环路定理电势

合集下载

静电场的环路定理 电势

静电场的环路定理  电势
(8-22)
静电场的环路定理 电势
式中,Uab为静电场中任意两点 a、b间的电势差,也称为电压.式( 8-22)表明,静电场中a、b两点的 电势之差等于把单位正电荷从a点沿 任意路径移到b点电场力所做的功.电 势差是绝对的.
静电场的环路定理 电势
四、 电势的计算 1. 点电荷电场的电势
设在真空中有一点电荷q,其周围的电场分布为
(8- 21)
式(8-21
a的电势在数值上等
于把单位正电荷从a点沿任意路径移到无限远电场力所做的功.在
许多实际问题中,也常选地球为电势零点.
电势是标量,在国际单位制中,电势的单位为伏特(V).
静电场的环路定理 电势
2. 电势差
从电场力做功的角度引入电势能的概念,由式(8-19) 和式(8-20)可以看出,电势能Wa不仅与a点的电场性质有 关,还与试验电荷q0有关,因而不能用来描述电场中某场 点的性质.但是,人们发现电势能与试验电荷q0的比值与试 验电荷q0无关,仅与a点电场的性质有关.因此,用电势描 述电场的能量特征.a、b两点的电势分别用Va、Vb表示.由 式(8-18),定义
dW=F·dl=q0E·dl=q0Edlcosθ
静电场的环路定理 电势
式中,θ为E与dl的夹角.由图8-20可以看出,元位移dl在电场力 方向的投影为dlcosθ=dr,则元功可写成
静电场的环路定理 电势
既然每个点电荷的电场力对q0所做 的功都与路径无关,那么它们的代数和 也必然与路径无关.由此可以得到以下结 论:在任意带电体的电场中,电场力对 试验电荷q0所做的功只与试验电荷q0及 其始末位置有关,而与路径无关.
静电场的环路定理 电势
2. 电势叠加原理
设场源电荷是由分布在有限区域内的点电荷系q1、q2、q3、 …、qn组成,根据场强叠加原理,任一点P处的场强等于各个点电 荷在该点产生场强的矢量和,即

63静电场环路定理电势

63静电场环路定理电势

E2
q1
4 0 r 2
R1 r R2
E3
q1 +q2
40r 2
r R2
q1 II
I R1
R2 •
III
rE
P•
III区:U3
E dl
P
q2 q1 II III
E3 dr E3dr
r
r
I R1
R2 •
r
q1 q2
4 0 r 2
dr
q1 q2
40r
rr
P• P•
R2
II区: U3
R r
Q
4 0 R3
rdr
Q
R 4 0r 2 dr
Q
8 0 R
Qr 2
8 0 R3
Q
4 0 R
Q (3R 2 r 2 )
8 0 R3
o rp R
rp
路径的线积分为零(电场强度的环流为
零)
3. 电势能 比 重力做功 保守力 重力势能
较 静电场力做功 保守力 电势能
静电场力对电荷所做功等于电荷电势能 增量的负值
B
WAB A q0E • dl EpB EpA
令 B点为电势能零点,则可得任一点 A
的电势能
0
E p A
q0
E • dl
E dl
P
E dr
E2dr
E3dr
r
r
R2
R2 r
q1
4 0 r 2
dr
R2
q1 q2
4 0 r 2
dr
1
4 0
( q1 r
q2 R2
)
I区:
U3
E dl

