2010年普通高等学校招生全国统一考试数学文科试题(广东卷)精校版

合集下载

2010年全国统一高考数学试卷(文科)(全国新课标)

2010年全国统一高考数学试卷(文科)(全国新课标)

2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)第21页(共21页)当且仅当a <﹣2或a ≥时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.10。

2010年普通高等学校招生全国统一考试文综试题(广东卷,解析版)

2010年普通高等学校招生全国统一考试文综试题(广东卷,解析版)

2010年普通高等学校招生全国统一考试(广东卷)文科综合
本试卷共10页,41小题,满分300分。

考试用时150分钟。

注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号,座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动.先划掉原来的答案,然后再写卜新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并变回。

一、选择题:本大题共35小题.每小题4分,共140分。

在每小题列出的四个选项中。

只有一项是符合题目要求的。

1.利用作物秸杆等农副产品发展农区畜牧业,有利于
A. 改善局地气候
B. 综合利用资源
C. 防止水土流失
D. 保护农田作物
1。

2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析

2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析

2010年普通高等学校招生全国统一考试文科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

【教师简评】本试卷整体上明显比去年加大了难度,整套题对程度中等的学生来说有比较有难度,估计最后的考试分数不会特别理想。

试题不仅注意对基础知识的考查,更注重了对能力的考查。

体现了“稳中求变,深化能力”的主导思想。

知识分布还是比较广的,题的形式稳定,延续以前试题格式。

本套试卷基础与能力并重,前6题都是常见题,在考场上能够稳定学生情绪,第10、11、12三题是较为综合性的试题,这是近几年来全国1套试卷难度最大的,填空题难度不算大。

主观题试题类型都是常规题,难度和运算量仍然不小。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 【答案】C【命题意图】本试题主要考查三角函数的诱导公式及特殊角求值。

2010广东高考文科数学 (4)

2010广东高考文科数学 (4)

2010广东高考文科数学一、概述2010年广东高考文科数学试卷是广东省教育厅于2010年组织的一次高中毕业生综合评价考试。

本文将对该试卷的题目进行详细分析和解答。

二、试题分析1. 选填题选填题是广东高考文科数学试卷中的一部分,共有若干道题目。

这些题目的特点是答案具有多样性,考生可以根据自己的方法和计算结果进行填写。

举例来说,试题可能是给出了一个方程,考生需要求出方程的根或解。

对于这类题目,考生可以采用因式分解、配方法、求根公式等不同的方法进行计算,最终填写答案。

2. 解答题解答题是广东高考文科数学试卷中的主要部分,包括选择题、填空题和证明题。

2.1 选择题选择题是广东高考文科数学试卷中一道典型的题目。

该类型的题目给出了一些选项,考生需要选择符合要求的选项作为答案。

通常情况下,选择题包括单选题和多选题。

对于选择题,考生需要认真阅读题干和选项,并结合自己的数学知识进行推理和判断,最终选择正确的答案。

2.2 填空题填空题是广东高考文科数学试卷中的一类题目。

该类型的题目通常给出了一些未知数或变量,考生需要根据所给的条件进行计算,并填写答案。

填空题对考生的计算能力和逻辑思维能力有一定的要求,考生需要熟练掌握数学计算方法,并能够合理推理和运用所学知识。

2.3 证明题证明题是广东高考文科数学试卷中的一类题目。

该类型的题目要求考生根据所给的条件和已知的数学知识进行推理和证明,最终得出结论。

对于证明题,考生需要熟悉各种证明方法和数学定理,并能够运用这些知识进行推理和证明。

证明题对考生的逻辑思维能力、分析问题的能力和数学知识的整合能力有较高的要求。

三、题目解答1. 选填题题目一已知方程x2−2x+1=0的两个解之和是?解析:这是一个二次方程求解的问题,考生可以采用求根公式进行计算。

根据求根公式,对于二次方程xx2+xx+x=0,其解为 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$。

2010年普通高等学校招生全国统一考试数学卷(全国新.文)含详解

2010年普通高等学校招生全国统一考试数学卷(全国新.文)含详解

2010年普通高等学校招生全国统一考试文科数学参考公式:样本数据12, n x x x 的标准差 锥体体积公式s ==13V s h 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于 (A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =i = (A)14 (B )12(C )1 (D )2(4)曲线2y 21x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B(C )2 (D )2(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为 (A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54 (B )45(C )65(D )56(9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或(10)若sin a = -45,a 是第一象限的角,则sin()4a π+=(A )-10 (B)10 (C) -10 (D)10(11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是 (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

da2010年高考数学广东(文)

da2010年高考数学广东(文)

