【创新设计】2015高考数学(人教,理)一轮题组训练:12-1合情推理与演绎推理]

合集下载

高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高考数学(理科)一轮复习合情推理与演绎推理学案附答案本资料为woRD文档,请点击下载地址下载全文下载地址学案37 合情推理与演绎推理导学目标:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.自主梳理自我检测.观察′=2x,′=4x3,′=-sinx,由归纳推理可得:若定义在R上的函数f满足f=f,记g为f的导函数,则g等于A.fB.-fc.gD.-g2.给出下面类比推理命题:①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈c,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a =c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈c,则a-b>0⇒a>b”.其中类比结论正确的个数是A.0B.1c.2D.33.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.5.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.探究点一归纳推理例1 在数列{an}中,a1=1,an+1=2an2+an,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移 1 观察:①sin210°+cos240°+sin10°cos40°=34;②sin26°+cos236°+sin6°cos36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二类比推理例2 在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有paha+pbhb+pchc=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2 在Rt△ABc中,若∠c=90°,Ac=b,Bc =a,则△ABc的外接圆半径r=a2+b22,将此结论类比到空间有_______________________________________________.探究点三演绎推理例3 在锐角三角形ABc中,AD⊥Bc,BE⊥Ac,D、E是垂足.求证:AB的中点m到D、E的距离相等.变式迁移3 指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数..合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.一、选择题.定义A*B,B*c,c*D,D*A的运算分别对应下图中的、、、,那么下图中的、所对应的运算结果可能是A.B*D,A*DB.B*D,A*cc.B*c,A*DD.c*D,A*D2.设f=1+x1-x,又记f1=f,fk+1=f),k=1,2,…,则fXX等于A.-1xB.xc.x-1x+1D.1+x1-x3.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a•b=b•a”;②“t=mt+nt”类比得到“•c=a•c+b•c”;③“t=m”类比得到“•c=a•”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a•p=x•p⇒a=x”;⑤“|m•n|=|m|•|n|”类比得到“|a•b|=|a|•|b|”;⑥“acbc=ab”类比得到“a•cb•c=ab”.以上的式子中,类比得到的结论正确的个数是A.1B.2c.3D.44.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是A.289B.1024c.1225D.13785.已知整数的数对如下:,,,,,,,,,,,,…则第60个数对是A.B.c.D.二、填空题6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是___________________________________________________ _____________________.7.定义一种运算“*”:对于自然数n满足以下运算性质:8.观察下列等式=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为___________________________________________________ __.三、解答题9.(12分)已知数列{an}的前n项和为Sn,a1=-23,且Sn+1Sn+1+2=0.计算S1,S2,S3,S4,并猜想Sn的表达式.10.已知函数f=-aax+a,证明:函数y=f的图象关于点12,-12对称;求f+f+f+f+f+f的值.1.如图1,若射线om,oN上分别存在点m1,m2与点N1,N2,则=om1om2•oN1oN2;如图2,若不在同一平面内的射线oP,oQ和oR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.学案37 合情推理与演绎推理自主梳理归纳推理全部对象部分个别类比推理这些特征特殊到特殊①一般原理②特殊情况③特殊情况一般特殊自我检测.D [由所给函数及其导数知,偶函数的导函数为奇函数.因此当f是偶函数时,其导函数应为奇函数,故g=-g.] 2.c [①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.]3.1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.4.13+23+33+43+53+63=212解析由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.5.一切奇数都不能被2整除大前提2100+1是奇数小前提所以2100+1不能被2整除结论课堂活动区例1 解题导引归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解在{an}中,a1=1,a2=2a12+a1=23,a3=2a22+a2=12=24,a4=2a32+a3=25,…,所以猜想{an}的通项公式为an=2n+1.这个猜想是正确的,证明如下:因为a1=1,an+1=2an2+an,所以1an+1=2+an2an=1an+12,即1an+1-1an=12,所以数列1an是以1a1=1为首项,2为公差的等差数列,所以1an=1+×12=12n+12,所以通项公式an=2n+1.变式迁移1 解猜想sin2α+cos2+sinαcos=34.证明如下:左边=sin2α+cos[cos+sinα]=sin2α+32cosα-12sinα32cosα+12sinα=sin2α+34cos2α-14sin2α=34=右边.例2 解题导引类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为pa,pb,pc,pd,且相应各面上的高分别为ha,hb,hc,hd.则有paha+pbhb+pchc+pdhd=1.证明如下:paha=13S△BcD•pa13S△BcD•ha=VP—BcDVA—BcD,同理有pbhb=VP—cDAVB—cDA,pchc=VP—BDAVc—BDA,pdhd=VP—ABcVD—ABc,VP—BcD+VP—cDA+VP—BDA+VP—ABc=VA—BcD,∴paha+pbhb+pchc+pdhd=VP—BcD+VP—cDA+VP—BDA+VP—ABcVA—BcD=1.变式迁移2 在三棱锥A—BcD中,若AB、Ac、AD两两互相垂直,且AB=a,Ac=b,AD=c,则此三棱锥的外接球半径R=a2+b2+c22例3 解题导引在演绎推理中,只有前提和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明因为有一个内角是直角的三角形是直角三角形,——大前提在△ABD中,AD⊥Bc,即∠ADB=90°,——小前提所以△ADB是直角三角形.——结论因为直角三角形斜边上的中线等于斜边的一半,——大前提而m是Rt△ADB斜边AB的中点,Dm是斜边上的中线,——小前提所以Dm=12AB.——结论同理Em=12AB,所以Dm=Em.变式迁移3 解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.课后练习区.B [由图得A表示|,B表示□,c表示—,D表示○,故图表示B*D和A*c.]2.A [计算f2=f1+x1-x=1+1+x1-x1-1+x1-x =-1x,f3=f-1x=1-1x1+1x=x-1x+1,f4=1+x-1x+11-x-1x+1=x,f5=f1=1+x1-x,归纳得f4k+i=fi,k∈N*,i=1,2,3,4.∴fXX=f2=-1x.]3.B [只有①、②对,其余错误,故选B.]4.c [设图中数列1,3,6,10,…的通项公式为an,则a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n.故an-a1=2+3+4+…+n,∴an=nn+12.而图中数列的通项公式为bn=n2,因此所给的选项中只有1225满足a49=49×502=b35=352=1225.]5.D [观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n+1的数对有n个,多个数对的排序是按照横坐标依次增大的顺序来排的,由nn +12=60⇒n=120,n∈Z,n=10时,nn+12=55个数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是,,,,,∴第60个数对是.]6.空间正四面体的内切球的半径是高的14解析利用体积分割可证明.7.n8.n++…+=2解析∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n个等式为n++…+=2.9.解当n=1时,S1=a1=-23.当n=2时,1S2=-2-S1=-43,∴S2=-34.当n=3时,1S3=-2-S2=-54,∴S3=-45.当n=4时,1S4=-2-S3=-65,∴S4=-56.猜想:Sn=-n+1n+2.0.证明函数f的定义域为R,任取一点,它关于点12,-12对称的点的坐标为.由已知得y=-aax+a,则-1-y=-1+aax+a=-axax+a,f=-aa1-x+a=-aaax+a=-a•axa+a•ax=-axax+a,∴-1-y =f.即函数y=f的图象关于点12,-12对称.解由有-1-f=f,即f+f=-1.∴f+f=-1,f+f=-1,f+f=-1,则f+f+f+f+f+f=-3.1.解类似的结论为:Vo—P1Q1R1Vo—P2Q2R2=oP1oP2•oQ1oQ2•oR1oR2.这个结论是正确的,证明如下:如图,过R2作R2m2⊥平面P2oQ2于m2,连接om2.过R1在平面oR2m2作R1m1∥R2m2交om2于m1,则R1m1⊥平面P2oQ2.由Vo—P1Q1R1=13S△P1oQ1•R1m1=13•12oP1•oQ1•sin∠P1oQ1•R1m1=16oP1•oQ1•R1m1•sin∠P1oQ1,同理,Vo—P2Q2R2=16oP2•oQ2•R2m2•sin∠P2oQ2.所以=oP1•oQ1•R1m1oP2•oQ2•R2m2.由平面几何知识可得R1m1R2m2=oR1oR2.所以=oP1•oQ1•oR1oP2•oQ2•oR2.所以结论正确.。

【配套课件】《创新设计·高考一轮总复习》数学 人教A版(理)第十二篇 第1讲 合情推理与演绎推理

【配套课件】《创新设计·高考一轮总复习》数学 人教A版(理)第十二篇  第1讲 合情推理与演绎推理
f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)= f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76; f(10)=f(8)+f(9)=123.所以a10+b10=123. 答案 C
3.(2013· 临沂二模)对于大于或等于2的自然数n的二次方幂有如下 分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…,根据
考向一
【例1】►观察下列等式:
1=1 , 1+2 =3, 1+2 +3=6, 1+2 +3+4=10, 1+2 +3+4+5=15,
归纳推理
13=1 , 13+2 3=9, 13+2 3+33=36, 3 3 3 3 1 +2 +3 +4 =100, 3 3 3 3 3 1 +2 +3 +4 +5 =225.
(1)数的归纳包括数字归纳和式子归纳,解决此 类问题时,需要细心观察,寻求相邻项及项与序号之间的关
系,同时还要联系相关的知识,如等差数列、等比数列等.
(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.
3 1 1 3 【训练 1】 (2012· 青岛模拟)观察下列等式: × = 1- 2, 1× 2 2 2 1× 2 1 4 1 1 3 1 4 1 5 1 × + × = 1- , × + × + × =1- 2 2× 3 22 3× 22 1× 2 2 2× 3 22 3× 4 23 1 , …,由以上等式推测到一个一般结论为 ________. 4× 23
(2)类比推理:由两类对象具有某些类似特征和其中一类对象
的某些已知特征,推出另一类对象也具有这些特征的推理称为 类比推理.简言之,类比推理是由特殊到_____ 特殊 的推理.

【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)合情推理与演绎推理 理 北师大版

【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)合情推理与演绎推理 理 北师大版

第五节合情推理与演绎推理【考纲下载】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理方式.(2)特点:①是由部分到整体,由个别到一般的推理.②利用归纳推理得出的结论不一定是正确的.2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理过程.(2)特点:①是两类事物特征之间的推理.②利用类比推理得出的结论不一定是正确的.3.合情推理(1)定义:是根据实验和实践的结果,个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)分类:归纳推理与类比推理.4.演绎推理演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④C.②④⑤ D.①③⑤解析:选D 由归纳推理、类比推理及演绎推理的特征可知①③⑤正确.2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④解析:选C ①是类比推理,②④是归纳推理,③是非合情推理.3.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,上面推理的错误在于( ) A .大前提错误导致结论错 B .小前提错误导致结论错 C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析:选A 当a >1时,y =a x 为增函数;当0<a <1时,y =a x为减函数.故大前提错误. 4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:因为两个正四面体的棱长的比为1∶2,则底面积之比为1∶4,底面对应的高之比是1∶2,所以体积之比为1∶8.答案:1∶85.(教材习题改编)在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A+1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想,在n 边形A 1A 2…A n 中,成立的不等式为________.解析:∵9=32,16=42,25=52,且1=3-2,2=4-2,3=5-2,…,故在n 边形A 1A 2…A n中,有不等式1A 1+1A 2+…+1A n ≥n 2n -2 π成立.答案:1A 1+1A 2+…+1A n ≥n 2n -2 π(n ≥3)1.归纳推理是每年高考的常考内容,题型多为选择题和填空题,难度稍大,属中高档题. 2.高考对归纳推理的考查常有以下几个命题角度: (1)归纳推理与等式或不等式“共舞”问题; (2)归纳推理与数列“牵手”问题; (3)归纳推理与图形变化“相融”问题.[例1] (1)(2013·陕西高考)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, ……照此规律,第n 个等式可为________.(2)(2013·湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为n n +1 2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.(3)(2014·青岛模拟)某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n级分形图.一级分形图 二级分形图 三级分形图 ①n 级分形图中共有________条线段;②n 级分形图中所有线段长度之和为________.[自主解答] (1)观察规律可知,第n 个式子为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +12. (2)N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列;数列{b k }是以12为首项,-12为公差的等差数列.所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.(3)①分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =(3×2n -3)(n ∈N *).②分形图的每条线段的末端出发再生成两条长度为原来13的线段,∴n 级分形图中第n 级的所有线段的长度为b n =3×⎝ ⎛⎭⎪⎫23n -1(n ∈N *),∴n 级分形图中所有线段长度之和为S n =3×⎝ ⎛⎭⎪⎫230+3×⎝ ⎛⎭⎪⎫231+…+3×⎝ ⎛⎭⎪⎫23n -1=3×1-⎝ ⎛⎭⎪⎫23n 1-23=9-9×⎝ ⎛⎭⎪⎫23n.[答案] (1)12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +1 2(2)1 000 (3)①3×2n-3 ②9-9×⎝ ⎛⎭⎪⎫23n归纳推理问题的常见类型及解题策略(1)与等式或不等式“共舞”问题.观察所给的几个等式或不等式两边式子的特点,注意是纵向看,发现隐含的规律.(2)与数列“牵手”问题.先求出几个特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围,从而由特殊的结论推广到一般结论.(3)与图形变化“相融”问题.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.1.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…,可知f n (x )的分母中常数项为2n,分母中x 的系数为2n-1,故f n (x )=f (f n -1(x ))=x2n -1 x +2n .答案:x2n -1 x +2n2.如图的倒三角形数阵满足:①第1行的n 个数,分别是1,3,5,…,2n -1;②从第2行起,各行中的每一个数都等于它肩上的两数之和;③数阵共有n 行.当n =2 012时,第32行的第17个数是________.1 3 5 7 9 11 ……4 8 12 16 20 ……12 20 28 36 …………解析:每行的第1个数分别是1,4,12,32,…,记为数列{a n },它的通项公式为a n =n ×2n-1,则第32行的第1个数为a 32=32×232-1=236,而在第32行的各个数成等差数列,且公差为232,所以第17个数是236+(17-1)×232=236+24×232=2×236=237.答案:2373.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析:进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n n +32,易知f (14)=119,f (15)=135,故n =14.答案:14[例2]如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则1×h 1+2×h 2+3×h 3+4×h 4=2Sk.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=k ,则H 1+2H 2+3H 3+4H 4值为( )A.4V kB.3V kC.2V kD.V k[自主解答]在平面凸四边形中,连接P 点与各个顶点,将其分成四个小三角形,根据三角形面积公式,得S =12(a 1h 1+a 2h 2+a 3h 3+a 4h 4)=12(kh 1+2kh 2+3kh 3+4kh 4) =k 2(h 1+2h 2+3h 3+4h 4).所以h 1+2h 2+3h 3+4h 4=2S k. 类似地,连接Q 点与三棱锥的四个顶点,将其分成四个小三棱锥,则有 V =13(S 1H 1+S 2H 2+S 3H 3+S 4H 4)=13(kH 1+2kH 2+3kH 3+4kH 4)=k3(H 1+2H 2+3H 3+4H 4), 所以H 1+2H 2+3H 3+4H 4=3Vk.[答案] B【方法规律】类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.解析:法一:设数列{a n }的公差为d 1,则d 1=a n -a m n -m =b -a n -m .所以a m +n =a m +nd 1=a +n ·b -an -m=bn -am n -m.类比推导方法可知:设数列{b n }的公比为q ,由b n =b m q n -m ,可知d =cq n -m,所以q =n -m d c ,所以b m +n =b m q n =c ·n -m ⎝ ⎛⎭⎪⎫d c n=n -m d nc m . 法二:(直接类比)设数列{a n }的公差为d 1,数列{b n }的公比为q ,因为等差数列中a n =a 1+(n -1)d 1,等比数列中b n =b 1q n -1,因为a m +n =nb -man -m ,所以b m +n =n -m d nc m.答案:n -m d nc m[例3] 已知函数f (x )=a x+bx ,其中a >0,b >0,x ∈(0,+∞),试确定f (x )的单调区间,并证明在每个单调区间上的增减性.[自主解答] 法一:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a x 1+bx 1-⎝ ⎛⎭⎪⎫a x 2+bx 2=(x 2-x 1)·⎝⎛⎭⎪⎫a x 1x 2-b .当0<x 1<x 2≤a b 时,∵a >0,b >0,∴x 2-x 1>0,0<x 1x 2<a b ,ax 1x 2>b , ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在⎝⎛⎦⎥⎤0, a b 上是减函数;当x 2>x 1≥ a b >0时,x 2-x 1>0,x 1x 2>a b ,ax 1x 2<b ,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增函数.法二:∵a >0,b >0,x ∈(0,+∞),∴令f ′(x )=-a x 2+b =0(x >0),得x = ab,当0<x ≤ a b 时,-a x 2≤-b ,∴-ax2+b ≤0,即f ′(x )≤0,∴f (x )在⎝ ⎛⎦⎥⎤0, a b 上是减函数;当x ≥ a b 时,-a x 2+b ≥0,即f ′(x )≥0,∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增函数.【方法规律】应用演绎推理应注意的问题演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.已知函数f (x )=2x-12x +1(x ∈R ).(1)判定函数f (x )的奇偶性;(2)判定函数f (x )在R 上的单调性,并证明.解:(1)对任意x ∈R ,有-x ∈R ,并且f (-x )=2-x -12-x +1=1-2x 1+2x =-2x-12x+1=-f (x ),所以f (x )是奇函数.(2)f (x )在R 上单调递增,证明如下: 任取x 1,x 2∈R ,并且x 1>x 2,f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1= 2x 1-1 2x 2+1 - 2x 2-1 2x 1+12x 1+1 2x 2+1=2 2x 1-2x 22x 1+1 2x 2+1.∵x 1>x 2,∴2x 1>2x 2>0,即2x 1-2x 2>0.又∵2x 1+1>0,2x 2+1>0,∴2 2x 1-2x 22x 1+1 2x 2+1>0.∴f (x 1)>f (x 2).∴f (x )在R 上为单调递增函数.———————————[课堂归纳——通法领悟]———————————————— 1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:观察、比较→联想、类推→猜想新结论3个注意点——应用合情推理与演绎推理应注意的问题(1)在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(2)合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.(3)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.前沿热点(十一)与归纳推理有关的创新交汇题1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比,题型多为客观题.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.[典例] (2013·新课标全国卷Ⅰ)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则 ( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列[解题指导] 先确定三角形的一边长不变及周长不变,利用另两边最接近的时候面积最大等知识求解.[解析] 在△A 1B 1C 1中,b 1>c 1,b 1+c 1=2a 1,∴b 1>a 1>c 1.在△A 2B 2C 2中,a 2=a 1,b 2=c 1+a 12,c 2=b 1+a 12,b 2+c 2=2a 1,∴c 1<b 2<a 1<c 2<b 1.在△A 3B 3C 3中,a 3=a 2=a 1,b 3=c 2+a 22=c 2+a 12,c 3=b 2+a 22=b 2+a 12,b 3+c 3=2a 1,∴a 1<b 3<c 2,b 2<c 3<a 1,∴c 1<b 2<c 3<a 1<b 3<c 2<b 1.由归纳知,n 越大,两边c n ,b n 越靠近a 1且c n +b n =2a 1,此时面积S n 越来越大,当且仅当c n =b n =a 1时,△A n B n C n 的面积最大.[答案] B[名师点评] 解决本题的关键有以下几点:(1)由条件a n +1=a n ,确定三角形的一边为固定值.(2)由条件可推出b 1+c 1=b 2+c 2=b 3+c 3=2a 1,进而得出△A n B n C n 的周长为定值.(3)利用“若三角形的一边不变及周长不变,则另外两边越接近,面积越大”推得结论.在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)由定义知,四边形DEFG 由一个等腰直角三角形和一个平行四边形构成,其内部格点有1个,边界上格点有6个,S 四边形DEFG =3.(2)由待定系数法可得,⎩⎪⎨⎪⎧ 12=a ·0+b ·3+c ,1=a ·0+b ·4+c ,3=a ·1+b ·6+c⇒⎩⎪⎨⎪⎧a =1,b =12,c =-1,当N =71,L =18时,S =1×71+12×18-1=79.答案:(1)3,1,6 (2)79[全盘巩固]1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.观察下式:1+3=221+3+5=321+3+5+7=421+3+5+7+9=52…据此你可归纳猜想出一般结论为( )A .1+3+5+…+(2n -1)=n 2(n ∈N *)B .1+3+5+…+(2n +1)=n 2(n ∈N *)C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *)D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *)解析:选D 观察可见第n 行左边有n +1个奇数,右边是(n +1)2.3.已知数列a n :11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为( )A.3724B.76C.1115D.715解析:选A 通过将数列的前10项分组得到第一组有一个数:11,分子、分母之和为2;第二组有两个数:21,12,分子、分母之和为3;第三组有三个数:31,22,13,分子、分母之和为4;第四组有四个数,依次类推,a 99,a 100分别是第十四组的第8个数和第9个数,分子、分母之和为15,所以a 99=78,a 100=69.故a 99+a 100=3724.4.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b”.以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 解析:选B ①②正确,③④⑤⑥错误.5.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.6.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体S ­ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为R ,四面体S ­ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4 解析:选C 设三棱锥的内切球球心为O ,那么由V =V O ­ABC +V O ­SAB +V O ­SAC +V O ­SBC ,即V =13S 1R +13S 2R +13S 3R +13S 4R ,可得R =3V S 1+S 2+S 3+S 4.7.观察下列几个三角恒等式:①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1;②tan 5°tan 100°+tan 100°tan(-15°)+tan(-15°)tan 5°=1; ③tan 13°tan 35°+tan 35°tan 42°+tan 42°tan 13°=1.一般地,若tan α,tan β,tan γ都有意义,你从这三个恒等式中猜想得到的一个结论为________________________________________________________________________.解析:所给三角恒等式都为tan αtan β+tan βtan γ+tan γtan α=1的结构形式,且α、β、γ之间满足α+β+γ=90°,所以可猜想当α+β+γ=90°时,tan αtan β+tan βtan γ+tan γtan α=1.答案:当α+β+γ=90°时,tan αtan β+tan βtan γ+tan γtan α=1 8.对大于或等于2的正整数的幂运算有如下分解方式: 22=1+3 32=1+3+5 42=1+3+5+7 … 23=3+5 33=7+9+11 43=13+15+17+19 …根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =________.解析:由22=1+3,32=1+3+5,42=1+3+5+7,…,可知n 2=1+3+5+…+(2n -1).由m 2=1+3+5+…+11,可知m =6.易知53=21+23+25+27+29,则21是53的分解中最小的正整数,可得p =5.故m +p =11.答案:119.我国的刺绣有着悠久的历史,如图所示中的(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.则f (n )的表达式为________________.(1) (2) (3) (4)解析:我们考虑f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.答案:f (n )=2n 2-2n +1 10.给出下面的数表序列: 表1 表2 表31 1 3 1 3 5 4 4 8 12其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=34. (2)归纳三角恒等式sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos 60°-2α 2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34. 12.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n }是等和数列,且a 1=2,公和为5.求:(1)a 18的值;(2)该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n )=52n ; 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12. 综上所述,S n =⎩⎪⎨⎪⎧ 52n ,n 为偶数,52n -12,n 为奇数.[冲击名校]1.如图,一个粒子在第一象限运动,在第一秒内它从原点运动到(0,1),然后它按图示在x 轴、y 轴的平行方向运动,且每秒移动一个单位长度,则在第12秒时,这个粒子所处的位置是( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)解析:选C 第一层有(0,1),(1,1),(1,0)三个整点(除原点),共用3秒;第二层有五个整点(2,0),(2,1),(2,2),(1,2),(0,2),共用5秒;第三层有七个整点(0,3),(1,3),(2,3),(3,3),(3,2),(3,1),(3,0),共用7秒.则在第12秒时,这个粒子所处的位置是(3,3).2.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 907B .2 111C .2 012D .2 090解析:选C 依题意,设位于三角形内的最小数是n ,其中n 被8除后的余数必是3,4,5,6之一,则这九个数的和等于n +3(n +8)+5(n +16)=9n +104.令9n +104=2 012,得n =212,且n =212被8除后的余数是4.[高频滚动]1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0解析:选B 可行域为直角三角形ABC (如图),由z =2x +y ,得y =-2x +z ,由图象可知,当直线y =-2x +z 过点B (2,0)和点A (1,0)时,z 分别取到最大值4和最小值2.2.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +2y -5>0,2x +y -7>0,x ≥0,y ≥0.若x ,y 为整数,则3x +4y 的最小值是( )A .14B .16C .17D .19解析:选B 画出可行域如图.其最优解是点M(3,1)附近的整点.考虑到线性目标函数,只要横坐标增加1即可.故最优点为整点(4,1),其最小值为16.。

