x﹣),x∈R,令2x﹣=kπ+,求得x=+,k ∈Z,令k=﹣1,可得其中一个对称中心是(﹣,0),故选:A.9.一个袋子中装有大小相同的3个白球,2个红球,现从中同时任取两个,则取出的两个球中至多有1个是白球的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】取出的两个球中至多有1个是指取到的两个球都是红球或1红1白,由此能求出取出的两个球中至多有1个是白球的概率.【解答】解:一个袋子中装有大小相同的3个白球,2个红球,现从中同时任取两个,基本事件总数n==10,取出的两个球中至多有1个是指取到的两个球都是红球或1红1白,∴取出的两个球中至多有1个是白球的概率为:p==.故选:C.10.在某次测量中得到E的样本数据如下:80,82,82,84,84,84,84,86,86,86,86.若F的样本数据恰好是E的样本数据都减去2后得到的数据,则关于E,F两样本数据特征的下列说法中,正确的是()A.E,F样本数据的众数为84 B.E,F样本数据的方差相同C.E,F样本数据的平均数相同D.E,F样本数据的中位数相同【考点】众数、中位数、平均数.【分析】由已知条件利用众数、平均数、中位数、方差的定义及性质直接求解.【解答】解:∵在某次测量中得到E的样本数据如下:80,82,82,84,84,84,84,86,86,86,86.若F的样本数据恰好是E的样本数据都减去2后得到的数据,∴E样本数据的众数是84和86,F样本数据的众数是82和84,故A错误;E,F样本数据的方差相同,故B正确;E样本数据的平均数比F样本数据的平均数大2,故C错误;E样本数据的中位数比F样本数据的中位数大2,故D错误.故选:B.11.已知与为单位向量,且满足(4﹣3)•(2+)=6,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由条件进行向量数量积的运算即可得出,从而可求出的值,进而得出向量的夹角.【解答】解:根据条件,===6∴;∴;∴即与的夹角为.故选D.12.已知函数f(x)=ln(cosx),则下列说法中,错误的是()①f(x)在定义域上存在最小值;②f(x)在定义域上存在最大值③f(x)在定义域上为奇函数;④f(x)在定义域上为偶函数.A.①③B.②④C.①②D.③④【考点】命题的真假判断与应用;复合函数的单调性;对数函数的图象与性质.【分析】根据已知中函数f(x)=ln(cosx),分析出函数的最值及奇偶性,可得答案.【解答】解:由cosx>0得:x∈(﹣+2kπ, +2kπ),k∈Z,此时f(x)=ln(cosx)≤ln1=0,即f(x)在定义域上存在最大值,无最小值,故①错误,②正确;又由f(x)=ln[cos(﹣x)]=ln(cosx)=f(x),故函数为偶函数,故③错误,④正确,故选:B二、填空题:本大题共4小题,每小题5分,共20分)13.化简: +﹣+= 2.【考点】向量加减混合运算及其几何意义.【分析】根据向量加法的几何意义,相反向量的概念,以及向量加法的交换律和结合律即可进行化简.【解答】解: =====.故答案为:.14.将一个总体分为A,B,C三个层次,已知A,B,C的个体数之比为5:3:2,若用分层抽样法抽取容量为150的样本,则B中抽取的个体数应该为45 个.【考点】分层抽样方法.【分析】根据分层抽样原理,每个个体被抽到的比例相等,即可求出结果.【解答】解:根据分层抽样原理,抽取容量为150的样本,在B中应抽取的个体数为:150×=45.故答案为:45.15.设集合A={1,2,4},B={1,2,3},分别从集合A与B中随机抽取一个数a与b,并记“y=a+2b ≥7”为事件A,则P(A)= .【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,再求出事件A中包含的基本事件个数,由此能求出事件A的概率.【解答】解:集合A={1,2,4},B={1,2,3},分别从集合A与B中随机抽取一个数a与b,基本事件总数为n=3×3=9,“y=a+2b≥7”为事件A,则事件A中包含的基本事件有:(1,3),(2,3),(4,2),(4,3),共有m=4个,∴P(A)==.故答案为:.16.已知函数f(x)=sinx﹣2cosx,当x=α时f(x)取得最大值,则cosα= ﹣.【考点】三角函数的最值.【分析】f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=α时,函数f(x)取得最大值,得到sinα﹣2cosα=,与sin2α+cos2α=1联立即可求出cosα的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣θ)∵x=α时,函数f(x)取得最大值,∴sin(α﹣θ)=1,即sinα﹣2cosα=,又sin2α+cos2α=1,联立得(2cosα+)2+cos2α=1,解得cosα=﹣.故答案为:﹣.三、解答题:本大题共6小题,70分)17.已知sinα=,0<α<.(1)求sin2α的值;(2)若cos(α﹣β)=,0<α<β<,求cosβ的值.【考点】两角和与差的余弦函数;二倍角的正弦.【分析】(1)利用同角三角函数的基本关系,二倍角的正弦公式求得sin2α的值.(2)利用同角三角函数的基本关系求得sin(α﹣β)=的值,再利用两角差的余弦公式求得cosβ=cos[α﹣(α﹣β)]的值.【解答】解:(1)∵sinα=,0<α<,∴cosα==,∴sin2α=2sinαcosα=2••=.