北师大版七年级数学下册《频率的稳定性(第1课时)》教案2

合集下载

新北师大版七年级数学下册第二章《 探索直线平行的条件(第1课时)》公开课课件

新北师大版七年级数学下册第二章《 探索直线平行的条件(第1课时)》公开课课件

5.如图所示,已知直线EF和AB,CD分别 相交于K,H,且EG⊥AB,∠CHF=60°, ∠E=30°,试说明AB∥CD. 【解析】因为EG⊥AB ,∠E=30°, 所以∠EKG=180°-90°-∠E=60°, 所以∠AKF=∠EKG=60°=∠CHF, 所以AB∥CD.

特别提醒:∠3与∠DBE
(1)与AB相交所成的同位角为 不是(2)中的同位角.
∠1与∠DBC,………………3分
(2)与BE相交所成的角中没有同位角,……………………5分
(3)与AC相交所成的同位角为∠3与∠C……………………7分
【规律总结】 判断两个角是否为同位角的三个诀窍
1.若两个角的两边都不在同一条直线上,则这样的角不是同位角. 2.若两个角各有一边在同一条直线上,这条直线叫截线,这两个 角的另一边为被截直线,若两个角都在截线的同旁,被截直线 的同一侧,则这两个角为同位角,否则不是. 3.为同位角关系的两角的两边组成的图形,如字母“F”.
(C)12对
(D)16对
【解析】选C.每两条直线被第三条直线所截都有4对同位角,所
以共有12对.
3.如图,∠B与∠________是直线________ 和直线________被直线________所截得到的 同位角. 【解析】∠B应与∠FAC是同位角,是直线BC和AC被直线BF所 截得的同位角. 答案:FAC BC AC BF
3.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系 是________. 【解析】因为直线a,b相交于P,a∥c即直线a是过点P平行于c 的直线,由过直线外一点,有且只有一条直线与已知直线平行 可知,过点P的直线b与直线c相交. 答案:相交
4.如图所示,BE是AB的延长线,量 得∠CBE=∠A,由∠CBE=∠A可以 判断________∥________, 根据 是__________________. 【解析】因为∠CBE=∠A,且∠CBE与∠A是直线AD,BC被直 线AE所截形成的同位角,所以AD∥BC. 答案:AD BC 同位角相等,两直线平行

北师大版初中数学七年级下册《6.2 频率的稳定性》同步练习卷(1)

北师大版初中数学七年级下册《6.2 频率的稳定性》同步练习卷(1)

北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只?3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.13.某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?14.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?15.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.16.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.17.如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x<y,试求出x与y的值.北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?【分析】(1)根据摸出的黑球的频率在0.4附近摆动可估计摸出一球是黑球的概率为0.4,据此可得;(2)根据概率公式可得.【解答】解:(1)∵摸出的黑球的频率在0.4附近摆动,∴估计袋中黑球的个数约为20×0.4=8个;(2)由(1)知袋子中红球6个、黑球8个、白球6个,第一次摸出白球后袋子中还有白球5个,总的球数为19个,故摸出白球的概率是.【点评】本题主要考查频率估计概率和概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?【分析】(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是1﹣0.3=0.7;故答案为:0.3,0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是0.6(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【分析】(1)利用频率=频数÷样本容量=频率直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.【解答】解:(1)填表如下:摸到白球的频率(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.故答案为:(1)0.59,0.58;(2)0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出“和为8”的概率,即可得出答案.【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是.故答案为;(2)当x=7时,画树状图如下:则两个小球上数字之和为8的概率是:=≠,所以x的值不可以取7.【点评】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?【分析】(1)根据概率公式分别计算小明获胜和小颖获胜的概率,比较即可得;(2)设向袋子中放入了x个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【解答】解:(1)不公平,∵袋子中共有30个小球,从中摸出一个小球,是黑球的概率为=,从中摸出一个小球,是黄球的概率为=,∴这个游戏不公平;(2)设裁判向袋子中放入了x个红球,根据题意可得:=0.25,解得:x=10,经检验:x=10是分式方程的解,∴裁判放入了10个红球.【点评】本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?【分析】(1)根据统计数据,当n很大时,摸到白球的频率接近0.6;(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【解答】解:(1)答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1﹣0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【解答】解:(1)298÷500≈0.6;0.59×800=472;(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.故答案为0.6,0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.【分析】(1)根据频数与频率的关系,频数等于频率与样本容量的积,代入数据可得答案,(2)根据(1)的数据,进而可以制折线统计图,(3)由(2)的折线图,观察可得结论,(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,进而可得答案.【解答】解:(1)根据频数与频率的关系,频数等于频率与样本容量的积,第二行第7列应填的数据为240×0.36=86.4≈86,第三行第3列应填的数据为24÷80=0.3,故答案为:86,0.3.(2)根据(1)的数据,绘制折线统计图如图所示(3)从折线统计图可以看出,随着实验次数的增加,出现黄色小球的频率逐渐平稳;(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,故摸出黄球的机会约为34%.【点评】用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.大量实验得到的频率接近于概率.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)小颖的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【解答】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的(2)小明得到的“一正一反”的频率是50÷100=0.50小颖得到的“一正一反”的频率是47÷100=0.47据此,我得到“一正一反”的概率是(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.(8分)【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.【分析】(1)先求出D型号轿车所占的百分比,再利用总数1000辆即可求出答案;(2)利用C型号轿车销售的成交率为50%,求出C型号轿车的售出量,补充统计图即可;(3)分别求出各种型号轿车的成交率即可作出判断;(4)先求出已售出轿车的总数,利用售出的A型号车的数量即可求出答案.【解答】解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.【点评】利用统计图解决问题时,要善于从图中寻找各种信息.当一个事件的频率具有稳定性时,可以用该事件发生的频率来估计这一事件发生的概率.用到的知识点为:概率=所求情况数与总情况数之比.部分数目=总体数目乘以相应概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为0.60;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?【分析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.【解答】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.。

北师大版七年级数学下册第1章1.7整式的除法第2课时多项式除以单项式(教案)