高考数学(理)新创一轮(实用课件)人教A版:第十二章 第1节 合情推理与演绎推理

高考数学(理)新创一轮(实用课件)人教A版:第十二章 第1节 合情推理与演绎推理

……
故第 10 个图中,小石子有
(1)第 1 个图中, 小石子有 1 个, 第 2 个图中, 小石子有 3=1+2 个,
10× 11 1+2+3+…+10= =55 个, 2 第 3 个图中,小石子有 6=1+2+3 个, 即 a10=55. 第 4 个图中,小石子有 10=1+2+3
+4 个,
考点一 归纳推理
[例 1] (2)(2018·济宁模拟)已知 ai>0(i=1,2,3,…,n),观察下列不等式: a1+a2 ≥ a1a2; 2 a1+a2+a3 3 ≥ a1a2a3; 3 a1+a2+a3+a4 4 ≥ a1a2a3a4; 4 a1+a2+…+an …… 照此规律,当 n∈N ,n≥2 时, ≥ ________ . n a1+a2+…an n * 解析 (2)根据题意有 ≥ a 1a2…an(n∈ N , n≥2). n n 6 7 12 答案 (1)2 +2 +…+2 (2) a1a2…an
*
考点一 归纳推理
归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项 与项数的关系,列出即可. (4)与图形变化有关的推理. 合理利用特殊图形归纳推理得出结论, 并用赋值检验法验证 其真伪性.
(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×
考点一 归纳推理
[例 1] (1)(2018· 佛山一模)所有真约数(除本身之外的正约数)的和等于它本身的正 整数叫做完全数(也称为完备数、完美数),如 6=1+2+3;28=1+2+4+7+14; 496=1+2+4+8+16+31+62+124+248,…,此外,它们都可以表示为 2 的 一些连续正整数次幂之和,如 6=21+22,28=22+23+24,…,按此规律,8 128 可表示为__________.

高考数学理科一轮复习合情推理与演绎推理学案附答案

高考数学理科一轮复习合情推理与演绎推理学案附答案

合用精选文件资料分享高考数学(理科)一复合情推理与演推理教课方案附答案教课方案 37 合情推理与演推理学目: 1. 认识合情推理的含,能利用和比等行的推理,认识合情推理在数学中的作用.2. 认识演推理的重要性,掌握演推理的基本模式,并能运用它行一些推理.3.认识合情推理和演推理之的系和差异.自主梳理自我1.(2010?山 ) 察 (x2) ′= 2x,(x4) ′= 4x3,(cos x) ′=- sin x,由推理可得:若定在 R上的函数 f(x)足 f( -x) =f(x) ,g(x) f(x)的函数, g( -x) 等于() A.f(x) B.-f(x) C.g(x) D.- g(x) 2.(2010?珠海 ) 出下边比推理命 ( 此中 Q有理数集, R数集, C复数集 ) :①“若 a,b∈R, a-b=0? a =b” 比推出“若 a,b∈C, a-b=0? a=b”;②“若 a,b,c,d∈R,复数 a+bi =c+di ? a= c,b=d” 比推出“若 a,b,c,d∈Q, a+b2=c+d2? a=c,b=d”;③“若 a,b∈R, a- b>0? a>b” 比推出“若 a,b∈C, a-b>0? a>b”.此中比正确的个数是 () A .0 B.1 C.2 D.3 3 .(2009?江 ) 在平面上,若两个正三角形的比 1∶2,它的面比 1∶4,似地,在空中,若两个正四周体的棱比 1∶2,它的体比 ________. 4 .(2010?西) 察以低等式: 13+23=32,13 +23+33=62,13 +23+33+43=102,⋯,依据上述律,第五个等式. 5 .(2011?州月考 ) 全部奇数都不可以被 2 整除, 2100+1 是奇数,所以 2100+1 不可以被 2 整除,其演推理的“三段”的形式.研究点一推理例 1 在数列 {an} 中,a1= 1,an+1=2an2+an,n∈N*,猜想个数列的通公式,个猜想正确?明理由.式迁徙 1察:① sin210°+cos240°+sin 10°cos 40°=34;②sin26 °+ cos236°+ sin 6 °cos 36 °= 34. 由上边两的构律,你能否提出一个猜想?并明你的猜想.研究点二比推理例 2 (2011?川月考 ) 在平面内,可以用面法明下边的:从三角形内部任意一点,向各引垂,其长度分别为 pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有 paha+pbhb+pchc=1. 请你运用类比的方法将此结论推行到四周体中并证明你的结论.变式迁徙 2 在 Rt△ABC中,若∠ C=90°, AC=b,BC=a,则△ ABC的外接圆半径 r =a2+b22,将此结论类比到空间有.研究点三演绎推理例3在锐角三角形ABC中, AD⊥BC,BE⊥AC,D、E 是垂足.求证: AB的中点 M到 D、E的距离相等.变式迁徙 3指出对结论“已知 2 和 3 是无理数,证明2+3 是无理数”的下述证明能否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而 2 与 3 都是无理数,∴ 2+ 3 也是无理数. 1 .合情推理是指“符合情理”的推理,数学研究中,获取一个新结论以前,合情推理常常能帮助我们猜想和发现结论;证明一个数学结论以前,合情推理常常能为我们供给证明的思路和方向.合情推理的过程概括为:从详尽问题出发? D→观察、解析、比较、联想? D→概括、类比 ? D→提出猜想 . 一般来说,由合情推理所获取的结论,但是是一种猜想,其靠谱性还需进一步证明. 2 .概括推理与类比推理都属合情推理:(1) 概括推理:由某类事物的部分对象拥有某些特色,推出该类事物的全部对象都拥有这些特色的推理,或由个别事实概括出一般结论的推理,称为概括推理.它是一种由部分到整体,由个别到一般的推理. (2)类比推理:由两类对象拥有某些近似特色和此中一类对象的某些已知特色,推出另一类对象也拥有这些特色的推理称为类比推理,它是一种由特别到特其余推理. 3 .从一般性的原理出发,推出某个特别状况下的结论,把这类推理称为演绎推理,也就是由一般到特其余推理,三段论是演绎推理的一般模式,包含大前提,小前提,结论. ( 满分: 75 分)一、选择题 ( 每题 5 分,共 25 分) 1 .(2011?福建厦门华侨中学模拟) 定义 A*B,B*C,C*D,D*A 的运算分别对应以以下图中的 (1) 、(2) 、(3) 、(4) ,那么以以下图中的 (A) 、(B) 所对应的运算结果可能是() A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D 2.(2011?厦门模拟 )设 f(x) =1+x1-x,又记 f1(x) =f(x) ,fk +1(x) =f(fk(x)) ,k=1,2 ,⋯, f2 010(x)等于() A .- 1x B .x C.x -1x++x1-x 3.由代数式的乘法法比推向量的数目的运算法:①“ mn=nm” 比获取“ a?b=b?a”;②“ (m+n)t =mt+nt ” 比获取“ (a +b)?c =a?c+b?c”;③“ (m?n)t=m(n?t)” 比获取“(a?b)?c =a?(b?c) ”;④“ t ≠0,mt=xt ? m=x” 比获取“ p≠0,a?p=x?p? a=x”;⑤“ |m?n|=|m|?|n|” 比获取“ |a?b|=|a|?|b|”;⑥“ acbc=ab” 比获取“ a?cb?c=ab”.以上的式子中,比获取的正确的个数是() A .1 B.2 C.3 D.4 4.(2009?湖北 ) 古希腊人常用小石子在沙上成各种形状来研究数,比方:他研究 (1) 中的 1,3,6,10 ,⋯,因为些数能表示成三角形,将其称三角形数;似的,称 (2) 中的 1,4,9,16 ,⋯的数正方形数.以下数中既是三角形数又是正方形数的是() A.289 B.1 024 C .1 225 D .1 378 5 .已知整数的数如下: (1,1),(1,2) ,(2,1) ,(1,3) ,(2,2) ,(3,1) ,(1,4), (2,3),(3,2),(4,1) ,(1,5) ,(2,4) ,⋯第 60 个数是 ()A.(3,8) B.(4,7)C.(4,8) D.(5,7) 二、填空 ( 每小 4 分,共 12分) 6.已知正三角形内切的半径是高的 13,把个推行到空正四周体,似的是___________________________________________________________ _____________. 7 .(2011?广深圳高中学模) 定一种运算“* ”:于自然数 n 足以下运算性: 8 .(2011?西) 察以低等式 1 =1 2 +3+4=9 3 +4+5+6+7=25 4 +5+6+7+8+9+10=49 ⋯照此律,第n 个等式.三、解答 ( 共 38 分) 9 .(12 分)已知数列 {an} 的前 n 和 Sn,a1=-23,且 Sn+1Sn+1+2=0(n ≥2) .算 S1,S2,S3,S4,并猜想Sn 的表达式.10.(12 分)(2011? 杭州研 ) 已知函数 f(x) =- aax+a (a>0 且 a≠1) ,(1)明:函数 y=f(x) 的象关于点 12,-12 称; (2) 求 f( -2)+f( -1) +f(0) +f(1) +f(2) +f(3) 的. 11 .(14 分) 如 1,若射 OM,ON上分存在点 M1,M2与点 N1,N2,=OM1OM2?ON1ON2;如2,若不在同一平面内的射 OP,OQ和 OR上分存在点 P1,P2,点 Q1,Q2和点 R1,R2,似的是什么?个正确?明原由.教课方案37合情推理与演推理自主梳理推理全部象部分个比推理些特色特别到特别①一般原理②特别状况③特别状况一般特别自我 1 .D[ 由所函数及其数知,偶函数的函数奇函数.所以当f(x)是偶函数,其函数奇函数,故 g( -x) =- g(x) .] 2.C[ ①②正确,③ .因两个复数假如不全部是数,不可以比大小.] 3.1∶8 解析∵两个正三角形是相似的三角形,∴它的面之比是相似比的平方.同理,两个正四周体是两个相似几何体,体之比相似比的立方,所以它的体比 1∶8. 4 .13+23+ 33+43+53+63=212 解析由前三个式子可以得出以下律:每个式子等号的左是从 1 开始的正整数的立方和,且个数挨次多 1,等号的右是一个正整数的平方,后一个正整数挨次比前一个大 3,4 ,⋯,所以,第五个等式13+23+33+43+53+63=212. 5.全部奇数都不可以被 2 整除大前提2100 +1 是奇数小前提所以 2100+1 不可以被 2 整除堂活区例 1 解引分完满和不完满,由推理所得的然未必是靠谱的,但它由特别到一般、由详尽到抽象的功能,科学的是十分合用的,察、,有限的料作整理,提出律性的法是科学研究的最基本的方法之一.解在{an} 中, a1=1,a2=2a12+a1=23, a3 =2a22+a2=12=24,a4=2a32+a3=25,⋯,所以猜想 {an} 的通公式 an=2n+1. 个猜想是正确的,明以下:因 a1=1,an+1=2an2+a n,所以 1an+1=2+an2an=1an+12,即 1an+1-1an=12,所以数列 1an 是以 1a1=1 首, 12 公差的等差数列,所以 1an=1+(n -1) ×12= 12n+12,所以通公式 an=2n+1. 式迁徙 1解猜想 sin2 α+cos2( α+30°) + sin αcos( α+30°) = 34. 明以下:左= sin2 α+cos( α+30°)[cos( α+30°) + sin α] =sin2 α+32cos α -12sin α32cos α+12sin α=sin2 α+34cos2α-14sin2 α=34=右侧.例 2 解题导引类比推理是依据两个对象有一部分属性近似,推出这两个对象的其余属性亦近似的一种推理方法,比方我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必然清楚类比其实不是论证,它可以帮助我们发现真谛.类比推理应从详尽问题出发,经过观察、解析、联想进行比较、概括、提出猜想.解类比:从四周体内部任意一点向各面引垂线,其长度分别为 pa,pb,pc,pd,且相应各面上的高分别为 ha,hb,hc,hd. 则有 paha+pbhb+pchc+pdhd=1. 证明以下:paha=13S△BCD?pa13S△BCD?ha=VP―BCDVA―BCD,同理有 pbhb=VP―CDAVB―CDA, pchc=VP―BDAVC―BDA, pdhd=VP―ABCVD―ABC,VP―BCD+VP―CDA+VP―BDA+VP―ABC=VA―BCD,∴paha+ pbhb+pchc+pdhd =VP―BCD+VP―CDA+VP―BDA+VP―ABCVA―BCD= 1.变式迁徙 2 在三棱锥 A―BCD中,若 AB、AC、AD两两相互垂直,且AB=a,AC=b,AD=c,则此三棱锥的外接球半径 R=a2+b2+c22 例3解题导引在演绎推理中,只有前提( 大前提、小前提) 和推理形式都是正确的,结论才是正确的,不然所得的结论可能就是错误的.推理时,要清楚大前提、小前说起两者之间的逻辑关系.证明(1)因为有一个内角是直角的三角形是直角三角形,――大前提在△ ABD 中,AD⊥BC,即∠ ADB=90°,――小前提所以△ ADB是直角三角形.――结论 (2) 因为直角三角形斜边上的中线等于斜边的一半,――大前提而 M是 Rt△ADB斜边 AB的中点, DM是斜边上的中线,――小前提所以 DM=12AB.――结论同理 EM=12AB,所以 DM=E M. 变式迁徙 3 解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不用然是无理数,所以原理的真实性仍没法判断.课后练习区1.B[ 由(1)(2)(3)(4)图得A表示|,B表示□, C表示―, D表示○,故图 (A)(B) 表示 B*D 和 A*C.] 2.A [ 计算 f2(x) =f1 +x1-x=1+1+x1-x1-1+x1-x=- 1x, f3(x) =f-1x=1-1x1+1x=x-1x+1, f4(x) =1+x-1x+11-x-1x+1=x,f5(x) =f1(x) =1+x1-x,概括得 f4k +i(x) =fi(x) ,k∈N*, i =1,2,3,4. ∴f2 010(x) = f2(x) =- 1x.] 3 .B [ 只有①、②对,其余,故 B.] 4 .C [ (1) 中数列 1,3,6,10 ,⋯的通公式 an, a2 -a1=2,a3-a2=3,a4-a3=4,⋯, an-an-1=n. 故 an-a1=2+3+4+⋯+ n,∴an=+而 (2) 中数列的通公式 bn =n2,所以所的中只有 1 225 足 a49=49×502= b35=352=1 225.] 5.D [ 察可知横坐和坐之和2 的数有 1 个,和3 的数有 2 个,和4 的数有 3 个,和5 的数有 4个,挨次推和 n+1 的数有 n 个,多个数的排序是依据横坐挨次增大的序来排的,由+=60? n(n +1) =120,n∈Z, n=10 ,+=55 个数,差 5 个数,且 5 个数的横、坐之和 12,它挨次是 (1,11) ,(2,10),(3,9),(4,8) ,(5,7) ,∴第 60 个数是 (5,7) .] 6 .空正四周体的内切球的半径是高的 14 解析利用体切割可明. 7 .n 8.n +(n +1) +⋯+ (3n -2) =(2n -1)2解析∵1=12,2 +3+4=9=32,3+4+5+6+7=25=52,∴第 n 个等式 n+(n +1) +⋯+ (3n-2)=(2n -1)2. 9.解当 n=1 ,S1=a1=- 23.(2 分) 当 n=2, 1S2=- 2-S1=- 43,∴S2=- 34.(4 分)当n=3,1S3=-2-S2=- 54,∴S3=- 45.(6 分) 当 n=4 , 1S4=- 2-S3=-65,∴S4=- 56.(8 分) 猜想:Sn=- n+1n+2 (n ∈N*) .(12 分) 10.(1) 明函数f(x)的定域R,任取一点(x,y),它关于点12,- 12 称的点的坐 (1 -x,- 1-y) .(2 分) 由已知得 y=-a ax+a,- 1-y=- 1+aax+a=- axax+a,(4 分) f(1 -x)=- aa1-x+a=- aaax+a =- a?axa+a?ax=- axax+a,∴- 1-y=f(1 -x) .即函数 y=f(x) 的象关于点 12,-12 称.(6 分)(2) 解由(1) 有- 1-f(x) =f(1 -x) ,即 f(x) +f(1 -x) =- 1.(9分) ∴f( - 2) +f(3) =- 1,f( -1) +f(2) =- 1, f(0)+f(1)=-1,f( -2) +f( -1) +f(0) +f(1) +f(2) +f(3) =- 3. (12 分) 11.解似的: VO―P1Q1R1VO―P2Q2R2=OP1OP2?OQ1OQ2?OR1OR2(4.分) 个是正确的,明以下:如, R2 作 R2M2⊥平面 P2OQ2于 M2,接 OM2. R1在平面 OR2M2作 R1M1∥R2M2交 OM2于 M1,R1M1⊥平面 P2OQ2. 由 VO―P1Q1R1=13S△P1OQ1?R1M1=13?12OP1?OQ1?sin∠P1OQ1?R1M1=16OP1?OQ1?R1M1?sin∠P1OQ1,(8分) 同理, VO―P2Q2R2=16OP2?OQ2?R2M2?sin∠P2OQ2. 所以=OP1?OQ1?R1M1OP2?OQ2?R2M2分.(10)由平面几何知识可得R1M1R2M2=O R1OR2.(12分) 所以=OP1?OQ1?OR1OP2?OQ2?OR2所以.结论正确. (14 分)。

