高中数学必修一测试题

合集下载

高中高一数学必修一试卷习题及含答案

高中高一数学必修一试卷习题及含答案

高一数学必修一试卷及答案一、选择题(本大题共 12 小题 , 每题 5 分 , 共 60 分 . 在每题给出的四个选项中是切合题目要求的 , 请把正确答案的代号填入答题卡中), 只有一项1. 已知全集U0,1,2,3,4 , M0,1.2 , N2,3 ,则 C U M NA.2B.3C.2,3,4D.0。

1,2,3,42.以下各组两个会合 A 和 B, 表示同一会合的是A.A=,B= 3.14159B. A=2,3 ,B=(2,3)C. A= 1,3,,B=,1,3D. A=x 1x 1, x N ,B=13.函数 y x 2的单一递加区间为A.(,0]B. [0, )C.(0, )D. (, )4.以下函数是偶函数的是1A.y xB.y 2x 23C.y x 2D. y x2 , x[ 0,1]5.已知函数f x x1, x 1,则 f(2) =x3, x1B,26. 当0 a 1 时,在同一坐标系中,函数y a x与 y log a x 的图象是.y y y y1x 111x x xo o11o11oA B C D7.假如二次函数y x2mx( m 3) 有两个不一样的零点, 则 m的取值范围是A. ( -2,6)B.[-2,6]C.2,6D., 26.8.若函数 f ( x)log a x(0 a1) 在区间a,2 a 上的最大值是最小值的2倍,则a的值为()A 、2 B、2 C、1D、142429. 三个数 a 0.32 , b log 2 0.3, c 20 .3 之间的大小关系是A a c b .B.a b cC.b a cD.b c a10. 已知奇函数 f ( x) 在 x 0 时的图象如下图,则不等式xf ( x)0 的解集为A. (1, 2)B. ( 2, 1)C. ( 2, 1) U (1, 2) D. ( 1, 1)11. 设 f x3 x 3x 8 , 用二分法求方程 3x3x 8 0在 x 1,2 内近似解的过程中得f 1 0, f1.50, f 1.250, 则方程的根落在区间A. ( 1, )B.( , )C.( ,2 )D.不可以确立12. 计算机成本不停降低 , 若每隔三年计算机价钱降低1, 则此刻价钱为 8100 元的计算机 93年后价钱可降为元元元元二、填空题 (每题 4 分 , 共 16 分 . )13. 若 幂 函 数 y = fx 的 图 象 经 过 点 ( 9,1) ,则 f(25)的 值 是 _________-314. 函数 f x4 x log 3 x 1 的定义域是x 115. 给出以下结论( 1) 4( 2) 42(2) 1log 312 log 3 2 122(3)函数 y=2x-1 , x[1 ,4] 的反函数的定义域为[1 ,7 ]1(4)函数 y= 2 x 的值域为 (0,+) 此中正确的命题序号为16. 定义运算 a ba ab , 则函数 f (x)1 2x的最大值为.b ab .三、解答题 (本大题共6 小题 ,共 74分 . 解答应写出文字说明, 证明过程或演算步骤)17. ( 12 分) 已知会合A{ x | 2x40}, B{ x | 0x 5} , 全集 UR ,求:(Ⅰ) AI B ;(Ⅱ)(C U A) I B.18.计算 : (每题 6 分 , 共 12 分)( 1) 2 361233219.( 12 分)已知函数 f ( x) x 1,( Ⅰ )证明 f ( x)在[1,)上是增函数;x( Ⅱ) 求f (x)在[1,4]上的最大值及最小值.20.已知 A、B 两地相距地 , 在 B 地逗留一小时后离 y(千米)表示为时间象 . (14 分)150 千米 , 某人开车以 60 千米/小时的速度从 A 地到 B , 再以 50 千米/小时的速度返回 A地 . 把汽车与 A地的距 t (小时)的函数(从 A 地出发时开始) , 并画出函数图21.(本小题满分 12 分)二次函数 f (x)知足且 f (0)=1.(1)求 f (x)的分析式 ;(2)在区间上 , y=f(x) 的图象恒在 y=2x+m的图象上方 , 试确立实数 m的范围 .22. 已知函数 f (x)对一确实数x, y R 都有 f ( x y) f ( y) x(x 2 y1) 建立,且f (1) 0 .(Ⅰ)求 f (0) 的值;(Ⅱ)求 f ( x) 的分析式;(Ⅲ)已知 a R ,设 P :当0 x 12x a恒建立;时,不等式 f ( x) 32Q:当x[2,2] 时, g (x) f ( x)ax 是单一函数。

数学高中必修一试题及答案

数学高中必修一试题及答案

数学高中必修一试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = log(x)答案:B2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的符号是:A. 正B. 负C. 零D. 不确定答案:B3. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值:A. 17B. 29C. 35D. 38答案:B4. 圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切答案:B5. 函数f(x) = 2x - 3在点x=1处的导数是:A. 2B. -3C. -2D. 1答案:A6. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B7. 集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B8. 已知等比数列的首项a1=2,公比q=2,求第5项a5的值:A. 16B. 32C. 64D. 128答案:C9. 函数y = x^3 - 3x^2 + 2在点x=1处的极值情况是:A. 极大值B. 极小值C. 无极值D. 不确定答案:B10. 已知向量a=(2, -1),b=(-3, 4),求向量a与b的点积:A. 5B. -5C. -10D. 10答案:B二、填空题(每题2分,共20分)11. 已知函数f(x) = x^2 + 2x + 1,求f(-1)的值。

答案:012. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:513. 已知集合M={x | x < 5},N={x | x > 3},求M∩N。

高中数学必修一测试题

高中数学必修一测试题

高中数学必修一测试题一. 填空题1. 已知函数 f(x) = 2x² + 3x - 5,求 f(2) 的值。

解: 将 x = 2 代入函数 f(x) 得 f(2) = 2(2)² + 3(2) - 5 = 4(4) + 6 - 5 = 16+ 6 - 5 = 17。

2. 已知平行四边形 ABCD 的边长分别为 AB = 5cm,BC = 8cm,CD = 5cm,求对角线 AC 的长度。

解: 由平行四边形的性质可知,对角线互相平分且相等,因此 AC的长度等于 BD 的长度。

而 BD = AB = 5cm,所以 AC 的长度也为 5cm。

3. 解方程 2x + 3 = 7。

解: 通过移项和化简得 2x = 7 - 3 = 4,再除以 2 得 x = 2。

二. 计算题1. 计算3π + 2π - π。

解: 合并同类项得3π + 2π - π = 4π - π = 3π。

2. 简化下列代数式:(3x - 2y)²。

解: 将代数式展开得 (3x - 2y)² = (3x - 2y)(3x - 2y) = (3x)(3x) + (3x)(-2y) + (-2y)(3x) + (-2y)(-2y)= 9x² - 6xy - 6xy + 4y² = 9x² - 12xy + 4y²。