(2)若cos(α﹣β)=,0<α<β<,∴sin(α﹣β)=﹣=﹣,∴cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=+•(﹣)=.18.某高中高一六班共有60名同学,学校为了解该班级数学科段考成绩的基本情况,将该班级所有同学的数学科段考成绩绘制频率分布直方图,其中成绩分布分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100)(60分以下为不及格,满分为100分)请你回答下列问题(1)求出该班级这次段考数学科的及格率;(2)请根据频率直方图,估计该班级60名同学这次段考数学科成绩的平均分.【考点】众数、中位数、平均数;频率分布直方图.【分析】(1)由频率分布直方图能求出该班级这次段考的及格率.(2)根据频率直方图,能估计该班级60名同学这次段考数学科成绩的平均分.【解答】解:(1)由频率分布直方图得,该班级这次段考的及格率为:(1﹣0.01×10)×100%=90%.(2)频率分布直方图中,从左往右每个小矩形的底边中点横坐标分别为55,65,75,85,95,各矩形的面积分别为0.1,0.2,0.3,0.25,0.15,∴根据频率直方图,估计该班级60名同学这次段考数学科成绩的平均分为:0.1×55+0.2×65+0.3×75+0.25×85+0.15×95=76.5.19.已知=(sinx,2cosx),=(3,﹣),x∈R.(1)若f(x)=•,试求f(x)的值域;(2)若x=,且满足2﹣与+相互垂直,求λ的值.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(1)根据向量数量积的坐标表示及辅助角公式,即可求得f(x)的解析式,由正弦函数性质即可求得f(x)的值域;(2)当x=,代入求得,根据向量的坐标运算分别求得2﹣与+,利用向量垂直的定义,代入即可求得λ的值.【解答】解:(1)f(x)=•=sinx×3+2cosx×(﹣)=sinx﹣cosx,=2sin(x﹣),由正弦函数的性质可知:﹣1≤sin(x﹣)≤1,∴﹣2≤sin(x﹣)≤2,f(x)的值域[﹣2,2];(2)当x=, =(,1),∴2﹣=(﹣2,)+=(,),∵(2﹣)⊥(+),∴(2﹣)•(+)=0,×(﹣2)+×=0,解得:λ=,λ的值.20.已知函数f(x)=Asin(ωx+φ),|φ|<,图象如下,请回答下列问题.(1)求该函数的解析式;(2)求f(x)在x∈[π,2π]上的单调递增区间.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)利用正弦函数的单调性,求得f(x)在x∈[π,2π]上的单调递增区间.【解答】解:(1)由函数f(x)=Asin(ωx+φ),|φ|<的图象可得A=2, =﹣,∴ω=2.再根据五点法作图可得2•+φ=,∴φ=,∴f(x)=2sin(2x+).(2)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[得kπ﹣,kπ+],k∈Z.再结合x∈[π,2π],可得函数的增区间为[π,]、[,2π].21.从某学校随机抽取10名老师,获得第i名老师的月收入xi (千元)与月消费yi(千元)的数据资料,算得果, xi =30, yi=10, xiyi=54, xi2=170.(1)已知月收入x与月消费y之间具有线性相关关系,求x与y的线性回归方程,并判断x 与y之间是正相关还是负相关;(2)若该学校某老师的月收入为2.5(千元),预测该老师的月储蓄(月储蓄=月收入﹣月消费).(附:在线性回归方=x+中, =, =﹣.【考点】线性回归方程.【分析】(1)由题意可知n, =3, =2进而代入可得b、a值,可得方程;由回归方程x的系数b的正负可判;(2)把x=2.5代入回归方程求其函数值即可.【解答】解:(1)由题意知n=10, =3, =2, xi yi=54, xi2=170∴b═=﹣,a=2﹣(﹣)×3=,故所求回归方程为y=﹣x+.…由于变量y的值随x的值增加而减小,故x与y之间是负相关.…(2)将x=2.5代入回归方程可以预测该家庭的月储蓄为y=2.5﹣(﹣×2.5+)=0.4625(千元).…22.如图所示,圆O的半径为R,A、B、C为圆O上不同的三点,圆心O在线段AC上.(1)当AB=4,BC=3时,在圆O内任取一点P,求所取点P恰好位于△ABC内的概率;(2)当R=1,B点为圆O上的动点时,此时在圆O内任取一点Q,求点Q位于△ABC内的概率的取值范围.【考点】几何概型.【分析】(1)根据题意,求出圆O的面积与△ABC的面积,计算点P恰好位于△ABC内的概率值;(2)建立适当的直角坐标系,求出对应△ABC的面积,计算点Q位于△ABC内的概率与取值范围.【解答】解:(1)记“所求点恰好位于△ABC内”为事件A,∵AC为原O的直径,∴2R==5,半径R=,∴圆O的面积为S=π•=;圆O又∵△ABC的面积为S△ABC=×3×4=6,∴点P恰好位于△ABC内的概率为P(A)===;(2)以O为原点,直线AC为x轴,以过O点并垂直于直线AC的直线为y轴建立直角坐标系,则有A(﹣1,0),C(1,0),设B(x,y);记“所取点Q位于△ABC内”为事件B,则由题设知﹣1<x<1,R2=x2+y2=1,∵=(x+1,y),=(x﹣1,y),∴||==,||==,∴△ABC的面积为S△ABC=|AB|•||=ו=;又∵﹣1<x<1,∴0<4﹣4x2<4,∴0<S△ABC<1;又∵S=π×12=π,圆O∴P(B)=,∴点Q位于△ABC内的概率取值范围为0<P(B)<.....。

相关文档
最新文档