[创新设计_教师用书](人教A版_理科)2015届高考数学第一轮复习细致讲解练_第三篇_三角函数、解三角形

[创新设计_教师用书](人教A版_理科)2015届高考数学第一轮复习细致讲解练_第三篇_三角函数、解三角形

第三篇三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数[最新考纲]1.了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.知 识 梳 理1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式: 角α的弧度数公式 |α|=l r(弧长用l 表示) 角度与弧度的换算①1°=π180rad ②1 rad =⎝ ⎛⎭⎪⎫180π°弧长公式 弧长l =|α|r 扇形面积公式 S =12lr =12|α|r 2 3.任意角的三角函数三角函数 正弦 余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α x 叫做α的余弦,记作cos αyx叫做α的正切,记作tan αⅠ ++ + Ⅱ + - - Ⅲ - - + Ⅳ -+-口诀Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余弦续表三角函数线有向线段MP 为正弦线有向线段OM 为余弦线 有向线段AT 为正切线辨 析 感 悟1.对角的概念的认识(1)小于90°的角是锐角.(×) (2)锐角是第一象限角,反之亦然.(×)(3)将表的分针拨快5分钟,则分针转过的角度是30°.(×) (4)相等的角终边一定相同,终边相同的角也一定相等.(×) 2.任意角的三角函数定义的理解(5)(教材练习改编)已知角α的终边经过点P (-1,2),则sin α=2-12+22=255.(√)(6)(2013·济南模拟改编)点P (tan α,cos α)在第三象限,则角α的终边在第二象限.(√)(7)(2011·新课标全国卷改编)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos θ=55.(×)[感悟·提升]1.一个区别 “小于90°的角”、“锐角”、“第一象限的角”的区别如下: 小于90°的角的范围:⎝ ⎛⎭⎪⎫-∞,π2,锐角的范围:⎝ ⎛⎭⎪⎫0,π2,第一象限角的范围:⎝ ⎛⎭⎪⎫2k π,2k π+π2(k ∈Z ).所以说小于90°的角不一定是锐角,锐角是第一象限角,反之不成立.如(1)、(2).2.三个防范 一是注意角的正负,特别是表的指针所成的角,如(3);二是防止角度制与弧度制在同一式子中出现;三是如果角α的终边落在直线上时,所求三角函数值有可能有两解,如(7).考点一 象限角与三角函数值的符号判断【例1】 (1)若sin α·tan α<0,且cos αtan α<0,则角α是( ).A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)sin 2·cos 3·tan 4的值( ). A .小于0 B .大于0 C .等于0D .不存在解析 (1)由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限的角,由cos αtan α<0,可知cos α,tan α异号.从而α为第三或第四象限角.综上,α为第三象限角. (2)∵sin 2>0,cos 3<0,tan 4>0, ∴sin 2·cos 3·tan 4<0. 答案 (1)C (2)A规律方法 熟记各个三角函数在每个象限内的符号是判断的关键,对于已知三角函数式符号判断角所在象限,可先根据三角函数式的符号确定各三角函数值的符号,再判断角所在象限.【训练1】 设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ).A .第一象限B .第二象限C .第三象限D .第四象限解析 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2≤0,知θ2为第二象限角.答案 B考点二 三角函数定义的应用【例2】 已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值. 解 由题意得,r =3+m 2,∴sin θ=m3+m 2=24m .∵m ≠0,∴m =± 5.故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角, ∴cos θ=x r =-322=-64,tan θ=y x =5-3=-153.当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角.∴cos θ=x r =-322=-64,tan θ=y x =-5-3=153.综上可知,cos θ=-64,tan θ=-153或cos θ=-64,tan θ=153. 规律方法 利用三角函数的定义求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x 、纵坐标y 、该点到原点的距离r .若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).【训练2】 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 设角α终边上任一点为P (k ,-3k ), 则r =k 2+-3k2=10|k |.当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk =10,∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k =-10, ∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.考点三 扇形弧长、面积公式的应用【例3】 已知一扇形的圆心角为α(α>0),所在圆的半径为R . (1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积; (2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 审题路线 (1)角度化为弧度⇒求扇形的弧长⇒S 弓=S 扇-S △⇒分别求S 扇=12lr ,S △=12r 2sin α⇒计算得S 弓.(2)由周长C 与半径R 的关系确定R 与α的关系式⇒代入扇形面积公式⇒确定S扇与α的关系式⇒求解最值.解 (1)设弧长为l ,弓形面积为S 弓,则 α=60°=π3,R =10,l =π3×10=10π3(cm),S 弓=S 扇-S △=12×10π3×10-12×102×sin π3=503π-5032=50⎝ ⎛⎭⎪⎫π3-32(cm 2). (2)法一 扇形周长C =2R +l =2R +αR ,∴R =C 2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 22α·14+4α+α2=C 22·14+α+4α≤C 216.当且仅当α2=4,即α=2 rad 时,扇形面积有最大值C 216.法二 由已知,得l +2R =C , ∴S 扇=12lR =12(C -2R )R =12(-2R 2+RC )=-⎝⎛⎭⎪⎫R -C 42+C 216.故当R =C 4,l =2R ,α=2 rad 时,这个扇形的面积最大,最大值为C 216. 规律方法 (1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷. (2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.学生用书第50页【训练3】 (1)一个半径为r 的扇形,若它的周长等于弧所在的半圆的弧长,那么扇形的圆心角是多少弧度?扇形的面积是多少?(2)一扇形的周长为20 cm;当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?解(1)设扇形的圆心角为θ rad,则扇形的周长是2r+rθ.依题意:2r+rθ=πr,∴θ=(π-2)rad.∴扇形的面积S=12r2θ=12(π-2)r2.(2)设扇形的半径为r,弧长为l,则l+2r=20,即l=20-2r(0<r<10).∴扇形的面积S=12lr=12(20-2r)r=-r2+10r=-(r-5)2+25.∴当r=5 cm时,S有最大值25 cm2,此时l=10 cm,α=lr=2 rad.因此,当α=2 rad时,扇形的面积取最大值.1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.创新突破4——以任意角为背景的应用问题【典例】 (2012·山东卷)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.突破1:理解点P 转动的弧长是解题的关键,在单位圆中可寻找直角三角形. 突破2:在直角三角形中利用三角函数定义求边长. 突破3:由几何图形建立P 点坐标与边长的关系.解析 如图,作CQ ∥x 轴,PQ ⊥CQ, Q 为垂足. 根据题意得劣弧=2,故∠DCP =2,则在△PCQ 中,∠PCQ =2-π2,|CQ |=cos ⎝ ⎛⎭⎪⎫2-π2=sin 2, |PQ |=sin ⎝⎛⎭⎪⎫2-π2=-cos 2,所以P 点的横坐标为2-|CQ |=2-sin 2,P 点的纵坐标为1+|PQ |=1-cos 2,所以P 点的坐标为(2-sin 2,1-cos 2), 故OP →=(2-sin 2,1-cos 2). 答案 (2-sin 2,1-cos 2)[反思感悟] (1)解决此类问题时应抓住在旋转过程中角的变化,结合弧长公式、解三角形等知识来解决.(2)常见实际应用问题有:表针的旋转问题、儿童游乐场的摩天轮的旋转问题等. 【自主体验】已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α=( ). A .-1B .1C .-2D .2 解析 圆的半径为2,π2的弧长对应的圆心角为π4,故以ON 为终边的角为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α|α=2k π+π4,k ∈Z ,故tan α=1.答案 B基础巩固题组(建议用时:40分钟)一、选择题1.若sin α<0且tan α>0,则α是( ).A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析 ∵sin α<0,则α的终边落在第三、四象限或y 轴的负半轴;又tan α>0,∴α在第一象限或第三象限,故α在第三象限. 答案 C2.(2014·汕头一中质检)一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为( ).A. π3B.2π3C. 3D. 2解析 设圆的半径为R ,由题意可知,圆内接正三角形的边长为3R ,∴圆弧长为3R .∴该圆弧所对圆心角的弧度数为3RR= 3.答案 C3.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 的坐标为( ).A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析 由弧长公式得,P 点逆时针转过的角度α=2π3,所以Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,即⎝ ⎛⎭⎪⎫-12,32.答案 A4.已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ).A.π4B.3π4C.5π4D.7π4 解析 由sin 3π4>0,cos 3π4<0知角θ是第四象限的角,∵tan θ=cos3π4sin3π4=-1,θ∈[0,2π),∴θ=7π4.答案 D 5.有下列命题:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y 2.其中正确的命题的个数是( ).A .1B .2C .3D .4 解析 ①正确,②不正确,∵sin π3=sin 2π3,而π3与2π3角的终边不相同.③不正确.sin α>0,α的终边也可能在y 轴的正半轴上. ④不正确.在三角函数的定义中,cos α=x r=x x 2+y2,不论角α在平面直角坐标系的任何位置,结论都成立. 答案 A 二、填空题6.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =______. 解析 因为sin θ=y42+y2=-255,所以y <0,且y 2=64,所以y =-8. 答案 -8 7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=____.解析 因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35. 答案 -358.函数y =2cos x -1的定义域为________. 解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边的范围(如图阴影所示). ∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z )三、解答题9.(1)写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-360°≤α<720°的元素α写出来: ①60°;②-21°.(2)试写出终边在直线y =-3x 上的角的集合S ,并把S 中适合不等式-180°≤α<180°的元素α写出来.解 (1)①S ={α|α=60°+k ·360°,k ∈Z },其中适合不等式-360°≤α<720°的元素α为-300°,60°,420°;②S ={α|α=-21°+k ·360°,k ∈Z },其中适合不等式-360°≤α<720°的元素α为-21°,339°,699°.(2)终边在y =-3x 上的角的集合是S ={α|α=k ·360°+120°,k ∈Z }∪{α|α=k ·360°+300°,k ∈Z }={α|α=k ·180°+120°,k ∈Z },其中适合不等式-180°≤α<180°的元素α为-60°,120°. 10.(1)已知扇形周长为10,面积是4,求扇形的圆心角;(2)一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .解 (1)设圆心角是θ,半径是r ,则⎩⎨⎧2r +rθ=10,12θ·r 2=4,解得⎩⎨⎧r =4,θ=12或⎩⎨⎧r =1,θ=8(舍去).∴扇形的圆心角为12.(2)设圆的半径为r cm ,弧长为l cm ,则⎩⎨⎧12lr =1,l +2r =4,解得⎩⎨⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1弧度. ∴AH =1·sin 1=sin 1 (cm), ∴AB =2sin 1 (cm).能力提升题组(建议用时:25分钟)一、选择题1.(2014·杭州模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ). A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,解得-2<a ≤3.答案 A2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( ). A .1 B .2 C .3 D .4解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当θ=π,cos θ=-1<0时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确. 答案 A 二、填空题3.若角α的终边落在直线x +y =0上,则sin α1-sin 2 α+1-cos 2αcos α=________.解析 原式=sin α|cos α|+|sin α|cos α,由题意知角α的终边在第二、四象限,sinα与cos α的符号相反,所以原式=0. 答案 0 三、解答题4.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tanα2sinα2cosα2的符号.解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α|2k +1π<α<2k π+3π2,k ∈Z .(2)由(2k +1)π<α<2k π+3π2, 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时,tanα2<0,sinα2>0,cosα2<0,所以tanα2sinα2cosα2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tanα2sinα2cosα2也取正号. 因此,tanα2sinα2cosα2取正号. 学生用书第51页第2讲同角三角函数的基本关系式与诱导公式[最新考纲]1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan α.2.三角函数的诱导公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sinα-sinαsinαcosαcosα余弦cos α-cosαcosα-cosαsinα-sinα正切tan αtanα-tanα-tanα口诀函数名不变,符号看象限函数名改变,符号看象限3.特殊角的三角函数值角α0°30°45°60°90°120°150°18的弧度数0π6π4π3π22π35π6πn α012223213212s α13222120-12-32-n α03313-3-33辨析感悟1.对三角函数关系式的理解(1)若α,β为锐角,sin2α+cos2β=1. (×)(2)若α∈R,则tan α=sin αcos α恒成立. (×)(3)(教材练习改编)已知sin α=45,α∈⎣⎢⎡⎦⎥⎤π2,π,则cos α=35.(×)2.对诱导公式的认识(4)六组诱导公式中的角α可以是任意角.(√)(5)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.(√)(6)角π+α和α终边关于y轴对称.(×)3.诱导公式的应用(7)若cos(nπ-θ)=13(n∈Z),则cos θ=13.(×)(8)(2013·广东卷改编)已知sin⎝⎛⎭⎪⎫5π2+α=15,则cos α=-15.(×)[感悟·提升]1.一点提醒平方关系和商数关系式中的角都是同一个角,且商数关系式中α≠π2+kπ,k∈Z,如(1)、(2).2.两个防范一是利用平方关系式解决问题时,要注意开方运算结果的符号,需要根据角α的范围确定,如(3);二是利用诱导公式化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐,特别注意函数名称和符号的确定.考点一同角三角函数基本关系式的应用【例1】 (1)已知tan α=2,则2sin α-3cos α4sin α-9cos α=___________,4sin2α-3sin αcos α-5cos2α=________.(2)(2014·山东省实验中学诊断)已知sin θ·cos θ=18,且π4<θ<π2,则cos θ-sin θ的值为________.解析(1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1,4sin2α-3sin αcos α-5cos2α=4sin2α-3sin αcos α-5cos2αsin2α+cos2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.(2)当π4<θ<π2时,sin θ>cos θ, ∴cos θ-sin θ<0,又(cos θ-sin θ)2=1-2sin θcos θ=1-14=34,∴cos θ-sin θ=-32.答案 (1)-1 1 (2)-32学生用书第52页规律方法 (1)应用公式时注意方程思想的应用,对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,利用(sin α±cos α)2=1±2sin αcosα可以知一求二.(2)关于sin α,cos α的齐次式,往往化为关于tan α的式子. 【训练1】 (1)已知sin α+cos α=15,0<α<π,则tan α=______.(2)已知sin α=2sin β,tan α=3tan β,求cos α=________. 解析 (1)法一 联立方程⎩⎨⎧sin α+cos α=15,①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得25sin 2α-5sin α-12=0. 又0<α<π,∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二 ∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425, ∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,∴sin α-cos α>0,∴sin α-cos α=75,由⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=75,得⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.(2)∵sin α=2sin β,tan α=3tan β,∴sin 2α=4sin 2β,① tan 2α=9tan 2β,②由①÷②得:9cos 2α=4cos 2β,③ ①+③得:sin 2α+9cos 2α=4,∵cos 2α+sin 2α=1,∴cos 2α=38,即cos α=±64.答案 (1)-43 (2)±64考点二 利用诱导公式化简三角函数式【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________. (2)设f (α)=2sinπ+αcos π-α-cos π+α1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sinα≠0),则f ⎝⎛⎭⎪⎫-23π6=________. 解析 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin1 050° =-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)∵f (α)=-2sin α-cos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α1+2sin αsin α1+2sin α=1tan α, ∴f ⎝⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6=1tanπ6= 3.答案 (1)1 (2) 3规律方法 (1)诱导公式应用的原则:负化正、大化小,化到锐角为终了. (2)诱导公式应用的步骤:任意负角的三角函数→任意正角的三角函数→ 0~2π的角的三角函数→锐角三角函数注意:诱导公式应用时不要忽略了角的范围和三角函数的符号.【训练2】 (1)sin(-1 071°)sin 99°+sin(-171°)sin(-261°)+tan(-1 089°)tan(-540°)=________.(2)化简:tanπ+αcos2π+αsin ⎝⎛⎭⎪⎫α-3π2cos-α-3πsin-3π-α=________.解析 (1)原式=(-sin 1 071°)·sin 99°+sin 171°· sin 261°+tan 1 089°·tan 540°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)· sin(270°-9°)+tan(3×360°+9°)·tan(360°+180°) =sin 9°cos 9°-sin 9°cos 9°+tan 9°·tan 180° =0+0=0.