三. 解答题1. 解方程组:{ x - y = 5,2x + y = 9.解: 方程组可通过消元法求解。

首先将第一条方程两边同乘以 2,得到 2x - 2y = 10。

然后将第二条方程与该式相加,消去 y,得到 (2x + y) + (2x - 2y) = 9 + 10即 4x = 19,再除以 4 得 x = 19/4。

将 x 的值代入第一条方程得 (19/4) - y = 5,移项得 y = (19/4) - 5 = 19/4 - 20/4 = -1/4。

高中数学试卷必修一基础100题

高中数学试卷必修一基础100题

高中数学试卷必修一基础50题一、单选题(共15题;共30分)1.已知函数y=sinx的定义域为值域为,则的值不可能是( )A. B. C. D.2.已知集合, ,则()A. B. C. D.3.设集合是锐角,,从集合到的映射是“求正弦值”,则与中元素相对应的中元素是()A. B. C. D.4.设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为( )A. (x-5)(x-4)B. (x-6)(x-5)C. (x-6)(5-x)D. (x-6)(7-x)5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A. a≤1B. a<1C. a≥2D. a>26.已知集合,,则()A. B. C. D.7.已知函数的定义域为,的定义域为()A. B. C. D.8.已知偶函数在区间上是增函数,如果,则x的取值范围是()A. B. C. D.9.二次函数图象的对称轴方程为()A. B. C. D.10.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A. y=﹣x3B. y=ln|x|C. y=cosxD. y=2﹣|x|11.函数f(x)=a x﹣1+2的图象恒过定点()A. (3,1)B. (0,2)C. (1,3)D. (0,1)12.集合,,若,则实数a的取值范围是()A. B. C. D.13.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A. 10个B. 9个C. 8个D. 4个14.已知,b=0.53,,则a,b,c三者的大小关系是()A. b<a<cB. c<a<bC. a<c<bD. a<b<c15.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}二、填空题(共20题;共21分)16.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为________.17.若二次函数的图象经过点,则代数式的值等于________.18.已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.19.已知函数f(x)=2x﹣3,x∈N且1≤x≤5,则函数的值域为________.20.设集合M={x|﹣1<x<1},N={x|0≤x<2},则M∪N=________.21.设函数在区间上的最大值为,则________.22.函数的定义域为________.23.若函数f(x)= 在(﹣1,+∞)上的值域为________.24.已知幂函数的图象过点,则的单调减区间为________.25.设函数f(x)=(x﹣4)0+ ,则函数f(x)的定义域为________.26.若f(x)=2x+2﹣x lga是奇函数,则实数a=________.27.已知函数是奇函数,则=________.28.已知全集U={﹣1,0,2,4},集合A={0,2},则________.29.函数的单调递增区间为________.30.已知函数f(x)=,则f[f(-2)]=________ ,f(x)的最小值是________.31.设函数,若,则________.32.计算:的结果是________ .33.函数的单调增区间为________.34.化简:+=________35.已知集合,,若存在非零整数k,满足,则________.三、解答题(共15题;共135分)36.设,求证:(1);(2).37.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.38.(1)计算:;(2)已知( ) ,求的值.39.已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.40.已知集合A={x|﹣3<x≤4},集合B={x|k+1≤x≤2k﹣1},且A∪B=A,试求k的取值范围.41.比较下列各题中两个值的大小.(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4.42.已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f()= .(1)求函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(x2﹣1)+f(x)<0.43.已知函数.(1)求函数的定义域;(2)是否存在实数a,使得为奇函数.44.已知全集U={x|﹣5≤x≤3},集合A={x|﹣5≤x<﹣1},B={x|﹣1≤x≤1}.(1)求A∩B,A∪B;(2)求(∁U A)∩(∁U B),(∁U A)∪(∁U B).45.设集合,.若,求的值46.设函数f(x)=ax2+(b﹣8)x﹣a﹣ab的两个零点分别是﹣3和2.(Ⅰ)求f(x);(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.47.已知全集,若集合,B={x|x-m<0} .(1)若,求;(2)若, 求实数的取值范围.48.已知集合,.(1)当m=4时,求,;(2)若,求实数m的取值范围.49.已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.(1)若A⊊B,求实数a的取值范围;(2)若B⊊A,求实数a的取值范围.50.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】D12.【答案】C13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】17.【答案】[ ,1]18.【答案】{2,4}19.【答案】;20.【答案】821.【答案】b<a<c22.【答案】23.【答案】24.【答案】25.【答案】26.【答案】27.【答案】028.【答案】{0,2,6,10}29.【答案】30.【答案】231.【答案】②③32.【答案】33.【答案】[2,5)34.【答案】35.【答案】三、解答题36.【答案】(1)解:(2)。

高中数学必修1综合测试卷(三套+含答案)

高中数学必修1综合测试卷(三套+含答案)

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。

已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。

5D .6 4。

下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。

设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。

2 B .3 C .9 D 。

187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。

高中数学必修一第一章测试题

高中数学必修一第一章测试题

高中数学必修一第一章测试题一、选择题(每题3分,共15分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。

A. {1, 2, 3, 4}B. {2, 3}C. {1, 2, 3}D. {3, 4}3. 若a > 0,b < 0,且|a| > |b|,则a + b的值:A. 一定大于0B. 一定小于0C. 可能大于0,也可能小于0D. 无法确定4. 函数f(x) = x^2 - 2x + 1的最小值是:A. 0B. 1C. -1D. 25. 已知等差数列的首项a1=3,公差d=2,求第5项a5。

A. 13B. 11C. 9D. 7二、填空题(每题2分,共10分)6. 集合{1, 2, 3}的补集(相对于自然数集N)是______。

7. 已知集合M={x | x > 0},N={x | x < 5},求M∩N的元素范围是______。

8. 若函数f(x) = 3x - 5的图象与x轴相交于点A,求点A的坐标是______。

9. 等差数列的前n项和公式是______。

10. 若方程x^2 + 6x + 9 = 0有实数根,则实数根的个数是______。

三、解答题(共75分)11. 已知集合P={x | x^2 - 1 = 0},求P的所有子集,并计算这些子集的个数。

(10分)12. 证明:对于任意实数x,x^3 - 3x + 2 ≥ 0。

(15分)13. 已知函数f(x) = 2x^3 - 3x^2 + 1,求导数f'(x),并讨论f(x)的单调性。

(20分)14. 解不等式:|x - 1| + |x - 3| < 2。

(15分)15. 已知等差数列的前n项和S_n = 20n,求该数列的首项a1和公差d。

(15分)请注意,这些测试题仅供练习使用,具体题目的难度和范围应根据实际教学大纲和学生的学习进度来确定。

高中数学必修1所有课时练习(含答案)

高中数学必修1所有课时练习(含答案)