静电场的环路定理静电场力的功电势能

静电场的环路定理静电场力的功电势能

静电场力的功
02
电场力的定义
电场力是电荷在电场中受到的 力,其大小和方向由电场强度
和电荷的乘积决定。
电场力的大小为 F=qE,其 中 F 是电场力,q 是电荷量,
E 是电场强度。
电场力的方向与电场强度的方 向相同,即由正电荷指向负电
荷。
电场力做功的计算
电场力做功可以通过积分计算,即 W=∫F·dr,其中 W 是电场力做的功, F 是电场力,dr 是位移矢量。
在匀强电场中,电场力做功可以通过 W=qEd计算,其中 W 是电场力做 的功,q 是电荷量,E 是电场强度,d 是位移。
在非匀强电场中,需要计算电场力在路径上的积分来计算电场力做的功。
电场力做功的特点
01
电场力做功与路径无关,只与初末位置的电势差有关。
02
电场力做功是标量,没有方向。
03
电场力做功的过程是能量转化的过程,可以转化为其他形式 的能量。
电势能
03
电势能的定义
电势能是指电荷在电场中由于位置差 异而具有的能量。
电势能是电荷与电场共同具有的能量, 其大小由电场强度和电荷量共同决定。
电势能是相对的,与零电势点的选择 有关。
电势能的变化规律
1
电场力做功与路径无关,只与初末位置有关。
2
电场力做正功,电势能减少;电场力做负功,电 势能增加。
3
静电力做功与电荷的运动路径无关,只与初末位 置有关。
电势能与电场力的关系
01
电场力做功等于电势能的减少量。
02
电势能的变化量等于电场力做的功。
03 电势能与电场力做功的关系是能量守恒定律在静 电场中的具体表现。
THANKS.
静电场的环路定理、静 电场力的功、电势能

电学 1-4 环路定理、电势、电势差

电学 1-4 环路定理、电势、电势差
§1.4 环路定理 电势 (四学时)
§1.4.1 静电场的环路定理 §1.4.2 静电势能 §1.4.3 电势和电势差 §1.4.4 电势的计算 §1.4.5 等势面 §1.4.6 电势梯度
从功和能的角度研究静电场的性质
§1.4.1 静电场的环路定理
一、什么是保守力 ?
力所做的功只与物体的始末位置有关,而与所经历的
qE cos
a
b dl qlEcos
pE cos
W pE
当 p 和 E 同向时,W 取最小值 -pE,电偶极子达到稳
定平衡,即外电场的作用总是使电偶极子转向外场方向
§1.4.4 电势的计算
一、点电荷电场中的电势
选无限远为电势零点,点q电荷电量为 q,其场强为
E 40r 2 er
离点电荷为 r 的 P 点的电势为 积分路径沿径向
只与路径的起点和终点的位置有关,而与路径无关。
静电力是保守力,静电力场是保守力场。
式中
Aab
b E dr
称为场强沿任意路径
L 的线积分
q0
a
三、静电场环路定理
考察:试验电荷在电场中运动经过闭合路径回到原来
位置时,电场力做功 ?
A
F
L
b
dr
q0
E dr
L a
L1
b
q0 q0
例 4 两无限长同轴圆柱面,半径分别为 R1 和 R2。圆
柱面均匀带电,线电荷密度分别为 1 和 2 。
求:1)电势分布;2)两圆柱面之间电压。
解:1) 由高斯定理可得场强分布
E
0
1
2 0r
(r R1 ) (R1 r R2 )
方向 垂直 于圆

09-4静电场的环路定理和电势

09-4静电场的环路定理和电势
P



r0

2 π 0r
dr
r
o VA 0 P r r0

2 π0
ln
r0 r
r
关于静电场的实验定律和定理的关系: 静电场 静止电荷
库仑定律
F12 q1q 2 4 π 0 r12
2
激发
高斯定理
e 12

1 E dS
S
0 ( S 内)

qi
平方反比律
-15
J C
1.6 10
-19
5 10 V
4
计算一个电子伏特(eV)的能量
一个电子在电场中经过电势差为1V的两点时,电 场力对它做的功
W qU
1.60 10
19
C 1V 1.60 10
19
J
一个电子伏特的能量
电子伏特是近代物理学中能量单位,虽然它也出现 “伏特”这个名称,但它并非电压的单位,而是能量 的单位
A B
A
AB两点之间的电势差等于场强由A点到B点的线积分
把电荷q从A点移动到B点,电场力做的功 B B WAB qE dl q E dl qU AB
A A
Wba 8 10
15
J
Wab qU ab q(Va Vb )
Vb 8 10
在负电荷形成的电场中,任 一点的电势均为负,且离点 电荷越远的点,电势越高
A A2 A3 1
点电荷系电场的电势 V A E dl
A
q1
q2 r2
r1
E3
场强的叠加原理