(2)原式=tan αcos αsin ⎣⎢⎡⎦⎥⎤-2π+⎝⎛⎭⎪⎫α+π2cos 3π+α[-sin 3π+α]=tan αcos αsin ⎝ ⎛⎭⎪⎫π2+α-cos αsin α=tan αcos αcos α-cos αsin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.答案 (1)0 (2)-1考点三 利用诱导公式求值【例3】 (1)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=______;(2)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.解析 (1)∵⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2,∴cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12.(2)∵⎝ ⎛⎭⎪⎫π6-α+⎝⎛⎭⎪⎫5π6+α=π,∴tan ⎝ ⎛⎭⎪⎫56π+α= -tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫56π+α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案 (1)12 (2)-33规律方法 巧用相关角的关系会简化解题过程.常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,常见的互补关系有π3+θ与2π3-θ;π4+θ与3π4-θ等. 【训练3】 (1)已知sin ⎝⎛⎭⎪⎫7π12+α=23,则cos ⎝ ⎛⎭⎪⎫α-11π12=________; (2)若tan(π+α)=-12,则tan(3π-α)=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-11π12=cos ⎝ ⎛⎭⎪⎫11π12-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π12+α=-cos ⎝ ⎛⎭⎪⎫π12+α,而sin ⎝⎛⎭⎪⎫7π12+α=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π12+α=cos ⎝ ⎛⎭⎪⎫π12+α=23, 所以cos ⎝⎛⎭⎪⎫α-11π12=-23. (2)因为tan(π+α)=tan α=-12,所以tan(3π-α)=tan(π-α)=-tan α=12.答案 (1)-23 (2)121.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2 θ+cos 2θ=cos 2θ(1+tan 2 θ)=tanπ4=….方法优化2——灵活运用同角三角函数的基本关系式求值【典例】 (2013·浙江卷)已知α∈R ,sin α+2cos α=102,则tan 2α=( ).A.43B.34 C .-34 D .-43[一般解法] 由sin α+2cos α=102,得sin α=102-2cos α,①又sin 2α+cos 2α=1,② 联立①②,解得⎩⎪⎨⎪⎧sin α=31010,cos α=1010或⎩⎪⎨⎪⎧sin α=-1010,cos α=31010.所以tan α=sin αcos α=3或-13.当tan α=3时,tan 2α=2tan α1-tan 2α=2×31-32=-34;当tan α=-13时,tan 2α=2tan α1-tan 2 α=2×⎝ ⎛⎭⎪⎫-131-⎝ ⎛⎭⎪⎫-132=-34.综上,tan 2α=-34.故选C.[优美解法] 法一 (直接法)两边平方,再同时除以cos 2 α,得3tan 2 α-8tan α-3=0,tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2 α,得到tan 2α=-34. 法二 (猜想法),由给出的数据及选项的唯一性,记sin α=310,cos α=110,这时sin α+2cos α=102符合要求,此时tan α=3,代入二倍角公式得到答案C. [答案] C[反思感悟] (1)熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;(2)注意公式的变形应用,如sin 2α=1-cos 2α,cos 2α=1-sin 2α,1=sin 2α+cos 2α及sin α=tan α·cos α等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在. 【自主体验】(2013·东北三校模拟)已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( ). A.23 B .-23 C.13 D .-13解析 法一 ∵0<θ<π4,∴cos θ>sin θ, 又(sin θ+cos θ)2=1+2sin θcos θ=169,∴2sin θcos θ=79,∴(sin θ-cos θ)2=1-2sin θcos θ=1-79=29,∴sin θ-cos θ=-23. 法二 ∵sin θ+cos θ=43,且θ∈⎝ ⎛⎭⎪⎫0,π4.∴θ+π4∈⎝ ⎛⎭⎪⎫π4,π2,sin θ+cos θ=2sin ⎝⎛⎭⎪⎫θ+π4=43,即sin ⎝ ⎛⎭⎪⎫θ+π4=223,又cos ⎝⎛⎭⎪⎫θ+π4=1-sin 2⎝⎛⎭⎪⎫θ+π4=1-⎝ ⎛⎭⎪⎫2232=13,∴sin θ-cos θ=-(cos θ-sin θ)=-2cos ⎝ ⎛⎭⎪⎫θ+π4=-23.答案 B基础巩固题组(建议用时:40分钟)一、选择题1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ).A .-32 B.32 C .-12 D.12解析 因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.答案 D2.(2014·临川一中一调)sin 29π6+cos ⎝ ⎛⎭⎪⎫-29π3-tan 25π4=( ). A .0 B.12 C .1 D .-12解析 原式=sin(4π+5π6)+cos(-10π+π3)-tan(6π+π4) =sin5π6+cos π3-tan π4=12+12-1=0. 答案 A3.(2014·郑州模拟)1-2sin π+2cos π-2=( ).A .sin 2-cos 2B .sin 2+cos 2C .±(sin 2-cos 2)D .cos 2-sin 2 解析 1-2sinπ+2cos π-2=1-2sin 2cos 2=sin 2-cos 22=|sin 2-cos 2|=sin 2-cos 2.答案 A4.(2014·石家庄模拟)已知sin α+3cos α3cos α-sin α=5,则sin 2 α-sin αcos α的值是( ).A.25 B .-25 C .-2 D .2 解析 由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5即tan α=2,所以sin 2 α-sin αcos α=sin 2 α-sin αcos αsin 2 α+cos 2 α=tan 2 α-tan αtan 2 α+1=25.答案 A5.若sin α是5x 2-7x -6=0的根,则 sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝⎛⎭⎪⎫3π2-αtan 22π-αcos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α=( ).A.35B.53C.45D.54解析 由5x 2-7x -6=0,得x =-35或 2.∴sin α=-35.∴原式=cos α-cos α·tan 2αsin α·-sin α·-sin α=1-sin α=53.答案 B 二、填空题6.(2014·杭州模拟)如果sin(π+A )=12,那么cos ⎝ ⎛⎭⎪⎫32π-A 的值是________.解析 ∵sin(π+A )=12,∴-sin A =12.∴cos ⎝ ⎛⎭⎪⎫32π-A =-sin A =12.答案127.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为________.解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12+π2=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.答案 -138.(2013·江南十校第一次考试)已知sin ⎝ ⎛⎭⎪⎫π12-α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________. 解析 ∵sin ⎝ ⎛⎭⎪⎫π12-α=13,又-π<α<-π2, ∴7π12<π12-α<13π12, ∴cos ⎝ ⎛⎭⎪⎫π12-α=-1-sin 2⎝ ⎛⎭⎪⎫π12-α=-223.答案 -223三、解答题9.化简:sin k π-αcos[k -1π-α]sin[k +1π+α]cos k π+α(k ∈Z ).解 当k =2n (n ∈Z )时, 原式=sin 2n π-αcos[2n -1π-α]sin[2n +1π+α]cos 2n π+α=sin -α·cos -π-αsin π+α·cos α=-sin α-cos α-sin α·cos α=-1;当k =2n +1(n ∈Z )时, 原式=sin[2n +1π-α]·cos[2n +1-1π-α]sin[2n +1+1π+α]·cos[2n +1π+α]=sin π-α·cos αsin α·cosπ+α=sin α·cos αsin α-cos α=-1.综上,原式=-1.10.已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.解 (1)∵sin A +cos A =15,①∴两边平方得1+2sin A cos A =125, ∴sin A cos A =-1225, (2)由sin A cos A =-1225<0,且0<A <π, 可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形. (3)∵(sin A -cos A )2=1-2sin A cos A =1+2425=4925, 又sin A >0,cos A <0,∴sin A -cos A >0, ∴sin A -cos A =75,②∴由①,②可得sin A =45,cos A =-35,∴tan A =sin Acos A=45-35=-43. 能力提升题组 (建议用时:25分钟)一、选择题1.(2012·辽宁卷)已知sin α-cos α=2,α∈(0,π),则tan α=( ). A .-1 B .-22 C.22 D .1 解析 法一 因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法二 因为sin α-cos α=2,所以(sin α-cos α)2=2,所以sin 2α=-1.因为α∈(0,π),2α∈(0,2π),所以2α=3π2,所以α=3π4,所以tanα=-1. 答案 A2.(2014·衡水质检)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1, 则sin α的值是( ). A.355 B.377 C.31010 D.13解析 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tanα=3,又sin 2α+cos 2α=1,α为锐角. 故sin α=31010. 答案 C 二、填空题3.sin 21°+sin 22°+…+sin 290°=________.解析 sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=45+12=912.答案912三、解答题4.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式si n(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件, 则由已知条件可得⎩⎪⎨⎪⎧ sin α=2sin β,3cos α=2cos β,①②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,由②式知cos β=32, 又β∈(0,π), ∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π), ∴β=π6,此时①式不成立,故舍去. ∴存在α=π4,β=π6满足条件. 学生用书第53页第3讲 三角函数的图象与性质[最新考纲]1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. 2.借助图象理解正弦函数、余弦函数在[0,2π],正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.知 识 梳 理正弦、余弦、正切函数的图象与性质 (下表中k ∈Z ).函数y =sin x y =cos x y =tan x图象定义域 R R {x | x ∈R ,且x ≠⎭⎪⎬⎪⎫k π+π2,k ∈Z值域 [-1,1] [-1,1]R 周期性 2π 2π π 奇偶性奇函数偶函数 奇函数递增区间⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2[2k π-π,2k π] ⎝⎛⎭⎪⎫k π-π2,k π+π2递减区间⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2[2k π,2k π+π] 无 对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0 对称轴x =k π+π2x =k π无辨 析 感 悟1.周期性的判断(1)(教材习题改编)由sin(30°+120°)=sin 30°知,120°是正弦函数y =sinx (x ∈R )的一个周期. (×)(2)函数y =tan ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为π2. (√)2.判断奇偶性与对称性(3)函数y =sin ⎝ ⎛⎭⎪⎫2x +3π2是奇函数. (×)(4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z ).(×) 3.求三角函数的单调区间(5)函数f (x )=sin(-2x )与f (x )=sin 2x 的单调增区间都是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).(×)(6)函数y =tan x 在整个定义域上是增函数. 4.求三角函数的最值(7)存在x ∈R ,使得2sin x =3.(×)(8)(教材习题改编)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.(√)[感悟·提升]1.一点提醒 求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解.2.三个防范 一是函数y =sin x 与y =cos x 的对称轴分别是经过其图象的最高点或最低点且平行于y 轴的直线,如y =cos x 的对称轴为x =k π,而不是x =2k π(k ∈Z ).二是对于y =tan x 不能认为其在定义域上为增函数,应在每个区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数,如(6).三是函数y =sin x 与y =cos x 的最大值为1,最小值为-1,不存在一个值使sin x =32,如(7).学生用书第54页考点一 三角函数的定义域、值域问题【例1】 (1)函数y =sin x -cos x 的定义域为________.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析 (1)法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象, 在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示. 在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 法三 sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y=sin x 的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z , 解得2k π+π4≤x ≤2k π+5π4,k ∈Z . 所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . (2)y =3-sin x -2cos 2x=3-sin x -2(1-sin 2x )=2sin 2 x -sin x +1, 令sin x =t ∈⎣⎢⎡⎦⎥⎤-12,1,∴y =2t 2-t +1=2⎝ ⎛⎭⎪⎫t -142+78,t ∈⎣⎢⎡⎦⎥⎤-12,1,∴y min =78,y max =2.答案 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)78 2规律方法 (1)求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. (2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求.②把形如y =a sin x +b cos x 的三角函数化为y =A sin(ωx +φ)的形式求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.【训练1】 (2014·广州模拟)已知函数f (x )=6cos 4 x +5sin 2x -4cos 2x ,求f (x )的定义域和值域.解 由cos 2x ≠0得2x ≠k π+π2,k ∈Z ,解得x ≠k π2+π4,k ∈Z ,所以f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈R ,且x ≠k π2+π4,k ∈Z . f (x )=6cos 4 x +5sin 2 x -4cos 2x =6cos 4 x +5-5cos 2x -42cos 2x -1=2cos 2x -13cos 2x -12cos 2x -1=3cos 2x -1.所以f (x )的值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |-1≤y <12,或12<y ≤2.考点二 三角函数的奇偶性、周期性和对称性【例2】 (1)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),下面结论错误的是( ).A .函数f (x )的最小正周期为πB .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数(2)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ).A.π6B.π4C.π3D.π2解析 (1)f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.(2)由题意得3cos ⎝⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ+2π=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0, 得|φ|的最小值为π6. 答案 (1)C (2)A规律方法 (1)求最小正周期时可先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos(ω x +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =A sin ωx 或y =A cos ωx +b 的形式.(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可. 【训练2】 (1)函数y =2cos2⎝ ⎛⎭⎪⎫x -π4-1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.解析 (1)y =2cos 2⎝ ⎛⎭⎪⎫x -π4-1=cos ⎝⎛⎭⎪⎫2x -π2=sin 2x 为奇函数,T =2π2=π.(2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ),所以3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)A (2)π4考点三 三角函数的单调性【例3】 (2014·临沂月考)设函数f (x )=sin(-2x +φ)(0<φ<π),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调区间. 审题路线 令(-2)×π8+φ=π2+k π,k ∈Z ⇒解得φ=?又0<φ<π⇒得出φ值⇒把f (x )=sin(-2x +φ),化为f (x )=-sin(2x -φ)⇒令g (x )=sin(2x -φ)⇒求出g (x )的单调区间⇒利用f (x )与g (x )的关系求f (x )的单调区间. 解 (1)令(-2)×π8+φ=k π+π2,k ∈Z , ∴φ=k π+3π4,k ∈Z , 又0<φ<π,∴φ=3π4. (2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫-2x +3π4=-sin ⎝ ⎛⎭⎪⎫2x -3π4,令g (x )=sin ⎝⎛⎭⎪⎫2x -3π4,由-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z , 即g (x )的单调增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z ; 由π2+2k π≤2x -3π4≤3π2+2k π,k ∈Z ,得5π8+k π≤x ≤9π8+k π,k ∈Z , 即g (x )的单调减区间为⎣⎢⎡⎦⎥⎤5π8+k π,9π8+k π(k ∈Z ), 故f (x )的单调增区间为⎣⎢⎡⎦⎥⎤5π8+k π,9π8+k π(k ∈Z ); 单调减区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π(k ∈Z ). 学生用书第55页规律方法 求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.【训练3】 (2013·安徽卷)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值; (2)讨论f (x )在区间[0,π2]上的单调性. 解 (1)f (x )=4cos ωx ·sin(ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+2=2sin(2ωx +π4)+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin(2x +π4)+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减.综上可知,f(x)在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.1.求三角函数的定义域应注意利用三角函数线或者三角函数图象.2.判断函数奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,一偶则偶,同奇则奇.3.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.对复合函数单调区间的确定,应明确是对复合过程中的每一个函数而言,同增同减则为增,一增一减则为减.4.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=A sin(ωx+φ),y=A cos(ωx+φ),y=A tan(ωx+φ)”的形式,再利用周期公式即可.。