第一章 集合与函数的概念课时作业(一) 集合的含义姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .无限接近于0的数 C .美丽的小女孩D .方程x 2-1=0的实数根解析: 选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合,故选D.答案: D2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉M D .0∉M,2∉M解析: 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M . 答案: B3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .2解析: 由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠-2,a ≠1,且a ≠2.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.答案: C4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .4∈MB .2∈MC .0∉MD .-4∉M解析: 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M ,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a 的值是________. 解析: 由(x -a )(x -a +1)=0得x =a 或x =a -1, 又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意; 当a -1=2时,a =3,集合A 中的元素为2,3,符合题意. 综上可知,a =2或a =3. 答案: 2或36.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a ,0三个元素构成的集合,若A =B ,则实数a =________.解析: 由集合相等的概念得⎩⎨⎧a 2-1=0,a 2-3a =-2,解得a =1. 答案: 1三、解答题(每小题10分,共20分)7.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值. 解析: 当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A 中只有一个元素2.当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根, 需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或1.8.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解析: ∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 中含有两个元素-3、-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 中含有两个元素-4,-3,符合题意. 综上所述,a =0或a =-1. 尖子生题库☆☆☆9.(10分)设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解析: (1)由集合元素的互异性可得 x ≠3,x 2-2x ≠x 且x 2-2x ≠3, 解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2.课时作业(二) 集合的表示姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N +,且s ≤5}解析: A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.答案: D2.下列集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2} C .{2} D .{x |x 2-4x +4=0}解析: {x =2}表示的是由一个等式组成的集合,而其他三个集合均表示由元素2组成的集合.答案: B 3.(2012·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10解析: 由x ∈A ,y ∈A 得x -y =0或x -y =±1或x -y =±2或x -y =±3或x -y =±4,故集合B 中所含元素的个数为10个. 答案: D4.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0};②方程x -2+|y +2|=0的解集为{-2,2};③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的说法有( ) A .1个 B .2个 C .3个 D .0个解析: 直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎨⎧ x -2=0,y +2=0,即⎩⎨⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相等,③不正确.故选A.答案: A二、填空题(每小题5分,共10分)5.用列举法写出集合⎩⎨⎧⎭⎬⎫33-x ∈Z | x ∈Z =________.解析: ∵33-x∈Z ,x ∈Z ,∴3能被3-x 整除,即3-x 为3的因数. ∴3-x =±1或3-x =±3, ∴33-x =±3或33-x=±1. 综上可知,-3,-1,1,3满足题意. 答案: {-3,-1,1,3}6.若3∈{m -1,3m ,m 2-1},则m =________. 解析: 由m -1=3,得m =4;由3m =3,得m =1,此时m -1=m 2-1=0,故舍去;由m 2-1=3,得m =±2.经检验,m =4或m =±2满足集合中元素的互异性. 故填4或±2. 答案: 4或±2三、解答题(每小题10分,共20分) 7.用列举法表示下列集合: ①{x ∈N|x 是15的约数};②{(x ,y )|x ∈{1,2},y ∈{1,2}}; ③{(x ,y )|x +y =2且x -2y =4}; ④{x |x =(-1)n ,n ∈N};⑤{(x ,y )|3x +2y =16,x ∈N ,y ∈N}; ⑥{(x ,y )|x ,y 分别是4的正整数约数}. 解析: ①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}(注:防止把{(1,2)}写成{1,2}或{x =1,y =2})③⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫83,-23 ④{-1,1}⑤{(0,8),(2,5),(4,2)}⑥{(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 8.用描述法表示下列集合: ①{3,9,27,81};②{-2,-4,-6,-8,-10}. 解析: ①{x |x =3n ,n ∈N *且n ≤4} ②{x |x =-2n ,n ∈N *且n ≤5} 尖子生题库☆☆☆9.(10分)定义集合运算A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和是多少?解析: 当x =1或2,y =0时,z =0, 当x =1,y =2时,z =2; 当x =2,y =2时,z =4. ∴A *B ={0,2,4},∴所有元素之和为0+2+4=6.课时作业(三) 集合间的基本关系姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列命题: ①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅A ,则A ≠∅. 其中正确的有( ) A .0个 B .1个 C .2个D .3个解析: ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.答案: B2.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( ) A .2 B .-1 C .2或-1 D .4解析: ∵A =B , ∴m 2-m =2,∴m =2或m =-1. 答案: C3.已知全集U =R ,则正确表示集合U ,M ={-1,0,1},N ={x |x 2+x =0}之间关系的Venn 图是( )解析: 由N ={x |x 2+x =0},得N ={-1,0},则N M U . 答案: B4.下列集合中,结果是空集的为( ) A .{x ∈R |x 2-4=0} B .{x |x >9或x <3} C .{(x ,y )|x 2+y 2=0} D .{x |x >9且x <3}解析: {x ∈R |x 2-4=0}={2,-2},{(x ,y )|x 2+y 2=0}={(0,0)},显然{x |x >9或x <3}不是空集,{x |x >9且x <3}是空集,选D. 答案: D二、填空题(每小题5分,共10分)5.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为________.解析: 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 答案: a ≥26.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析: ∵∅{x |x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.答案: a ≤14三、解答题(每小题10分,共20分)7.已知{1}A ⊆{1,2,3},求满足条件的所有的集合A . 解析: 当A 中含有两个元素时, A ={1,2}或A ={1,3};当A 中含有三个元素时,A ={1,2,3}.所以满足已知条件的集合A 是{1,2},{1,3},{1,2,3}.8.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析: 假设存在实数x ,使B ⊆A , 则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1. (2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2. ①当x =-1时,A ={1,3,1},与元素互异性矛盾, 故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A . 综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A . 尖子生题库☆☆☆9.(10分)设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}. (1)若A B ,求实数a 的取值范围; (2)是否存在实数a 使B ⊆A?解析: (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3或⎩⎪⎨⎪⎧a -2≥-2,a +2<3.解得:0≤a ≤1. (2)同理可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3,得a 无解,所以不存在实数a 使B ⊆A .课时作业(四) 交集、并集姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知集合M ={-1,1,2},集合N ={y |y =x 2,x ∈M },则M ∩N 是( ) A .{1,2,4} B .{1} C .{1,2} D .∅ 解析: ∵M ={-1,1,2},x ∈M , ∴x =-1或1或2. 由y =x 2得y =1或4,∴N ={1,4},M ∩N ={1}. 答案: B 2.设集合A ={x ∈Z |-10≤x ≤-1},B ={ x ∈Z ||x |≤5},则A ∪B 中的元素个数是( ) A .10 B .11 C .15 D .16 解析: A ={-10,-9,-8,-7,-6,…,-1}, B ={-5,-4,-3,-2,-1,0,1,2,3,4,5}, ∴A ∪B ={-10,-9,-8,…,-1,0,1,2,3,4,5},A ∪B 中共16个元素. 答案: D3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N =( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}解析: M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}. 答案: D4.设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B .{x |1≤x ≤2} C .{x |0≤x ≤4} D .{x |1≤x ≤4} 解析: 在数轴上表示出集合A 与B ,如下图.则由交集的定义知,A ∩B ={x |0≤x ≤2}. 答案: A二、填空题(每小题5分,共10分)5.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R6.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)7.已知M ={1},N ={1,2},设A ={(x ,y )|x ∈M ,y ∈N },B ={(x ,y )|x ∈N ,y ∈M },求A ∩B 和A ∪B .解析: A ∩B ={(1,1)},A ∪B ={(1,1),(1,2),(2,1)}8.已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =R ,求a 的取值范围. 解析: 若A ∪B =R ,如图所示,则必有2a ≤-1且a +3≥5,∴a ≤-12且a ≥2,此时a 无解.尖子生题库☆☆☆9.(10分)集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C , ∴-a2<2,∴a >-4.课时作业(五)补集及综合应用姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个解析:A={0,1,3},集合A的真子集共有8个.答案: D2.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)解析:阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(∁U A).答案: B3.已知U为全集,集合M,N⊆U,若M∩N=N,则()A.∁U N⊆∁U M B.M⊆∁U NC.∁U M⊆∁U N D.∁U N⊆M解析:由M∩N=N知N⊆M.∴∁U M⊆∁U N.答案: C4.(2012·山东卷)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}解析:∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.答案: C二、填空题(每小题5分,共10分)5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于________________________________________________________________________.解析:∁U B={x|-1≤x≤4},A∩(∁U B)={x|-1≤x≤3}.答案:{x|-1≤x≤3}6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a的取值范围是________.解析:∵∁R B=(-∞,1)∪(2,+∞)且A∪∁R B=R,∴{x|1≤x≤2}⊆A,∴a≥2.答案:[2,+∞)三、解答题(每小题10分,共20分)7.