6—3静电场的环路定理电势

6—3静电场的环路定理电势

2.点电荷系的电势
•各点电荷在场点P产生的电场为E1、E2、…
•P电场为E1+E2+…
•取无限远为标准点,P电 势为

VP P E dl
标 标
P E1 dl P E2 dl
q1
q2 q3
r1 r2 r3
E3
E2
P
E1
V1 V2
+
二、电势梯度
1.方向导数
►两邻近等势面 Ua Ub
►沿l方向电势变化率 dV
dl
沿n方向电势变化率
dV dn
dn ·b n
a· ·b
dl
l
< Vb Va
这种沿某个方向的变化 率称方向导数。
►沿不同方向变化率不同,沿n方向电势变化率最快,即
dV cos dV dV
dn
dl dn
y
dl + + +
+
+
+R o +
+
+
dq dl qdl
r
2π R P
x
x
+
+
z+
+ +
dVP

1
4π 0r
qd l 2π R
方法二,电势叠加法,把带电体看成许多点电荷组成
VP

1
4π 0r
qdl q
q
2π R 4π 0r 4π 0 x2 R2
注意:方法一中的积分是对路径的积分 方法二中的积分是在带电体上进行的
S
0
三、电势能

09-4静电场的环路定理和电势

09-4静电场的环路定理和电势
电子伏特是近代物理学中能量单位
19
19
J
一个电子伏特的能量
9.4 静电场的环路定理和电势
9.4.3 电势的计算
一、点电荷q的电场中任一场点的电势
无穷远处为电势零点
V ( P)

P

E dl E dr P Edr P
q q dr 2 r 4 πε r 4πε 0 r 0
电场指向电势降落方向
沿电场线方向移动正电荷,电场力做正功, 正电荷的电势能减少,故电势减小。
9.4 静电场的环路定理和电势
我们的心脏附近 的等电势线(类似于 电偶极子)
9.4 静电场的环路定理和电势
电势差
9.5.2 电场强度与电势梯度 E
U AB VA VB V
U AB E l El cos
9.4 静电场的环路定理和电势
电势是相对的,电势差是绝对的
电势差 U V V PQ P Q
单位:1V=1J/C
P
Q
E dl
二、电势零点 1、电荷只分布在有限区域时,电势零点通常选在无 穷远处。 VP E dl 设Q点在无限远,VQ=0
P
2、 电荷分布延伸到无限远;可选取场中任一点, 合理选择电势零点可使问题简化。
y
P( x, y)
p cos V 4 π 0 r 2
在图示的Oxy坐标系中
q
r
O
r

r
q
r x y
2 2
2
l
x
cos
x x2 y 2
px V 2 2 3/ 2 4 π 0 ( x y )
9.4 静电场的环路定理和电势

6-3静电场的环路定理电势

6-3静电场的环路定理电势

dV
dE
10

已知场强分布 Ex, y, z ,求场中任一点P 的电势时,
可先作不定积分
V E dl C
选择使积分常量 C 0 的点为零电势的参考点,再

子 工 程 学 院
作积分,可求 P 点的电势 VP
对于有限电荷分布情况,可直接选无限远为零势能
点,作积分可得
VP
E dl
P
x
1 qdl
dVP 4π 0r 2π R
x

杨 VP

1
4π 0r
qdl q
q
2π R
4π 0r
4π 0
x2
R2 13

VP
4π 0
q x2 R2
电 讨论
子 工 程 学 院

x
0,V0
q
4π 0R
x
R,VP
q
4π 0x


q
V
4π 0 R
o
x
q
4π 0 (x2 R2 )1 2
14
均匀带电薄圆盘轴线上的电势


电荷
子的
工 程 学 院
等 势 面
杨 小 红
dl2 dl1 E2 E1
dl1 dl2
21
两平行带电平板的电场线和等势面
++++++++++++
电 子 工 程 学 院


22

一对等量异号点电荷的电场线和等势面

子 工
+

静电场的环路定理

静电场的环路定理

8-7 电势
一 电势
1 电势VA
定义:电场中A点的电势
VA
E pA q0
EpA q0 AB E dl EpB
A
B
E
VA AB E dl VB (VB为参考电势,值任选。)
令 VB=0,则有: VA AB E dl
VA