北师大版七年级数学下册第1章1.7整式的除法第2课时多项式除以单项式(教案)
北师大版七年级数学下册第1章1.7整式的除法第2课时多项式除以单项式(教案)
一、教学内容
本节课我们将深入探讨北师大版七年级数学下册第1章“整式的除法”中的1.7节,第2课时“多项式除以单项式”的内容。具体包括以下要点:
1.理解并掌握多项式除以单项式的运算法则;
2.能够正确运用多项式除以单项式的运算解决实际问题;
五、教学反思
在今天的课程中,我们探讨了多项式除以单项式的知识点。回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,从学生的反馈来看,他们对这个Байду номын сангаас识点的掌握程度参差不齐。在讲解过程中,我尽量用简单的语言和生动的案例进行解释,但仍有部分学生在实际操作时遇到困难。针对这一点,我考虑在接下来的课程中增加一些针对性的练习,以巩固学生对多项式除以单项式的理解和运用。
-指导学生如何处理除法运算中出现的余数,以及如何将余数转化为分数或小数;
-强调检查计算结果的重要性,包括验证商与余数是否正确。
举例:学生在解决类似“计算(3x^3 - 5x^2 + 2x) ÷ (2x - 1)”这样的问题时,可能会在合并同类项或处理余数时遇到困难。
四、教学流程
(一)导入新课(用时5分钟)
2.培养学生运用数学语言进行表达和交流,增强数学建模和抽象思维能力;
3.在解决多项式除以单项式问题时,学会分析问题、归纳总结,提高数学推理和数据分析能力;
4.培养学生合作探究、自主学习的意识,提高数学学习的兴趣和自信心;
5.引导学生关注数学在现实生活中的应用,增强数学应用的意识和实践能力。
三、教学难点与重点
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

北师大版七年级数学下册《三章 变量之间的关系 1 用表格表示的变量间关系》公开课教案_0

北师大版七年级数学下册《三章 变量之间的关系  1 用表格表示的变量间关系》公开课教案_0

第三章变量之间的关系一、课标与教材分析课标要求:探索现实生活中简单实例的数量关系和变化规律,了解常量、变量的意义。

结合实例,了解变量的概念和三种表示法——表格法、解析式法和图象法(本节为第一种即:表格法),能举出变量之间关系的实例。

在孩子们目前的知识基础上,本节的教学及学习任务是鼓励孩子用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。

孩子通过对表格中数据的分析,进一步体会变量之间的关系,明确自变量与因变量的概念,并能通过资料分析进行预测。

本节课是本章的起始课,与后面三个课时合起来分别呈现的是表示变量之间关系的三种方式——表格法、解析式法和图象法。

本章作为研究变量和函数的起始章节,重在让孩子感受和体会生活中的“变量”。

同时,在第一课时还要教给孩子用表格呈现实验中变量的数据的方法。

依据变量之间关系的数学表示(表格、解析式和图象)进行预测或推测已知中没有给出的量,也是研究变量之间关系的重要目标之一。

二、孩子们的学情分析孩子们已经知道的: 本节课是孩子们在北师大版七年级上册教材中学习了探索规律,从统计图中获取信息的基础上,通过表格形式来理解变量、自变量、因变量这些概念。

我们生活在变化的世界中,变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量,这对今后学习函数知识是非常重要的。

孩子们想知道的:通过表格形式来理解变量、自变量、因变量这些概念。

变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量。

孩子们能自己解决的:在以前的学习中,孩子们已经经历了分组学习、合作交流等形式,可以解决一些实际问题,具备了合作学习的能力。

三、教学任务分析在孩子们现有的知识基础上,本节的教学及学习任务是鼓励他们用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。

七年级数学北师大版下册初一数学--第六单元 6.2《频率的稳定性》第一课时-课件

七年级数学北师大版下册初一数学--第六单元 6.2《频率的稳定性》第一课时-课件
(1)由这张次数和频率表可知,机器人抛掷完5次时, 得到1次正面,正面出现的频率是20%,那么,也 就是说机器人抛掷完5次时,得到___4___次反面, 反面出现的频率是___8_0_%___.
知1-讲
(2)由这张次数和频率表可知,机器人抛掷完9 999次时, 得到__5_0_0_6___次正面,正面出现的频率约是__5_0_.1_%__. 那么,也就是说机器人抛掷完9 999次时,得到_4__9_9_3 次反面,反面出现的频率约是__4_9_.9_%___.
试验总次数 钉尖朝上的次数 钉尖朝下的次数
钉尖朝上的频率
钉尖朝上的次数 试验总次数
钉尖朝下的频率
钉尖朝下的次数 试验总次数
(来自《教材》)
知1-讲
定义:在n次重复试验中,不确定事件A发生了m次,
则比值
m n
称为事件 A发生的频率.
知1-讲
例1 〈长沙〉在一个不透明的盒子中装有n个小球,它们 只有颜色上的区别,其中有2个红球,每次摸球前先 将盒子中的球摇匀,随机摸出一个球记下颜色后再 放回盒中,通过大量重复摸球试验后发现,摸到红 球 的 频 率 稳 定 于 0.2 , 那 么 可 以 推 算 出 n 大 约 是 ___1_0____.
知2-练
3 某人在做掷硬币试验时,投掷m次,正面朝上有n次
(即正面朝上的频率是P=
n m
).
则下列说法中正确的
是( D )
1
A.P一定等于 2 B.P一定不等于
1 2
C.多投一次,P更接近
1 2
D.随投掷次数逐渐增加,P在
1
附近摆动
2
知2-练
4 在一个不透明的盒子里装着若干个白球,小明想估计其中

新北师大版七年级数学下册《用图象表示的变量间关系(2)》教案

新北师大版七年级数学下册《用图象表示的变量间关系(2)》教案

第三章变量之间的关系3 用图象表示的变量间关系(第2课时)一、学生起点分析学生的知识技能基础:在本章前面几节课中,学生学习了自变量和因变量的概念,并学习了变量之间关系的三种表示方法,初步理解了自变量和因变量的概念,具备了变量之间关系的三种表示方法的基本技能。

学生的活动经验基础:在相关知识的学习过程中,学生已经学习了变量之间关系,解决了一些简单的现实问题,感受到了变量之间关系研究的必要性和作用,获得了研究变量内容所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对三种变量表示方法的认识,提出了本课的具体学习任务:通过速度随时间变化的实际情境,进一步经历从图中分析变量之间关系的过程,加深对图象表示的理解,进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力。