π 3 . 6 2
π , 2
2π 4. π 2
π . 5
∴ f ( x) 3sin 4 x
(3)由 f ∴ cos
π π 9 π 3sin 3cos , 3 6 5 4 12
3 . 5
x ≥ 0,y ≥ 0, x ≥ 0,y ≥ 0, 12 x 8 y ≥ 64, 3 x 2 y ≥ 16, 即 6 x 6 y ≥ 42, x y ≥ 7, 6 x 10 y ≥ 54. 3 x 5 y ≥ 27.
0) , B(4, 3) , C (2, 5) , D(0, 8) 处的值分别是 z 在可行域的四个顶点 A(9,
设 A 表示随机事件“5 名观众中任取 2 名,恰有 1 名观众年龄为 20 至 40 岁” ,则 A 中的基 本事件有 6 种:
Y1 A1,Y1 A2,Y1 A3,Y2 A1,Y2 A2,Y2 A3 ,
故所求概率为 P ( A)
6 3 . 10 5
F
18. (本小题满分 14 分) (1)证明: ∵点 E 为 AC 的中点,且 AB BC,AC 为直径, ∴ EB ⊥ AC . ∵ EC ⊥ 平面 BED ,且 BE 平面 BED , ∴ FC ⊥ EB . ∵ FC∩ AC C , A ∴ EB ⊥ 平面 BDF . ∵ FD 平面 BDF , ∴ EB ⊥ FD . (2)解:∵ FC ⊥ 平面 BED ,且 BD 平面 BED , ∴ FC ⊥ BD . 又∵ BC DC , ∴ FD FB 5a . ∴ VE FBD
2
∴ sin 1 cos
4 . 5
17. (本小题满分 12 分) 解: (1)因为在 20 至 40 岁的 58 名观众中有 18 名观众收看新闻节目,而大于 40 岁的 42

2010年普通高等学校招生全国统一考试(广东卷)

2010年普通高等学校招生全国统一考试(广东卷)

2010年普通高等学校招生全国统一考试(广东卷)语文一、本大题4小题,每小题3分,共12分。

1.下列词语中加点的字,每对读音都不相同的一组是A.皎洁/打搅业绩/污渍纤维/纤夫B.效仿/发酵空旷/粗犷盛开/盛饭C.隐瞒/蛮横挑衅/抚恤埋伏/埋怨D.市侩/反馈濒临/频繁辟谣/精辟参考:选B项。

A、皎洁/打搅jiào业绩/污渍jī/zì纤维/纤夫xiān/qiàn;B、效仿/发酵xiào/jiào空旷/粗犷kuàng/guǎng盛开/盛饭shâng/chãng;C.隐瞒/蛮横mán挑衅/抚恤xìn/xǜ埋伏/埋怨mái/mán;D.市侩/反馈kuài/kuì濒临/频繁bīn/pín辟谣/精辟pì/pì2.下面语段中画线的词语,使用不恰当的一项事中国历代文人视为至宝的笔、墨、纸、砚,是中国传统文化的代表性符号。

它们虽然有着不同的发展轨迹,但殊途同归。

它们在艺术创作中淋漓尽致地表现了中国古代书画艺术的神韵,记录了岁月的斗转星移,体现了古代文人的生活情趣。

今天,它们并没有因为现代高科技手段的甚嚣尘上而销声匿迹,而是继续在书画艺术中展示着华夏民族的质朴和灵动。

A.殊途同归B.斗转星移C.甚嚣尘上D.销声匿迹参考:选C项。

A项“殊途同归”:通过不同的道路,达到同一个目的地,比喻采取不同的方法,得到相同的结果。

B项“斗转星移”:北斗转向,众星移位,表示时序变迁,岁月流逝。

C项“甚嚣尘上”:原意是楚王说敌方晋军喧哗纷乱得很厉害,而且尘土也飞扬起来了。

形容忙乱喧哗的情状。

后以“甚嚣尘上”比喻对某人某事议论纷纷。

现多指反动或错误的言论十分嚣张。

这里用错对象,而且褒贬也失当。

高科技手段是新事物,对旧事物之冲击本为正常。

D项“销声匿迹”:指隐藏起来,不公开露面。

广东高考文科数学试题及答案

广东高考文科数学试题及答案

绝密★启用前
试卷类型:B
2010 年普通高等学校招生全国统一考试(广东卷)
数学(文科)
本试卷共 4 页,21 小题,满分 150 分。考试用时 120 分钟。 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号
填写在答题卡上。用 2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在 答题卡右上角“条形码粘贴处”。
2010 广东高考数学(文科)试卷第 - 3 -页 共 8 页
5
名观众的年龄为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年普通高等学校招生全国统一考试数学文科试题真题精品解析