B
A
E
dl
(B点为电势参考点)
电势是标量,它的单位是伏特简称伏,符号为V。 电场中A点的电势在数值上等于把单位正电荷从 点A移到无穷远时,静电场力所作的功。 电势零点的选取可视问题性质而定。
与该路径的形状无关。
说明:静电场力是保守力,静电场是保守场。
二 静电场的环路定理
q0沿闭合路径l移动一周,电场力作功为:
W

l
q E dl 0

q 0
l
E dl
A
又由静电场力作功特点知:W=0
E
则:
q 0
l
E dl
0
q 0 0
l E dl 0 此即静电场的环路定理
式中 l E dl 称为电场强度矢量环流。
o
x
环心和无穷远处的电势
x0,V0

q
4 0
R
x
R,VP

q
4
0
x
均匀带电薄圆盘轴线上的电势
dq 2 rdr
dVP

1
4 0
2 rdr
x2 r2
r
Ro
VP

1
4 0
R
0
2 rdr
x2 r2

2 0
(
x R

静电场的环路定理、电势

静电场的环路定理、电势

R2
3
)2
=……
例3:求无限长均匀带电直线的电场中的电势 分布。
解:选取B点为电势零点,B点距带电直导 线为 rB 。
B B
U E dl
dr
p
p 2 0r
2 0 ln r 2 0 ln r0 2 0 ln r C
rp
Q rB B
☆当电荷分布扩展到无穷远时,电势零点不能 再选在无穷远处。
a
b
a
a、b两点的电势差等于将单位正电荷从a点移
到b时,电场力所做的功。
电势和电势能的区别:
电势是电场的属性,与试验电荷无关; 电势能是属于电荷和电场系统所共有。
注意:
1、电势是相对量,电势零点的选择是任意的。 对于有限带电体而言,电势零点的选择在无限 远点;对于仪器而言电势零点选择在底板上.
2、两点间的电势差与电势零点选择无关。
六、电势的计算
1、点电荷电场中的电势
q • r0
•P
距q为r(P点)的场强为
q
E 4 0r 2 r0
r
由电势定义得:uP
P
E • dl
q
r
4
0r
2
dr
q
4 0r
讨论:
➢大小
q 0 u 0 r u r u最小 q 0 u 0 r u r u最大
就等于把它从该点移到零势能处静电场力所作的功
五、电势、电势差
定义电势
ua
Wa q0
E dl
a
Wa q0 E dl
a
单位正电荷在该点 所具有的电势能
单位正电荷从该点到无穷远 点(电势零)电场力所作的功
定义电势差 ua ub
电场中任意两点 的 电势之差(电压)

所有分类 环路定理 电势能 电势

所有分类 环路定理 电势能 电势
所有分类 环路定理 电势能 电势
Wq0a b Ed clo s
dcl o s dr
Wq0ab Edr
点电荷的场
q
Wq0ab 410rq2dr
q0q 1 1
40 ra rb
b
rb
dl r
ra
q0 a
dr F
E
W q0q 1 1
40 ra rb
电场力的功只与始末位置有关,而与路径无关,电场力为保守力,静电场为保守场。
电场力是保守力,可引入势能的概念。
引力是保守力,作功为
W 引[Gm1 rm b2(Gm1 rm a2)]
取无穷远为零势能点,则引力势能为:
电场力作功
Ep
G m1m2 r
W q0q 1
40 ra
r1b (4q0q0rb
q0q )
40ra
1.电势能Ep
定义: 单位:焦耳,J
EP
q0q
40r
为点电荷电势能(选无穷远为零势能点)
r
r
r
0R E2dr d l/d /r/E / 高斯面
R410 rq2dr
q
4 0 R
•II区:球壳外电势
II
rR
选无穷远为电势 0 点,
U2 r E2dl
I
qo RE
r
r
r
rE2dr d l/d /r/E / 高斯面
1
r 40
rq2dr
q
4 0 r
II
I
qoR
II
I
qoR
qE
4 0 R 2
qV 4 0 R
oR
r oR
r
例3 如图,两个同心的均匀带电球壳,半径分别