因此本课时的教学目标如下:1.能从图象分析变量之间的关系,加深对图象表示的理解;2.能对实际情境中所蕴涵的变量之间的关系借助图象表示;3.进一步体会数学与现实生活的密切联系,并在学习新知识的过程中培养学生团结协作的精神。

三、教学设计分析本节课设计了七个教学环节:回顾思考、讲授新课、合作学习、练习提高、课堂小结、教学反馈、布置作业。

第一环节回顾思考活动内容:学生自己总结已经学习过的几种表示变量之间关系的方法。

1.列表法下表所列为一商店薄利多销的情况,某种商品的原价为450元,随着降价的幅度变化,日销量(单位:件)随之发生变化:在这个表中反映了个变量之间的关系,是自变量,是因变量。

2.关系式法某出租车每小时耗油5千克,若t小时耗油q千克,则自变量是,因变量是,q与t的关系式是。

3.图象法下图表示了某港口某日从0时到6时水深变化的情况。

(1)大约什么时刻港口的水最深?约是多少?(2)A点表示什么?(3)说说这个港口从0时到6时的水位是怎样变化的?时间/活动目的:通过这一活动,希望学生能总结学习过的三种表示变量之间关系的方法,体会学习过的三种表示变量之间关系的方法之间的联系,培养学生善于总结规律,善于观察生活,乐于探索研究的学习品质及与他人合作交流的意识。

北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案一. 教材分析北师大版数学七年级下册6.2《频率的稳定性》是统计学的一个基本概念。

本节内容通过具体实例让学生了解频率的稳定性,掌握频率稳定性概念,并能够运用频率稳定性分析实际问题。

教材通过生活中的实例,引导学生探究频率的稳定性,培养学生的统计观念和数据分析能力。

二. 学情分析学生在学习本节内容前,已经学习了数据的收集、整理和表示方法,对统计学有了一定的了解。

但学生对频率稳定性的理解可能存在一定的困难,需要通过具体实例和活动让学生感受和理解频率的稳定性。

三. 教学目标1.让学生了解频率的稳定性概念,理解频率稳定性在实际问题中的应用。

2.培养学生收集、整理、分析数据的能力,发展学生的统计观念。

3.培养学生通过实例分析问题、解决问题的能力。

四. 教学重难点1.重点:频率稳定性的概念及其在实际问题中的应用。

2.难点:频率稳定性的理解和运用。

五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中理解频率稳定性。

2.采用实例分析法,通过具体实例让学生感受频率稳定性。

3.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关的生活实例和数据,用于引导学生探究频率稳定性。

2.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)教师通过引入生活中的一些实例,如抛硬币、掷骰子等,引导学生思考:在这些实验中,结果出现的频率是否会发生变化?从而引出频率稳定性的概念。