2010年普通高等学校招生全国统一考试数学文科试题真题精品解析

2010年普通高等学校招生全国统一考试数学文科试题真题精品解析一.选择题(每小题3分,共36分)1.0的相反数是()。

A、0B、1C、-1D、±12.不等式x+1<2的解集是()。

A、x>-2B、x<3C、x≤2D、x<13.在第一象限的点是()。

A、(2,-1)B、(2,1)C、(-2,1)D、(-2,-1)4.如图,已知圆心角∠BOC=100°、则圆周角∠BAC的大小是()A.50°B.100°C.130°D.200°5.某校初三(1)班有同学50人,他们对球类运动的喜欢用图1所示的统计图来表示,那么喜欢足球的人数是()A、40人B、30人C、20人D、10人6.在下列的计算中,不正确的是()。

A、(-2)+(-3)=-5B、(a+1)(a-1)=a2-1C、a(1+b)=a+abD、(x-2)2=x2-47.在一个不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,则下列事情中,是必然发生的是( )(A) 从口袋中任意取出1个,这是一个红色球(B) 从口袋中一次任取出5个,全是蓝色球(C) 从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球(D) 从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐了8.把一张形状是矩形的纸片剪去其中某一个角,剩下的部分是一个多边形,则这个多边形的内角和不可能是()。

A、720°B、540°C、360°D、180°9.在同一平面内,若∠AOB=90º,∠BOC=40º,则∠AOB的平分线与∠BOC 的平分线的夹角等于( )。

A 65ºB 25ºC 65º或25ºD 60º或20º10.如图2,直角三角形ABC的两直角边BC=12,AC=16,则△ABC的斜边AB上的高CD 的长是()。

2010广东高考文科数学 (2)

2010广东高考文科数学 (2)

2010广东高考文科数学引言文科数学是广东高考中的一门重要科目,对于考生来说,掌握好文科数学的基本知识和解题方法对于取得好成绩至关重要。

本文将对2010广东高考文科数学试卷进行分析和解答,以帮助考生更好地备考和应对考试。

试卷概述2010广东高考文科数学试卷共分为两个部分,分别为选择题和非选择题。

选择题占据了试卷的大部分内容,共有30小题,每题4分,共计120分;非选择题共有5道大题,每题20分,共计100分。

试卷总分为220分。

下面将对试卷各部分进行详细的讲解。

选择题分析选择题是广东高考数学试卷的重要组成部分,对考生的基本知识和解题能力有着综合性的考查。

以下是对2010年广东高考文科数学选择题的分析和解答。

1.第一题2.第二题3.…4.第30题针对以上的每一小题,我们将给出详细的解答和解题思路,帮助考生更好地理解和掌握解题方法。

非选择题分析非选择题是广东高考数学试卷中的重要部分,对考生的思维能力和解题能力有较高的要求。

以下是对2010年广东高考文科数学非选择题的分析和解答。

1.第一大题2.第二大题3.…4.第五大题对于每一大题,我们将给出详细的解答步骤和解题思路,以帮助考生更好地应对考试。

总结通过对2010广东高考文科数学试卷的分析和解答,我们可以看出,该试卷对考生的基本知识和解题能力有较高的要求。

考生在备考过程中,应注重掌握数学的基本知识和解题方法,多做一些相关的练习题,加强对数学的理解和应用。

希望本文对考生备考和应对2010广东高考文科数学试卷有所帮助,祝愿广大考生取得优异的成绩!。

2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析

2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析

2010年普通高等学校招生全国统一考试文科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

【教师简评】本试卷整体上明显比去年加大了难度,整套题对程度中等的学生来说有比较有难度,估计最后的考试分数不会特别理想。

试题不仅注意对基础知识的考查,更注重了对能力的考查。

体现了“稳中求变,深化能力”的主导思想。

知识分布还是比较广的,题的形式稳定,延续以前试题格式。

本套试卷基础与能力并重,前6题都是常见题,在考场上能够稳定学生情绪,第10、11、12三题是较为综合性的试题,这是近几年来全国1套试卷难度最大的,填空题难度不算大。

主观题试题类型都是常规题,难度和运算量仍然不小。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一.选择题 (1)cos300︒=(A)2-12 (C)12 (D) 2【答案】C【命题意图】本试题主要考查三角函数的诱导公式及特殊角求值。

2010年广东高考文科数学试题及答案(word精校版)

2010年广东高考文科数学试题及答案(word精校版)