高考理科数学一轮复习合情推理与演绎推理专题练习题

高考理科数学一轮复习合情推理与演绎推理专题练习题

课时作业39 合情推理与演绎推理一、选择题1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( A )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.已知数列{a n }的前n 项和为S n ,则a 1=1,S n =n 2a n ,试归纳猜想出S n 的表达式为( A ) A .S n =2nn +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2解析:S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1S n -1,S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2nn +1.故选A. 3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( C )A .n (n +1)B .n n -12C .n n +12D .n (n -1)解析:由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n n +12.4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( B )A .3 125B .5 625C .0 625D .8 125解析:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2019·山西孝义调研)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y+2z +3=0的距离为( B )A .3B .5 C.5217D .3 5解析:类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B.6.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=( A )A.(m,n-m+1) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m)解析:由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).7.(2019·惠州市调研考试)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( B ) A .33 B .34 C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.二、填空题8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为f (2n )≥n +22(n ∈N *).解析:本题考查归纳推理.由归纳推理可得f (2n)≥n +22(n ∈N *).9.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是33.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.10.在正项等差数列{a n }中有a 41+a 42+…+a 6020=a 1+a 2+…+a 100100成立,则在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.解析:结合等差数列和等比数列的性质,类比题中的结论可得,在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.11.(2019·安徽界首模拟)埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式.例如25=13+115可以这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145……按此规律,211=16+166;2n =1n +12+1nn +12(n =5,7,9,11,…). 解析:27=14+128表示两个面包分给7个人,每人13,不够,每人14,余14,再将这14分成7份,每人得128,其中4=7+12,28=7×7+12;29=15+145表示两个面包分给9个人,每人14,不够,每人15,余15,再将这15分成9份,每人得145,其中5=9+12,45=9×9+12,按此规律,211表示两个面包分给11个人,每人15,不够,每人16,余16,再将这16分成11份,每人得166,所以211=16+166,其中6=11+12,66=11×11+12.由以上规律可知,2n =1n +12+1nn +12.12.(2019·潍坊市统一考试)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、……、癸酉,甲戌、乙亥、丙子、……、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( C )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.13.(2019·福建宁德一模)我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( C )A .58B .59C .60D .61解析:小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20-(8+6+5)+1=60.故选C.14.(2019·安徽质量检测)某参观团根据下列约束条件从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了( C )A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇解析:若去A镇,根据①可知一定去B镇,根据③可知不去C镇,根据④可知不去D 镇,根据②可知去E镇,与⑤矛盾,故不能去A镇;若不去A镇,根据⑤可知也不去E镇,再根据②知去D镇,再根据④知去C镇,再根据③可知不去B镇,再检验每个条件都成立,所以该参观团至多去了C,D两镇.故选C.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·益阳、湘潭调研考试)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S=14[c2a2-c2+a2-b222],现有周长为22+5的△ABC满足sin A sin B sin C=(2-1)5(2+1),用上面给出的公式求得△ABC的面积为( B )A.32B.34C.52D.54解析:由正弦定理得sin A sin B sin C=a b c=(2-1)5(2+1),可设三角形的三边分别为a=(2-1)x,b=5x,c=(2+1)x,由题意得(2-1)x+5x+(2+1)x=(22+5)x=22+5,则x=1,故由三角形的面积公式可得△ABC的面积S=1 4[2+122-12-3+22+3-22-522]=34,故选B.16.(2019·重庆市质量调研)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数;②物理课时数多于体育课时数;③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为12.解析:解法1:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x,y,z ,则由题意,得⎩⎪⎨⎪⎧x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x -y )+5(y-z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.解法2:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则2z >x >y >z .由题意,知z 的最小值为3,由此易知y 的最小值为4,x 的最小值为5,故该学生的素质拓展课课表中的课时数x +y +z 的最小值为12.。

2015创新设计(高中理科数学)12-1

2015创新设计(高中理科数学)12-1
4
推理的错误是
(Hale Waihona Puke ).A.大前提错误导致结论错误 B.小前提错误导致结论错误
C.推理形式错误导致结论错误
D.大前提和小前提错误导致结论错误
诊断· 基础知识
突破· 高频考点
培养· 解题能力
解析
当a>1时,函数y=logax是增函数;当0<a<1时,函数y
=logax是减函数.故大前提错误导致结论错误.
Sn+1 Sn-1 (2)由(1)可知 =4· (n≥2), n+ 1 n-1 Sn -1 n+1 ∴Sn+1=4(n+1)· =4· · Sn-1 n-1 n-1 =4an(n≥2),(小前提) 又 a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提) ∴对于任意正整数 n,都有 Sn+1=4an.(结论) (第(2)问的大前提是第(1)问的结论以及题中的已知条件)
两个正四面体的棱长比为1∶2,则它们的体积比为1∶8.
(√) 2.对演绎推理的认识 (6)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定 是9的倍数”,这是三段论推理,但其结论是错误的.
(√)
(7)在演绎推理中,只要符合演绎推理的形式,结论就一定正 确.
诊断· 基础知识 突破· 高频考点
(×)
从而 N(n,24)=11n2-10n,N(10,24)=1 000.
答案 1 000
诊断· 基础知识 突破· 高频考点 培养· 解题能力
规律方法 归纳推理是由部分到整体、由特殊到一般的推理,由
归纳推理所得的结论不一定正确,通常归纳的个体数目越多, 越具有代表性,那么推广的一般性命题也会越可靠,它是一种 发现一般性规律的重要方法.
2
空间中“超球”的四维测度 W = 2πr4 ,猜想其三维测度 V= ________.

【高考领航】2015高考数学(理)一轮配套课件12-3 第3课时 合情推理与演绎推理

【高考领航】2015高考数学(理)一轮配套课件12-3 第3课时 合情推理与演绎推理

(2)(2014· 江西八所重点高中模拟 ) 半 径为 r 的圆的面积 S(r) =
π·r2 ,周长 C(r) = 2π·r ,若将 r 看作 (0 ,+ ∞ ) 上的变量,则
时,过原点作倾斜角为 30°的直线与⊙ Mn 交于 An , Bn. 考
察下列论断:
当 n=1 时, |A1B1|=2; 当 n=2 时, |A2B2|= 15; 当 n=3 时, |A3B3| 35×42+23-1 = ;当 n=4 时,|A4B4|=________;当 n=5 时, 3 35×44+25-1 |A5B5|= ;……,则推测一个一般的结论:对于 n 3 ∈N*,|AnBn|=________________.
(2)归纳推理是一种重要的思维方法,但结果的正确性还需进
一步证明,一般地,考查的个体越多,归纳的结论可靠性越
大.因此在进行归纳推理时,当规律不明显时,要尽可能多 地分析特殊情况,由此发现其中的规律,从而获得一般结 论.
针对训练 1.(2013·陕西)观察下列等式 (1+1)=2×1
(2+1)(2+2)=22×1×3
③结论——根据一般原理,对特殊情况做出的判断.
(2)“三段论”可以表示为 ①大前提:M是P;
②小前提:S是M;
③结论:S是P.
对点演练
推理“①矩形是平行四边形;②三角形不是平行四边形;③
三角形不是矩形”中的小前提是 ( A.① C.③ B.② D.①和② )
答案:C
1.合情推理的过程
2.合情推理仅是“合乎情理”的推理,它得到的结论不一
中归纳推理与数列结合的问题是考查的热点. 2 .从考查形式看,三种题型都可能出现,常以选择题、填 空题的形式考查合情推理;以选择题或解答题的形式考查 演绎推理,题目多属中低档题.

【创新方案】2015高考数学(理)一轮突破热点题型:第9章 第4节 合情推理与演绎推理]

【创新方案】2015高考数学(理)一轮突破热点题型:第9章 第4节 合情推理与演绎推理]

第四节 合情推理与演绎推理1.归纳推理是每年高考的常考内容,题型多为选择题和填空题,难度稍大,属中高档题.2.高考对归纳推理的考查常有以下几个命题角度: (1)归纳推理与等式或不等式“共舞”问题; (2)归纳推理与数列“牵手”问题;(3)归纳推理与图形变化“相融”问题. [例1] (1)(2013·陕西高考)观察下列等式: 12=1, 12-22=-3, 12-22+32=6,12-22+32-42=-10, ……照此规律,第n 个等式可为________. (2)(2013·湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. (3)(2014·青岛模拟)某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.一级分形图 二级分形图 三级分形图 ①n 级分形图中共有________条线段;②n 级分形图中所有线段长度之和为________.[自主解答] (1)观察规律可知,第n 个式子为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2.(2)N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列;数列{b k }是以12为首项,-12为公差的等差数列.所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.(3)①分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =(3×2n -3)(n ∈N *).②分形图的每条线段的末端出发再生成两条长度为原来13的线段,∴n 级分形图中第n级的所有线段的长度为b n =3×⎝⎛⎭⎫23n -1(n ∈N *),∴n 级分形图中所有线段长度之和为S n =3×⎝⎛⎭⎫230+3×⎝⎛⎭⎫231+…+3×⎝⎛⎭⎫23n -1=3×1-⎝⎛⎭⎫23n1-23=9-9×⎝⎛23n . [答案] (1)12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2(2)1 000 (3)①3×2n-3②9-9×⎝⎛⎭⎫23n归纳推理问题的常见类型及解题策略(1)与等式或不等式“共舞”问题.观察所给的几个等式或不等式两边式子的特点,注意是纵向看,发现隐含的规律.(2)与数列“牵手”问题.先求出几个特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围,从而由特殊的结论推广到一般结论.(3)与图形变化“相融”问题.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.1.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…,可知f n (x )的分母中常数项为2n ,分母中x 的系数为2n-1,故f n (x )=f (f n -1(x ))=x (2n -1)x +2n .答案:x(2n -1)x +2n2.(2014·温州模拟)如图的倒三角形数阵满足:①第1行的n 个数,分别是1,3,5,…,2n -1;②从第2行起,各行中的每一个数都等于它肩上的两数之和;③数阵共有n 行.当n =2 012时,第32行的第17个数是________.1 3 5 7 9 11 ……4 8 12 16 20 ……12 20 28 36 …………解析:每行的第1个数分别是1,4,12,32,…,记为数列{a n },它的通项公式为a n =n ×2n-1,则第32行的第1个数为a 32=32×232-1=236,而在第32行的各个数成等差数列,且公差为232,所以第17个数是236+(17-1)×232=236+24×232=2×236=237.答案:2373.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析:进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案:14[例2]如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则1×h 1+2×h 2+3×h 3+4×h 4=2Sk.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i=1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=k ,则H 1+2H 2+3H 3+4H 4值为( )A.4V kB.3V kC.2V kD.V k [自主解答]在平面凸四边形中,连接P 点与各个顶点,将其分成四个小三角形,根据三角形面积公式,得S =12(a 1h 1+a 2h 2+a 3h 3+a 4h 4)=12(kh 1+2kh 2+3kh 3+4kh 4)=k 2(h 1+2h 2+3h 3+4h 4).所以h 1+2h 2+3h 3+4h 4=2S k类似地,连接Q 点与三棱锥的四个顶点,将其分成四个小三棱锥,则有V =13S 1H 1+S 2H 2+S 3H 3+S 4H 4)=13(kH 1+2kH 2+3kH 3+4kH 4)=k3(H 1+2H 2+3H 3+4H 4),所以H 1+2H 2+3H 3+4H 4=3Vk.[答案] B【方法规律】类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.解析:法一:设数列{a n }的公差为d 1,则d 1=a n -a m n -m =b -an -m.所以a m +n =a m +nd 1=a +n ·b -a n -m =bn -am n -m.类比推导方法可知:设数列{b n }的公比为q ,由b n =b m q n -m ,可知d =cq n -m,所以q =n -m d c ,所以b m +n =b m q n =c ·n -m ⎝⎛⎭⎫d c n =n -m d nc m.法二:(直接类比)设数列{a n }的公差为d 1,数列{b n }的公比为q ,因为等差数列中a n =a 1+(n -1)d 1,等比数列中b n =b 1qn -1,因为a m +n =nb -man -m ,所以b m +n =n -m d ncm .答案:n -m d nc m[例3] 已知函数f (x )=a x+bx ,其中a >0,b >0,x ∈(0,+∞),试确定f (x )的单调区间,并证明在每个单调区间上的增减性.[自主解答] 设0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫a x 1+bx 1-⎝⎛⎭⎫a x 2+bx 2=(x 2-x 1)·⎝⎛⎭⎫a x 1x 2-b .当0<x 1<x 2≤ a b 时,∵a >0,b >0,∴x 2-x 1>0,0<x 1x 2<a b ,ax 1x 2>b ,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在⎝⎛⎦⎤0, a b 上是减函数;当x 2>x 1≥ a b >0时,x 2-x 1>0,x 1x 2>a b ,ax 1x 2<b ,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在⎣⎡⎭⎫a b ,+∞上是增函数.【方法规律】应用演绎推理应注意的问题演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.已知函数f (x )=2x-12x +1x ∈R ).(1)判定函数f (x )的奇偶性;(2)判定函数f (x )在R 上的单调性,并证明.解:(1)对任意x ∈R ,有-x ∈R ,并且f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以f (x )是奇函数.(2)f (x )在R 上单调递增,证明如下: 任取x 1,x 2∈R ,并且x 1>x 2,f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1>x 2,∴2x 1>2x 2>0,即2x 1-2x 2>0.又∵2x 1+1>0,2x 2+1>0,∴2(2x 1-2x 2)(2x 1+1)(2x 2+1)>0.∴f (x 1)>f (x 2).∴f (x )在R 上为单调递增函数.———————————[课堂归纳——通法领悟]————————————————1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理;(3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:观察、比较→联想、类推→猜想新结论3个注意点——应用合情推理与演绎推理应注意的问题(1)在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(2)合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.(3)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.。

