磨损及磨损原理-第一讲
磨损及磨损理论
第一节 概 述
任何机器运转时,相互接触的零件之间都将因相对运动而产 生摩擦,而磨损正是由于摩擦产生的结果。由于磨损,将造成 表层材料的损耗,零件尺寸发生变化,直接影响了零件的使用 寿命。从材料学科特别是从材料的工程应用来看,人们更重视 研究材料的磨损。据不完全统计,世界能源的1/3~1/2消耗 于摩擦,而机械零件80%失效原因是磨损。
表表面面存存在在明明显显粘粘着着痕痕迹迹和和材材料料转转移移,,有有较较大大粘粘着着坑坑块,块在,高在速高重速 载重下载,下大,量大摩量擦摩热擦使热表使面表焊面合焊,合撕,脱撕后脱留后下留片下片片粘片着粘坑着。坑。
黏黏着着坑坑密密集集,,材材料料转转移移严严重重,,摩摩擦擦副副大大量量焊焊合合,,磨磨损急损剧急增剧加增,加, 摩摩擦擦副副相相对对运运动动受受到到阻阻碍碍或或停停止止。。 材材料料以以极极细细粒粒状状脱脱落落,,出出现现许许多多““豆豆斑斑””状状凹凹坑坑。。
所以磨损是机器最常见、最大量的一种失效方式。据调查轮,胎压联痕(SEM 邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其5中000X) 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
此时虽然摩擦系数增大,但是磨损却很小,材料迁移也不显著。通常 在金属表面具有氧化膜、硫化膜或其他涂层时发生轻微粘着摩损。
(2)涂抹:
粘着结合强度大于较软金属抗剪切强度,小于较硬金属抗剪切强度。 剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金属涂抹在硬 金属表面。这种模式的摩擦系数与轻微磨损差不多,但磨损程度加剧。
(3)磨损比
摩擦.磨损.润滑及润滑剂概论
第一章摩擦.磨损.润滑及润滑剂概论摩擦、磨损、润滑的种类及其基本性质│润滑剂及其基本性能指标│润滑剂的种类一、摩擦.磨损.润滑的种类及其基本性质摩擦、磨损、润滑是一种古老的技术,但一直未成为一种独立的学科。
1964年英国以乔斯特(Jost)为首的一个小组,受英国科研与教育部的委托,调查了润滑方面的科研与教育状况及工业在这方面的需求。
于1966年提出了一项调查报告。
这项报告提到,通过充分运用摩擦学的原理与知识,就可以使英国工业每年节约510,000,000英镑,相当于英国国民生产总值的1%。
这项报告引起了英国政府和工业部门的重视,同年英国开始将摩擦、磨损、润滑及有关的科学技术归并为一门新学科--摩擦学(Tribology)。
摩擦学是研究相互作用、相互运动表面的科学技术,也可以说是有关摩擦、磨损及润滑的科学与技术统称为摩擦学(Tribology)。
科学地控制摩擦,中国每年可节省400亿人民币。
故改善润滑、控制摩擦,就能为我们带来巨大的经济利益。
中国工程院咨询研究项目《摩擦学科学及工程应用现状与发展战略研究》调查显示,2006年全国消耗在摩擦、磨损和润滑方面的资金估计为9500亿元,其中如果正确运用摩擦学知识可以节省人民币估计可达到3270亿元,占国内生产总值GDP的1.55%。
美国机械工程学会在《依靠摩擦润滑节能策略》一书中提出,美国每年从润滑方面获得的经济效益达6000亿美元。
1986年,中国的《全国摩擦学工业应用调查报告》指出,根据对我国冶金、石油、煤炭、铁道运输、机械五大行业的调查,经过初步统计和测算,应用已有的摩擦学知识,每年可以节约37.8亿元左右,约占生产总值(5个行业1984年的可计算部分)的2.5%。
润滑油的支出仅是设备维修费用的2%~3%。
实践证明,设备出厂后的运转寿命绝大程度取决于润滑条件。
80%的零件损坏是由于异常磨损引起的,60%的设备故障由于不良润滑引起。
中国每1000美元产值消耗一次性能源(折合石油)为日本的5.6倍,电力为日本的2.77倍,润滑油耗量为日本的3.79倍。
第四章 摩擦、磨损及润滑概述
第四章 摩擦、磨损及润滑概述
第一节 摩擦 一、摩擦效果——能量损耗、发热、磨损
——利用摩擦 二、摩擦分类 内摩擦:发生在物质内部,阻碍分子间相对运动 外摩擦:
静摩擦 动摩擦——滚动摩擦
滑动摩擦——
1.干摩擦 机械传动中不允许
2.边界摩擦 边界油膜(十层分子厚度仅 为0.02μm),金属突峰接触,摩擦系数0.1 左右
油温 3.疲劳磨损(点蚀) 提高表面硬度、减小粗糙度值和控制接触应
力
4.流体体磨粒磨损、流体侵蚀磨损
流动所夹带的硬物质引起的机械磨损,管道 磨损
流体冲蚀作用引起的机械磨损,燃汽轮机叶 片、火箭发动机尾喷管的磨损。
5.腐蚀磨损
机械化学磨损是指由机械作用及材料与环境 的化学作用或电化学作用共同引起的磨损
2.流体静力润滑 3.弹性流体动力润滑 λ>3~4 4.边界润滑 5.混合润滑
1.如图所示,在 情况下,两相对运动的平 板间粘性流体不能形成油膜压力。
2.摩擦副接触面间的润滑状态判据参数膜厚 比值λ为 时,为混合润滑状态,值λ为 时,可达到流体润滑状态。