2010年一般高等学校招生全国统一考试数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A ={0,1,2,3},B ={1,2,4},则集合A B = A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2} D .{0} 2.函数()lg(1)f x x =-的定义域是A .(2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞) 3.若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则 A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数4.已知数列{n a }为等比数列,n S 是它的前n 项和,若2·a a a 31=2,且4a 与72a 的等差中项为54,则S 5=A .35B .33C .31D .295.若向量a =(1,1),b =(2,5),c =(3,x )满意条件 (8a -b )·c=30,则x =A .6B .5C .4D .36.若圆心在x 5O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A .22(5)5x y +=B .22(5)5x y ++=C .22(5)5x y -+=D .22(5)5x y ++=7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A .45 B .35 C .25 D .158.“x >032x ”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件9.如图1, AB C ∆为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是10.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:那么d ⊗ ()a c ⊕=A .aB .bC .cD .d 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.某城市缺水问题比较突出,为了制定节水管理方法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).依据图2所示的程序框图,若1x ,2x ,3x ,4x ,分别为1,1.5,1.5,2,则输出的结果s 为 .12.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:年份 2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y 6.88.89.81012依据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A = .(二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =2a,点E ,F 分别为线段AB ,AD 的中点,则EF = .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为 .三、解答题:本大题共6小题,满分80分。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (文科)(解析版)(word版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (文科)(解析版)(word版)

2010年普通高等学校招生全国统一考试文科数学参考公式:样本数据12,L n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B =I ( )(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2 解析:{}|22,{0,1,2}A x x B =-≤≤=,{}0,1,2A B =I ,选D 命题意图:本题考查集合的运算及不等式解法(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( )(A )865 (B )865- (C )1665 (D )1665- 解析:16(4,3),(5,12),cos ,65a b a b a b a b ⋅==-<>==,选C 命题意图:本题考查向量数量积运算与夹角(3)已知复数z =z =( ) (A)14 (B )12(C )1 (D )2解析:z ====12z ==,选B 命题意图:本题考查复数的代数运算及模的定义(4)曲线3y 21x x =-+在点(1,0)处的切线方程为( )(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 解析:'2y 32,1,1x k y x =-∴==-切线方程为,选A 命题意图:本题考查导数的几何意义(5)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()(A)6(B)5(C)62(D)52解析:由双曲线的几何性质可得2222221552,242b c a ba b e ea a a+==∴====即,,选D命题意图:本题考查双曲线的几何性质(6)如图,质点p在半径为2的圆周上逆时针运动,其初始位置为0p(2,2-),角速度为1,那么点p到x轴距离d关于时间t的函数图像大致为()解析:法一:排除法取点0,2t d==时,排除A、D,又当点P刚从t=0开始运动,d是关于t的减函数,所以排除B,选C法二:构建关系式 x轴非负半轴到OP的角4tπθ=-,由三角函数的定义可知2sin()4py tπ=-,所以2sin()4d tπ=-,选C命题意图:考察三角函数的定义及图像(7) 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()(A)3πa2 (B)6πa2 (C)12πa2 (D) 24πa2(8)解析:球心在长方体对角线交点处,球半径R为对角线长一半长方体中,由对角线定理知对角线长为6a,6aR=球表面积2246S R aππ==,选B命题意图:本题以球与多面体的接切为载体考查球的表面积公式(8)如果执行右面的框图,输入N=5,则输出的数等于()(A)54(B)45(C)65(D)56解析:1111112233445561111111115(1)()()()()2233445566S=++++⨯⨯⨯⨯⨯=-+-+-+-+-=所以选D命题意图:以算法为背景考察裂项相消求和(9)设偶函数f(x)满足f(x)=2x-4 (x ≥0),则(){}20x f x ->=( )(A ){}24x x x <->或 (B ){}04 x x x <>或(C ){}06 x x x <>或 (D ){}22 x x x <->或解析:0()2402x x f x x ≥=->>当时,由得()()022f x f x x x ∴>><-又为偶函数,时或 (2)02222,40f x x x x x ∴->⇔->-<-><或即或,选B命题意图:利用函数性质解不等式(10)若cos a = -45,a 是第三象限的角,则sin()4a π+=( )(A )-7210 (B )7210 (C )2 -10 (D )210解析:a Q 是第三象限的角,23sin 1cos 5a α∴=--=-则272sin()(sin cos )4210a παα+=+=-,选A命题意图:本题考查同角三角函数关系及和角正弦公式(11)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCD的内部,则z=2x-5y 的取值范围是( ) (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20) 解析:当直线z=2x-5y 过点B 时,min 14z =-当直线z=2x-5y 过点D (0,-4)时,max 20z = 所以z=2x-5y 的取值范围为(-14,20),选B 点D 的坐标亦可利用AB DC =u u u r u u u r求得,进一步做出可行域命题意图:本题考查线性规划(12)已知函数f(x)=lg ,01016,102x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是( ) (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24) 解析: ,,a b c 互不相等,不妨设a b c <<()(),lg lg f a f b a b =-=由得,即ab=1 abc c ∴=,显然1012c <<所以选C命题意图:考察数形结合思想,利用图像处理函数与方程问题第Ⅱ卷本卷包括必考题和选考题两部分。