大学物理电磁学部分04-环路定理电势

大学物理电磁学部分04-环路定理电势

Ua
Ub
Epa Epb q0
Aab q0
b E dl
a
意义:把单位正电荷从a点沿任意路径移到b点时电
场力所作的功。
电势差和电势的单位相同,在国际单位制中,电势 的单位为:焦耳/库仑(记作J/C),也称为伏特(V) ,即1V=1J/C。
7
注意几点:
1.电势是标量,只有正负之分。U a
E pa q0
设在静电场中,将检验电荷 q0 从 a 点沿任意路 径移动到 b 点,电场力作功为Aab。
因为保守力所作的功等于势能增量的负值。
电荷 q0 在静电场中从 a 点沿任意路径移动到 b 点时, 电场力所作的作功Aab与这两点电势能Ea、Eb的关系为:
Aab
E p
b
(E
pb
E pa
b
Aab
F dl
(2)连续带电体:将带电体分割成无限多个电荷元,
将每个电荷元看成点电荷,根据点电荷电势公式求电
荷元的电势,迭加归结于积分。
U
dU
dq
4 0r
注意电荷元的选取!
11
例1:均匀带电圆环,半径为 R,带电为 q,求 圆环轴线上一点的电势 U。
解:将圆环分割成无限多个电荷元:
dU dq
4 0r
环上各点到轴线等距。
一、静电场的保守性——环路定理
1.电场力的功
1.点电荷的场
点电荷q0所受电场力为:F q0E 点电荷的场中移动点电荷q0从 r
到 r dr,电场做的功:
dA F dl q0E dl
q
q0Edl dr dl c
dA q0
cos
os , E
q
4 0r 2

大学物理电场的环路定理及电势的计算

大学物理电场的环路定理及电势的计算

0
qr
3
(r R ) (r R )
4 0 r
E
令 U 0 ,沿径向积分

1 r
2

U外

P
E 外 d r q 1 r

o
4
r
qr dr
0
r
3
R
r
4 0 r
U外

q 4 0 r
E dr

R
1 r
R


a
E dl
零势点
Ecosdl
a
注意: • 选取零势点的原则:使场中电势分布有确定值 一般,场源电荷有限分布:选 U 0 场源电荷无限分布:不选 U 0 许多实际问题中选 U 地 球 0
[例一] 点电荷 q 场中的电势分布
r E
o
P
解: E
L L
静电场中任意闭合路径
静电场环路定理

E dl 0
L
路径上各点的总场强
静电场强沿任意闭合路径的线积分为零.反映了 静电场是保守力场.
凡保守力都有与其相关的势能,静电场是有势场.
三. 电势能 W
由 A保 E P W
b
A静 电 力 q 0
a
E dl (W b W a ) W a W b
dq 4 0 r
dU
4 r d r
2
4 0 r

rd r 0
R2

由叠加原理:
r
R2
R1
o P
U

dU

08.3静电场的环路定理、电势

08.3静电场的环路定理、电势
E a E b
b
a
u 3
u 2 u 1
2.电势梯度 电势梯度 单位正电荷从 a到 b电场力的功 到 电场力的功
u+d +u
E•d = Ec sθ l =u−(u+d ) l o d u Ec sθ l =− u o d d
在 l E d 方向上的分量 电场强度沿某 一方向的分量 一般
u
E l
n
a
b
l 由电势定义得 u =∫ E•d =∫ P
r

4 ε0r π
d = r
q 4 ε0r π
讨论 大小
q>0 u>0 r ↑ u↓ r → u 小 ∞ 最 q<0 u<0 r ↑ u↑ r → u 大 ∞ 最
为球心的同一球面上的点电势相等 对称性 以q为球心的同一球面上的点电势相等
点电荷系的电势 由电势叠加原理, 的电势为 由电势叠加原理,P的电势为
单位正电荷在该点 所具有的电势能

W = ∫q E•d l a 0
a

单位正电荷从该点到无穷远 电势零)电场力所作的功 点(电势零 电场力所作的功 电势零
定义电势差 a b 定义电势差 u −u 电场中任意两点 的 电势之差(电压) 电势之差(电压)
u =u −u =∫ E•d −∫ E•d =∫ E•d l l l ab a b
d q −q A =u −u =0−( ) + oc o c 4 03R 4 0R a πε πε b c q +q 0 −q = 6 0R πε R R R
② 将单位负电荷由 ∞ O电场力所作的功
A O =u −u =0 o ∞ ∞
功、电势差、电势能之间的关系 电势差、