高三数学合情推理与演绎推理试题

高三数学合情推理与演绎推理试题

高三数学合情推理与演绎推理试题1.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】由丙说可知,乙至少去过A,B,C中的一个城市,由甲说可知,甲去过A,C且比乙去过的城市多,故乙只去过一个城市,且没去过C城市,故乙只去过A城市.【考点】推理.2.表示不超过的最大整数,例如:.依此规律,那么()A.B.C.D.【答案】A【解析】解:因为;所以故选A.【考点】合情推理.3. [2014·长春调研]用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n条“金鱼”需要火柴棒的根数为________.【答案】6n+2【解析】由图形间的关系可以看出,第一个图中有8根火柴棒,第二个图中有8+6根火柴棒,第三个图中有8+2×6根火柴棒,以此类推第n个“金鱼”需要火柴棒的根数是8+6(n-1),即6n +2.4.观察等式:,,.照此规律,对于一般的角,有等式 .【答案】【解析】,,,所以.【考点】归纳推理.5.已知,经计算得,,,,观察上述结果,可归纳出的一般结论为 .【答案】【解析】,,,,由归纳推理得,一般结论为,【考点】归纳推理.6.(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.【答案】1000【解析】原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:10007.观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为()A.76B.80C.86D.92【答案】B【解析】观察可得不同整数解的个数4,8,12,…可以构成一个首项为4,公差为4的等差数列,通项公式为an =4n,则所求为第20项,所以a20=80故选B.8.观察下列各式:则___________.【答案】123【解析】观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即123,故答案为:123.【考点】数列的简单应用、推理与证明.9.在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=由此得1×2=...............相加,得1×2+2×3+...+n(n+1).类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,其结果是_________________.(结果写出关于的一次因式的积的形式)【答案】【解析】先改写第k项:由此得……相加,得.【考点】归纳推理.10.将正偶数、、、、按表的方式进行排列,记表示第行和第列的数,若,则的值为()第列第列第列第列第列第行第行第行第行第行【答案】C【解析】由表所反映的信息来看,第行的最大偶数为,则,由于,解得;另一方面奇数行的最大数位于第列,偶数行最大数位于第列,第行最大数为,此数位于第行第列,因此位于第行第列,所以,,故,选C.【考点】推理11.将正偶数、、、、按表的方式进行排列,记表示第行和第列的数,若,则的值为()第列第列第列第列第列第行第行第行第行第行A. B. C. D.【答案】C【解析】由表所反映的信息来看,第行的最大偶数为,则,由于,解得;另一方面奇数行的最大数位于第列,偶数行最大数位于第列,第行最大数为,此数位于第行第列,因此位于第行第列,所以,,故,选C.【考点】推理12.某公司推出了下表所示的QQ在线等级制度,设等级为级需要的天数为,等级等级图标需要天数等级等级图标需要天数【答案】2700【解析】由表格知,∴.【考点】归纳推理,数列的通项公式.13.已知数列{an }满足a1=2,an+1= (n∈N*),则a3=________,a1.a2.a3 (2007)________.【答案】-,3【解析】(解法1)分别求出a2=-3、a3=-、a4=、a5=2,可以发现a5=a1,且a1·a2·a3·a4=1,故a1·a2·a3·…·a2 007=a2 005·a2 006·a2 007=a1·a2·a3=3.(解法2)由a n +1=,联想到两角和的正切公式,设a 1=2=tanθ,则有a 2=tan,a 3=tan,a 4=tan,a 5=tan(π+θ)=a 1,….则a 1·a 2·a 3·a 4=1,故a 1·a 2·a 3·…·a 2 007=a 2 005·a 2 006·a 2 007=a 1·a 2·a 3=3.14. 下表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij (i≥j,i,j ∈N *),则a 53等于 ,a mn = (m≥3)., ,,… 【答案】【解析】由题意可知第一列首项为,公差d=-=,第二列的首项为,公差d=-=, 所以a 51=+4×=,a 52=+3×=, 所以第5行的公比为q==,所以a 53=a 52q=×=.由题意知a m1=+(m-1)×=, 第m 行的公比q=, 所以a mn =a m1q n-1=×=,m≥3.15. 观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为 . 【答案】13+23+33+43+53+63=212【解析】由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.16. 某少数民族的刺绣有着悠久的历史,如图(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f(n)个小正方形.(1)求出f(5).(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的关系式.【答案】(1)41 (2) f(n)=2n 2-2n+1【解析】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25, ∴f(5)=25+4×4=41. (2)由f(2)-f(1)=4=4×1. f(3)-f(2)=8=4×2, f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4, …得f(n+1)-f(n)=4n.∴f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,…f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1)∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2n(n-1),∴f(n)=2n2-2n+1.17.已知…,若(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t= .【答案】35.【解析】照此规律:a=6,t=a2-1=35.【考点】推理证明.18.观察下列等式:;;;……则当且时, .(最后结果用表示).【答案】.【解析】当时,为第一个式子,此时,当时,为第二个式子,此时,当时,为第三个式子,此时,由归纳推理可知观察下列等式:,故答案为:.【考点】归纳推理.,则;类比此性质,如图,在四19.在中,,斜边上的高为h1面体中,若,,两两垂直,底面上的高为,则得到的正确结论为_________________________.【答案】【解析】连接且延长交于点,连,由已知,在直角三角形中,,即,容易知道⊥平面,所以,在直角三角形中,,所以,,故.(也可以由等体积法得到)【考点】1.等面积法应用;2.勾股定理.20.给出下列等式:观察各式:,则依次类推可得;【答案】18【解析】由于,所以【考点】归纳推理点评:做归纳推理的题目,关键是找出里面的规律。

2015届高考数学第一轮大复习(基础+思想典型题+题组专练)7.4合情推理与演绎推理档专练(新人教A版)文

2015届高考数学第一轮大复习(基础+思想典型题+题组专练)7.4合情推理与演绎推理档专练(新人教A版)文

§7.4 合情推理与演绎推理1.推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类. 2.合情推理3.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理; (2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确. ( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )(4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ ) (5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N +).( × )(6)2+23=223, 3+38=338, 4+415=4415,…, 6+b a =6ba(a ,b 均为实数),则可以推测a =35,b =6. ( √ ) 2.数列2,5,11,20,x,47,…中的x 等于( )A.28B.32C.33D.27答案 B解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32.3.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的后四位数字为 ( ) A.3 125 B.5 625 C.0 625 D.8 125答案 D解析 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,可得59与55的后四位数字相同,…,由此可归纳出5m+4k与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 011=4×501+7,所以52 011与57后四位数字相同为8125,故选D. 4.(2013·陕西)观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2. 5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.答案T 8T 4 T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n , 则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12, T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.题型一 归纳推理例1 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,∵f (x 1)+f (x 2)=131x +3+132x +3=(31x+3)+(32x+3)(31x+3)(32x+3)=31x+32x+23321xx++3(31x+32x)+3=31x+32x+233(31x+32x)+2×3=31x+32x+233(31x+32x+23)=33.思维升华(1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.(3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.(1)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第五个等式应为________________________.(2)已知f(n)=1+12+13+…+1n(n∈N*),经计算得f(4)>2,f(8)>52,f(16)>3,f(32)>72,则有______.答案(1)5+6+7+8+9+10+11+12+13=81(2)f(2n)>n+22(n≥2,n∈N*)解析(1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.(2)由题意得f(22)>42,f(23)>52,f(24)>62,f(25)>72,所以当n≥2时,有f(2n)>n+22.故填f(2n)>n+22(n≥2,n∈N*).题型二类比推理例2已知数列{a n}为等差数列,若a m=a,a n=b(n-m≥1,m,n∈N*),则a m+n=nb-man-m.类比等差数列{a n}的上述结论,对于等比数列{b n}(b n>0,n∈N*),若b m=c,b n=d(n-m≥2,m,n∈N*),则可以得到b m+n=________.思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算. 答案 n -m d nc m解析 设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m ,所以类比得b m +n =n -m d nc m思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(1)给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( )A.0B.1C.2D.3(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R =________. 答案 (1)B (2)a 2+b 2+c 22解析 (1)①②错误,③正确.(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径. 题型三 演绎推理例3 已知函数f (x )=-aa x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维启迪 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a (a >0且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ), 它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). 所以y =f (x )为R 上的单调增函数.高考中的合情推理问题典例:(1)(5分)(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.思维启迪 从已知的部分k 边形数观察一般规律写出N (n ,k ),然后求N (10,24).解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 答案 1 000(2)(5分)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 思维启迪 直接类比可得. 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb2=1.答案x 0x a 2-y 0y b 2=1 (3)(5分)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项: k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…,n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)·(n +2).类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)·(n +2)”,其结果为________. 思维启迪 根据两个数积的和规律猜想,可以利用前几个式子验证.解析 类比已知条件得k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)],由此得1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),…,n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)].以上几个式子相加得:1×2×3+2×3×4+…+n (n +1)(n +2) =14n (n +1)(n +2)(n +3). 答案 14n (n +1)(n +2)(n +3)温馨提醒 (1)合情推理可以考查学生的抽象思维能力和创新能力,在每年的高考中经常会考到;(2)合情推理的结论要通过演绎推理来判断是否正确.方法与技巧1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A组专项基础训练(时间:40分钟)一、选择题1.(2012·江西)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于() A.28 B.76 C.123 D.199答案 C解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.2.定义一种运算“*”:对于自然数n满足以下运算性质:(1)1*1=1,(2)(n+1)*1=n*1+1,则n*1等于()A.nB.n+1C.n-1D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.4.已知△ABC 中,∠A =30°,∠B =60°,求证:a <b . 证明:∵∠A =30°,∠B =60°,∴∠A <∠B . ∴a <b ,其中,画线部分是演绎推理的( )A.大前提B.小前提C.结论D.三段论答案 B解析 由三段论的组成可得画线部分为三段论的小前提.5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a n n )也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n = n c n 1+c n 2+…+c n nnD.d n =n c 1·c 2·…·c n答案 D解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2, ∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D.二、填空题6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2, 易知f (14)=119,f (15)=135,故n =14.7.若函数f (x )=x x +2(x >0),且f 1(x )=f (x )=xx +2,当n ∈N *且n ≥2时,f n (x )=f [f n -1(x )],则f 3(x )=________,猜想f n (x )(n ∈N *)的表达式为________. 答案x 7x +8 x (2n -1)x +2n解析 ∵f 1(x )=xx +2,f n (x )=f [f n -1(x )](n ≥2),∴f 2(x )=f (x x +2)=x x +2(x x +2+2)=x3x +4.f 3(x )=f [f 2(x )]=f (x 3x +4)=x 3x +4(x 3x +4+2)=x7x +8.由所求等式知,分子都是x ,分母中常数项为2n ,x 的系数比常数项少1,为2n -1, 故f n (x )=x(2n -1)x +2n.8.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC ,把这个结论类比到空间:在三棱锥A -BCD 中(如图所示),平面DEC 平分二面角A -CD -B 且与AB 相交于点E ,则类比得到的结论是________.答案BE EA =S △BCDS △ACD解析 易知点E 到平面BCD 与平面ACD 的距离相等, 故V E -BCD V E -ACD =BE EA =S △BCD S △ACD . 三、解答题9.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.解 (1)由于a 1=5,d =2, ∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n .∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39, T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45. 由此可知S 1=T 1,当n ≥2时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 解 如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC , ∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD , 则1AE 2=1AB 2+1AC 2+1AD2. 证明:如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2,∴1AE 2=1AB 2+1AC 2+1AD2. B 组 专项能力提升 (时间:30分钟)1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是( )A.0B.1C.2D.3答案 C解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小. 2.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有ab ∈A ,则称A 对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) A.自然数集 B.整数集 C.有理数集D.无理数集答案 C解析 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭. 3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________. 答案 n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列{S nn }是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n ,(小前提) 故{S nn }是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, (小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013).解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2.故f (12 013)+f (2 0122 013)=2,f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2, …f (2 0122 013)+f (12 013)=2. 所以f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013)=12×2×2 012=2 012.。

创新导学案(人教版·文科数学)新课标高考总复习练习:12-1合情推理与演绎推理(含答案解析)

创新导学案(人教版·文科数学)新课标高考总复习练习:12-1合情推理与演绎推理(含答案解析)

12-1A组专项基础训练(时间:45分钟)1.(教材改编)数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33 D.27【解析】5-2=3,11-5=6,20-11=9,推出x-20=12,所以x=32.【答案】B2.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确【解析】f(x)=sin(x2+1)不是正弦函数,所以小前提错误.【答案】C3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πab D.科学家利用鱼的沉浮原理制造潜艇【解析】从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.【答案】B4.给出下列三个类比结论:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3【解析】 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误. 由向量的运算公式知③正确. 【答案】 B5.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c nnn D .d n =n c 1·c 2·…·c n【解析】 若{a n }是等差数列, 则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q 1+2+…+(n -1)=c n 1·qn (n -1)2,∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D. 【答案】 D6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.【解析】 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14. 【答案】 147.在平面几何中,有“正三角形内切圆半径等于这个正三角形高的13”.拓展到空间,类比平面几何的上述正确结论,则正四面体的内切球半径等于这个正四面体的高的________.【解析】 设正三角形的边长为a ,高为h ,内切圆半径为r ,由等面积法知3ar =ah ,所以r =13h ;同理,由等体积法知4SR =HS ,所以R =14H .【答案】 148.(2015·福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组: ⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.【解析】 根据校验方程组推理.因为x 2⊕x 3⊕x 6⊕x 7=0,所以x 2,x 3,x 6,x 7都正确.又因为x 4⊕x 5⊕x 6⊕x 7=1,x 1⊕x 3⊕x 5⊕x 7=1,故x 1和x 4都错误,或仅x 5错误.因为条件中要求仅在第k 位发生码元错误,故只有x 5错误.【答案】 59.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.【解析】 (1)∵a 1=5,d =2,∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n . ∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39, T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45. 由此可知S 1=T 1,当2≤n ≤5,n ∈N 时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.(2015·辽宁铁岭二模改编)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出类似的性质.【解析】 类似的性质为:若M 、N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M 、P 的坐标分别为(m ,n )、(x ,y ),则N (-m ,-n ). 因为点M (m ,n )在已知双曲线上,所以n 2=b 2a2m 2-b 2.同理,y 2=b 2a 2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(定值).B 组 专项能力提升 (时间:30分钟)11.已知①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.根据“三段论”推理出一个结论.则这个结论是( )A .正方形的对角线相等B .矩形的对角线相等C .正方形是矩形D .其他【解析】 根据演绎推理的特点,正方形与矩形是特殊与一般的关系,所以结论是正方形的对角线相等.【答案】 A12.设⊕是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集【解析】 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭.【答案】 C13.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为________________.【解析】 考查类比推理问题,由图看出三棱锥P 1­OR 1Q 1及三棱锥P 2­OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为VO ­P 1Q 1R 1VO ­P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.【答案】VO ­P 1Q 1R 1VO ­P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 214.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n .故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论) (大前提是等比数列的定义这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)15.(2015·汉中调研)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现.(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f ⎝⎛⎭⎫12 013+f ⎝⎛⎭⎫22 013+f ⎝⎛⎭⎫32 013+f ⎝⎛⎭⎫42 013+…+f ⎝⎛⎭⎫2 0122 013. 【解析】 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1, 所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 即f (x )+f (1-x )=2. 故f ⎝⎛⎭⎫12 013+f ⎝⎛⎭⎫2 0122 013=2, f ⎝⎛⎭⎫22 013+f ⎝⎛⎭⎫2 0112 013=2, f ⎝⎛⎭⎫32 013+f ⎝⎛⎭⎫2 0102 013=2, …f ⎝⎛⎭⎫2 0122 013+f ⎝⎛⎭⎫12 013=2.所以f ⎝⎛⎭⎫12 013+f ⎝⎛⎭⎫22 013+f ⎝⎛⎭⎫32 013+f ⎝⎛⎭⎫42 013+…+f ⎝⎛⎭⎫2 0122 013=12×2×2 012=2 012.。