2010年广东高考文科数学真题及答案

2010年广东高考文科数学真题及答案

2010年广东高考文科数学真题及答案2010年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合={0,1,2,3},={1,2,4}则集合A B A B = ( )A. {0,1,2,3,4}B.{1,2,3,4}C. {1,2}D. {0} 【测量目标】集合的基本运算.【考查方式】给出集合,考查并集的运算. 【参考答案】A【试题解析】:{0,1,2,3},{1,2,4},{0,1,2,3,4}.A B A B ==∴= 2.函数)1lg()(-=x x f 的定义域是 ( ) A. B. C. D. (2,)+∞(1,)+∞[1,)+∞[2,)+∞【测量目标】函数的定义域.【考查方式】给出对数函数,考查对数函数的性质. 【参考答案】B【试题解析】01>-x ,得1>x . 3.若函数与的定义域均为R ,则()33x x f x -=+()33x x g x -=-( )A. 与均为偶函数B. 为奇函数,为偶函数 ()f x ()g x ()f x ()g xC. 与均为奇函数D. 为偶函数,为奇函数 ()f x ()g x ()f x ()g x 【测量目标】函数奇偶性的判断. 【考查方式】给出函数,判断奇偶性. 【参考答案】D【试题解析】解:由于)(33)()(x f x f x x=+=----,故是偶函数,()f x 又因为所以是奇函数.()()33(),xx g x g x ---=-=-()g x4.已知数列{}为等比数列,是它的前项和,若,且与的等差中n a n S n 2a a a 31=24a 72a 项为,则=545S ( )A .35B .33C .31D .29 【测量目标】等比数列的通项公式及前项和.n 【考查方式】给出等比数列项与项之间的关系,进而得到公比和首项,从而考查等比数列q 前n 项和的求解. 【参考答案】C【试题解析】(步骤1)22311142 2.a a a q a q a a ==⇒= (步骤2)3344413355122224,16.14222a a a q q q a q +=⨯⇒+=⇒====故(步骤4) 55116(1)1232(132131.13212S -==-=-=-5.若向量=(1,1),=(2,5),=(3,)满足条件 (8-)=30,则= a b c x a b c x ( )A .6B .5C .4D .3 【测量目标】向量的数量积的运算.【考查方式】给出具体的向量,利用向量的坐标运算来求. x 【参考答案】C【试题解析】(8)(8,8)(2,5)(6,3)-=-=a b(8)63330 4.x x -=⨯+=⇒=a b c6.若圆心在位于轴左侧,且与直线相切,则圆x O y 20x y +=O 的方程是( )A .B .22(5x y -+=22(5x y ++=C .D .22(5)5x y -+=22(5)5x y ++=【试题解析】圆的标准方程,圆与直线的位置关系.【考查方式】给出含未知系数的圆的方程,考查圆与直线的位置关系与直线的斜率. 【参考答案】D【试题解析】由题意知,圆心在轴左侧,排除A 、Cy在Rt △,,故 O AO 1,O 2OA k A ==O O 5.O A O O ==⇒=7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( ) A.B. C. D. 45352515【测量目标】椭圆和等差数列的相关性质.【考查方式】通过椭圆与等差数列之间的联系,考察运算求解能力,以及对椭圆的性质的运用.【参考答案】C【试题解析】设长轴为2,短轴为2,焦距为2,则(步骤1) a b c 2222.a c b +=⨯即.(步骤2)22222()44()a c b a c b a c +=⇒+==-整理得:(步骤3) 2225230,5230c ac a e e +-=+-=35e e ⇒=、=-1、、、.8.“>0”是“>0”成立的x ( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 【测量目标】命题的充分性与必要性的判定.【考查方式】给出命题,根据充分性和必要性的定义进行判断, 【参考答案】A【试题解析】当时,是成立的充分条件;(步0x >20x >0,0x >>“”“骤2)而不是成立的充分条件.(步骤3)10,=>10,-<0>0x >综上:“”成立的充分非必要条件.(步骤3)0x >0>9.如图1,△ABC 为正三角形,,平面且AA BB CC '''∥∥CC '⊥ABC ,则多面体的正视图(也称主视图)是'''32BB CC AB ===3AA '''ABC A B C -( )A B C D 【测量目标】几何体的三视图的应用.【考查方式】给出具体的几何体,考查三视图的运用.【参考答案】D【试题解析】由“张氏”垂直法可知,D的图形为正视图.10.在集合上定义两种运算和如下{,,,}a b c d⊕○*○+a b c da abc da b b b bc c b c bd d b b d那么(c)=( )d○*a○+A. B. C. D.a b c d【测量目标】集合的运算.【考查方式】给定集合,规定运算规则,考查集合的运算.【参考答案】A【试题解析】由上表可知:(,故(c)= c=,a⊕)c c=d○*a⊕d○*a二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2010年普通高等学校招生全国统一考试(新课标全国卷)(文科数学)