A.6.25; B. 1.0;C. 5.2; D. 0.35。
λ≤1——边界摩擦
λ>3——流体摩擦
1≤λ≤3——混合摩擦
第二节 磨损 一、磨损过程 ——磨合、 稳定磨损、 剧烈磨损。 二、磨损分类 1.磨粒磨损 开式齿轮传动 合理选择材料,提高表面硬度
2.粘着磨损 ——轻微磨损、胶合、咬死
齿轮传动、蜗杆传动滑动轴承等 合理选择摩擦副材料、润滑剂,限制压力和
3.各种油杯中, 可用于脂润滑。
A.针阀式油杯;B.油绳式油杯;C.旋盖式油杯。
4.为了减轻摩擦副的表面疲劳磨损,下列措施中, 是不合理的
磨削过程及磨削原理
六、砂轮的磨损与耐用度
形态:磨耗磨损(A)、磨粒破碎(B-B) 和脱落磨损(C-C)。 砂轮耐用度:砂轮钝化、变形后加工 质量和效率降低。~用砂轮在两次修 整之间的实际磨削时间度时,工件将发 生颤振,表面粗糙度突然增大,或出 现表面烧伤现象。
由图可知,缩 短初磨阶段和稳定 阶段可提高生产效 率,而保持适当清 磨进给次数和清磨 时间可提高表面质 量。
五 磨削热和磨削温度
1. 磨削温度的基本概念 2. 影响磨削温度的主要因素
砂轮速度V: V ↑→θ↑ 工件速度Vw : Vw ↑→θ↓ 径向进给量fr: fr↑→θ↑ 工件材料: 导热性↓→θ↑ 砂轮硬度与粒度:硬度↓→θ↓ 磨粒大小↑→θ↓
二 磨屑的形成过程
滑擦阶段:磨粒切削厚度非常小,在 工件表面上滑擦而过,工件仅产生弹 性变形。
刻划阶段:工件材料开始产生塑性变 形,磨粒切入金属表面,磨粒的前方 及两侧出现表面隆起现象,在工件表 面刻划成沟纹。磨粒与工件间挤压摩 擦加剧,磨削热显著增加。
切削阶段:随着切削厚度的增加,在 达到临界值时,被磨粒推挤的金属明 显的滑移而形成切屑。
磨削过程及磨削原理
1 磨料特征 2 磨屑的形成过程 3 磨削力 4 磨削阶段 5 磨削热和磨削温度 6 砂轮磨损与耐用度
一 磨料特征
很不规则,大多数呈菱形八面体; 顶尖角大多数为90度~120度,以很大的负前角进行切 削; 磨粒切削刃几乎都存在切削刃钝圆半径; 在砂轮表面分布不均匀,高低也不同。
磨粒常见形状
三 磨削力
➢磨削力的的来源:工件材料产生变形时的抗力和 磨粒与工件间的摩擦力。
➢磨削力的特征: (1) 单位磨削力很大 (2) 径向分力很大---径向力虽不做工,但会使
工件产生水平方向的弯曲,直接影响加工精度。
第二章-摩擦、磨损及润滑
3、表面疲劳磨损
两摩擦表面为点或线接触时、由于局部的弹性变 形形成了小的接触区。这些小的接触区形成的摩擦副 如果受变化接触应力的作用,则在其反复作用下,表 层将产生裂纹。随着裂纹的扩展与相互连接,表层金 属脱落,形成许多月牙形的浅坑,这种现象称为疲劳 磨损,也称点蚀。
R2
p 弹性流体动力
润滑油压分布
赫兹压力分布
v1
x O
v2 缩颈
节流间隙 (油膜厚度)
3、流体静力润滑
油腔 节流器
(补偿元件) 油泵
油箱
四、润滑方法和润滑装置
油润滑的方法多种多样,其分类标准大概有两种:集中润滑 或分散润滑。
分散润滑比集中润滑简便。集中润滑需要一个多出口的润滑 装置供油,而分散润滑中各摩擦剔的润滑装置则是各自独立的。
4)闪点和燃点 5)极压性能
3)凝点 6)氧化稳定性
2、润滑脂 钙基润滑脂、钠基润滑脂、锂基润滑脂
性能指标:
1)针入度
2)滴点
3)安定性
3、固体润滑剂 石墨、二硫化钼、氮化硼 、蜡、 聚氟乙烯、 酚醛树脂
4、润滑剂的添加
二、粘性定律与润滑油的粘度
1、粘性定律
u
y
u=v O
牛顿粘性定律 η——流体的动力粘度
(1)O型密封圈 (2)V型密封圈 (3)Y型和U型密封圈 (4)L型密封圈
三、密封装置的选择
1.静密封较为简单,可根据压力、温度选择不同材料的垫片、 密封胶等
2.回转运动密封装置较多,要根据工作速度、压力大小、温度高低 选择。使用较普遍的是O型、J型密封圈,低速时毡圈应用较广。
第三章 摩擦、磨损和润滑
适当的润滑是减小摩擦、减轻磨损和降低能量消耗的有效手 段。
第一节 摩 擦
摩擦的种类 1)内摩擦:发生在物质内部,阻碍分子间相对运动的摩擦。 2)外摩擦:当相互接触的两个物体发生相对滑动或有相对滑
在液体摩擦状态下,其摩擦性能取决于流体内部分子之间的 粘滞阻力,故摩擦因数极小(约为0.001~0.008),是一种理想的 摩擦状态。摩擦规律也已有了根本的变化,与干摩擦完全不同。
四、混合摩擦
当两摩擦表面不能被具有压力的液体层完全分隔开,摩擦表 面间处于既有边界摩擦又有液体摩擦的混合状态称为混合摩擦。
边界膜有两大类:吸附膜和化学反应膜。吸附膜又分为物理 吸附膜与化学吸附膜。
物理吸附膜是由分子引力所 形成的。吸附膜吸附在金属表面 的模型如图2.3.4所示。
化学吸附膜是润滑油分子 以其化学键力作用在金属表面 形成保护膜,它的剪切强度与 抗粘着能力较低,但熔点较高 (约120°C)。所以,能在中等 速度及中等载荷下起润滑作用。
机械零件的磨损过程分为:磨合阶段、稳定磨损阶段和剧烈磨损 阶段。