环路定理_电势

环路定理_电势

等势面、 与 的微分关系 §5.等势面、E与U的微分关系 / 二、等势面性质 等势面
3) 场强与电势的微分关系
v v U a − U b = −dU = E ⋅ d l v v −dU = E ⋅ dl = Ex dx + E y dy + Ez dz
∂U ∂U ∂U Ey = − Ez = − Ex = − ∂y ∂x ∂z U + dU v ∂U v ∂U v ∂U v E = −( i+ j+ k) U ∂x ∂y ∂z
a
电荷在点电荷场中的电势能( 电荷在点电荷场中的电势能(选无穷远 为零势能点) 为零势能点) q0 q 电势能是标量 标量, 电势能是标量 W= 电势能是属于系统的. 4πε 0 r 电势能是属于系统的
电场中的W、 §5.电场中的 、EP、V、U / 三、电势能 电场中的 、
4. 电势差和电势
电势差
电场中的W、 §5.电场中的 、EP、V、U / 一、电场力的功 电场中的 、
2. 环路定理
1) 定理表述 静电场中电场强度沿任意闭合路径的线 积分等于零。 积分等于零。

L
v v E ⋅ dl = 0
高斯定理说明静电场是有源场 高斯定理说明静电场是有源场, 环路定理说 有源场 明静电场是保守力场 无旋场。 保守力场或 明静电场是保守力场或无旋场。
R2 r R2 r
R2
2
∞ R2
q1
− q2
o R1 III II I
=∫
r

q1 − q2 +∫ dr 2 R2 4πε r 0
4πε 0r
q1
2
dr
R2
高斯面
1 q1 1 q2 = − 4πε 0 r 4πε 0 R2

静电场的环路定理和电势

静电场的环路定理和电势

若令 E p(b) 0
(0)
(0)
Ep(a)
(a)
F dl
q0
E dl
(a)
3 电势
定义:把一个单位正电荷从静电场中 P1点移到 P2 点,电场力作的功等于 P1点到P2点电势的减量。
P1
P2
两点之间的电势差, 并不仅由这两点处的电场决定, 它取决于电场的分布。
设 P2为电势为零的参考点,2 =0
对无限大电荷分布, 选有限远 的适当点为电势零点。
实际上:常选大地或机壳的公共线 为电势零点。
例1:求点电荷 q 的电势分布。
【解】 利用电势定义(积分法)
取无限远为电势零点,
()
E dl ( p)
r
q
4 π 0r 2
dr
q
4 π0r
0
q
r
P

r dl
q> 0 r
q< 0
--------点电荷的电势公式
取某一距离直线为 r0 的 P0点的电势为零。
任一点 P 的电势
P0
rP
Edl P
P P0
P’
P0
Edl Edl
P
P
r0
r0
0
dr
r 2 π0r
rP
P’
r0
> 0
0 r0
r0
dr
r 2 π0r
P0
r > r0 的点,电势为负,
r = r0 的点,电势为零,
由场强叠加原理
可以证明:
任意点电荷系或连续带电体的静电场也是保守力场。
常用下式表示静电场 的保守性:
……称为静电场的环路定理

10静电场2(环路定理、电势)

10静电场2(环路定理、电势)
2
P 1
3.关系:E q V P 0
W EP1 EP2 q0U12
二、点电荷电场的电势 在点电荷的电场中任取一点P,由电势的定义来 计算P的电势:
V