2010年普通高等学校招生全国统一考试(新课标全国卷)(文科数学)

2010年普通高等学校招生全国新课标统一考试文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x | |x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}2.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-16653.已知复数z =3+i (1-3i )2,则|z |=( ) A.14 B.12C .1D .2 4.曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +25.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B.5C.62D.526.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )7.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 28.如果执行右面的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.569.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}10.若cos α=-45,α是第三象限的角,则sin(α+π4)=( ) A .-7210 B.7210 C .-210 D.21011.已知▱ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在▱ABCD 的内部,则z =2x -5y 的取值范围是( )A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12) D .(20,24)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.圆心在原点且与直线x +y -2=0相切的圆的方程为________.14.设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为________.15.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱16.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面PAC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )性别 是否需要志愿者 男 女 需要 40 30 不需要 160 270 P (K 2≥k ) 0.050 0.010 0.001k 3.841 6.635 10.82820.(本小题满分12分)设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.21.(本小题满分12分)设函数f(x)=x(e x-1)-ax2.(1)若a=12,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧 AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α, y=t sin , (t 为参数),圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)当坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满10分)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.。

2010年普通高等学校招生全国统一考试预测卷(广东卷)数学(文科)

2010年普通高等学校招生全国统一考试预测卷(广东卷)数学(文科)

广东省2010届高考文科数学预测第一部分 选择题本试卷共21小题,满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将答案填在答题卷上。

1. 已知全集合{},3,2,1,0=I 集合{}2,1,0=M ,{}3,2,0=N ,则()=⋂N C M I ( )A.{}1 B.{}3,2 C.{}2,1,0 D. φ 2. 已知复数z=1-2i ,则 z +1z -1=( ) (A) 1+i(B) 1-i(C) -1+i(D) -1-i3. 已知正方形ABCD 的边长为1, 则AB BC AC ++=( ) A. 0 B. 2 C. 2 D. 224. 曲线34y x x =-在点()1,3--处的切线方程是( )(A )74y x =+ (B )72y x =+ (C )4y x =- (D )2y x =-5. 已知等差数列{}n a 中, 315,a a 是方程2610x x --=的两根, 则7891011a a a a a ++++等于( )A. 18B. 18-C. 15D. 126. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 7. 已知:┓p 且q 为真,则下列命题中的假命题是:( ) ①p ;②p 或q ; ③p 且q ; ④┓qA .①④B .①②③C .①③④D .②③④8. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km , 灯塔A 在观察站C 的北偏东20, 灯塔B 在观察站C 的南偏东40,则灯塔A 与灯塔B 的距离为( )km A. a B. a 2 C. a 2 D. a 39. 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是 A.若,,//,m n m n αβ⊥⊥则//αβ B.若//,//,//m n αβαβ,则//m n图5C.若,//,//m n αβαβ⊥,则m n ⊥D.若//,//,//,m n m n αβ则//αβ 10. 若函数)(x f y =的图象如右下图所示, 则函数)1(x f y -=的图象大致为( )第Ⅱ卷二、填空题(本大题共5小题,考生做答4小题,每小题5分,共20分) (一)必做题(11~13题)11.某市高三数学抽样考试中,对90分以上 (含90分)的成绩进行统计,其频率分布图 如图所示,若130—140分数段的人数为90人,则90—100分数段的人数为_______12. 设实数x 、y 满足约束条件:0,,23,x x y x y ≥⎧⎪≤⎨⎪+≤⎩则2z x y =-的最大值是_______13.如图所示,这是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是_______(二)选做题(14~15题考生只能从中选作一题)14.(坐标系与参数方程选做题)若直线340x y m ++=与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)相切,则实数m 的值是_______D.C.A. B.ACD 图2BACD图115.(几何证明选讲选做题)如图5, AB 为⊙O 的直径, AC 切⊙O 于点A ,且cm AC 22=,过C 的割线CMN 交AB 的延长线于点D ,CM=MN=ND.AD 的长等于_______cm .三.解答题(本大题共有6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16.(本小题满分12分)已知:A 、B 、C 是ABC ∆的内角,c b a ,,分别是其对边长,向量()1cos ,3+=A m ,()1,sin -=A ,⊥.(Ⅰ)求角A 的大小; (Ⅱ)若,33cos ,2==B a 求b 的长.17.(本小题满分12分)设AB=6,在线段AB 上任取两点(端点A ,B 除外),将线段AB 分成三条线段, (Ⅰ)若分成三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (Ⅱ)若分成三条线段的长度均为正实数,求这三条线段可以构成三角形的概率;18.(本小题满分14分)如图,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,4,2AB AD CD ===.将ADE ∆沿AC 折起,使平面ADE ⊥平面ABC ,得到几何体D ABC -,如图2所示. (Ⅰ) 求证:BC ⊥平面ACD ;(Ⅱ) 求几何体D ABC -的体积.19.(本小题满分14分)某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()x f ;(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由. 20.(本小题满分14分)已知长方形ABCD, AB=22,BC=1.以AB 的中点O 为原点建立如图8所示的平面直角坐标系xoy .(Ⅰ)求以A 、B 为焦点,且过C 、D 两点的椭圆的标准方程;(Ⅱ)过点P(0,2)的直线l 交(Ⅰ)中椭圆于M,N 两点,是否存在直线l ,使得以弦MN 为直径的圆恰好过原点?若存在,求出直线l 的方程;若不存在,说明理由.21.(本小题满分14分) 已知数列{n a }中,11122n n a n a a +=-、点(、)在直线y=x 上,其中n=1,2,3…. (Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=-(Ⅱ)求数列{}的通项;n a图8(Ⅲ)设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ.若不存在,则说明理由。