按照磨损失效的机理,磨损主要有四种基本类型,即磨粒磨损、 粘着磨损、接触疲劳磨损和腐蚀磨损。
(1)磨粒磨损 外界进入摩擦表面间的硬质颗粒或摩擦表面上 的硬质凸峰,在摩擦过程中引起表面材料脱落的现象。特征是摩擦表 面沿着滑动方向形成划痕,在一些脆性材料上还会有崩碎和颗粒。
中心值列于表2.3.1。
此外,常用的还有比较法测定粘度,称为条件粘度(或相对粘 度)。我国常用的条件粘度为恩氏粘度,即在规定温度下200cm3的 油样流过恩氏粘度计的小孔(直径2.8 mm)所需时间(s)与同体积的 蒸馏水在20°C下流过相同小孔时间的比值即为该油样的恩氏粘度, 以符号°Et表示,其角标t表示测定时的温度。美国常用赛氏通用 秒(SUS),英国常用雷氏秒(R)作为条件湿或吸附于金属摩擦表面 形成边界膜的性能称为油性。吸附能力强,则愈有利于边界油膜的 形成,油性愈好。
磨损及磨损理论
粘着结合强度比两基体金属的抗剪强度都高,切应力高于粘着结合强度。 剪切破坏发生在摩擦副金属较深处,表面呈现宽而深的划痕。
此时表面将沿着滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继 续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现 局部熔焊,使摩擦副之间咬死而不能相对滑动。 这种破坏性很强的磨损形式,应力求避免。
所以磨损是机器最常见、最大量的一种失效方式。据调查, 轮胎压痕(SEM 5000X) 联邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其中 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
1.6
磨损过程的一般规律:
1、磨损过程分为三个阶段:
表面被磨平, 实际接触面 积不断增大, 表面应变硬 化,形成氧 化膜,磨损 速率减小。
随磨损的增长,磨耗 增加,表面间隙增大, 表面质量恶 化,机件快速失效。
斜率就是磨损速率,唯一稳定值; 大多数机件在稳定磨损阶段(AB 段)服役; 磨损性能是根据机件在此阶段 的表现来评价。
(3)磨损比
冲蚀磨损过程中常用磨损比(也有称磨损率)来度 量磨损。
Hale Waihona Puke 材料的冲蚀磨损量(g或μ m 3) 磨损比= 造成该磨损量所用的磨料量(g)
它必须在稳态磨损过程中测量,在其它磨损阶段 中所测量的磨损比将有较大的差别。 不论是磨损量、耐磨性和磨损比,它们都是在一 定实验条件或工况下的相对指标,不同实验条件或 工况下的数据是不可比较的。
当材料产生塑性变形时,法向载荷W与较软材料的屈服极限σy之间的关系:
(1)
当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形。 其体积为(2/3)πa3,则单位滑动距离的总磨损量为:
第三章磨损及磨损理论
磨损的快慢程度)为:
第三章磨损及磨损理论
(2)
由(1)和(2)式,可得:
(3)
式(3)是假设了各个微凸体在接触时均产生一个磨粒而导出。
如果考虑到微凸体相互产生磨粒的概率数K和滑动距离L,
则接触表面的粘着磨损量表达式为:
(4)
由于对于弹性材料σs≈H/3,H为布氏硬度值,则式(4)可
变为:
式中K为粘着磨损系数
第三章 磨损及磨损理论
第三章磨损及磨损理论
一、概述
1、磨损定义: 相互接触的物体在相对运动中,表层材料不
断损失、转移或产生残余变形的现象称为磨损, 它是伴随着摩擦而产生的必然结果。 ➢ 有些磨损是有益的,如“研磨”,可使零件表 面粗糙度减小,使刀刃变得锋利。 ➢ 但是,据统计,约有80%左右的机械零件是由 于磨损而报废或失效。
第三章磨损及磨损理论
3、磨损过程 零件的正常磨损过程大致可分为三个阶段: Ⅰ:跑合(磨合)阶段;Ⅱ:稳定磨损阶段;
Ⅲ:剧烈磨损阶段
第三章磨损及磨损理论
Ⅰ:跑合(磨合)阶段
出现在摩擦副的初始运动阶段,由于表面存在 粗糙度,微凸体接触面积小,接触应力大,磨 损速度快。 在一定载荷作用下,摩擦表面逐渐 磨平,实际接触面积逐渐增大,磨损速度逐渐 减慢,如图所示。 第三章磨损及磨损理论
持常数-磨损量与压力成正比);
压力值为H/3,各个微凸体上的塑性变形区开始发生相
互影响;
压力值超过H/3,磨损量急剧增大(K值急剧增大),高
的载荷作用下,整个表面变成塑性流动区,发生大面 积的粘着焊连,出现第剧三章烈磨损的及磨粘损理着论 磨损。
式中的K代表微凸
体中产生磨粒的 概率,即粘着磨 损系数。
** 从磨损过程的变化来看,为了提高机器零件的 使用寿命,应尽量延第长三章“磨损稳及磨损定理论磨损阶段”。
橡胶摩擦及磨损分析
橡胶摩擦及磨损分析橡胶是非常重要且用量很大的工业材料之一,据不完全统计,2000年我国橡胶总消耗量将达220万吨,摩擦学性能是橡胶制品的一项非常重要的指标,例如橡胶轮胎的耐磨性能、刹车性能和行车效率、密封件的耐磨性等。