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3},求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解析:由下图可知,∁U A ={x |x ≤-2或3≤x ≤4}, A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4},(∁U A )∩B ={x |-3<x ≤-2或x =3}.8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解析: ∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2. (2)若A ≠∅,则有⎩⎨⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2. 尖子生题库☆☆☆9.(10分)已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解析: 假设存在x ,使B ∪(∁A B )=A ,∴B A . (1)若x +2=3,则x =1符合题意. (2)若x +2=-x 3,则x =-1不符合题意. ∴存在x =1,使B ∪(∁A B )=A , 此时A ={1,3,-1},B ={1,3}.课时作业(六) 函数的概念姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x ,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来.A .1个B .2个C .3个D .4个 答案: B2.函数f (x )=⎝⎛⎭⎫x -120+|x 2-1|x +2的定义域为( )A.⎝⎛⎭⎫-2,12 B .(-2,+∞) C.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,+∞解析: 要使函数式有意义,必有x -12≠0且x +2>0,即x >-2且x ≠12.答案: C3.已知函数f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6 D .-6解析: 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧1+p +q =0,4+2p +q =0,∴⎩⎪⎨⎪⎧p =-3,q =2,∴f (x )=x 2-3x +2, ∴f (-1)=(-1)2-3×(-1)+2=6. 答案: C4.若函数g (x +2)=2x +3,则g (3)的值是( ) A .9 B .7 C .5 D .3解析: g (3)=g (1+2)=2×1+3=5. 答案: C二、填空题(每小题5分,共10分)5.函数f (x )=x 2-2x +5定义域为A ,值域为B ,则集合A 与B 的关系是________. 解析: 显然二次函数的定义域为A =R , 又∵f (x )=x 2-2x +5=(x -1)2+4≥4, ∴B =[4,+∞),∴A B . 答案: A B6.设f (x )=11+x,则f [f (x )]=________.解析: f [f (x )]=f ⎝ ⎛⎭⎪⎫11+x =11+11+x =x +1x +2(x ≠-1且x ≠-2). 答案:x +1x +2(x ≠-1且x ≠-2) 三、解答题(每小题10分,共20分) 7.判断下列各组函数是否是相等函数. (1)f (x )=(x -2)2,g (x )=x -2;(2)f (x )=x 3+xx 2+1,g (x )=x .解析: (1)∵f (x )=(x -2)2=|x -2|,g (x )=x -2,∴两函数的对应关系不同,故不是相等函数. (2)∵f (x )=x 3+xx 2+1=x ,g (x )=x ,又∵两个函数的定义域均为R ,对应关系相同,故是相等函数.8.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域; (2)求f (-1), f (12)的值.解析: (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞).(2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.尖子生题库☆☆☆9.(10分)已知函数f (x )=x 21+x 2.(1)求f (2)与f ⎝⎛⎭⎫12, f (3)与f ⎝⎛⎭⎫13. (2)由(1)中求得结果,你能发现f (x )与f ⎝⎛⎭⎫1x 有什么关系?并证明你的发现. (3)求f (1)+f (2)+f (3)+…+f (2 013)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 013. 解析: (1)∵f (x )=x 21+x 2,∴f (2)=221+22=45,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1221+⎝⎛⎭⎫122=15, f (3)=321+32=910,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1321+⎝⎛⎭⎫132=110. (2)由(1)发现f (x )+f ⎝⎛⎭⎫1x =1. 证明如下:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+11+x 2=1. (3)f (1)=121+12=12.由(2)知f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, …,f (2 013)+f ⎝⎛⎭⎫12 013=1,∴原式=12+1+1+1+…+1 2 012个=2 012+12 =4 0252.课时作业(七) 函数的三种表示法姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )解析: 根据函数的定义,观察图象,对于选项A ,B ,值域为{y |0≤y ≤2},不符合题意,而C 中当0<x <2时,一个自变量x 对应两个不同的y ,不是函数.故选D.答案: D2.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8 B .1 C .5 D .-1解析: 由f (2x +1)=3x +2,令2x +1=t , ∴x =t -12,∴f (t )=3·t -12+2,∴f (x )=3(x -1)2+2,∴f (a )=3(a -1)2+2=2,∴a =1.答案: B3.已知函数f (x )由下表给出,则f (f (3))等于( )x 1 2 3 4 f (x ) 3 2 41A.1 C .3 D .4 解析: ∵f (3)=4,∴f (f (3))=f (4)=1. 答案: A4.(2012·临沂高一检测)函数y =f (x )的图象如图所示,则函数y =f (x )的解析式为( ) A .f (x )=(x -a )2(b -x ) B .f (x )=(x -a )2(x +b ) C .f (x )=-(x -a )2(x +b ) D .f (x )=(x -a )2(x -b )解析: 由图象知,当x =b 时,f (x )=0,故排除B ,C ;又当x >b 时,f (x )<0,故排除D.故应选A.答案: A二、填空题(每小题5分,共10分)5.(2011·济南高一检测)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.解析: ∵f (3)=1,1f (3)=1,∴f ⎝⎛⎭⎫1f (3)=f (1)=2. 答案: 26.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )=________.解析: 设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧ a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-2,b =-3.故所求的函数为f (x )=2x +1或f (x )=-2x -3. 答案: 2x +1或-2x -3三、解答题(每小题10分,共20分) 7.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ). (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.8.作出下列函数的图象: (1)y =1-x ,x ∈Z ;(2)y =x 2-4x +3,x ∈[1,3].解析: (1)因为x ∈Z ,所以图象为一条直线上的孤立点,如图1所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图2所示.尖子生题库☆☆☆9.(10分)求下列函数解析式.(1)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ); (2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x , ∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .课时作业(八) 分段函数和映射姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.如图中所示的对应:其中构成映射的个数为( )A .3B .4C .5D .6解析:序号 是否为映射原因① 是 满足取元任意性,成象唯一性 ② 是 满足取元任意性、成象唯一性 ③ 是 满足取元任意性、成象唯一性 ④ 不是 是一对多,不满足成象唯一性 ⑤ 不是 是一对多,不满足成象唯一性 ⑥不是a 3,a 4无象、不满足取元任意性答案: 2.已知函数y =⎩⎪⎨⎪⎧x 2+1 (x ≤0)-2x (x >0),使函数值为5的x 的值是( )A .-2或2B .2或-52C .-2D .2或-2或-52解析: 若x ≤0,则x 2+1=5 解得x =-2或x =2(舍去).若x >0,则-2x =5,∴x =-52(舍去),综上x =-2. 答案: C3.已知映射f :A →B ,即对任意a ∈A ,f :a →|a |.其中集合A ={-3,-2,-1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的对应元素,则集合B 中元素的个数是( )A .7B .6C .5D .4解析: |-3|=|3|,|-2|=|2|,|-1|=1,|4|=4,且集合元素具有互异性,故B 中共有4个元素,∴B ={1,2,3,4}. 答案: D4.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6),则f (3)为( )A .3B .2C .4D .5解析: f (3)=f (3+2)=f (5),f (5)=f (5+2)=f (7),∴f (7)=7-5=2.故f (3)=2. 答案: B二、填空题(每小题5分,共10分)5.f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析: ∵f (x )=⎩⎪⎨⎪⎧3x +2 x <1x 2+ax x ≥1,∴f (0)=2,∴f (f (0))=f (2)=4+2a , ∴4+2a =4a ,∴a =2.答案: 26.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为________.解析: 由题意知⎩⎪⎨⎪⎧ x +y =4x -y =-2∴⎩⎪⎨⎪⎧x =1y =3答案: (1,3)三、解答题(每小题10分,共20分)7.已知f (x )=⎩⎪⎨⎪⎧x 2, -1≤x ≤11, x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解析: (1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].8.如图所示,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解析: (1)直接由图中观察,可得 f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .∴⎩⎪⎨⎪⎧b =4,k =-2. ∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2≤x ≤6).∴f (x )=⎩⎪⎨⎪⎧-2x +4, 0≤x ≤2,x -2, 2<x ≤6.尖子生题库☆☆☆9.(10分)“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y .(单位:元)解析: 由题意知,当0<x ≤5时,y =1.2x , 当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6. 当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎨⎧1.2x (0<x ≤5)2.4x -6 (5<x ≤6)4.8x -20.4 (6<x ≤7).课时作业(九) 函数的单调性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1. (2010·北京)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①② B .②③ C .③④D .①④答案 B解析 ①函数y =x 12在(0,+∞)上为增函数,故在(0,1)上也为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数,③y =|x -1|在(0,1)上为减函数,④y =2x +1在(-∞,+∞)上为增函数,故在(0,1)上也为增函数. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝⎛⎦⎤-∞,32 B.⎣⎡⎭⎫32,+∞ C.⎝⎛⎦⎤-1,32D.⎣⎡⎭⎫32,4答案 D解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调减区间为⎣⎡⎭⎫32,4.点评 本题的易错点是:易忽略f (x )的定义域.一定注意定义域优先的原则. 3. 若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数.4. 已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)答案 C解析 显然(4-6)(f (4)-f (6))>0⇒f (4)<f (6),结合奇函数的定义,得-f (4)=f (-4),-f (6)=f (-6). 故f (-4)>f (-6).二、填空题(每小题5分,共15分)5. 设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号) 答案 ①③解析 依据增函数的定义可知,对于①③,当自变量增大时,相对应的函数值也增大,所以①③可推出函数y =f (x )为增函数.6. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. 答案 ⎣⎡⎦⎤-14,0 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.点评 本题首先应该对参数a 进行分类讨论,然后再针对a ≠0时的情况,根据二次函数的对称轴与单调区间的位置关系确定参数的取值范围.本题易出现的问题是默认函数f (x 为二次函数,忽略对a 是否为0的讨论.7. 已知函数f (x )=⎩⎪⎨⎪⎧e -x -2 (x ≤0)2ax -1 (x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________. 答案 ①③④ 解析根据题意可画出草图,由图象可知,①显然正确; 函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确; 由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 三、解答题8. (10分)已知函数y =f (x )在[0,+∞)上是减函数,试比较f ⎝⎛⎭⎫34与f (a 2-a +1)的大小.解 ∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34>0, 又∵y =f (x )在[0,+∞)上是减函数, ∴f (a 2-a +1)≤f ⎝⎛⎭⎫34.点评 本题是应用函数单调性的定义来比较函数值的大小,在应用函数单调性的定义时,必须要求自变量的值都在函数的同一单调区间内.