2.呈现(10分钟)教师呈现一些具体实例,如大量抛硬币实验的数据,让学生观察和分析频率的稳定性。

学生通过观察数据,发现频率在大量实验中趋近于一个稳定的值。

3.操练(10分钟)教师学生进行小组合作学习,让学生自己设计实验,收集数据,分析频率的稳定性。

学生通过自主探究,加深对频率稳定性的理解。

4.巩固(10分钟)教师提出一些问题,让学生回答,以巩固对频率稳定性的理解。

如:频率稳定性是什么意思?为什么频率会趋近于一个稳定的值?频率稳定性在实际问题中的应用等。

北师大版七年级数学下册2.1《两条直线的位置关系(第2课时)》习题含答案

北师大版七年级数学下册2.1《两条直线的位置关系(第2课时)》习题含答案

2.1《两条直线的位置关系(第二课时)》习题含答案一、选择题1.如图,直线AB 和直线CD 相较于点O ,E 是∠AOD 内一点,已知OE ⊥AB,∠BOD =40°,则∠COE 的度数是( ) A.120 ° B.140 ° C.150° D.130°2.OA ⊥OB ,OC ⊥OD,则下列叙述正确的是( ) A.∠AOC =∠AOD B.∠AOD =∠BODC.∠AOC =∠BODD.以上都不对3.如图,∠BAC =90°,AD ⊥BC ,则下列的结论中正确的个数是( ) ①点B 到AC 的垂线段是线段AB ;②线段AC 是点C 到AB 的垂线段; ③线段AD 是点D 到BC 的垂线段;④线段BD 是点B 到AD 的垂线段.A . 1个B . 2个C . 3个D . 4个4.如图,把水渠中的水引到水池C ,先过C 点向渠岸AB 画垂线,垂足为D ,再沿垂线CD 开沟才能使沟最短,其依据是( ) A. 垂线最短 B.过一点确定一条直线与已知直线垂盲 C.垂线段最短 D.以上说法都不对5.P 为直线l 外一点,点A,B,C 为直线l 上三点,PA=5cm,PB=4cm,PC=2cm ,则P 到直线l 的距离( )A.2cmB.小于2cmC.不大于2cmD.4cm6.如图,已知0A ⊥m ,OB ⊥m ,所以OA 与OB 重合,其理由是( ) A.过两点只有一条直线 B.过一点只能作一条垂线C.平面内,过一点只有一条直线与已知直线垂直D.垂线段最短7.画一条线段的垂线,垂足在( ) A. 线段上 B. 线段的端点 C. 线段的延长线上 D. 以上都有可能1题图2题图3题图4题图6题图8.下列说法正确的是( )A.平面内过直线l 上一点做l 的垂线不止一条B.直线l 的垂线有无数条C.如果两条线段不相交,那么这两条线段就不能互相垂直D.以上说法都不对 二、填空题9.如图,直线a ⊥b ,∠1=50°,则∠2= 度.10.如图,点A ,B ,C 在一条直线上,已知∠1=53°,∠2=37°,则CD 与CE 的位置关系是 _________ .11.如图,已知BA ⊥BD ,CB ⊥CD ,AB=8,BC=6,则点A 到BD 的距离为_________ ,点B 到CD 的距离为_________ .12.如图,两条直线AB ,CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,∠COE =65°,∠AOF 等于_________ .9题图10题图11题图 12题图13.如图,∠ADB =90°,用“<”连接AB ,AC ,AD ,结果是 _________ .三、解答题14.如图,OA ⊥OB ,OB 平分∠MON ,若∠AON =120°,求∠AOM 的度数.15.如图,直线AB ,CD 相交于O 点,OM ⊥AB 于O . (1)若∠1=∠2,求∠NOD ;(2)若∠BOC =4∠1,求∠AOC 与∠MOD .16.如图,直线AB ,CD 相交于O 点,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数?17.如图,点O 为直线AB 上一点,OC 为一射线,OE 平分∠AOC ,OF 平分∠BOC . (1)若∠BOC =50°,试探究OE ,0F 的位置关系; (2)若∠BOC 为任意角α(0°<α<180°),(1)中OE ,OF 的位置关系是否仍成立?请说明理由.由此你发现什么规律?18.如图,直线AB ,CD 相交于O 点,Q 是CD 上的一点. (1) .过点Q 画直线AB 的垂线,垂足为E; (2) .过点O 画直线CD 的垂线.19.如图,一辆汽车在直线形公路AB 上由A 向B 行驶,M ,N 是分别位于公路AB 两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A 向B 行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M 学校影响逐渐减小而对N 学校影响逐渐增大?2.1《两条直线的位置关系(第二课时)》习题答案二、填空题9.40°10.垂直11.8;6.12.40°13.AD<AC<AB三、解答题14.解:∵OA⊥OB∴∠AOB=90°∵∠AON=120∴∠BON=120°-90°=30°∵OB平分∠MON∴∠MOB=∠NOB=30°,∴∠AOM=90°-30°=60°15.解:(1)∵OM⊥AB,∴∠1+∠AOC=90°又∠1=∠2∴∠2+∠AOC=90°,∴∠NOD=180°-(∠2+∠AOC)=180°-90=90°(2)由已知∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°所以∠AOC=90°-30°=60°,由对顶角相等得∠BOD=60°故∠MOD=90°+60°=150°16.解:(1)∵OF ⊥AB,∴∠BOF =90° ∵∠DOF =65°,∴∠BOD =∠BOF -∠DOF =90°-65=25° ∵OE ⊥CD, ∴∠DOE =90°,那么∠BOE =∠DOE -∠BOD =90°-25°=65°(2)直线AB 与CD 相交于点O,∠AOC 与∠BOD 是对顶角 即∠AOC =∠BOD =25° 17.解:(1)OE ⊥OF ∵∠BOC =50°,∴∠AOC =180°-50°=130 ∵OE 平分∠AOC ,OF 平分∠BOC ∴∠EOC =21∠AOC =65°,∠COF =21∠COB =25° ∴∠EOF =65°+25°=90° ∴OE ⊥OF(2)∵∠BOC =a ∴∠AOC =180-a∵OE 平分∠AOC ,OF 平分∠BOC ∴∠EOC =21∠AOC =90°-21a, ∠COF =21∠COB =21a ∴∠EOF =90°-21a+21a=90° ∴OE ⊥OF规律:邻补角的角平分线互相垂直 18.解:(1)直线QE是所求的直线(2)直线OF是所求的直线19.解:(1)作MC⊥AB于C,ND⊥AB于D,所以在C处对M学校的影响最大,在D处对N学校影响最大;(2)由A向C行驶时,对两学校影响逐渐增大;由D向B行驶时,对两学校的影响逐渐减少;由C向D行驶时,对M学校的影响减小,对N学校的影响增大。

北师大版数学七年级下册6.2《频率的稳定性》(第1课时)教案(3)

北师大版数学七年级下册6.2《频率的稳定性》(第1课时)教案(3)

数学史实介绍
人们在长期的实践中发现,在随机试验中,由于
众多微小的偶然因素的影响,每次测得的结果虽不
尽相同,但大量重复试验所得结果却能反应客观规
律.
频率稳定性定理是由瑞士数学家雅可比·伯努
利最早阐明的,他还提出了由频率可以估计事件发
生的可能性大小. 雅可比·贝努利( Jokob
1Bernoulli , 1654 -1705) ,十七世纪瑞士著名数
学家。

年青时根据父亲的意愿学习神学,曾获巴塞尔
大学文学硕士和神学硕士学位,同时怀着浓厚的兴趣研习数学和天文学。

1687 年起任巴塞尔大学教授,在多方面作出重要贡献。

对概率论也有深入研究,建立了描述独立试验序列的“贝努利概型”,提出并证明了“贝努利大数定律”。

历史上有许多著名学者做过频率稳定性的试验。

例如,德·摩根(De Morgan) ,蒲丰(Buffon) ,皮尔逊(Pearson) 等人都做过大量的投掷硬币的试验,发现正面出现的频率稳定在0.5 左右。

大量地观察并统计婴儿的出生,发现男孩出生的频率稳定在0.513 左右。

十八世纪,法国数学家拉普拉斯(Laplace) 对伦敦、彼得堡、柏林和整个法国的广大人口资料进行了研究,得出那些地区的男孩出生频率约等于22/43 。

又有人统计过某个国家无法投递的信件数,多年统计的结果发现,这类信件数在全部信件中的比例几乎保持不变,在百万分之五十左右。

在讲数学课的同时,介绍一些数学史是非常必要的,这既可以增加学生的知
识面,扩大学生的视野,还可以从这些史实中,了解相关的数学知识与方法产生的历史背景,体会其中的思想、方法和创立一门新学科的艰辛.。

北师大版数学七年级下册《垂直》教案2

北师大版数学七年级下册《垂直》教案2

北师大版数学七年级下册《垂直》教案2一. 教材分析《北师大版数学七年级下册》中“垂直”这一节主要介绍垂直的定义、性质和应用。

通过这一节的学习,学生能够理解垂直的概念,掌握垂直的性质,并能够运用垂直的知识解决实际问题。

教材通过丰富的图片和实例,引导学生探究垂直的性质,培养学生的观察能力、操作能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了平面几何的基本知识,对于图形的认识和操作有一定的基础。