提高橡胶制品的耐磨性和使用寿命,可以在节约能源、材料、润滑剂等方面带来相当可观的经济效益和社会效益。
橡胶是一种弹性模量很低、粘弹性很高的材料,因此橡胶的摩擦具有不同于金属和一般聚合物的特征。
橡胶与刚性表面在滑动接触界面上的相互作用力包括粘着和滞后两项,而其摩擦力也正是由这两部分组成:F = F a+ F h式中F a——粘着摩擦力,F h——滞后摩擦力。
粘着摩擦起因于橡胶与对偶面之间粘着的不断形成和破坏,滞后摩擦则是由表面微凸体使滑动橡胶块产生周期性变形过程中能量的耗散引起的。
当橡胶在坚硬光滑的表面上滑动时,摩擦力主要表现为粘着摩擦,根据弹性体摩擦的粘着理论,可以得出粘着摩擦力F a为[6]:F a= K1S( E r/p r) tanδ (r<1)式中,K1——常数;S——滑动界面的有效剪切强度;p——正压力;E——储能模量;tanδ——损耗角正切(粘弹性参数)。
显然,橡胶的粘着摩擦与材料的损耗角正切tanδ成正比。
润滑剂的存在可以阻止橡胶与对偶间的直接接触,使粘着摩擦成分大大降低,滞后摩擦起主要作用。
根据弹性体滞后摩擦的松弛理论,可得出滞后摩擦力为[6]:F h= K2( p/E′) n tanδ (n≥1)式中,K2为与几何形状因子有关的常数。
滞后摩擦力也与tanδ成正比,所不同的是,滞后摩擦力与变形程度因子( p/E′) n成正比。
由此,橡胶的摩擦力可表示为F=[K1S(E′/p r)+K2(p/E′)n]tanδ金属和塑料磨损表面的特征是磨痕与摩擦方向平行,而橡胶磨损表面的磨痕却垂直于摩擦方向,并且磨痕在橡胶表面形成山脊状突起,突起之间间距相等,高度相同,形成所谓的磨损斑纹。
摩擦和磨损的联系
摩擦和磨损的联系摩擦和磨损是紧密相关的两个概念,在日常生活和工业生产中都有重要的应用。
摩擦是指两个物体表面之间的相互作用力引起的阻碍运动的现象,而磨损是指摩擦过程中表面物质的逐渐损耗和磨掉的现象。
摩擦和磨损都是物体间接触时的自然现象,也是科技发展的重要基础之一。
理论上,在物理学中,摩擦是由于表面间分子间力的互作用而产生的。
在这种分子级的尺度下,表面的反应会使两者间的摩擦力变得复杂,磨损成为了该问题中的一个明显的问题,因为物体的运动会导致表面的磨损和失去材料,其中摩擦力的产生是最主要的原因之一。
在大多数情况下,磨损是由于摩擦力使表面之间相互摩擦而损坏了物体表面,导致材料中的原子被摩擦掉。
这个过程通常发生在一个物体对另一个物体高速摩擦的过程中。
磨损是一个逐渐发展的过程,更常见的原因是材料表面之间的摩擦,尤其是在高温、高压、高速和精确度要求较高的环境中。
磨损现象不仅会影响零部件的性能和寿命,也会导致其失败。
磨损对机械设备和结构材料的损害是非常显著的,尤其是在运行时间长和工作环境较恶劣的花费昂贵的设备中。
磨损现象会降低材料原始属性,使零件失去减震和抗冲击的能力,因此必须采取有效的磨损控制措施。
在工程应用中,磨损控制的方法包括选择合适的材料、使用润滑剂、降低摩擦系数和改变表面几何形状等。
使用具有高硬度和高抗磨损性的材料,如高铬合金钢、硬质合金、陶瓷等,可以有效地增加零部件的耐磨性。
采用一定的润滑措施,如使用合适的润滑剂和添加抗磨剂等,可以有效地降低材料之间的摩擦系数,减少磨损程度。
表面几何形状的设计和加工也是降低磨损的有效措施之一。
对于需要经常接触的零部件,我们可以设计出光滑的表面,减少表面不规则性,这样可以减少摩擦力的产生,从而减少磨损。
在加工中,如采用高精度加工和使用有利的切削参数,也可以有效地降低磨损程度。
摩擦和磨损的联系非常紧密,在零件设备运行的过程中不可忽视。
对于工程应用中出现的磨损现象,我们需要尽快采取相应的控制措施,以增加设备的性能和寿命,同时在设计和加工的过程中,我们也应该特别关注磨损问题,以提高产品性能和质量。
第七章金属磨损和接触疲劳
2.磨损量的估算
Archard 提出的粘着磨损量估算方法如下: 在摩擦副接触处为三向压缩应力状态,故接触压缩屈服强度近似为
单向压缩屈服强度σSC的三倍。若接触处因压应力很高超过σSC 产生塑性变形,随后因加工硬化而使变形终止。此时,外加载荷 事实上作用在接触点真实面积上。设真实接触面积为A,接触压 缩屈服强度为3 σSC ,作用于表面上的法向力为F,则
(b) 磨粒性能
* 磨粒硬度
磨损体积与硬度比Ha /H(磨粒硬度Ha与材料硬度 H之比) 的关系。
4.改善磨粒磨损耐磨性的措施
a) 对于以切削作用力主要机理的磨粒磨损,应增 加材 料的硬度;对以塑性变形为主的磨粒磨损, 应提高 材料的韧性。
b) 根据机件服役条件(高应力冲击、无冲击下的 低应 力),合理地选择耐磨材料(高锰钢、中碳 调质钢)。
F=A (3 σSC) 假定磨屑呈半球形,直径为d。任一瞬时有n个粘着点,所有粘着点
尺寸相同,直径也为d,则
d 2
A n( ) 4
可推出:
n
4F 3 SCd
2
再假定每一粘着点滑过距离也为d,则单位滑动距离形成的粘着点
数N为
N
n d
4F 3 SC d 3