课时作业(十) 函数的最大(小)值姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.函数y =1x 2在区间⎣⎡⎦⎤12,2上的最大值是( ) A.14 B .-1 C .4 D .-4解析: ∵函数y =1x 2在⎣⎡⎦⎤12,2上是减函数, ∴y max =1⎝⎛⎭⎫122=4.答案: C2.函数f (x )=⎩⎪⎨⎪⎧2x +6,(x ∈[1,2])x +7,(x ∈[-1,1))则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析: f (x )在[-1,2]上单调递增,∴最大值为f (2)=10,最小值为f (-1)=6. 答案: A3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 解析: f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a . ∴函数f (x )图象的对称轴为x =2, ∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1. 答案: C4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0) C .(-∞,0] D .(0,+∞)解析: a <-x 2+2x 恒成立,则a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,故a <0. 答案: B二、填空题(每小题5分,共10分)5.函数f (x )=xx +2在区间[2,4]上的最大值为________,最小值为________.解析: ∵f (x )=x x +2=x +2-2x +2=1-2x +2,∴函数f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=22+2=12,f (x )max =f (4)=44+2=23.答案: 23 126.在已知函数f (x )=4x 2-mx +1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f (x )在[1,2]上的值域________.解析: 由题意知x =-2是f (x )的对称轴,则m2×4=-2,m =-16,∴f (x )=4x 2+16x +1 =4(x +2)2-15.又∵f (x )在[1,2]上单调递增.f (1)=21, f (2)=49,∴在[1,2]上的值域为[21,49]. 答案: [21,49]三、解答题(每小题10分,共20分)7.已知函数f (x )=x 2-2x +2,x ∈A ,当A 为下列区间时,分别求f (x )的最大值和最小值. (1)A =[-2,0];(2)A =[2,3].解析: f (x )=x 2-2x +2=(x -1)2+1,其对称轴为x=1.(1)A=[-2,0]为函数的递减区间,∴f(x)的最小值是2,最大值是10;(2)A=[2,3]为函数的递增区间,∴f(x)的最小值是2,最大值是5.8.已知函数f(x)=x-1x+2,x∈[3,5],(1)判断函数f(x)的单调性并证明.(2)求函数f(x)的最大值和最小值.解析:(1)任取x1,x2∈[3,5]且x1<x2,则f(x1)-f(x2)=x1-1x1+2-x2-1x2+2=(x1-1)(x2+2)-(x2-1)(x1+2)(x1+2)(x2+2)=x1x2+2x1-x2-2-x1x2-2x2+x1+2(x1+2)(x2+2)=3(x1-x2) (x1+2)(x2+2).∵x1,x2∈[3,5]且x1<x2,∴x1-x2<0,x1+2>0,x2+2>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴函数f(x)=x-1x+2在x∈[3,5]上为增函数.(2)由(1)知,当x=3时,函数f(x)取得最小值为f(3)=2 5;当x=5时,函数f(x)取得最大值为f(5)=47.尖子生题库☆☆☆9.(10分)如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m,问:每间笼舍的宽度x为多少时,才能使得每间笼舍面积y达到最大?每间笼舍最大面积为多少?解析:设总长为b,由题意知b=30-3x,可得y=12xb,即y=12x(30-3x)=-32(x-5)2+37.5,x∈(0,10).当x=5时,y取得最大值37.5,即每间笼舍的宽度为5 m时,每间笼舍面积y达到最大,最大面积为37.5 m2.课时作业(十一) 函数的奇偶性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.函数f (x )=x 2+3的奇偶性是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 解析: 函数f (x )=x 2+3的定义域为R ,f (-x )=(-x )2+3=x 2+3=f (x ),所以该函数是偶函数,故选B. 答案: B2.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4解析: 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x ,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.答案: A3.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)等于( ) A .-10 B .-18 C .-26 D .10解析: 由函数g (x )=x 5+ax 3+bx 是奇函数,得g (-x )=-g (x ),∵f (2)=g (2)-8,f (-2)=g (-2)-8,∴f (2)+f (-2)=-16.又f (-2)=10,∴f (2)=-16-f (-2)=-16-10=-26. 答案: C4.已知函数f (x )在[-5,5]上是偶函数,f (x )在[0,5]上是单调函数,且f (-3)<f (-1),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)解析: 函数f (x )在[-5,5]上是偶函数,因此f (x )=f (-x ),于是f (-3)=f (3),f (-1)=f (1),则f (3)<f (1).又∵f (x )在[0,5]上是单调函数,从而函数f (x )在[0,5]上是减函数,观察四个选项,并注意到f (x )=f (-x ),易知只有D 正确. 答案: D二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,则m =________.解析: 当x <0时,-x >0,f (-x )=-(-x )2+2(-x )=-x 2-2x .又∵f (x )为奇函数, ∴f (-x )=-f (x )=-x 2-2x .∴f (x )=x 2+2x =x 2+mx ,∴m =2. 答案: 26.若函数f (x )=ax 2+2在[3-a,5]上是偶函数,则a =________.解析: 由题意可知3-a =-5,∴a =8. 答案: 8三、解答题(每小题10分,共20分)7.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解析: ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又f ⎝⎛⎭⎫12=12a 1+14=25,∴a =1, ∴f (x )=x1+x 2.8.已知函数f (x )是定义域为R 的奇函数,当x >0时, f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式; (2)画出函数f (x )的图象.解析: (1)①由于函数f (x )是定义域为R 的奇函数, 则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (x )=-f (-x ) =-[(-x )2-2(-x )] =-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , (x >0)0, (x =0)-x 2-2x . (x <0)(2)图象如图:尖子生题库☆☆☆9.(10分)已知函数y =f (x )不恒为0,且对于任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),求证:y =f (x )是奇函数.证明: 在f (x +y )=f (x )+f (y )中, 令y =-x ,得f (0)=f (x )+f (-x ),令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0. 所以f (x )+f (-x )=0, 即f (-x )=-f (x ), 所以y =f (x )是奇函数.第二章 基本初等函数(Ⅰ)课时作业(十二) 指数与指数幂的运算姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.5m -2可化为( )A .m -25B .m 52C .m 25D .-m 52答案: A2.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果是( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 解析:2-x 有意义,须有2-x ≥0,即x ≤2,x 2-4x +4-x 2-6x +9 =(x -2)2-(x -3)2=2-x -(3-x ) =-1. 答案: C3.计算0.25-0.5+⎝⎛⎭⎫127-13-416的值为( )A .7B .3C .7或3D .5解析: 0.25-0.5+⎝⎛⎭⎫127-13-416=⎝⎛⎭⎫122×⎝⎛⎭⎫-12+⎝⎛⎭⎫133×⎝⎛⎭⎫-13-424=2+3-2=3. 答案: B4.下列式子中,错误的是( )A .(27a 3)13÷0.3a -1=10a 2B .(a 23-b 23)÷(a 13+b 13)=a 13-b 13C .[(22+3)2(22-3)2]12=-1D.4a 3a 2a =24a 11解析: 对于A ,原式=3a ÷0.3a -1=3a 20.3=10a 2,A 正确; 对于B ,原式=(a 13-b 13)(a 13+b 13)a 13+b 13=a 13-b 13,B 正确;对于C ,原式=[(3+22)2(3-22)2]12=(3+22)·(3-22)=1,这里注意3>22,a12(a ≥0)是正数,C 错误;对于D ,原式=4a 3a 52=4a ·a 56=a 1124=24a 11,D 正确. 答案: C二、填空题(每小题5分,共10分) 5.有下列说法: ①3-27=3;②16的4次方根是±2;③481=±3;④(x +y )2=|x +y |.其中,正确的有________(填上正确说法的序号). 解析: 当n 是奇数时,负数的n 次方根是一个负数,故3-27=-3,故①错误;16的4次方根有两个,为±2,故②正确;481=3,故③错误;(x +y )2是正数,故2(x +y )2=|x +y |,故④正确.答案: ②④6.化简(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得________.解析: 原式=-6a -4b134a -4b -53=-32b 2.答案: -32b 2三、解答题(每小题10分,共20分) 7.计算下列各式:(1)481×923;(2)23×31.5×612. 解析: (1)原式=[34×(343)12]14=(34+23)14=3143×14=376 =363.(2)原式=2×312×⎝⎛⎭⎫3213×(3×22)16=21-13+13×312+13+16=2×3=6.8.计算下列各式:(1)823×100-12×(0.25)-3×⎝⎛⎭⎫1681-34; (2)(2a 23b 12)·(-6a 12b 13)÷(-3a 16·b 56).解析: (1)原式=(23)23×(102)-12×(2-2)-3×⎣⎡⎦⎤⎝⎛⎭⎫234-34 =22×10-1×26×⎝⎛⎭⎫23-3=28×110×⎝⎛⎭⎫323=8625.(2)原式=4a 23+12-16·b 12+13-56=4ab 0=4a . 尖子生题库☆☆☆9.(10分)已知a 12+a -12=5,求下列各式的值:(1)a +a -1;(2)a 2+a -2;(3)a 2-a -2.解析: (1)将a 12+a -12=5两边平方,得a +a -1+2=5,则a +a -1=3.(2)由a +a -1=3两边平方,得a 2+a -2+2=9,则a 2+a -2=7. (3)设y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45, 所以y =±35,即a 2-a -2=±3 5.课时作业(十三) 指数函数及其性质姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M N B .M ⊆N C .N M D .M =N 解析: x ∈R ,y =2x >0,y =x 2≥0, 即M ={y |y >0},N ={y |y ≥0}, 所以M N . 答案: A2.函数y =2x +1的图象是( )解析: 函数y =2x的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1的图象单调递增且过点(0,2),故选A.答案: A3.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =( ) A .2或-3 B .-3C .2D .-12解析: ∵函数y =b ·a x 为指数函数,∴b =1.当a >1时,y =a x 在[1,2]上的最大值为a 2,最小值为a , 则a 2+a =6,解得a =2或a =-3(舍);当0<a <1时,y =a x 在[1,2]上的最大值为a ,最小值为a 2,则a +a 2=6,解得a =2(舍)或a =-3(舍)综上可知,a =2. 答案: C4.若函数f (x )与g (x )=⎝⎛⎭⎫12x的图象关于y 轴对称,则满足f (x )>1的x 的取值范围是( ) A .RB .(-∞,0)C .(1,+∞)D .(0,+∞)解析: 根据对称性作出f (x )的图象,由图象可知,满足f (x )>1的x 的取值范围为(0,+∞).答案: D二、填空题(每小题5分,共10分)5.函数y =2x -1的定义域是________. 解析: 要使函数y =2x -1有意义,只须使2x -1≥0,即x ≥0,∴函数定义域为[0,+∞). 答案: [0,+∞)6.函数y =a x -2 013+2 013(a >0,且a ≠1)的图象恒过定点____________. 解析: ∵y =a x (a >0且a ≠1)恒过定点(0,1), ∴y =a x -2 013+2 013恒过定点(2 013,2 014). 答案: (2 013,2 014)三、解答题(每小题10分,共20分) 7.下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ; (4)y =x x ;(5)y =x α(α是常数).解析: (1)y =10x 符合指数函数定义,是指数函数; (2)y =10x +1中指数是x +1而非x ,不是指数函数; (3)y =-4x 中系数为-1而非1,不是指数函数;(4)y =x x 中底数和指数均是自变量x ,不符合指数函数定义,不是指数函数; (5)y =x α中底数是自变量,不是指数函数.8.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x )、g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 解析: (1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3;f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.尖子生题库☆☆☆9.(10分)(2012·山东高考)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,求a .解析: 当a >1时,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,则a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.。