但是,对于垂直的概念和性质,学生可能还比较陌生,需要通过实例和操作来加深理解。

学生的学习动机较强,对于新的知识充满好奇,但同时也可能存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,引导他们正确理解和掌握垂直的概念和性质。

三. 教学目标1.知识与技能:学生能够理解垂直的概念,掌握垂直的性质,并能够运用垂直的知识解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,学生能够培养观察能力、操作能力和解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,体验成功的喜悦,培养对数学的兴趣和自信心。

四. 教学重难点1.重点:学生能够理解垂直的概念,掌握垂直的性质。

2.难点:学生能够运用垂直的知识解决实际问题。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察和探究垂直的性质。

2.操作教学法:通过实际操作,让学生体验和理解垂直的概念。

3.问题解决法:通过解决实际问题,培养学生运用垂直知识解决问题的能力。

六. 教学准备1.教学素材:准备相关的图片和实例,用于引导学生观察和探究垂直的性质。

2.教学工具:准备直尺、三角板等工具,用于实际操作。

3.教学课件:制作课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用图片和生活实例,引导学生观察和思考垂直的现象,激发学生的学习兴趣。

2.呈现(10分钟)通过课件展示垂直的定义和性质,引导学生理解和掌握垂直的概念。

北师大版数学七年级上册6.3《数据的表示》(第2课时)说课稿

北师大版数学七年级上册6.3《数据的表示》(第2课时)说课稿

北师大版数学七年级上册6.3《数据的表示》(第2课时)说课稿一. 教材分析北师大版数学七年级上册6.3《数据的表示》这一节内容,是在学生已经掌握了数据的收集、整理和描述的基础上进行讲授的。

本节内容主要让学生了解和掌握数据的表示方法,包括图表和数学描述两种方式,重点是让学生学会如何利用图表和数学描述来表示和展示数据,从而更好地理解和分析数据。

二. 学情分析面对的是一群刚刚从小学升入初中的学生,他们对数据有一定的认识,但是还不是很深入。

他们在小学阶段已经接触过一些图表的绘制,例如条形图、折线图等,但是对于如何利用图表来表示和展示数据,以及如何选择合适的图表来表示不同的数据,可能还不是很清楚。

因此,在教学过程中,我需要注重引导学生理解和掌握数据的表示方法,以及如何选择合适的表示方法来展示数据。

三. 说教学目标1.知识与技能目标:让学生了解和掌握数据的表示方法,包括图表和数学描述两种方式,让学生学会如何利用图表和数学描述来表示和展示数据。

2.过程与方法目标:通过实例分析和练习,让学生学会如何选择合适的图表和数学描述来展示数据,培养学生的数据分析能力。

3.情感态度与价值观目标:培养学生对数据的兴趣,让学生明白数据的重要性,以及如何利用数据来解释和理解世界。

四. 说教学重难点1.教学重点:数据的表示方法,包括图表和数学描述两种方式。

2.教学难点:如何选择合适的图表和数学描述来展示数据,以及如何利用图表和数学描述来分析数据。

五. 说教学方法与手段在教学过程中,我会采用讲授法、引导法、讨论法、实例分析法和练习法等多种教学方法。

同时,我会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个生活中的实例,引出数据的表示方法这个主题,激发学生的兴趣。

2.讲解:讲解数据的表示方法,包括图表和数学描述两种方式,通过实例来展示如何利用图表和数学描述来表示和展示数据。

3.练习:让学生通过实例分析和练习,学会如何选择合适的图表和数学描述来展示数据。

北师大版七年级数学下册《1.3 第1课时 同底数幂的除法》教案

北师大版七年级数学下册《1.3 第1课时 同底数幂的除法》教案

北师大版七年级数学下册《1.3 第1课时同底数幂的除法》教案一. 教材分析北师大版七年级数学下册《1.3 第1课时同底数幂的除法》这一课时,是在学生已经掌握了同底数幂的乘法运算的基础上进行学习的。