磨屑形成有个几率问题,设此几率为K,则单位滑动距离内的磨损
以得到 F= (3 σSC) πr2
设θ为凸出部分的圆锥面与软材料表面间的夹角,当摩擦副相对滑 动了l长的距离时,凸出部分或磨粒切削下来的软材料体积,即磨损 量V为 V=0.5*2r*r*tan θl=r2ltanθ
由上两式可得
(整理)摩擦和磨损与润滑学的基本原理
摩擦和磨损与润滑学的基本原理一、摩擦和摩擦的种类1.什么是摩擦?相互接触的物体沿着它们的接触面做相对运动时,会产生阻碍物体相对运动的阻力,这种现象称为摩擦。
这种阻力叫摩擦力。
2.摩擦的种类摩擦的种类很多,因为研究的依据不同,摩擦的分类也不同。
按摩擦副的运动状态分为静摩擦和动摩擦;按摩擦副运动形式分类分为滑动摩擦、滚动摩擦和自旋摩擦;按摩擦发生的部位分类分为内摩擦和外摩擦;按摩擦副表面润滑状况分类分为静摩擦、干摩擦、边界摩擦、流体摩擦和混合摩擦。
本文重点介绍静摩擦、干摩擦、边界摩擦、流体摩擦(液体摩擦)和混合摩擦。
(1)静摩擦是指摩擦表面没有任何吸附膜或化合物存在时的摩擦。
静金属的摩擦会产生表面粘着。
(2)干摩擦是指在大气条件下,摩擦表面没有任何润滑剂存在的摩擦。
严格说干摩擦是在接触表面上无任何其他介质,如自然污染膜、润滑膜以及湿气等。
干摩擦是消耗动力最多,磨损最严重的一种摩擦。
(3)边界摩擦是指摩擦表面有一层极薄得润滑膜存在时的摩擦。
这层膜称为边界油膜。
(4)流体摩擦是指摩擦表面完全被润滑油膜隔开时的摩擦。
这种摩擦发生在界面的润滑剂膜内,摩擦阻力最小,磨损最小。
(5)混合摩擦——是指属于过渡状态的摩擦,包括半干摩擦和半流体摩擦。
半干摩擦是指同时存在着干摩擦和边界摩擦的混合摩擦。
半流体摩擦是指同时存在着流体摩擦和边界摩擦(或干摩擦)的混合摩擦。
二、磨损和磨损的种类1.什么是磨损?是指两个相互接触的物体发生相对运动时,物体表面的物质不断地转移和损失。
磨损的结果使相对运动的物体表面不断有微料抖落,表面性质、几何尺寸均发生改变。
2.磨损的三个阶段磨损阶段、稳定磨损阶段和急剧磨损阶段3.磨损的种类按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。
(1)粘着磨损由于摩擦表面存在着一定的粗糙度,在压力的作用下,当摩擦表面做相对运动时,在真空接触点上产生瞬时高温,使其表面软化,熔化,甚至相互粘着,接触表面的材料从一个表面转移到另一个表面,这种现象就叫做粘着磨损。
摩擦和磨损
的种
类
(1) 种类
对磨 损表 面外 观的 描述
磨损 机理
点蚀 磨损
胶合 磨损
擦伤 磨损
……
粘着 磨损
疲劳 磨损
冲蚀 磨损
腐蚀 磨损
磨料 磨损
……
§1-4 摩擦与磨损
2. 磨损种类 (2)磨损机理下的几种磨损及影响因素
1)粘着磨损(最普通的磨损)
当摩擦表面的不平度的尖峰相互作用的各点发生粘着后,在相对滑动时, 材料从运动副的一个表面转移到另一个表面,故而形成粘着磨损。
影响因素:①表面硬度↑,产生疲劳裂纹的危险性越小;②提高表面质量, 对零件的疲劳寿命有显著改善;③与加入的润滑油的粘度和压力有关,高 压下的润滑油能在接触区起到均化应力的作用,可提高抗疲劳磨损的能力; 油的粘度过低,则易于挤入疲劳裂缝中,在被封闭的裂缝中受高压而促进 疲劳裂纹的扩展,因此,高粘度的油有利于提高抗疲劳能力 。
影响因素:①硬度↑,耐磨性↑;
②磨粒的平均尺寸↑,磨损就越严重; ③磨粒的硬度越高,磨损就越严重。
§1-4 摩擦与磨损
2. 磨损种类
(2)磨损机理下的几种磨损及影响因素
3)疲劳磨损
当做滚动或滑动的高副受到反复作用的应力(如滚动轴承运转或齿轮传 动)时,如果应力超过材料的接触疲劳强度,就会在零件表面或一定深度 处形成疲劳裂纹,随着裂纹的扩展与相互连接,造成许多微粒从零件表面 上脱落下来,致使表面上出现许多月牙形浅坑,叫做疲劳磨损,也称疲劳 点蚀或简称点蚀。
磨损会影响机器的精度,强敌工作的可靠性,甚至促使机器提前报废。
§1-4 摩擦与磨损
1. 磨损过程
磨
损 量 Q
磨 合
稳定磨损
剧烈磨损
摩擦和磨损
材料性能学
磨损试验方法
材料性能学
分类:点蚀,浅层剥落
渗层剥落
接触疲劳过程: 疲劳裂纹的形成; 疲劳裂纹的扩展
材料性能学
2 接触应力的概念
Hale Waihona Puke 相互接触的物体在局部便面产生的压应力成为 接触应力,又成为赫兹应力,分为线接触和点 接触类型。 (1)两接触物体在加载前为线接触(如圆柱与圆 柱、圆柱与平面接触)
材料性能学
材料性能学
材料性能学
三体磨损:其磨损料介于两个滑动零件表面, 或者介于两个滚动物体表面。前者如活塞与汽 缸间落人磨料,后者如齿轮间落人磨料。 这两种分类法最常用。
材料性能学
磨粒磨损机理
(1)微观切削磨损机理
(2)多次塑变导致断裂的磨损机理 (3)微观断裂磨损机理
材料性能学
影响磨粒磨损的因素
(1)磨料的硬度、大小及形状,磨粒的韧性、 压碎强度等。 (2)外界载荷大小、滑动距离及滑动速度。
材料性能学