2010年普通高等学校招生全国统一考试(课标卷)文科数学

2010年普通高等学校招生全国统一考试(课标卷)文科数学

2010年普通高等学校招生全国统一考试(课标卷)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,4,|A x x x R B x x x Z =≤∈=∈,则A B =(A )(0,2) (B )[0,2] (C)|0,2| (D)|0,1,2| (2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a,b 夹角的余弦值等于(A )865 (B )865- (C )1665(D)1665-(3)已知复数23(13)iz i +=-z ︱= (A)14 (B)12(C)1 (D )2 (4)曲线2y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B)1y x =-+ (C )22y x =- (D)22y x =-+(5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为 (A 6 (5 (6 (D 5(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p 2,2-),角速度为1,那么点p 到x轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上, 则该球的表面积为(A )3πa 2 (B)6πa 2 (C )12πa 2 (D ) 24πa 2 (8)如果执行右面的框图,输入N=5,则输出的数等于 (A )54 (B)45 (C )65 (D )56(9)设偶函数f (x)满足f (x)=2x —4 (x ≥0),则(){}20x f x ->=(A ){}24x x x <->或 (B ){}04 x x x <>或(C ){}06 x x x <>或(D ){}22 x x x <->或(10)若sin a = —45,a 是第一象限的角,则sin()4a π+= (A)—7210 (B)7210 (C )2 -10 (D)210(11)已知A B CD 的三个顶点为A(-1,2),B (3,4),C(4,-2),点(x ,y )在ABCD 的内部,则z=2x —5y 的取值范围是 (A )(-14,16) (B)(-14,20) (C)(-12,18) (D )(—12,20)(12)已知函数f(x)= lg 1,01016,02x x x x ⎧≤≤⎪⎨-+>⎪⎩若a ,b ,c 互不相等,且f (a)= f (b)= f(c),则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合A ={0,1,2,3},B ={1,2,4},则集合A B = A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2} D .{0} 2.函数,f (x )=lg (x -1)的定义域是A .(2,+∞) B.(1,+∞) C.[1,+∞) D .[2,+∞) 3.若函数f(x)=3x +3x -与g(x)=33x x --的定义域均为R ,则 A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数.g(x)为奇函数4.已知数列{n a }为等比数列,nS 是它的前n 项和.若2a *3a =2a 1,且4a 与27a 的等差中项为54,则5s =A .35B .33C .31D .295.若向量a =(1,1),b =(2,5),c =(3,x)满足条件(8a —b )·c=30,则x= A .6 B .5 C .4 D .36.若圆心在x O 位于y 轴左侧,且与直线x+2y=0相切,则圆O 的方程是A .22(5x y -+= B .22(5x y ++=C .22(5)5x y -+= D .22(5)5x y ++=7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A .45B .35C .25D .158.“x >0”是“A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 9.如图1,A B C V 为正三角形,''////AA BB C C,''''32C C B B C C A B ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是10.在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么d ⊗ ()a c ⊕=A .aB .bC .cD .d二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.某城市缺水问题比较突出,为了制定节水管理办法, 对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,3x 4x ,分别为1,1.5,1.5,2,则输出的结果s 为 .12.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b ,A +C =2B ,则sin A = .(二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =2a ,点E ,F 分别为线段AB ,CD 的中点,则EF = .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分l4分) 设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期.(1)求()0f ;(2)求()f x 的解析式;(3)已知94125f απ⎛⎫+=⎪⎝⎭,求sin α的值. 17.(本小韪满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 18.(本小题满分14分)如图4,A E C 是半径为a 的半圆,A C 为直径,点E 为 A C 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足F C ⊥平面BED ,F B.(1)证明:EB FD ⊥;(2)求点B 到平面FED 的距离.19.(本小题满分12分)某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?20.(本小题满分14分)已知函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-.(1)求(1)f -,(2.5)f 的值;(2)写出()f x 在[]3,3-上的表达式,并讨论函数()f x 在[]3,3-上的单调性; (3)求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值. 21.(本小题满分14分)已知曲线2n C y nx =:,点(,)(0,0)n n n n n P x y x y >>是曲线n C 上的点(1,2n =…).(1)试写出曲线n C 在点n P 处的切线n l 的方程,并求出n l 与y 轴的交点n Q 的坐标 (2)若原点(0,0)O 到n l 的距离与线段n n P Q 的长度之比取得最大值,试求试点n P 的坐标(,n n x y );(3)设m 与k 为两个给定的不同的正整数,n x 与n y 是满足(2)中条件的点n P 的坐标,证明:1sn =-<∑(1,2,)s =…参考答案一、选择题:本大题共10小题,每小题5分,满分50分. 1. A 2. B 3. D 4. C 5. C 6. D 7. B 8. A 9. D 10. A二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