本课时主要让学生了解同底数幂的除法运算,掌握其运算规则,并能灵活运用解决实际问题。

教材通过例题和练习,帮助学生理解和掌握同底数幂的除法运算,为后续学习幂的乘方和积的乘方打下基础。

二. 学情分析学生在学习这一课时之前,已经掌握了同底数幂的乘法运算,对幂的概念有一定的理解。

但学生在运算过程中,可能对底数和指数的处理还不够熟练,需要通过练习来提高。

此外,学生可能对除法运算的理解停留在传统的除法概念,对同底数幂的除法运算需要通过实例和练习来理解和掌握。

三. 教学目标1.理解同底数幂的除法运算概念,掌握其运算规则。

2.能够运用同底数幂的除法运算解决实际问题。

3.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.同底数幂的除法运算规则的理解和运用。

2.底数和指数的处理技巧。

五. 教学方法采用讲授法、例题解析法、练习法、小组合作学习法等,结合多媒体教学手段,引导学生通过自主学习、合作交流,掌握同底数幂的除法运算。

六. 教学准备1.教学PPT课件。

2.例题和练习题。

3.学生分组合作的准备。

七. 教学过程1.导入(5分钟)利用PPT课件,回顾同底数幂的乘法运算,引导学生思考同底数幂的除法运算。

通过提问方式,激发学生的学习兴趣,引出本课时的内容。

2.呈现(10分钟)讲解同底数幂的除法运算规则,用PPT课件展示例题,引导学生跟学,解析例题,让学生理解并掌握同底数幂的除法运算。

3.操练(10分钟)让学生进行同底数幂的除法运算练习,教师巡回指导,解答学生疑问,帮助学生提高运算技巧。

4.巩固(10分钟)通过PPT课件呈现一些实际问题,让学生运用同底数幂的除法运算解决。

教师引导学生思考,提示解题方法,巩固所学知识。

5.拓展(10分钟)引导学生思考同底数幂的除法运算与乘法运算的关系,探索幂的乘方和积的乘方规律。

频率的稳定性(第2课时)北师大数学七年级下册PPT课件

频率的稳定性(第2课时)北师大数学七年级下册PPT课件

800 1000 203 251 0.25 ____
探究新知
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出 一个球是黑球的概率是多少?
(2)估算袋中白球的个数.
解:(1)251÷1000≈0.25.因为大量重复试验事件发生的频率 逐渐稳定到0.25附近,所以估计从袋中摸出一个球是黑球的 概率是0.25; (2)设袋中白球为x个,1=0.25(1+x),x=3. 答:估计袋中有3个白球.
随机抽取的乒 乓球数n 优等品数m
优等品率m/n
10 20 7 16
0.7 0.8
50 100 200 500 1000 43 81 164 414 825
0.86 0.81 0.82 0.828 0.825
(1)完成上表;
课堂检测
(2)根据上表,在这批乒乓球中任取一个,它为 优等品的概率大约是多少? 0.82
探究新知
下表列出了一些历史上的数学家所做的掷硬币实验 的数据:
试验者
布丰 德∙摩根 费勒
投掷 次数n
4040 4092 10000
正面出现 次数m
2048 2048 4979
正面出现 的频率 m/n
0.5069 0.5005 0.4979
探究新知
试验者
皮尔逊 皮尔逊 维画事件A发生的可能性大小的数值,称为事件A发生的 概率,记为P(A).
一般地,大量重复的试验中,我们常用随机事件A发生的频率 来估计事件A发生的概率.
探究新知 事件A发生的概率P(A)的取值范围是什么?必然事件发
生的概率是多少?不可能事件发生的概率又是多少?
必然事件发生的概率为1;不可能事件发生的概率为 0;随机事件A发生的概率P(A)是0与1之间的一个常数.

北师大版数学九年级上册《2 用频率估计概率》教案2

北师大版数学九年级上册《2 用频率估计概率》教案2

北师大版数学九年级上册《2 用频率估计概率》教案2一. 教材分析《北师大版数学九年级上册》中的《2 用频率估计概率》是学生在学习了概率的基本概念之后,进一步利用频率来估计事件的概率。

通过本节课的学习,学生能够理解频率与概率之间的关系,学会如何利用频率来估计事件的概率,并能够运用这一方法解决实际问题。

二. 学情分析九年级的学生已经具备了一定的概率基础知识,对于频率和概率的概念有一定的了解。

但是,学生对于如何利用频率来估计概率,以及如何运用这一方法解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过实际操作,理解频率与概率之间的关系,掌握利用频率来估计概率的方法。

三. 教学目标1.理解频率与概率之间的关系,掌握利用频率来估计概率的方法。

2.能够运用频率估计概率的方法解决实际问题。

3.培养学生的动手操作能力,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:频率与概率之间的关系,利用频率来估计概率的方法。

2.教学难点:如何引导学生通过实际操作,理解频率与概率之间的关系,掌握利用频率来估计概率的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作,理解频率与概率之间的关系,掌握利用频率来估计概率的方法。

2.利用多媒体教学,展示实验过程,帮助学生直观地理解频率与概率之间的关系。

3.采用小组合作学习的方式,培养学生的团队合作精神,提高学生的动手操作能力。

六. 教学准备1.多媒体教学设备。

2.实验材料:如骰子、卡片等。

3.教学课件。

七. 教学过程1.导入(5分钟)利用多媒体展示实验过程,引导学生思考:频率与概率之间的关系是什么?2.呈现(10分钟)呈现一组实验数据,引导学生通过实际操作,理解频率与概率之间的关系。

3.操练(10分钟)学生分组进行实验,利用频率来估计事件的概率。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生汇报实验结果,教师总结频率与概率之间的关系,强调利用频率来估计概率的方法。

最新北师大版七年级数学下册教学计划

最新北师大版七年级数学下册教学计划

2015—2016学年度七年级第二学期数学科教学计划梁施丽一.基本情况本学期我担任七(4)班数学教学,该班有学生49人,上学期期末考试有14个同学及格,最高分91,最低分10分,平均分49,学生基础中等,整体水平稍微偏低,两极分化有点严重,基础知识掌握还不够牢固。

二.教材分析本学期学习的章节:有《整式的乘除》、《相交线与平行线》、《变量之间的关系》、《三角形》、、《生活中的轴对称》、《概率初步》。

各章教学内容概述如下:《整式的乘除》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础。

重点是探索整式运算的运算法则,理解整式运算的算理,推导乘法公式。

难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式。

《相交线与平行线》两条直线被第三条直线所截,即所谓的“三线八角”问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值。

《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫,因为函数是一种特殊的变量之间的“关系”。

《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题,给学生提供积累数学经验的可能,建立推理意识,用自己的方式来表达推理过程。

重点是三角形的性质与三角形全等的判定、三角形的分类。

难点是能进行简单的说理。

《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质。

轴对称可以看成反射变换,也是一种几何变换。

事实上,平移和旋转可以经过两次反射变换得到,因此它更基本。

重点是研究轴对称及轴对称的基本性质。

难点是从具体的现实情境中抽象出轴对称的过程。

《概率初步》一章,在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型。

北师大版数学七年级下册第六章2频率的稳定性(共48张PPT)

北师大版数学七年级下册第六章2频率的稳定性(共48张PPT)

2 频率的稳定性
栏目索引
例2 (2017甘肃兰州中考)一个不透明的盒子里有n个除颜色外其他完全 相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一 个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频 率稳定在30%,那么估计盒子中小球的个数n为 ( ) A.20 B.24 C.28 D.30
C. b D. 4a
a
b
图6-2-3
2 频率的稳定性
栏目索引
答案
B
设圆的半径为r,则正方形的边长为2r,根据题意得
πr 2 4r 2

b a
,故π≈
4b ,故选B.
a
2 频率的稳定性
栏目索引
3.小明在学习了频率与概率的知识后,做了投掷骰子的试验,小明共做了
100次试验,试验的结果如下:
朝上的点数
2 频率的稳定性
栏目索引
知识点二 频率的稳定性及用频率估计概率 1.概率的定义
概率定义
必然事件的概率
不可能事件的概率 随机事件的概率
我们把刻画事件A发生 必然事件发生的概率 的可能性大小的数值, 为1 叫做事件A发生的概率, 记为P(A)
不可能事件发生的概 随机事件发生的概率是0
率为0
与1之间的一个常数
抽到黑球 答案 C A项,同时抛掷两枚硬币,落地后两枚硬币都正面朝上的概率为
1 ,故A选项不符合题意;B项,一副去掉大小王的扑克牌,洗匀后,从中任抽一
4
张牌的花色是红桃的概率是 1 ,故B选项不符合题意;C项,抛一个质地均匀
4
的正方体骰子,朝上的面点数是3的概率是 1 ≈0.17,故C选项符合题意;D项,
2 频率的稳定性