高中数学必修一测试题及答案

高中数学必修一测试题及答案

一. 选择题(4×10=40分)【1】1. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是( ) A. 1B. 2C. 7D. 82. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ,}5,4{)()(=⋂B C A C U U ,}6{=⋂B A ,则A 等于( )A. }2,1{B. }6,2,1{C. }3,2,1{D. }4,2,1{3. 设},2|{R x y y M x∈==,},|{2R x x y y N ∈==,则( ) A. )}4,2{(=⋂N M B. )}16,4(),4,2{(=⋂N M C. N M =D. N M ≠⊂4. 已知函数)3(log )(22a ax x x f +-=在),2[+∞上是增函数,则实数a 的取值范围是( )A. )4,(-∞B. ]4,4(-C. ),2()4,(+∞⋃--∞D. )2,4[-5. 32)1(2++-=mx x m y 是偶函数,则)1(-f ,)2(-f ,)3(f 的大小关系为( )A. )1()2()3(->->f f fB. )1()2()3(-<-<f f fC. )1()3()2(-<<-f f fD. )2()3()1(-<<-f f f6. 函数)(x f y =在区间),(b a )(b a <内有零点,则( ) A. 0)()(<b f a fB. 0)()(=b f a fC. 0)()(>b f a fD. )()(b f a f 的符号不定7. 设)(x f 为奇函数且在)0,(-∞内是减函数,0)2(=-f ,且0)(>⋅x f x 的解集为( )A. ),2()0,2(+∞⋃-B. )2,0()2,(⋃--∞C. ),2()2,(+∞⋃--∞D. )2,0()0,2(⋃-8. 已知函数⎩⎨⎧≤>=0,30,log )(2x x x x f x,则)]41([f f 的值是( )A.91B. 9C. 9-D. 91-9. 已知A ba==53,且211=+ba ,则A 的值是( ) A. 15B.15C. 15±D. 22510. 设10<<a ,在同一直角坐标系中,函数xay -=与)(log x y a -=的图象是( )二. 填空题(4×4=16分)11. 方程2)23(log )59(log 22+-=-xx的解是。

高中数学必修一第一章测试题

高中数学必修一第一章测试题

高中数学必修一第一章测试题一、选择题(每题4分,共20分)1. 下列哪个选项是函数y=2x+3的定义域?A. x∈RB. x>3C. x<-1D. x∈Z2. 函数f(x)=x^2+2x的对称轴方程是:A. x=-1B. x=1C. x=2D. x=-23. 若a、b为等差数列的前两项,且a+b=10,则该数列的通项公式为:A. an = 5n - 5B. an = 10n - 5C. an = n + 5D. an = 2n - 14. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求g(x)的极值点。

A. x=1, x=2B. x=2, x=3C. x=3, x=4D. x=4, x=55. 已知集合A={1,2,3},B={3,4,5},则A∪B的元素个数是:A. 4B. 5C. 6D. 7二、填空题(每题4分,共20分)6. 若函数h(x)=|x-2|+|x+3|的最小值为M,求M的值。

7. 已知等比数列的前三项分别为a, ar, ar^2,其中r为公比,若a+ar+ar^2=14,求a的值。

8. 函数f(x)=x^4 - 4x^3 + 6x^2 - 4x + 1的图像与x轴有几个交点?9. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。

10. 已知一个圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的圆心坐标和半径。

三、解答题(每题10分,共60分)11. 已知函数k(x)=x^3 - 3x^2 - 9x + 5,求k(x)的单调区间。

12. 一个等差数列的前五项和为50,且第六项为20,求该数列的首项a1和公差d。

13. 给定一个二次函数f(x)=ax^2+bx+c,其顶点坐标为(2, -3),且通过点(0, 1),求a, b, c的值。

14. 已知一个圆的方程为x^2 + y^2 = 25,求该圆与直线y=x的交点坐标。

15. 证明:若a, b, c, d是等差数列,且a+b=c+d,则(a+c)^2 =(b+d)^2。

高中数学必修一第一章考试题

高中数学必修一第一章考试题

一、选择题1.下列关系式表达正确的个数是( )①0∈Ф;②Ф∈{Ф};③0∈{0};④Ф∉{a }。

A. 1B. 2C. 3D. 42.集合{a ,b ,c }的真子集共有( )个A. 7B. 8C. 9D. 103.已知集合A 中有10个元素,集合B 中有8个元素,集合A ∩B 中共有4个元素,则集合A ∪B 中共有( )个元素A.14B.16C.18D. 不确定4.计算结果正确的是( )A. –6x 2y 3 ÷21x 2y 2 =–12y B. 6222443)2()23(y y x xy =-÷- C. 16x 5y 7 ÷ (–2x 3y 2)= –32x 2y 5 D. (2x 2y)4 ÷〔(xy)2]〕2 = 8x 45.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起第五年时这个工厂的总产值是( )A. 1.14aB. 1.15aC. 10 (1.15-1) aD. 11 (1.15-1)a 6 下列四个集合中,是空集的是( ) }33|{=+x x B },,|),{(22R y x x y y x ∈-=C }0|{2≤x xD },01|{2R x x x x ∈=+-7 下列表示图形中的阴影部分的是( )A ()()A CBC B ()()A B A C C ()()A B B C D ()A B C 8 下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A 0个B 1个C 2个D 3个9 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A 锐角三角形B 直角三角形 钝角三角形 D 等腰三角形10 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A 3个B 5个 7个 D 8个二、填空题1.已知集合U ={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4,5,6},D ={1,2,3},则C U A =_____________, C A D =_____________.2.设集合{}2|->=x x A ,{}3|<=x x B ,则A ∩B=______________________.3. 当x =3, y =–1时, 8x 2 –5x (3y –x)+4x (–4x –25y) 的值为_______________. 4. 当a =21-时, (3a 2 ) 3– 9a 2〔3a 4–a 2 (4a 3+1)〕的值为______________ (用分数表示) 三、解答题1.设集合A ={2, 4, 6, 8, 10},C U A ={1, 3, 5, 7, 9},C U B ={1, 4, 6, 8, 9},求集合B2.若 –3∈{a –3,2a –1,a 2+1},求实数a 的值。

高中数学必修一试卷

高中数学必修一试卷

高中数学必修一试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∪ B = A,则实数a的值为()A. 2B. 3C. 2或3D. 1或2或32. 函数y=√(x^2)-1的定义域为()A. (-∞,-1]∪[1,+∞)B. [-1,1]C. (-∞,-1)∪(1,+∞)D. (-1,1)3. 已知函数f(x)=log_a(x + 1)(a>0且a≠1)在区间[1,7]上的最大值比最小值大(1)/(2),则a的值为()A. (1)/(2)或(7)/(2)B. (2)/(3)或(3)/(2)C. (1)/(2)或(3)/(2)D. (2)/(3)或(7)/(2)4. 若函数y = f(x)是函数y = a^x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=()A. log_2xB. (1)/(2^x)C. log_(1)/(2)xD. 2^x - 25. 函数y = x^2+2x - 3在区间[-3,0]上的值域为()A. [-4, - 3]B. [-4,0]C. [-3,0]D. [0,1]6. 下列函数中,在(0,+∞)上为增函数的是()A. y=<=ft((1)/(2))^xB. y = x^-2C. y=log_(1)/(2)xD. y=ln x7. 设a = log_32,b=log_52,c=log_23,则()A. a>c>bB. b>c>aC. c>b>aD. c>a>b8. 已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2-2x,则f(x)在R上的表达式为()A. f(x)=x(x - 2)B. f(x)=<=ft{begin{array}{ll}x(x - 2),x>0 0,x = 0 -x(x + 2),x<0end{array}right.C. f(x)=<=ft{begin{array}{ll}x(x - 2),x≥slant0 -x(x + 2),x<0end{array}right.D. f(x)=x(x2)9. 若函数f(x)=a^x-x - a(a>0且a≠1)有两个零点,则实数a的取值范围是()A. (0,1)B. (1,+∞)C. (0,+∞)D. (0,1)∪(1,+∞)10. 已知y = f(x)是偶函数,当x>0时,f(x)=x+(4)/(x),且当x∈[-3,-1]时,n≤slant f(x)≤slant m恒成立,则m - n的最小值是()A. (1)/(3)B. (2)/(3)C. 1D. (4)/(3)11. 函数y = f(x)的图象与函数y = log_3x(x>0)的图象关于直线y = x对称,则f(x)=()A. 3^x(x∈ R)B. 3^x(x>0)C. <=ft((1)/(3))^x(x∈ R)D. <=ft((1)/(3))^x(x>0)12. 设函数f(x)=<=ft{begin{array}{ll}2^x,x≤slant0 log_2x,x>0end{array}right.,若f(a)=(1)/(2),则a=()A. -1或√(2)B. -1或(1)/(2)C. -1D. (1)/(2)二、填空题(每题5分,共20分)13. 计算:log_2√(2)+log_927=_ 。

高中数学必修一测试题(含答案)

高中数学必修一测试题(含答案)