11.1.5 12.13;正(或正的) 13.1214.2a. 15. (1,)2π三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤.17.(本小题满分12分)解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目。

所以,经直观分析,收看新闻节目的观众与年龄是有关的。

(2)应抽取大于40岁的观众的人数为:273553455⨯=⨯=(名)(3)用分层抽样方法抽取的5名观众中,20至30岁有2名(记为12,Y Y ),大于40岁有3名(记为123,A A A ),5名观众中任取2名,共有10中不同取法;12111213212223121323,,,,,,,,,Y Y Y A Y A Y A Y A Y A Y A A A A A A A设A 表示随机事件“5名观众中任取2名,恰有一名观众年龄为20至40岁”,则A 中的基本事件有6中 111213212223,,,,,Y A Y A Y A Y A Y A Y A 故所求概率为63()105P A ==18.(本小题满分14分)(1)证明 : ∵点E 为A C 的中点,且,AB BC AC =为直径∴EB AC⊥FC BED⊥平面,且BE BED∈平面∴FC BE⊥∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵FC BED⊥平面,且BD BED⊂平面∴F C B D⊥又∵B C D C=∴FD FB==∴3 111223323F EBD FEDa V S EB a a -===∵,EB BDF FB BDF ⊥⊂平面且平面19.(本小题满分12分)解:法(一)设需要预定满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得: 2.54z x y =+,且,x y 满足0,0,12864,6642,61054.x y x y x y x y ≥≥⎧⎪+≥⎪⎨+≥⎪⎪+≥⎩即0,0,3216,7,3527.x y x y x y x y ≥≥⎧⎪+≥⎪⎨+≥⎪⎪+≥⎩ z 在可行域的四个顶点(9,0),(4,3),(2,5),(0,8)A B C D 处的值分别是 2.594022.5,A Z =⨯+⨯= 2.544322,B Z =⨯+⨯= 2.524525,C Z =⨯+⨯= 2.504832.D Z =⨯+⨯=比较之,B Z 最小,因此,应当为该儿童预定4个单位的午餐和3个单位的晚餐,就可满足要求. 法(二)设需要预定满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得: 2.54z x y =+,且,x y 满足 0,0,12864,6642,61054.x y x y x y x y ≥≥⎧⎪+≥⎪⎨+≥⎪⎪+≥⎩即0,0,3216,7,3527.x y x y x y x y ≥≥⎧⎪+≥⎪⎨+≥⎪⎪+≥⎩让目标函数表示的直线2.54x y z +=在可行域上平移,由此可知 2.54z x y =+在(4,3)B 处取得最小值.因此,应为该儿童预定4个单位的午餐和3个单位的晚餐,就可满足要求.0,()k f x <∴ 在[]3,1--与[]1,3上为增函数,在[]1,1-上为减函数;(3)由函数()f x 在[]3,3-上的单调性可知,()f x 在3x =-或1x =处取得最小值2(3)f k -=-或(1)1f =-,而在1x =-或3x =处取得最大值(1)f k -=-或1(3)f k=-.故有①1k <-而()f x 在3x =-处取得最小值2(3)f k -=-,在1x =-处取得最大值(1)f k -=-.②1k =-时,()f x 在3x =-与1x =处取得最小值(3)(1)1f f -==-,在1x =-与3x =处取得最大值(1)(3)1f f -==.③10k -<<时,()f x 在1x =处取得最小值(1)1f =-,在3x =处取得最大值1(3)f k=-.214n nn x x ∴=,即12n x n =时,()n n nd x P Q 取得最大值14.故所求点n P 的坐标为11(,)24n n . (3)由(2)知11,24n n x y nn==,于是11ssn n ===∑∑111sssn n n ====<=∑∑.现证明111,2,3,)sn s =<=∑.111sssn n n ===<=∑∑∑11)=++++=故问题得证.。

相关文档
最新文档