第六章 金属的磨损与接触疲劳
任何机器运转时,相互接触的零件之间都将因
相对运动而产生摩擦,而磨损正是由于摩擦产
生的结果。由于磨损,将造成表层材料的损耗
,零件尺寸发生变化,直接影响了零件的使用
寿命。
材料性能学
近二三十年国外把摩擦、润滑和磨损,构成
了一门独立的边缘学科叫摩擦学。但从材料
学科特别是从材料的工程应用来看,人们更
材料性能学
压力超过钢的屈服强度时,K值急剧增大,磨损 也急剧增大,结果造成大面积的焊合和咬死。此 时整个表面发生塑性变形,接触面积不再与载荷 成正比。
材料性能学
4 影响粘着磨损的因素
(1)脆性材料的抗粘着磨损能力比塑性材料高。 (2)金属性质越是相近的,构成摩擦副时粘着磨 损也越严重。反之,金属间互溶程度越小,晶 体结构不同,原子尺寸差别较大,形成化合物 倾向较大的金属,构成摩擦副时粘着磨损就较 轻微。
磨损与摩擦的基本原理及其应用
磨损与摩擦的基本原理及其应用磨损和摩擦是我们生活中经常遇到的现象。
我们走路时,鞋底与地面的摩擦产生噪音,驾车时,车轮和地面的摩擦使我们车辆行驶。
同时,磨损和摩擦也是一项重要的研究领域,与工程学、材料学、机械制造等众多领域息息相关。
本文将介绍磨损和摩擦的基本原理及其应用。
一、摩擦的基本原理摩擦可以定义为两个物体接触并相对运动时的阻力。
摩擦力的大小与两个物体之间的接触面积和物体表面间的粗糙程度有关。
通常,摩擦力的大小可以通过以下公式表示:Ff = fN其中,Ff为摩擦力,f为摩擦系数,N为垂直于接触面的受力大小。
摩擦系数是一个无量纲数值,表示为μ。
它是考虑到物体表面状况的因素,如表面的成分、温度和光滑度等。
不同物体之间摩擦系数不同,例如,滑冰鞋在冰上滑行时的摩擦系数很小,而橡胶底鞋子在冰面表上行走时的摩擦系数较大。
摩擦力的大小决定了物体运动状态的变化,当物体沿着某个方向施加一定的力时,摩擦力会在反方向上阻碍运动,产生负加速度,即使物体足够大,对地面施加的力足够大,摩擦力也会阻碍物体移动。
二、磨损的基本原理磨损是材料表面因相互接触和摩擦而失去原来形状的现象。
摩擦往往导致材料表面磨损和损坏,主要分为两种类型:磨粒磨损和疲劳磨损。
磨粒磨损是指材料表面的颗粒和其他颗粒之间的摩擦损失。
磨损率取决于磨损颗粒的硬度和材料表面硬度的比较。
颗粒的尺寸越小,磨损率则越高。
磨粒磨损是一种常见的磨损方式,例如,机械零件在运转过程中容易受到此种磨损。
疲劳磨损又称为表面疲劳磨损,是由表面微小韧性变形引起的剥落或断裂而导致的,通常出现在高速运动的机械零件之间的接触面。
在机械工作时,因为机械零件之间的摩擦力和容易产生热量,从而导致零件表面的变形和裂纹。
一旦表面氧化,则容易受到疲劳磨损。
三、磨损与摩擦的应用磨损和摩擦在工程制造和材料科学中具有广泛的应用。
例如,工业生产中的磨损是一个非常重要的因素,因为它会影响设备的寿命和生产效率。
磨损的控制不仅可以降低运营成本,还可以提高设备的寿命和可靠性。
摩擦学(第一讲)
Low friction coating Surface texture control
Durability
Wear resistant coating for aluminum bores
Environment
Need better material and /or finish for reduced oil consumption
关于可生物降解的润滑剂的研究主要涉及生
物降解性、毒性、职业安全与卫生以及排放 等方面。此外,还研究了以植物油改性后生 产出的可生物降解的润滑油(脂)。
国外已有多种环境友好润滑剂的商品,其 需求量逐年上升,它将逐步取代矿物基润滑 油。
摩擦噪声的防治
主要研究了对环境产生噪声污染严重的高
频尖啸摩擦噪声(1-15KHz)产生的机理。 提出了各种可定性分析的理论模型,还研究 了摩擦副表面形貌对摩擦噪声的影响。
摩擦学
课程安排如下: 第一讲:绪论——摩擦学发展与展望 第二讲:磨损表面形态与固体摩擦 第三讲:磨损机理与分类 第四讲:流体润滑与Reynolds方程 第五讲:弹性流体润滑 第六章:磨损检测与失效分析(一) 第七章:磨损检测与失效分析(二) 第八讲:油液分析在线检测技术专题 第九讲:汽车脂润滑专题 第十讲:纳米摩擦学专题
主要结论
重视润滑技术,每年在工业上可节约 5亿英镑,并可大大提高技术的发展速 度,为实现国家经济目标做出非常重大 的贡献; 为了消除Lubrication一词的局限性以 至忽视这门边缘学科,建议采用 Tribology(摩擦学)一词来表达这门学 科的内涵。
此外国内外的一个普遍共识
1、全世界有30——50%的能源是以各种形式 消耗在摩擦上 2、摩擦导致的磨损是机器设备失效的主要原因 3、大约80%的损坏零件是由于各种形式的磨损 引起的 4、摩擦学是一个涉及多和学科的系统科学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘着结合强度比两基体金属的抗剪强度都高,切应力高于粘着结合强度。 剪切破坏发生在摩擦副金属较深处,表面呈现宽而深的划痕。