数学必修一测试题一、选择题(本大题共14小题,共70.0分)1.已知集合A={x|x<1},B={x|3x<1},则()2.如图所示,I为全集,M,P,S为I的子集,则图中阴影部分所表示的集合为()3.为为4.函数的图象是()5.命题“若x2<1,则-1<x<1”的逆否命题是()A. 若x2≥1,则x≥1或x≤-1B. 若-1<x<1,则x2<1C. 若x>1或x<-1,则x2>1D. 若x≥1或x≤-1,则x2≥16.一个扇形的面积为3π,弧长为2π,则这个扇形中心角为()7.若实数a,b满足a>b>1,m=log a(log a b),m,n,l的大小关系为()A. m>l>nB. l>n>mC. n>l>mD. l>m>n8.函数y=A sin(ωx+φ)(A>0,|φ|<π如图所示,则()A. y=2sin(2xB. y=2sin(2x)C. y=2sin(x)D. y=2sin(x9.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是()10.A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C-cos C)=0,a=2,c=C=()11.要得到函数的图象,只需将函数的图象上所有的A. 横坐标伸长到原来的2B. 横坐标伸长到原来的2C.D.12.在区间上的最大值与最小值之和为10,则aB. 313.对函数( )A.B. 函数y=sin2xC. f(x)D. f(x)的一个对称中心14.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1-x)的解集是()A. +∞)B. (-∞C. (-∞,0)∪(0D. (0二、填空题(本大题共6小题,共30.0分)15.将函数f(x)(2x-11个单位长度,得到函数g(x)的图象,则函数g(x)具有性质______.(填入所有正确性质的序号)x②图象关于y轴对称;③最小正周期为π;0)对称;⑤在(0)上单调递减.16.等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=______.17.已知f(x)是定义在R上的偶函数,并满足f(x+2)1≤x<2时,f(6.5)=______.18.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.19.______ 条件填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一20.某班进行集体活动,为活跃气氛,班主任要求班上60名同学从唱歌、跳舞、讲故事三个节目中至少选择一个节目为大家表演,已知报名参加唱歌、跳舞、讲故事的人数分别为40,20,30,同时参加唱歌和讲故事的有15人,同时参加唱歌和跳舞的有10人,则同时只参加跳舞和讲故事的人数为______.三、解答题(本大题共6小题,共72.0分)21.如图,为加强社区绿化建设,欲将原有矩形小花坛ABCD适当扩建成一个较大的矩形花坛AMPN.要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.若设DN=x,则DN为多少时,矩形花坛AMPN的面积最小?并求出最小值.22.(Ⅰ)函数f(x)的最小正周期为______;(将结果直接填写在答题卡的相应位置上)(Ⅱ)求函数f(x23.已知命题p a>0)表示双曲线,命题q示焦点在y轴上的椭圆.(1)若命题q为真命题,求m的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.24.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.25.如图为函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|x∈R)的部分图象.(1)求函数解析式;(2)求函数f(x)的单调递增区间;(3)若方程f(x)=m m的取值范围.26.如图,在平面四边形ABCD中,AD=1,CD=2,AC(Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD∠CBA求BC的长.答案和解析1.【答案】A【解析】【分析】本题考查交集和并集的求法,考查指数不等式的解法,属于基础题.先求出集合B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误,故选A.2.【答案】C【解析】【分析】本题主要考查Venn图的识别和判断,正确理解阴影部分与已知中三个集合的关系,是解答的关键.根据Venn图分析阴影部分与集合M,P,S的关系,进而可得答案.【解答】解:由已知中的Venn图可得:阴影部分的元素属于M,属于P,但不属于S,故阴影部分表示的集合为(M∩P)∩(C I S),故选C.3.【答案】B【解析】【分析】本题考查导函数的图象的应用,函数的极值点的判断,考查计算能力,属于基础题. 利用导函数的图象判断极值点,推出结果即可.【解答】,函数是减函数,x∈(-3,1)时,,函数是增函数,的极小值点,故排除A,又x∈(1,2.5)时,所以x=1为f(x)的极大值点,故B正确,C和D,故选B.4.【答案】A【解析】【分析】本题考查函数的作法以及图象变换,属于基础题.先判断出函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,再根据函数图像即可推出结论.【解答】解:由于函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,函数y=lg x的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意,故选A .5.【答案】D【解析】解:原命题的条件是““若x2<1”,结论为“-1<x<1”,则其逆否命题是:若x≥1或x≤-1,则x2≥1.故选:D.根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定.解题时,要注意原命题的结论“-1<x<1”,是复合命题“且”的形式,否定时,要用“或”形式的符合命题.6.【答案】D【解析】解:设这个扇形中心角的弧度数是θ,半径等于r,则由题意得θr=2π,r2=3π,解得r=3,故选:D.由扇形面积公式得θr=2πr2=3π,先解出r值,即可得到θ值.本题考查扇形的面积公式,弧长公式的应用,得到θr=2πr2=3π,是解题的关键,属于基础题.7.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【解答】解:∵实数a,b满足a>b>1,m=log a(log a b∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,01,ba∴m,n,l的大小关系为l>n>m.故选:B.8.【答案】A【解析】【分析】本题考查由y=A sin(ωx+φ)的部分图象确定其解析式,确定各个参数的值是解答的关键,属于基础题.根据已知中的函数y=A sin(ωx+φ)的部分图象,求出满足条件的A,ω,φ值,可得答案.。

(完整版)高一数学必修一测试题及答案

(完整版)高一数学必修一测试题及答案

二、填空题:每小题 4 分,共 16 分.
13 . [ 4, 2) ( 2,
) 14.2x-
1
或- 2x+1
15
1 .3 16 . 0,
3
2
三、解答题(共 56 分)
17. (本小题 10 分)
解: Q A I B=
( 1)当 A= 时,有 2a+1 a-1 a -2
( 2)当 A
时,有 2a+1 a-1 a>-2
2x3 与 g (x) x 2x ;② f(x)=x 与 g( x) x2 ;
③ f ( x)
x0 与 g (x)
1 x0 ;④ f ( x)
x2 2x 1 与 g(t)
t 2 2t 1 。
A、①② B 、①③
C 、③④
D 、①④
6.根据表格中的数据,可以断定方程 e x x 2 0 的一个根所在的区间是
所以未出租的车有 12 辆,一共出租了 88 辆。…………………………… 2 分
( 2)设每辆车的月租金为 x 元,( x ≥3000),租赁公司的月收益为 y 元。
15.已知幂函数 y f ( x) 的图象过点 (2, 2 ), 则 f (9)
.
16.若一次函数 f (x ) ax b 有一个零点 2,那么函数 g ( x) bx2 ax 的零点是
.
三、解答题: 17.(本小题 10 分)
已知集合 A { x | a 1 x 2a 1} , B { x | 0 x 1} ,若 A I B
()
x
-1
0
1
2
3
ex
0.37
1
2.72
7.39
20.09

(完整版)高中数学必修一练习题及解析非常全

(完整版)高中数学必修一练习题及解析非常全

必修一数学练习题及解析第一章练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x =-[f(x)+x].所以F(-x)=-F(x).所以y=f(x)+x为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2) B .f (-1)<f (-32)<f (2) C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1 当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b . 又∵方程f (x )=x 有唯一实数解. ∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去).(3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎨⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章 练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克B .(1-0.5%)3克C .0.925克D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125. 答案:D6.函数y =log 2x 与y =log 12x 的图象( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称D .关于y =x 对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B 7.函数y =lg(21-x -1)的图象关于( ) A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c bD .log b c <log a c解析:y =x c 在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是() A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.图1图2 (2)当0<a<1时,图象如上图2,不满足题意.答案:A1112.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎨⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________. 解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________. 解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.12 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22.当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则13f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1.14 (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a1-ax11-a x 2=log a 1-a x 2+a x 2-a x11-a x2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-a x >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a 1-a}.15第三章 练习一、选择题(每小题5分,共60分)1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x 的零点是( ) A .(-1,0) B .-1 C .1D .0解析:令1+1x =0,得x =-1,即为函数零点. 答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.16 答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对17解析:定理的逆定理不成立,故f (x 1)f (x 2)的值不确定. 答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨解析:设该职工该月实际用水为x 吨,易知x >8. 则水费y =16+2×2(x -8)=4x -16=20, ∴x =9. 答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )答案:A11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0B .k >1C .0≤k <1D .k >1,或k =0解析:令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:x0.20.61.0 1.41.82.22.63.0 3.4 … y =2x 1.149 1.516 2.0 2.639 3.4824.595 6.063 8.0 10.556 … y =x 20.04 0.361.01.963.244.846.769.011.56…18 那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l 2.19答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,20 ∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x , 由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎨⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x )4.005.587.008.44(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎨⎧a +b =43a +b =7,解得a =32,b =52,∴f(x)=32x+52.检验:f(2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.全册书综合练习题及解析一、选择题(每小题5分,共60分)1.集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=() A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}解析:∵A∩B={1,2},∴(A∩B)∪C={1,2,3,4}.答案:D2.如图1所示,U表示全集,用A,B表示阴影部分正确的是()图1A.A∪B B.(∁U A)∪(∁U B)C.A∩B D.(∁U A)∩(∁U B)解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A)∩(∁U B).答案:D3.若f(x)=1-2x,g(1-2x)=1-x2x2(x≠0),则g⎝⎛⎭⎪⎫12的值为()A.1 B.3C.15 D.30解析:g(1-2x)=1-x2x2,令12=1-2x,则x=14,∴g⎝⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎨⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:23 14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎨⎧ 2k -1<2,2k -1≥k +1,或⎩⎨⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎨⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎨⎧ f (2)=2f (3)=5,即⎩⎨⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎨⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎨⎧ f (2)=5f (3)=2,即⎩⎨⎧ 4a -4a +2+b =59a -6a +2+b =2,解得⎩⎨⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, 由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎨⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u 是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x ,4又x∈(-∞,2],u=2x的最小值1.所以符合题意的实数k的范围是(-∞,1).。