北师版八年级数学频数与频率2

北师版八年级数学频数与频率2

5.3 频数与频率(第二课时)一、教学目标(一)知识与技能:经历数据收集,进行简单的数据整理,由推理过程感受抽样的必要性;能根据数据绘制相应的频数分布直方图和频数分布折线图。

(二)过程与方法:经历收集、处理数据的过程,进一步了解频数与频率在实际生活中的应用,通过绘图,进一步掌握数形结合的思想方法。

(三)情感与能力:能根据数据处理的结果,做出合理的判断和预测,从而解决实际问题,并在这一过程中体会统计对决策的作用。

经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力,培养良好的情感、态度和价值观。

(四)教学重点:绘制频数分布直方图和频数分布折线图。

(五)教学难点:将一组数据正确地进行分组并列频数分布直方图。

二、教材分析本节内容选于《义务教育课程标准实验教科书—数学》(北师大版)八年级(下)第五章第3节,本章在已学习“数据的代表”的基础上,以理解频数、频率的概念为核心内容,为下一节课学习“数据的波动”作好准备。

前3册的学习中,学生已经初步经历了一些数据收集的过程,获得了一些数据收集与处理的活动经验。

但对于数据收集的方法,学生尚多是凭借一些生活的经验,对此缺乏一种理性的思考。

为此,本章将介绍数据收集的两种常用方法-----普查和抽样调查,并希望通过实际问题的讨论,让学生明确两种方式的特点,从而能够具体情境的要求中选用适当的调查方式。

在八年级上学期,学生已经研究过刻画数据“平均水平”的几个尺度,具备了一定的数据处理的能力。

但仅有“平均水平”,还难以准确地刻画一组数据。

为此,本节又介绍了刻画数据几个量——频数与频率。

本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。

三、学生情况分析1、学生已在八上初步学习了“数据的代表”等基本知识,同时结合农村初中学生实际,探讨生活中的实际问题。

深入三峡坝区调查个体户经营情况,进行数据收集与处理。

(新北师大)2_频率的稳定性_课时2_教案2

(新北师大)2_频率的稳定性_课时2_教案2

6.2 频率的稳定性(二)教学设计一、教学目标教科书基于学生对事件发生等可能性的认识,提出了本课的具体学习任务:使学生经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,了解频率的稳定性和如何通过大量重复实验发生的频率来估计事件发生的概率。

但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。

数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。

本课内容从属于“统计与概率”这一数学学习领域,因而务必服务于概率教学的远期目标:“让学生经历数据收集、整理与表示、数据分析以及做出推断的全过程,发展学生的概率意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。

为此,本节课的教学目标:1.知识与技能:学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力;2.过程与方法:通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法;3.情感态度与价值观:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力教学重点:通过对事件发生的频率的分析来估计事件发生的概率.教学难点:通过对事件发生的频率的分析来估计事件发生的概率.学习方式:学生在教师指导下进行“猜想→实验→分析→交流→发现→应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。

教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“猜想→实验→分析→交流→发现→应用”,经历一番前人发现这个结果的“浓缩”过程,培养学生发现问题、解决问题的能力。

二、教学过程分析本节课设计了七个教学环节:课前准备;创设情境,激发兴趣;合作交流,获取数据;操作交流,探究新知;学以致用,发展思维;回忆思考,归纳小结;布置作业。

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率 教案 北师大版数学

3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42

因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《频率的稳定性(第1课时)》教案一、学生知识状况分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对一些游戏的公平性能初步地作出自己的评判。

学生已接触了不确定事件,了解了不确定事件发生的可能性有大有小,学生具备了进一步探索频率的稳定性及频率与概率的关系的能力。

学生活动经验基础:在相关知识的学习过程中,学生已经感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,并对“做数学”有相当的兴趣和积极性,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对大量重复试验事件发生频率的认识,提出了本课的具体学习任务:使学生经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,探索大量重复试验中不确定事件发生的频率会稳定在一个常数附近。

频率、概率是新课程标准第三学段“统计与概率”中的两个重要概念。

通过这部分内容的学习可以帮助学生,进一步理解试验频率和理论概率的辨证关系,同时亦为学生体会概率和统计之间的联系打下基础。

让学生经历数据收集、整理与表示、数据分析以及做出推断的全过程,发展学生的统计意识,同时也应力图在学习中逐步达成学生的有关情感态度目标。

为此,本节课设计了以下目标:教学目标:1.知识与技能: 通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率。

2.过程与方法: 在活动中进一步发展学生合作交流的意识与能力,发展学生的辩证思维能力。

3.情感与态度:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小。

教学难点:大量重复试验得到频率的稳定值的分析.学习方式:学生在教师指导下进行“猜想→实验→分析→交流→发现→应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。

教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“猜想→实验→分析→交流→发现→应用”,经历自主探索、分组实验、合作交流等活动形式,以学生为主体,教师创设和谐,愉悦的环境,辅以适当的引导。

同时利用计算机演示教学内容,提高教学的交互性与直观性,打破教学常规,提高课堂效率。

三、教学过程分析本节课设计了七个教学环节:课前准备;创设情境,激发兴趣;分组试验,获取数据;合作交流,探究新知;巩固训练,发展思维;归纳小结;布置作业。

第一环节课前准备以2人合作小组为单位准备图钉。

第二环节创设情境,激发兴趣活动内容:教师首先设计一个情景对话:以小明和小丽玩抛图钉游戏为背景展开交流,引出钉尖朝上和钉尖朝下的可能性不同的猜测,进而产生通过试验验证的想法。

活动目的:培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同。

让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。

而且由此引出猜测是需通过大量的试验来验证。

这就是我们本节课要来研究的问题。

实际教学效果:学生在一个开放的环境下对生活中存在的问题进行猜测,事实上,学生对游戏的公平性进行猜测的过程,就已经开始体会事件发生的可能性有大有小,这就为下一环节用试验估算事件发生频率打好基础。