此时表面将沿着滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继 续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现 局部熔焊,使摩擦副之间咬死而不能相对滑动。 这种破坏性很强的磨损形式,应力求避免。
1.4 磨损的危害: (1) 影响机器的质量,减低设备的使用寿命。如齿轮齿面的磨损, 破坏了渐开线齿形,传动中导致冲击振动。机床主轴轴承磨损, 影响零件的加工精度。 (2) 降低机器的效率,消耗能量。如柴油机缸套的磨损,导致功 率不能充分发挥。 (3) 减少机器的可靠性,造成不安全的因素。如断齿、钢轨磨损。 (4) 消耗材料, 造成机械材料的大面积报废。 1.5 研究内容: (1) 磨损类型及发生条件、特征和变化规律。 (2) 影响磨损各种因素,包括材料、表面形态、环境、滑动 速度、载荷、温度等。 (3) 磨损的物理模型、计算及改善措施。 (4) 磨损的测试技术与实验分析方法。
如图为温度对胶合磨损的影响,可以看出,当表面温度达 到临界值(约80℃)时, 磨损量和摩擦系数都急剧增加。 影响温度特性的主要因素是表面压力p和滑动速度v,其中 速度的影响更大,因此限制pv值是减少粘着磨损和防止胶合 发生的有效方法。
⑤润滑油、润滑脂的影响
在润滑油、润滑脂中加人油性或极压添加剂能提高润滑油膜吸附能力及油 膜强度,能成倍地提高抗粘着磨损能力。 油性添加剂是由极性非常强的分子组成,在常温条件下,吸附在金属表面 上形成边界润滑膜,防止金属表面的直接接触,保持摩擦面的良好润滑状态。 极压添加剂是在高温条件下,分解出活性元素与金属表面起化学反应,生 成一种低剪切强度的金属化合物薄膜,防止金属因干摩擦或边界摩擦条件下 而引起的粘着现象。 三条粘着磨损规律: 1.磨损量与滑动距离成正比 2.磨损量与载荷成正比 3.磨损量与较软材料的硬度或屈服极限成正比
第二节 粘着磨损
1 定义:
当摩擦副相对滑动时, 由于粘着效应 所形成结点发生剪切断裂,被剪切的材 料或脱落成磨屑,或由一个表面迁移到 另一个表面,此类磨损称为粘着磨损。
粘 着 磨 损
2 粘着磨损机理:
当摩擦副接触时,接触首先发生在少数几 个独立的微凸体上。因此,在一定的法向载荷 作用下,微凸体的局部压力就可能超过材料的 屈服压力而发生塑性变形,继而使两摩擦表面 产生粘着(焊接) 。当微凸体相对运动时, 相互焊接的微凸体发生剪切、断裂。脱落的材 料或成为磨屑,或发生转移。如撕断处在焊接 的部位,不发生物质的转移。如撕断处不在焊 接的部位,则发生物质的转移。粘着-剪断-转 移-再粘着循环不断进行,构成粘着磨损过程。
图(b)是滑动速度保持一定而改变载荷所得到的钢 对钢磨损实验结果。 载荷小产生氧化磨损, 磨屑主要是Fe2O3; 当载荷达到W0后, 磨屑是FeO、Fe2O3 和Fe3O4的混合 物。 载荷超过Wc以后, 便转入危害性的粘着磨损。
④表面温度的影响 表层温度特性对于摩擦表 面的相互作用和破坏影响很大。 表面温度升高可使润滑膜失效, 使材料硬度下降,摩擦表面容 易产生粘着磨损。
(2)涂抹:
粘着结合强度大于较软金属抗剪切强度,小于较硬金属抗剪切强度。 剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金属涂抹在硬 金属表面。这种模式的摩擦系数与轻微磨损差不多,但磨损程度加剧。
(3)擦伤:
粘着结合强度比两基本金属的抗剪强度都高。剪切发生在较软金属的亚表 层内或硬金属的亚表层内,转移到硬金属上的粘着物使软表面出现细而浅划 痕,硬金属表面也偶有划伤。 (4)划伤:
1.3磨损定义:
磨损是摩擦副相对运动时,在摩擦的作用下,材料表面物
质不断损失或产生残余变形和断裂的现象。 表面物质运动主要包括机械运动、化学作用和热作用。 (1) 机械作用使摩擦表面发生物质损失及摩擦表面变形。 (2) 化学作用使摩擦表面发生性状的改变。 (3) 热作用使摩擦的表面发生形状的改变。 定义说明 ①磨损并不局限于机械作用,由于伴同化学作用而产生的腐蚀
1.2磨损研究的进展
磨损的研究工作开展得较迟,本世纪50年代初期在工业 发展国家开始研究“粘着磨损”理论,探讨磨损机理。1953 年美国的J. F. Archard 提出了简单的磨损计算公式,1957 年苏联的克拉盖尔斯基提出了固体疲劳理论和计算方法, 1973年美国的N.P.Suh提出了磨损剥层理论。
20世纪60年代后,由于电子显微镜、光谱仪、能谱仪、 俄歇谱仪以及电子衍射仪等测试仪器和放射性同位素示踪技 术、铁谱技术等大量的综合的应用,使得磨损研究在磨损力 学、机理、失效分析、监测及维修等方面有了较快的发展。 把磨损试验机直接装在电子显微镜内进行观察和录像,了解 磨损的动态过程;研究磨损的表面,次表面及磨屑形貌、成 分、组织和性能的变化,以监测磨损过程,分析磨损机理, 从而寻求提高机器寿命的可能途径。