高中数学必修一练习题及答案详解

高中数学必修一练习题及答案详解

一、选择题1.函数 f ( x ) =x|x+a|+b 是奇函数的充要条件是( )A . ab=0B . a+b=0C . a=bD . a 2+b 2 =01 x 1(x 0)12.设函数 f (x)2若f ( f (a))则实数 a ( )1,( x 0)2xA.4B.-2C.4或1 D.4或 -223.已知集合 A { y | yln( x 2 1), x R} ,则 C R A()A.B.(,0]C.( ,0)D.[0, )4.已知集合 M{ x |x1 1} ,集合 N { x | 2x 3 0} ,则 (C R M )N ( )x 1A . (3,1) B . (3,1] C .[3,1) D . [3,1]22225.设 a log 2.8 3.1,b log e, c log e ,则()A . a c bB . c a bC . b a cD . b c a6.函数 f ( x)1 x log2 x 的零点所在区间是()A .(1,1)B. (1 ,1)C. (1,2) D. (2,3)4 22A( 1 , 1) ,则它在 A 点处的切线方程为7.若幂函数f (x) 的图象经过点4 2( A ) 4 x 4y 1 0( B ) 4x 4 y 1 0( C ) 2x y 0( D ) 2x y 08. y= ( 1) x - 3x 在区间 [-1,1] 上的最大值等于()51416A.3B.C.5D.339.已知幂函数 f ( x)x m 的图象经过点( 4, 2),则 f (16)( )A. 22B.4C.4 2D.810.设 f ( x) 是定义在 R 上的奇函数,当 x0时 f( x)2x 2x ,则 f (1) = ()A.—3B. — 1C.1D.311.已知125 ()log 2 5 a,log 2 7b, 则 log 2 7A . a3b B . 3a b C . a 3D .3abb12.设集合 M22 x3 0,Nx 2 x2 ,则 MC R N 等于(x x)A .1,1B. ( 1,0) C . 1,3 D. (0,1)13.若 x log 3 4 1 ,则 4x 4 x()A. 1B. 2C. 8D.1033二、填空题14.若 f (x)3x sinx ,则满足不等式 f (2m1)f (3 m)0 的m的取值范围为.115. lg 4 lg 254 2 (4.16.已知函数 f ( x) ( 1) x , x 4log 2 3) 的值为2,则 f (2f ( x 1), x 417.函数 f ( x) sin( x) 的图象为 C , 有如下结论 : ①图象 C5 3 关于直线 x对称 ;②图象C 关于点 (4, 56,0) 对称 ; ③函数 f ( x) 在区间 [ ] 内是增函数。

人教版高中数学必修一综合测试题及答案

人教版高中数学必修一综合测试题及答案

人教版高中数学必修一测试题一一、选择题(本大题共10小题,每小题5分,共60分)1。

已知A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∩B等于( )A。

{x|x∈R} B。

{y|y≥0}C.{(0,0),(1,1)} D。

2. 函数的单调递增区间为()A.B.C.D.3. 下列四个函数中,在(0,+∞)上为增函数的是()A。

f(x)=3—x B。

f(x)=x2-3xC。

f(x)=- D.f(x)=—|x|4。

函数f(x)=x2+2(a-1)x+2在区间(—∞,4]上递减,则a的取值范围是()A.[—3,+∞]B.(—∞,—3)C。

(—∞,5]D。

[3,+∞)5。

当时,在同一坐标系中,函数的图象是( ).6y=x2y=x27。

已知函数f(x)=的定义域是一切实数,则m的取值范围是()A.0〈m≤4 B。

0≤m≤1 C.m≥4 D.0≤m≤48。

某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠。

某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是( )A.413.7元B。

513.7元C。

546。

6元D。

548。

7元9。

二次函数y=ax2+bx与指数函数y=()x的图象只可能是()10. 已知函数f(n)=其中n∈N,则f(8)等于()A。

2 B.4 C.6 D.711、如图,设a,b,c,d〉0,且不等于1,y=ax ,y=bx ,y=cx ,y=dx 在同一坐标系中的图象如图,则a,b,c,d的大小顺序()ArrayA、a〈b<c〈dB、a〈b〈d〈cC、b<a<d<cD、b〈a<c〈d12.已知0〈a〈1,b<—1,函数f(x)=a x+bA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、关于A到B的一一映射,下列叙述正确的是 ( )
①一一映射又叫一一对应
②A中不同元素的像不同
③B中每个元素都有原像
④像的集合就是集合B
、①② 、①②③ 、②③④ 、①②③④
5、在 四个函数中,幂函数有 ( )
、1个 、2个 、3个 、4个
6、已知函数 ,那么 的表达式是 ( )
、 、 、 、
7、若方程 有两个解,则 的取值范围是 ( )
解:判断: 在 的单调递增。
证明:设 ,则有
, ,又
,即
故 在 的单调递增。
19、(本小题满分12分)研究函数 的定义域和奇偶性。
解:(1) 依题意有: ,
解得:
所以,函数 的定义域为
(2) 设 ,则
有:
所以函数 为奇函数
20、(本小题满分12分)已知: ,且 ,求证: 。
证明:由 知:
则左边=
择题、填空题和简答题三部分,共计120分,时间120分钟。
一、选择题(本大题共12道小题,每小题4分,共48分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1、设集合 ,则 ( )
、 、 、 、
2、已知集合 ,则集合 ( )
、 、 、 、
3、函数 的值域是 ( )
、 、 、 、
20、(本小题满分12分)已知: ,且 ,求证: 。
21、(本小题满分12分)某服装厂生产一种服装,每件服装的成本为 元,出厂单价定为 元.该厂为鼓励销售商订购,决定当一次订购量超过 件时,每多订购一件,订购的全部服装的出厂单价就降低 元.根据市场调查,销售商一次订购量不会超过 件.
⑴设一次订购量为 件,服装实际出厂单价为 元,写出函数 的表达式;
解、⑴当 时, ;
当 时, .
所以 .
⑵设销售商的一次订购量为 件时,工厂获得的利润为 元,
则 .
当 时, .
因此,当销售商一次订购了 件服装时,该服装厂获得的利润是 元.
⑵当销售商一次订购了 件服装时,该服装厂获得的利润是多少元?
必修I测试题答案
一、选择题(本大题共12道小题,每小题4分,共48分。在每小题给出的四个选项中,只有一项是符合题目要求的)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
D
C
D
B
A
A
B
C
B
A
C
二、填空题(本大题共4道小题,每小题3分,共12分。把答案填在题中横线上)
13、设 ,若 ,则 的取值范围是;
14、函数 的定义域为;
15、若 ,则 的值是;
16、 。
三、解答题(本大题共5道小题,共60分。解答应写出文字说明、证明过程或演算步骤)
17、(本小题满分12分)设 ,已知 ,求 的值。
18、(本小题满分12分)判断并证明 在 的单调性。
19、(本小题满分12分)研究函数 的定义域和奇偶性。
21、(本小题满分12分)某服装厂生产一种服装,每件服装的成本为 元,出厂单价定为 元.该厂为鼓励销售商订购,决定当一次订购量超过 件时,每多订购一件,订购的全部服装的出厂单价就降低 元.根据市场调查,销售商一次订购量不会超过 件.
⑴设一次订购量为 件,服装实际出厂单价为 元,写出函数 的表达式;
⑵当销售商一次订购了 件服装时,该服装厂获得的利润是多少元?
13、 ; 14、 ; 15、 ; 16、2。
三、解答题(本大题共5道小题,共60分。解答应写出文字说明、证明过程或演算步骤)
17、(本小题满分12分)设 ,已知 ,求 的值。
解:
有 或 ,解得:
当 时, ,
则有 ,与题意不相符, 舍去。
当 时, ,
则与 中有3个元素不相符, 舍去。
当 时, ,
18、(本小题满分12分)判断并证明 在 的单调性。
、 、 、 、
8、若 ,则 等于 ( )
、 、 、 、
9、若 ,则 的取值范围是 ( )
、 、 、 、
10、设 ,则 的大小顺序为 ( )
、 、 、 、
11、已知 在 上单调递减,则 的取值范围是 ( )
、 、 、 、以上答案都不对
12、若 ,则 ( )
、 、3 、 、
二、填空题(本大题共4道小题,每小题3分,共12分。把答案填在题中横线上)
相关文档
最新文档