2015高考数学合情推理与演绎推理一轮复习测试

2015高考数学合情推理与演绎推理一轮复习测试

2015高考数学合情推理与演绎推理一轮复习测试2015高考数学合情推理与演绎推理一轮复习测试【选题明细表】知识点、方法题号归纳推理3、5、9、11、13、15类比推理2、4、8、10、12演绎推理1、6、7、14一、选择题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(B)(A)①(B)②(C)③(D)①和②解析:由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2013河南焦作二模)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③若“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是(C)(A)0(B)1(C)2(D)3解析:①②正确,③错误,因为两个复数如果不是实数,不能比较大小.故选C.3.(2013上海闸北二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为(C)(A)n+1(B)2n(C)(D)n2+n+1解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.4.定义A*B,B*C,C*D,D*A的运算分别对应图中的(1)(2)(3)(4),那么如图中(a)(b)所对应的运算结果可能是(B)(A)B*D,A*D(B)B*D,A*C(C)B*C,A*D(D)C*D,A*D解析:观察图形及对应运算分析可知,基本元素为A→|,B→□,C→—,D→⚫,从而可知图(a)对应B*D,图(b)对应A*C.故选B.5.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是(B)(A)(7,5)(B)(5,7)(C)(2,10)(D)(10,1)解析:依题意,由和相同的整数对分为一组不难得知,第n组整数对的和为n+1,且有n个整数对.这样前n组一共有个整数对.注意到因此第60个整数对处于第11组的第5个位置,可得为(5,7).故选B.6.对于a、b∈(0,+∞),a+b≥2(大前提),x+≥2(小前提),所以x+≥2(结论).以上推理过程中的错误为(A)(A)小前提(B)大前提(C)结论(D)无错误解析:大前提是a,b∈(0,+∞),a+b≥2,要求a、b都是正数;x+≥2是小前提,没写出x的取值范围,因此本题中的小前提有错误.故选A.7.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*的性质,有如下说法①函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为,.其中所有正确说法的个数为(B)(A)0(B)1(C)2(D)3解析:f(x)=f(x)*0=*0=0*+(3x)*0]+-2×0=3x×+3x+=3x++1.当x=-1时,f(x)因为f(-x)=-3x-+1≠-f(x),所以②错误;令f'(x)=3->0,得x>或x因此函数f(x)的单调递增区间为,,③正确.故选B.二、填空题8.(2013山东实验中学一模)以下是对命题“若两个正实数a1,a2满足+=1,则a1+a2≤”的证明过程:证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.根据上述证明方法,若n个正实数满足++…+=1时,你能得到的结论为.(不必证明)解析:由题意可构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+1,因对一切实数x,恒有f(x)≥0,所以Δ=4(a1+a2+…+an)2-4n≤0,即a1+a2+…+an≤.答案:a1+a2+…+an≤9.(2013山东莱芜模拟)容易计算2×5=10,22×55=1210,222×555=123210,2222×5555=12343210.根据此规律猜想×所得结果由左向右的第八位至第十位的三个数字依次为.解析:由2×5,22×55,222×555的结果可知×的结果共18位,个位为0,其他数位从左向右为连续的自然数且左右对称,即×=123456789876543210,所得结果由左向右的第八位至第十位的三个数字依次为898.答案:89810.(2013江西师大附中模拟)若数轴上不同的两点A,B分别与实数x1,x2对应,则线段AB的中点M与实数对应,由此结论类比到平面得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与对应.解析:由类比推理得,若平面上不共线的三点A,B,C分别与二元实数对(x1,y1),(x2,y2),(x3,y3)对应,则△ABC的重心G与,对应.答案:,11.观察下列几个三角恒等式①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.一般地,若tanα,tanβ,tanγ都有意义,你从这三个恒等式中猜想得到的一个结论为.解析:所给三角恒等式都为tanαtanβ+tanβtanγ+tanγtanα=1的结构形式,且α、β、γ之间满足α+β+γ=90°,所以可猜想当α+β+γ=90°时,tanαtanβ+tanβtanγ+tanγtanα=1.答案:当α+β+γ=90°时,tanαtanβ+tanβtanγ+tanγtanα=112.设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,,,成等比数列. 解析:对于等比数列,通过类比等差数列的差与等比数列的商,可得T4,,,成等比数列.答案:13.用黑白两种颜色的正方形地砖依照如图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.解析:按拼图的规律,第1个图有白色地砖3×3-1(块),第2个图有白色地砖3×5-2(块),第3个图有白色地砖3×7-3(块),…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是.答案:503三、解答题14.在锐角三角形ABC中,求证:sinA+sinB+sinC>cosA+cosB+cosC.证明:∵△ABC为锐角三角形,∴A+B>,∴A>-B,∵y=sinx在上是增函数,∴sinA>sin=cosB,同理可得sinB>cosC,sinC>cosA,∴sinA+sinB+sinC>cosA+cosB+cosC. 15.已知函数f(x)=,(1)分别求f(2)+f,f(3)+f,f(4)+f的值;(2)归纳猜想一般性结论,并给出证明;(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.解:(1)∵f(x)=,∴f(2)+f=+=+=1,同理可得f(3)+f=1,f(4)+f=1.(2)由(1)猜想f(x)+f=1,证明:f(x)+f=+=+=1.(3)f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f=f(1)+f(2)+f+f(3)+f+…+f(2013)+f=+=+2012 =.。

《创新设计》高考数学人教A版(理)一轮复习:第十二篇第1讲合情推理与演绎推理

《创新设计》高考数学人教A版(理)一轮复习:第十二篇第1讲合情推理与演绎推理

第十二篇推理证明、算法、复数第 1 讲合情推理与演绎推理A 级基础操练 (时间: 30 分钟满分: 55 分)一、选择题 (每题 5 分,共 20 分)1.下边几种推理过程是演绎推理的是A .某校高三有 8 个班, 1 班有 51 人, 2 班有班人数都超出 50 人53 人,3 班有( ).52 人,由此推各B .由三角形的性质,推断空间四周体的性质C .平行四边形的对角线相互均分,菱形是平行四边形,所以菱形的对角线相互均分11D .在数列 { a n } 中, a 1=1,a n = 2a n-1+a n-1 ,由此概括出 {a n } 的通项公式分析 A 、D 是概括推理, B 是类比推理; C 运用了 “ 三段论 ”是演绎推理.答案 C2.察看 (x 2)′= 2x , (x 4)′= 4x 3,(cos x)′=- sin x ,由概括推理可得:若定义在R 上的函数f(x)知足 f(-x)= f(x),记g(x)为 f(x)的导函数,则 g(- x)=().A .f(x)B .- f(x)C .g(x)D .- g(x)分析由所给函数及其导数知,偶函数的导函数为奇函数,所以当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=- g(x).答案D3.给出下边类比推理命题 (此中 Q 为有理数, R 为实数集, C 为复数集 ):①“若 a ,b ∈R ,则 a - b = 0? a =b ”类比推出“ a ,c ∈C ,则 a - c =0? a =c ”;②“若 a ,b ,c ,d ∈ R , 复数 a +bi =c +di? a =c ,b =d ” 比推出“ a ,b ,c , d ∈ Q , a + b 2=c +d 2? a = c ,b =d ”;③“若 a ,b ∈R , a -b>0? a>b ” 比推出“若 a ,b ∈C , a - b>0? a>b ”;④“若 x ∈R , |x|<1? - 1<x<1” 比推出“若 z ∈C , |z|<1? - 1<z<1”.此中 比 正确的个数有().A .1B . 2C .3D .4分析 比 正确的只有①② .答案B. 江·西 察以下各式: 5=3 125,56= 15 625,57=78 125,⋯, 52 011的4 (2011 )5末四位数字().A .3 125B .5 625C .0 625D .8 125分析∵55=3 125,56=15 625,57= 78 125,58=390 625,59=1 953 125,510=9765 625,⋯∴5n ∈ ,且 ≥ 的末四位数字呈周期性 化,且最小正周期, n(n Z n 5) 45 (n∈Z ,且 n ≥5)的末四位数字 f(n), f(2 011)= f(501×4+ 7)=f(7)∴52 011与 57的末四位数字同样,均 8 125.故 D.答案 D二、填空 (每小 5 分,共 10 分)以下是 命 “若两个正 数225.(2013 ·山 省 中学一模 1,a 2 足 a 1+a 2=)a1, a 1 +a 2≤ 2”的 明 程:明:结构函数f(x)= (x -a 1)2+(x - a 2 )2 =2x 2-2(a 1+ a 2)x +1,因 全部数 x ,恒有 f(x)≥0,所以 Δ≤0,进而得 4(a 1+a 2)2-8≤0,所以 a 1+ a 2≤ 2.依据上述 明方法,若n 个正 数 足a 12+a 22+⋯+ a 2n =1 ,你能获得的________________________________不(必 明 ).分析 依 意,结构函数 f(x)=(x - a 1) 2+ (x -a 2 2+⋯ +(x -a n 2, 有 f(x)=nx 2) ) - 2(a 1+ a 2+⋯+ a n )x +1, =[- 2(a 1+a 2+⋯ +a n )] 2- 4n =4(a 1+a 2+⋯ +a n )2-4n ≤ 0,即有 a 1+a 2+⋯ +a n ≤n.答案 a 1+a 2+⋯+ a n ≤ n6.用黑白两种色的正方形地依据下所示的律拼成若干个形,按此律,第 100 个形中有白色地 ________;将一粒豆子随机撒在第 100个中,豆子落在白色地上的概率是________.分析按拼的律,第 1 个有白色地3×3-1( ),第 2 个有白色地3×5-2( ),第 3 个有白色地 3× 7-3( ),⋯,第 100 个中有白色地 3×201-100= 503( ).第 100 个中黑白地共有 603 ,将一粒503豆子随机撒在第 100 个中,豆子落在白色地上的概率是603.答案503503 603三、解答 (共 25 分)7.(12 分)出下边的数表序列:表1表2表3113135448⋯12此中表 n(n=1,2,3,⋯ )有 n 行,第 1 行的 n 个数是 1,3,5,⋯, 2n-1,从第 2 行起,每行中的每个数都等于它肩上的两数之和.写出表 4,表 4 各行中的数的均匀数按从上到下的序组成等比数列,并将推行到表 n(n≥3)(不要求明 ).解表 413574 812122032它的第 1,2,3,4 行中的数的均匀数分是4,8,16,32,它组成首4,公比2的等比数列.将一推行到表n(n≥3),即表 n(n≥3)各行中的数的均匀数按从上到下的序组成首 n,公比 2 的等比数列.8.(13 分)(2012 福·建 )某同学在一次研究性学习中发现, 以下五个式子的值都等于同一个常数:① s in 213°+cos 217°- sin 13 cos ° 17 ;°②sin 215°+cos 215°- sin 15 cos ° 15 ;°③sin 218°+cos 212°- sin 18 cos ° 12 ;°④sin 2(- 18°)+cos 248°- sin(-18°)cos 48 ;° ⑤sin 2(- 25°)+cos 255°- sin(-25°)cos 55 . °(1)试从上述五个式子中选择一个,求出这个常数;(2)依据 (1)的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解 (1)选择②式,计算以下:2211 3sin 15°+cos 15°-sin 15 cos ° 15 =°1-2sin 30 =°1- 4= 4.三角恒等式为 2α+cos 2 °-α- α -°α= 3(2)sin (30 ) sin cos(30) 4.证明以下:sin 2α+ cos 2(30 °-α)-sin αcos(30 -°α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-2323 123sin α·(cos 30°cos α+ sin 30°sin α)=sin α+4cos α+ 2 sin αcos α+ 4sin α- 21 2 3 2 3 2 3 sin αcos α-2sin α=4sin α+ 4cos α=4.B 级能力打破(时间: 30 分钟满分:45分)一、 (每小 5 分,共 10 分 )1.(2013 ·九江 )察以下事: |x|+ |y|= 1 的不一样整数解 (x,y)的个数 4,|x|+ |y|= 2 的不一样整数解 (x,y)的个数 8,|x|+ |y|= 3 的不一样整数解 (x,y)的个数 12,⋯, |x|+|y|= 20 的不一样整数解 (x,y)的个数().A.76B.80C.86D.92分析由|x|+ |y|=1 的不一样整数解的个数4,|x|+|y|=2 的不一样整数解的个数8, |x|+|y|= 3 的不一样整数解的个数 12,推理得 |x|+|y|=n 的不一样整数解的个数 4n,故 |x|+ |y|=20 的不一样整数解的个数 80.故 B.答案B2.古希腊人常用小石子在沙上成各样形状来研究数.比方:他研究 1 中的 1,3,6,10,⋯,因为些数能表示成三角形,将其称三角形数;似地,称 2 中的 1,4,9,16,⋯,的数正方形数.以下数中既是三角形数又是正方形数的是().A.289B.1 024C.1 225D.1 378分析察三角形数:1,3,6,10,⋯,数列{a n} ,a1= 1, a2=a1+2,a3=a2+ 3,⋯,a n=a n-1+ n.∴a1+a2+⋯+a n= (a1+ a2+⋯+ a n-1)+ (1+2+3+⋯+ n)? a n=1+ 2+3+⋯+n=n n+1,察正方形数: 1,4,9,16,⋯,2数列 { b n} , b n=n2.把四个的数字,分代入上述两个通公式,可知使得 n 都正整数的只有 1 225.答案C二、填空 (每小 5 分,共 10 分 )3.(2013 ·福州模 )一个 1 的正方形行以下操作;第一步,将它切割成 3×3 方格,接着用中心和四个角的 5 个小正方形,组成如 1 所示的几何5形,其面 S1=9;第二步,将 1 的 5 个小正方形中的每个小正方形都行与第一步同样的操作,获得2;依此推,到第n 步,所得形的面S n=5 n.若将以上操作比推行到棱 1 的正方体中,到第n 步,所得9几何体的体 V n=________.分析一个棱 1 的正方体行以下操作:第一步,将它切割成 3×3×3 个小正方体,接着用中心和 8 个角的 9 个小正方体,组成新 1 几何体,其体9 1V1=27=3;第二步,将新 1 几何体的 9 个小正方体中的每个小正方体都1 2行与第一步同样的操作,获得新 2 几何体,其体V2=3;⋯,依此推,1 n到第 n 步,所得新 n 几何体的体 V n=3.1 n答案3n*4.(2012 ·湖南 ) N= 2 (n∈N,n≥2),将 N 个数 x1, x2,⋯, x N挨次放入N N偶数地点的数拿出,并按原序挨次放入的前 2和后2个地点,获得摆列N P1=x1x3⋯x N-1x2x4⋯ x N,将此操作称 C .将 P1分红两段,每段2个数,并 每段作C ,获得 P 2;当 2≤ i ≤n -2 ,将 P i 分红 2 i段,每段 N2i 个数,并 每段作 C ,获得 P i + 1比如,当 N = 8,2=x 15372648,.Px x x x x x x此 x 7 位于 P 2 中的第 4 个地点.(1) 当 N = 16 , 7 位于 P 2 中的第 ________个地点;x(2) 当N = n≥, 173 位于 P 4 中的第 ________个地点.2 (n 8) x 分析 (1)当 N =16 ,P 1=x 13 5 7 9⋯x 16,此 x 7 在第一段内,再把 段x x x xx 7 位于偶数位的第 2 个地点,故在 P 2 中,x 7 位于后半段的第 2 个地点,即在 P 2 中 x 7 位于第 6 个地点.(2)在 P 1 中,x 173 位于两段中第一段的第 87 个地点,位于奇数地点上,此 在 P 2 中 x 173 位于四段中第一段的第 44 个地点上,再作 得 P 3 , x 173 位于八段中第二段的第 22 个地点上,再作 , x 173 位于十六段中的第四段的第 11 个地点上,也就是位于 P 4 中的第 (3×2n - 4+11)个地点上.答案 6 3×2n - 4+11三、解答 (共 25 分 )5.(12 分 ) 察下表:1,2,34,5,6,7,8,9,10,11,12,13,14,15,⋯: (1)此表第 n 行的最后一个数是多少?(2)此表第 n 行的各个数之和是多少?(3)2 013 是第几行的第几个数?解 (1)∵第 n +1 行的第 1 个数是 2n ,∴第 n 行的最后一个数是 2n -1.(2)2n -1+(2n -1+1)+(2n - 1+2)+⋯+ (2n -1)n -1 nn - 1=2+2 -1·2= 3·22n - 3- 2n -2.2(3)∵210= 1 024,211= 2 048,1 024<2 013<2 048, ∴2 013 在第 11 行, 行第 1 个数是 210=1 024,由 2 013-1 024+1=990,知 2 013 是第 11 行的第 990 个数.6.(13 分)(2013 南·昌二模 )将各 均 正数的数列{ a n } 中的全部 按每一行比上一行多一 的 排成数表,如 所示. 表中各行的第一个数 a 1,a 2,a 4,a 7,⋯,组成数列 { b n } ,各行的最后一个数 a 1,a 3,a 6,a 10,⋯,组成数列 { c n } ,第 n 行全部数的和 S n (n =1,2,3,4,⋯ ).已知数列 { b n } 是公差 d 的等差数列,从第二行起,每一行中的数依据从左到右的 序每一个数与它前面一个5数的比是常数 q ,且 a 1=a 13=1,a 31=3.(1)求数列 { c n } ,{ S n } 的通 公式;(2)求数列 { c n } 的前 n 和 T n 的表达式.解 (1)b n = dn -d +1,前 n 行共有 1+ 2+ 3+⋯+ n =n n +1个数,因 13 24×5=+3,所以22a 13=b 5×q ,即(4d +1)q2=1,又因 31= 7×2 8+ 3,所以 a 31=b 8× q 2,即(7d +1)q 2=53,解得 d = 2, q = 13,1 n -1 2n -1所以 b n =2n -1,c n =b n 3 = 3n -1 ,2n -1 11- n 3 3 nS n = 3 - 11 = (2n - 1) · n .2 31-31 3 52n - 1(2)T n =1+3+32+⋯+ 3n -1 ,①1 1 3 5 2n -1.②3 T n = + 2+ 3+⋯+n3 3 33①②两式相减,得2T n =1+2 1 + 1 1- 2n -1 3 2+⋯+ n - 1 n 3 33 3 1 1 - +3-3n2n 12 =1+2× 1 - 2n 3n =2- 3n ,1-3n +1所以 T n =3- 3n -1 .特 提示: 教 配 、 件、 、 片、文档等各样 子 源 《 新·高考 复 》光 中内容 .。

2015高考数学一轮题组训练:12-2合情推理与演绎推理

2015高考数学一轮题组训练:12-2合情推理与演绎推理

第2讲合情推理与演绎推理基础巩固题组(建议用时:40分钟)一、填空题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理________.①结论正确;②大前提不正确;③小前提不正确;④全不正确.解析f(x)=sin(x2+1)不是正弦函数而是复合函数,所以小前提不正确.答案③2.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出第n个式子的结论:________.解析各等式的左边是第n个自然数到第3n-2个连续自然数的和,右边是中间奇数的平方,故得出结论:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2。