磨损及磨损原理
——第一讲
题纲
一 .概 述 二 .粘着磨损 三 .磨粒磨损 四 .疲劳磨损 五 .其他形式磨损 冲蚀磨损、化学磨损
六 .磨损的转化与复合
第一节 概 述
任何机器运转时,相互接触的零件之间都将因相对运动而产 生摩擦,而磨损正是由于摩擦产生的结果。由于磨损,将造成 表层材料的损耗,零件尺寸发生变化,直接影响了零件的使用 寿命。从材料学科特别是从材料的工程应用来看,人们更重视 研究材料的磨损。据不完全统计,世界能源的1/3~1/2消耗 于摩擦,而机械零件80%失效原因是磨损。
1.6
磨损过程的一般规律:
1、磨损过程分为三个阶段:
表面被磨平, 实际接触面 积不断增大, 表面应变硬 化,形成氧 化膜,磨损 速率减小。
随磨损的增长,磨耗 增加,表面间隙增大, 表面质量恶 化,机件快速失效。
斜率就是磨损速率,唯一稳定值; 大多数机件在稳定磨损阶段(AB 段)服役; 磨损性能是根据机件在此阶段 的表现来评价。
(2)耐磨性
材料的耐磨性是指在一定工作条件下材料耐磨损的特性。 材料耐磨性分为相对耐磨性和绝对耐磨性两种。材料的相对 耐磨性ε是指两种材料A与B在相同的外部条件下磨损量的比 值,其中材料之一的A是标准(或参考)试样。 εA=WA/WB 磨损量 WA和WB一般用体积磨损量,特殊情况下可使用 其它磨损量。 耐磨性通常也用绝对指标W-1或W´-1表示,即用磨损量或 磨损率的倒数表示。 W-1=1/W, W´-1=1/W´ 耐磨性使用最多的是体积磨损量的倒数,也可用体积磨 损率、体积磨损强度或体积磨损速度的倒数表示。 绝对耐 磨性和相对耐磨性的关系是εA=WA×W-1
(3)磨损比
冲蚀磨损过程中常用磨损比(也有称磨损率)来度 量磨损。
材料的冲蚀磨损量( g或μ m3) 磨损比= 造成该磨损量所用的磨 料量(g)
它必须在稳态磨损过程中测量,在其它磨损阶段 中所测量的磨损比将有较大的差别。 不论是磨损量、耐磨性和磨损比,它们都是在一 定实验条件或工况下的相对指标,不同实验条件或 工况下的数据是不可比较的。
非典型磨损曲线
2. 磨损特性曲线
典型浴盆曲线典 型浴盆曲线
磨损率:单位时间内单位载荷下材 料的磨损量的表示
1.7 磨损类型
1、磨损
类型
其 他 磨 损 类 型
2、 表面破坏方式及特征
破坏方式
微动磨损 剥 层
基
本
特
征
磨损表面有粘着痕迹,铁金属磨屑被氧化成红棕色氧化物,通常 磨损表面有粘着痕迹,铁金属磨屑被氧化成红棕色氧化物,通 作为磨料加剧磨损。 常作为磨料加剧磨损。 破坏首先发生在次表层,位错塞积,裂纹成核,并向表面扩展, 破坏首先发生在次表层,并向表面扩展,最后材料以薄片状剥落, 最后材料以薄片状剥落,形成片状磨屑。 形成片状磨屑。
表面存在明显粘着痕迹和材料转移,有较大粘着坑块,在高速重 表面存在明显粘着痕迹和材料转移,有较大粘着坑块,在高速 载下,大量摩擦热使表面焊合,撕脱后留下片片粘着坑。 重载下,大量摩擦热使表面焊合,撕脱后留下片片粘着坑。
胶
咬 点 研 划 凿
合
死 蚀 磨 伤 削
黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加, 黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加, 摩擦副相对运动受到阻碍或停止。 摩擦副相对运动受到阻碍或停止。 材料以极细粒状脱落,出现许多“豆斑”状凹坑。
粘着磨损又称擦伤或咬合磨损。 出现条件:相对滑动速度小,接触面氧化膜脆弱, 润滑条件差,接触应力大。 根据粘着点的强度和破坏位臵不同,粘着磨损 有五种不同的形式(五类典型粘着磨损) :
(1)轻微磨损:
粘着结合强度比摩擦副基体金属抗剪切强度都低,剪切破坏发生在 粘着结合面上,表面转移的材料较轻微。 此时虽然摩擦系数增大,但是磨损却很小,材料迁移也不显著。通常 在金属表面具有氧化膜、硫化膜或其他涂层时发生轻微粘着摩损。
宏观上光滑,高倍才能观察到细小的磨粒滑痕。 低倍可观察到条条划痕,由磨粒切削或犁沟造成。 存在压坑,间或有粗短划痕,由磨粒冲击表面造成 存在压坑,间或有粗短划痕,由磨粒冲击表面造成
1.8磨损的评定
磨损时零件表面的损坏是材料表面单个微观体积损坏的总和。目前 对磨损评定方法还没有统一的标准。这里主要介绍三种方法:磨损量、 耐磨性和磨损比。 (1)磨损量 评定材料磨损的三个基本磨损量是长度磨损量Wl、体积磨损量Wv和 重量磨损量Ww。 长度磨损量是指磨损过程中零件表面尺寸的改变量,这在实际设备的 磨损监测中经常使用。 体积磨损量和重量磨损量是指磨损过程中零件或试样的体积或重量的 改变量。 在所有的情况下,磨损都是时间的函数,因此,用磨损率Wt'来表示 时间的特性。其它指标还有磨损强度 W'(单位摩擦距离的磨损量,有人 也把它称为磨损率),和磨损速度WT'(是指机器完成一单位工作量的磨损 量 )。
轮胎压痕(SEM 5000X)
摩擦痕迹(350X)