同时简短对话易于快速引入新课,利于课堂环节的衔接。

第三环节分组试验,获取数据活动内容:参照教材提供的任意掷一枚图钉,出现钉尖朝上和钉尖朝下两种结果,让同学猜想钉尖朝上和钉尖朝下的可能性是否相同的情境,让学生来做做试验。

请同学们拿出准备好的图钉:(1)两人一组做20次掷图钉游戏,并将数据记录在下表中:称为事件发介绍频率定义:在n次重复试验中,不确定事件A发生了m次,则比值n生的频率。

(2)累计全班同学的试验结果,并将试验数据汇总填入下表:活动目的:通过分组试验让学生体验不确定事件发生的可能性的发现过程,验证之前的猜想.当试验的次数较少时,规律不明显,甚至与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是试验的次数不够,培养学生发现问题、解决问题的能力。

从而使学生自发的把全班试验的结果都统计出来,学会进行试验和收集试验数据。

分组试验也可以培养学生的合作精神和探索意识,激发学生形成由大胆猜想到验证猜想最后总结规律的数学思考过程.实际教学效果:学生经过这一环节对不确定事件发生的频率的发现过程有了全面地认识,通过试验进一步使学生明确钉尖朝上和钉尖朝下的频率大小,领会数学是来源于生活,进一步了解不确定事件的特点,发展随机观念,培养求真意识;在动手操作的过程中认识到频率的稳定性第四环节操作交流,探究新知活动内容:(1)请同学们根据已填的表格,完成下面的折线统计图(2)小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律?结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性活动目的:通过绘制折线统计图的过程,使学生进一步对数据进行处理,观察形象直观的统计图进而得出结论,突出本节课的重点.学生分组讨论议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.实际教学效果:学生通过小组之间的合作、交流,绘制折线统计图,使学生学会独立处理数据.通过观察图像分析,产生初步判断.再通过共同观察幻灯片上的折线图进一步验证猜想,为回答接下来的议一议做好准备。

在议一议中,学生对1,2问快速做出回答。

学生通过小组讨论交流后得出结论,培养了学生的语言组织能力和表达能力.通过数学史实的介绍,让学生了解数学知识产生的背景,增长见闻,培养学习数学的兴趣.第五环节巩固训练发展思维活动内容:问题1、某射击运动员在同一条件下进行射击,结果如下表:射击总次数 n 10 20 50 100 200 500 1000 击中靶心次数 m 9 16 41 88 168 429 861 击中靶心频率 m/n(1)完成上表;(2)根据上表画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率变化有什么规律?问题2:某林业部门要考查某种幼树在一定条件的移植成活率,应采用什么具体做法?在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如果随着移植棵数n的越来越大,频率mn越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值.(1)下表是统计试验中的部分数据,请补充完整:移植总数(n)成活数(m)成活的频率m()n1050270400750150084723536966213350.80________0.871________________0.89035007000900014000320363358073126280.915________________0.902(2)由下表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.(3)林业部门种植了该幼树1000棵,估计能成活 _______棵.(4)我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵.问题3.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10000名同学时,红色的频率是多少吗?(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?数学理解:抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?活动目的:设置问题1主要是衔接本节课的探索试验题,使学生形成分析数据、计算数据、绘制表格、归纳总结的数学思维,同时进一步体会频率的稳定性。

本题难度不大,适合学生独立完成后展演。

问题2幼树移植成活率是实际问题中的一种概率问题,也是反映频率稳定性的典型题.这个实际问题中的移植试验不属于各种结果可能性相等的类型,所以成活率要由频率去估计.先由学生讨论出,幼树移植成活率不属于各种结果可能性相等的类型,所以成活率要由频率去估计.接着计算出上述表格中的空缺(成活的频率),观察表格,根据成活的频率哪一组数所稳定到的那个常数,得出幼树移植成活的频率,进而用这个频率来估计幼苗成活的可能性的大小。

问题3设计了一个学生生活中经常使用的笔袋问题,贴近学生生活。

给出折线统计图,避免了繁琐的计算和绘图过程,节省了学生答题的时间,提高了课堂教学的效率。

本题设置了复式折线统计图的形式,拓展了题型,丰富了本节课的教学内容。

本题采用独立思考后抢答的形式进行,有利于活跃课堂气氛,激发学习兴趣。

数学理解是考察学生设计试验解决问题的能力,本题与抛图钉问题类似,有利于检验教学效果。

实际教学效果:学生独立完成第一题后教师设计展演环节。

可分别让各个层次的学生利用实物投影展示第一题的完成情况,并点评存在的问题,巩固对频率稳定性的认识;问题2主要以学生讨论为主,体现小组合作意识,培养合作交流的能力,完成进一步的巩固;问题3 的设置体现递进性,拓展学生思维,体现课堂教学的实用性和高效性。

第六环节回忆思考,归纳小结活动内容:1、通过本节课的学习,你了解了哪些知识?2、在本节课的教学活动中,你获得了哪些活动体验?活动目的:对本节课的知识进行回顾,师生互相交流如何通过试验的方法来确定频率的稳定性,及用频率来估计事件发生的可能性的大小。

同时总结活动体验,有利于学生积累活动经验,形成良好的数学思考过程。

实际教学效果:学生畅所欲言自己的切身感受与实际收获,树立正确的随机观念,通过现实世界中熟悉和感兴趣的问题,丰富对频率背景的认识,积累大量的活动经验。

第七环节布置作业教材 142页知识技能 1四、教学设计反思1.充分利用教材资源,合理进行拓展应用。

本节课教材中的试验为学生体会随机事件发生的频率具有稳定性提供了充足的依据,所以设计本节课件时选用了教材中的例子,更能体现本节的教学重点。

教材是为学生的学习活动提供了基本线索,实施新课程目标、实施教学的重要资源。

在教学中要既要充分使用教材又要合理拓展,使教学更具实效性。

本节课教师通过具体的现实情境,充分利用学生的生活经验,让学生体验到数学来源于生活,打破了传统的注入式的教学模式,通过一系列精心设计把它改成学生所经历的情境引入课题,激发了学生的学习兴趣。

相关文档
最新文档