答案n+(n+1)+(n+2)+…+(3n-2)=(2n-1)23.若等差数列{a n}的首项为a1,公差为d,前n项的和为S n,则数列错误!为等差数列,且通项为错误!=a1+(n-1)·错误!,类似地,请完成下列命题:若各项均为正数的等比数列{b n}的首项为b1,公比为q,前n项的积为T n,则________.答案数列{错误!}为等比数列,且通项为错误!=b1(错误!)n-14.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=________.解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案-g(x)5.(2012·江西卷改编)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于________.解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案1236.(2014·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是________.①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).解析经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x-y),S (x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S (y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).答案③④7.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x"类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“错误!=错误!”类比得到“错误!=错误!”.以上式子中,类比得到的结论正确的是________.解析①②正确;③④⑤⑥错误.答案①②8.(2014·南京一模)给出下列等式:2=2cos 错误!,错误!=2cos 错误!,错误!=2cos π16,请从中归纳出第n个等式:=________.答案2cos 错误!二、解答题9.给出下面的数表序列:其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=错误!,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=错误!+错误!=错误!+错误!=错误!+错误!=错误!,同理可得:f(-1)+f(2)=错误!,f(-2)+f(3)=错误!.由此猜想f(x)+f(1-x)=错误!。

2015高考数学一轮精品课件:12.3 合情推理与演绎推理

2015高考数学一轮精品课件:12.3 合情推理与演绎推理

第四页,编辑于星期五:十三点 四分。
第十二章
12.3
合情推理与演绎推理
考纲要求
梳理自测
梳理自测
探究突破
巩固提升
想一想合情推理与演绎推理有什么联系与差异?
答案:总体来说,从推理形式和推理所得结论的正确性上讲,二者
有差异;从二者在认识事物的过程中所发挥的角度考虑,它们又是紧
密联系、相辅相成的.合情推理得到的结论需要演绎推理的验证,而
个区域,选
2
关闭
C.
解析
解析
考点二
考点三
答案
第十二页,编辑于星期五:十三点 四分。
第十二章
12.3
合情推理与演绎推理
考纲要求
考点二
梳理自测
探究突破
探究突破
巩固提升
类比推理
【例 2】给出下面类比推理命题(其中 Q 为有理数集,R 为实数集,C 为复数
集):
①“若 a,b∈R,则 a-b=0⇒ a=b”类比推出“若 a,b∈C,则 a-b=0⇒ a=b”;
b+b2.
其中结论正确的个数是(
A.0
B.1
)
C.2
D.3
关闭
B
关闭
只有③正确.
解析
Hale Waihona Puke 答案第八页,编辑于星期五:十三点 四分。
第十二章
12.3
合情推理与演绎推理
考纲要求
梳理自测
梳理自测
探究突破
巩固提升
4.在平面上,若两个正三角形的边长比为 1∶
2,则它们的面积比为 1∶
4.类似地,
在空间中,若两个正四面体的棱长比为 1∶
以省略.
考点一

高考数学(新人教A版)同步训练:《合情推理与演绎推理》

高考数学(新人教A版)同步训练:《合情推理与演绎推理》

2015届高考数学 6.5合情推理与演绎推理课时提升作业文新人教A版一、选择题1.已知数列{a n}满足a1=1,a n+1>a n,且(a n+1-a n)2-2(a n+1+a n)+1=0,通过计算a2,a3,可以猜测a n等于( )(A)n (B)n2+-(C)n3(D)n3n2.推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是( )(A)①(B)②(C)③(D)以上均错3.(2013·清远模拟)如图是2012年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )4.(2013·阳江模拟)记S n是等差数列{a n}前n项的和,T n是等比数列{b n}前n项的积,设等差数列{a n}公差d≠0,若对小于2 011的正整数n,都有S n=S2 011-n成立,则推导出a1 006=0,设等比数列{b n}的公比q≠1,若对于小于23的正整数n,都有T n=T23-n成立,则( )(A)b11=1 (B)b12=1(C)b13=1 (D)b14=15.三段论:“①所有的中国人都坚强不屈;②玉树人是中国人;③玉树人一定坚强不屈”中,其中“大前提”和“小前提”分别是( )(A)①②(B)①③(C)②③(D)②①6.已知f 1(x)=sin x+cos x,记f 2(x)=f ′1(x),f 3(x)=f ′2(x),…,f n (x)= f ′n-1(x)(n ∈N *且n ≥2),则12 2 012f ()f ()f ()222πππ++⋯+=( ) (A )503(B )1 006(C )0(D )2 012 7.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为( ) (A)3 125(B)5 625(C)0 625(D)8 125二、填空题8.在平面几何中,有结论:“正三角形内一点到三边的距离之和是一个定值”,类比到空间写出你认为合适的结论:_________.9.(2013·韶关模拟)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.10.给出下列命题:①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理的结论的正误与大前提、小前提和推理形式有关.其中正确命题为_________.11.(能力挑战题)已知P(x 0,y 0)是抛物线y 2=2px(p>0)上的一点,过P 点的切线方程的斜率可通过如下方式求得: 在y 2=2px 两边同时求导,得:2yy ′=2p ,则py y'=,所以过P 的切线的斜率:0p k y =试用上述方法求出双曲线22y x 12-=在处的切线方程为_________.三、解答题12.已知等差数列{a n }的公差为d=2,首项a 1=5. (1)求数列{a n }的前n 项和S n .(2)设T n =n(2a n -5),求S 1,S 2,S 3,S 4,S 5,T 1,T 2,T 3,T 4,T 5,并归纳S n ,T n 的大小规律.13.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD=∠A ,且DE ∥BA.求证:DE=AF(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).14.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5);(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.答案解析1.【解析】选B.计算可得a1=1,a2=4,a3=9,故可猜测a n等于n2.2.【解析】选B.①是大前提,③是结论,②是小前提.3.【解析】选A.观察可知:该五角星对角上的两盏花灯(相连亮的看成一盏)依次按顺时针方向隔一盏闪烁,故下一个呈现出来的图形是A.4.【解析】选B.由等差数列中S n=S2 011-n,可导出中间项a1 006=0,类比得等比数列中T n=T23-n,可导出中间项b12=1.5.【思路点拨】根据三段论的结构特征即可解决,务必要分清大前提、小前提及结论.【解析】选A.解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②玉树人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③玉树人一定坚强不屈).故选A.6.【思路点拨】先观察,归纳出f n (x)的解析式的周期,再代入求解. 【解析】选C.由已知可得f 1(x)=sin x+cos x ,f 2(x)=cos x-sin x,f 3(x)= -sin x-cos x ,f 4(x)=sin x-cos x ,f 5(x)=sin x+cos x,…,因此12 2 0121234f ()f ()f ()503f ()f ()f ()f ()2222222πππππππ++⋯+=+++[]=503(1-1-1+1)=0,故选C.7.【思路点拨】再计算几个值,发现规律.【解析】选D.∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125, 510=9 765 625,…,∵5n (n ∈Z 且n ≥5)的末四位数字呈周期性变化,且最小正周期为4, 记5n (n ∈Z 且n ≥5)的末四位数为f(n), 则f(2 011)=f(501×4+7)=f(7), ∴52 011与57的末四位数字相同,均为8 125,故选D.8.【解析】正三角形与正四面体对应,三边与四个面对应,因此正四面体内一点到四个面的距离之和是一个定值.答案:正四面体内一点到四个面的距离之和是一个定值 【方法技巧】解决此类问题的技巧 1.找出两类事物之间的相似性或一致性.2.用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在由平面图形的性质向空间几何体的性质进行类比时,常用的类比思路有: 平面中点线面空间中线面体9.【解析】 由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.答案:13+23+33+43+53+63=212【变式备选】设函数()()xf x x 0x 2>=,+观察: ()()()()()121x xf x f x f x f f x x 23x 4==,==,++ ()()()32xf x f f x 7x 8==,+故f n (x)=__________. 【解析】根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…可知f n (x)的分母中常数项为2n,分母中x 的系数为2n-1,故()n n nxf x .(21)x 2=-+答案:n nx(21)x 2-+ 10.【解析】演绎推理是由一般到特殊的推理,但是如果前提是错误的,则结论一定错误,其结论的正误与推理的形式有关,所以①③④正确. 答案:①③④11.【解析】用类比的方法对22y x 12=-两边同时求导得,yy ′=2x ,2x y ,y ∴'=002x y 2y ∴'=,∴切线方程为y 2(x 2x y 0.∴,-答案:2x y 0-.【变式备选】设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________, ___________,1612T T 成等比数列. 【解析】根据等比数列的性质知,b 1·b 2·b 3·b 4,b 5·b 6·b 7·b 8,b 9·b 10·b 11·b 12,b 13·b 14·b 15·b 16成等比数列,8161244812T TT T T T T ∴,,,成等比数列.答案:81248T T T T12.【解析】(1)()()n n n 1S 5n 2n n 4.2-=+⨯=+ (2)T n =n(2a n -5)=n [2(2n+3)-5]=4n 2+n. ∴S 1=5,S 2=12,S 3=21,S 4=32,S 5=45, T 1=5,T 2=18,T 3=39,T 4=68,T 5=105.由此可知S 1=T 1,当5≥n ≥2(n ∈N *)时,S n <T n , 猜想,当n ≥2,n ∈N *时,S n <T n .13.【解析】(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD=∠A ,(小前提) 所以DF ∥EA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以DE=AF.(结论) 上面的证明可简略地写成:BFD A DF EA AFDE DE AF.DE BA ∠=∠⇒⎫⇒⇒=⎬⎭∥四边形是平行四边形∥14.【解析】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25, ∴f(5)=25+4×4=41. (2)∵f(2)-f(1)=4=4×1. f(3)-f(2)=8=4×2, f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4,由上式规律得出f(n+1)-f(n)=4n. ∴f(2)-f(1)=4×1, f(3)-f(2)=4×2, f(4)-f(3)=4×3, ……f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1)∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2n(n-1),∴f(n)=2n2-2n+1.。

高考数学(理)一轮规范练【69】合情推理与演绎推理(含答案)

高考数学(理)一轮规范练【69】合情推理与演绎推理(含答案)

课时规范练69 合情推理与演绎推理课时规范练第109页一、选择题[:1.下列推理过程是演绎推理的是( )A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数都超过50人C.由平面三角形的性质推测空间四面体的性质D.在数列{a n}中,a1=1,a n=(n≥2),由此归纳出{a n}的通项公式答案:A解析:C是类比推理,B与D均为归纳推理,而合情推理包括类比推理和归纳推理,故B,C,D都不是演绎推理.而A 是由一般到特殊的推理形式,故A是演绎推理.2.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31………A.809B.852C.786D.893答案:A解析:前20行共有正奇数1+3+5+…+39=400(个),则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.3.定义一种运算“”:对于正整数n满足以下运算性质:(1)11=1,(2)(n+1)1=n1+1,则n1=( )A.nB.n+1C.n-1D.n2答案:A解析:由(n+1)1=n1+1,得n1=(n-1)1+1=(n-2)1+2=…=11+(n-1).又∵11=1,∴n1=n.4.观察下列各式:1=12,2+3+4=32,[:3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是( )A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2答案:B解析:可以发现:第一个式子的第一个数是1,第二个式子的第一个数是2……故第n个式子的第一个数是n;第一个式子中有1个数相加,第二个式子中有3个数相加……故第n个式子中有2n-1个数相加;第一个式子的结果是1的平方,第二个式子的结果是3的平方……第n个式子的结果应该是2n-1的平方,故可以得到n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.5.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为( )A.76B.80C.86D.92答案:B[:数理化]解析:由已知条件得|x|+|y|=n(n∈N*)的不同整数解(x,y)的个数为4n,所以|x|+|y|=20的不同整数解(x,y)的个数为80,故选B.6.已知x>0,由不等式x+≥2=2,x+≥3=3,…,我们可以得出推广结论:x+≥n+1(n∈N*),则a=( )A.2nB.n2C.3nD.n n答案:D解析:再续写一个不等式:x+≥4=4,由此可得a=n n.二、填空题7.设n为正整数,f(n)=1++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结论,可推测一般的结论为.答案:f(2n)≥解析:由前四个式子可得,第n个不等式的左边应当为f(2n),右边应当为,即可得一般的结论为f(2n)≥.8.某少数民族的刺绣有着悠久的历史,下图甲、乙、丙、丁为她们刺绣最简单的四种图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(6)= .答案:61解析:根据所给图形的规律,f(1)=1,f(n+1)-f(n)=4n,n∈N*,由累加法可得f(n)=2n2-2n+1,所以f(6)=61.9.定义映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1,②若n>m,f(m,n)=0;③f(m+1,n)=n[f(m,n)+f(m,n-1)],则f(2,2)= ;f(n,2)= .答案:2 2n-2解析:根据定义得f(2,2)=f(1+1,2)=2[f(1,2)+f(1,1)]=2f(1,1)=2×1=2.f(3,2)=f(2+1,2)=2[f(2,2)+f(2,1)]=2×(2+1)=6=23-2,f(4,2)=f(3+1,2)=2[f(3,2)+f(3,1)]=2×(6+1)=14=24-2,f(5,2)=f(4+1,2)=2[f(4,2)+f(4,1)]=2×(14+1)=30=25-2,所以根据归纳推理可知f(n,2)=2n-2.三、解答题10.如图,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,求“黄金双曲线”的离心率e.[:解:在“黄金双曲线”中,B(0,b),F(-c,0),A(a,0).∵,∴·=0.∴b2=ac.而b2=c2-a2,∴c2-a2=ac.在等号两边同除以a2得e2-e-1=0,又e>1,∴解得e=.11.已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为k PM,k PN时,那么k PM与k PN之积是与点P的位置无关的定值.试对双曲线=1(a>0,b>0)写出具有类似特性的性质,并加以证明.解:类似的性质为:若M,N是双曲线=1(a>0,b>0)上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM,PN的斜率都存在,并记为k PM,k PN时,那么k PM与k PN之积是与点P的位置无关的定值.证明:设点M,P的坐标分别为(m,n),(x,y),则N(-m,-n).因为点M(m,n)在已知双曲线上,所以n2=m2-b2.同理y2=x2-b2.则k PM·k PN=··(定值).12.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[:解:解法一:(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-sin 30°=1-.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos 30°cosα+sin 30°sin α)2-sinα(cos 30°cos α+sin 30°sin α) =sin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2α=sin2α+cos2α=.解法二:(1)同解法一.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=-sinα(cos 30°cos α+sin 30°sinα)=cos2α+(cos 60°cos 2α+sin 60°sin2α)-sinαcosα-sin2α=cos2α+cos2α+sin2α-sin2α-(1-co s2α)=1-cos2α-cos2α=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 合情推理与演绎推理基础巩固题组(建议用时:40分钟)一、选择题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理 ( ).A.结论正确 B.大前提不正确C.小前提不正确 D.全不正确解析 f(x)=sin(x2+1)不是正弦函数而是复合函数,所以小前提不正确.答案 C2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ).A.f(x) B.-f(x)C.g(x) D.-g(x)解析 由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D3.(2012·江西卷)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于 ( ).A.28 B.76C.123 D.199解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C4.(2014·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是 ( ).①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①② B.③④C.①④ D.②③解析 经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x -y),S(x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).综上所述,选B.答案 B5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“=”类比得到“=”.以上式子中,类比得到的结论正确的个数是 ( ).A.1 B.2C.3 D.4解析 ①②正确;③④⑤⑥错误.答案 B二、填空题6.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出结论:________.解析 各等式的左边是第n个自然数到第3n-2个连续自然数的和,右边是中间奇数的平方,故得出结论:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.答案 n+(n+1)+(n+2)+…+(3n-2)=(2n-1)27.若等差数列{a n}的首项为a1,公差为d,前n项的和为S n,则数列为等差数列,且通项为=a1+(n-1)·,类似地,请完成下列命题:若各项均为正数的等比数列{b n}的首项为b1,公比为q,前n项的积为T n,则________.答案 数列{}为等比数列,且通项为=b1()n-18.(2014·揭阳一模)给出下列等式:=2cos ,=2cos ,=2cos ,请从中归纳出第n个等式:=________.答案 2cos三、解答题9.给出下面的数表序列:表1 表2 表31 1 3 1 3 5 4 4 8 … 12 其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解 表4为 1 3 5 7 4 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解 f(0)+f(1)=+=+=+=,同理可得:f(-1)+f(2)=,f(-2)+f(3)=.由此猜想f(x)+f(1-x)=.证明:f(x)+f(1-x)=+=+=+==.能力提升题组(建议用时:25分钟)一、选择题1.(2012·江西卷)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为 ( ).A.76 B.80C.86 D.92解析 由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案 B2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ( ).A.289 B.1 024C.1 225 D.1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n},则a1=1,a2=a1+2,a3=a2+3,…a n=a n-1+n.∴a1+a2+…+a n=(a1+a2+…+a n-1)+(1+2+3+…+n)⇒a n=1+2+3+…+n=,观察正方形数:1,4,9,16,…,记该数列为{b n},则b n=n2.把四个选项的数字,分别代入上述两个通项公式,可知使得n都为正整数的只有1225.答案 C二、填空题3.在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是________;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=________(用数值作答).解析 (1)四边形DEFG是一个直角梯形,观察图形可知:S=(+2)××=3,N=1,L=6.(2)由(1)知,S四边形DEFG=a+6b+c=3.S△ABC=4b+c=1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S=4,N=1,L=8.则S=a+8b+c=4.联立解得a=1,b=.c=-1.∴S=N+L-1,∴若某格点多边形对应的N=71,L=18,则S=71+×18-1=79.答案 (1)3,1,6 (2)79三、解答题4.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解 (1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-sin 30°=1-=.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin2α+cos2α+sin αcosα+sin2α-sin αcos α-sin2α=sin2α+cos2α=.。

相关文档
最新文档