P

E dr E dr
P
q
P

q 40 r
2
P
dr
q 40 r
r
E dr

积分路径选为沿径向的直线 在正点电荷的电场中,电势为正,随r的增大电 势逐渐减小;在负点电荷的电场中,电势为负,随 r的增大电势逐渐增大。并且,在点电荷的电场中, 电势也呈球对称分布。
2.在电场中任一点,电势沿不同方向的空间 变化率不相等。 当 0 时,l 沿着 E 的方向,变化率有最 大值: dV E max dl
即沿某一方向的电势的空间变化率最大, 此最大值称为该点的电势梯度,其方向是 该点附近电势升高最快的方向。
E
三、电势能 静电场力是保守力,可引入电势能的概念。 静电场力做功等于电势能的减少。 在静电场中,试验电荷由点 P 运动到点 P2, 1 则电场力做功为: P W q0 E dr EP EP
2
P 1
1
2
P E P1 、 P2 即分别为 q0 在 P 、 2 点的电势能。 E 1
则有: 1 V2 V
P2
P 1
E dr
1.单位:V, V 1J / C 1 2.通常选取无穷远处或大地为电势零点,则有: EP V E dr P q0
即P点的电势等于场强沿任意路径从P点到 无穷远处的线积分。
电势的值随电势零点选取的不同而不同, 是相对的;而两点的电势差是绝对的,与 电势零点无关。 P U12 V1 V2 E dr

第 2 章 电势

第 2 章 电势
P
P0
P0
P
∑E
i
dl = ∫ E 1 dl + ∫ E 2 dl +
P P
P0
P0
= 1 + 2 = ∑ i
在由多个点电荷产生的电场中, 在由多个点电荷产生的电场中 , 任意一点的电 势等于各个点电荷单独存在时在该点产生的电势 的代数和。这个结论称为电势的叠加原理。 的代数和。这个结论称为电势的叠加原理。 电势的叠加原理
rb L ra
E P = mgh
W = Wb Wa = ∫ dA = ∫ q0 E dl
b a = ∫ E dl
ra
rb
= q0 ( b a )
五、电势能 定义电势能
W = q0
一个电荷在电场中某点的电势能 电势能等于它的电 即:一个电荷在电场中某点的电势能等于它的电 量与电场中该点电势的乘积。 量与电场中该点电势的乘积。 一般取 r→∞ 时为势能零点,则空间任一点的电 时为势能零点, 势能为
二、电势差和电势
1.电势差 电势差
A = ∫ q0 E dl =q0 ∫ E dl ∝ q0
ra ra rb rb
静电力作功与具体路径无关,只取决于检验电 静电力作功与具体路径无关, 荷的始末位置。 始末位置。 定义 电势差
rb A a b = = ∫ E dl ra q0
二、电势差和电势
eV= 特(eV):1eV=1.6×10-19J
c
n
+ Δn θ Δl a
E
b l
四、电势梯度
4.电场强度与电势的关系 电场强度与电势的关系
由于 E = d dn
d n = dn
E =
即电场强度大小为电势的梯度,但是方向相反。 即电场强度大小为电势的梯度,但是方向相反。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无限大带电体,势能零点一般选在有限远处一点。 实际应用中取大地、仪器外壳等为势能零点。
理学院 物理系 陈强
7.4.3 电势
为单独描述 E 的性质, 排除q0影响, 引入电势概念: (势能零点 ) Wa ua Edl (场点a ) q0
两种等价叙述: 静电场中某点的电势在数值上等于 a) 单位正电荷在该点时的电势能. b) 单位正电荷从该点沿任意路径到参考点(势能零点) 时电场力所作的功. 注意: a) 标量空间函数!大小正负与零点选择有关. b) 零点选择方法同电势能 c) 静电力电势能, 电场强度电势
VP
2 R
l dl
4 0 R x
2 2
0

q 4 0 ( R 2 x 2 )1 / 2
当 x >> r 时, VP
q 当 x =0 时, VO 4 0 R

q 4 0 x
理学院 物理系 陈强
例 电荷线密度为l 的无限长均匀带电直线。
求 其电势分布。
解 根据高斯定律得
解 根据高斯定律可得
E1 0
E2
( r R)
q
2
r
P r
P
R
对球面外任一点P ( r > R )
4 0 r
p
(2 dr 2 r 4 r 4 0 r 0
1 V r
R
对球面内任一点P ( r < R )
电子伏: (能量的非SI单位) 一个电子通过电势差为1 伏的电场时其电势能的改变量:1eV = 1.610-19 J
理学院 物理系 陈强
讨论:
• 环路定理作功与路径无关保守场有势 • 环路定理是静电场的另一重要定理, Coulomb定律完备描述静电场
Gauss定理+环路定理 • 可用环路定理检验一个电场是不是静电场。
q0 Edn
E
dV E dn
dA q0 [V (V dV )] q0dV
E cosdl Edn dV
任意一场点处电场强度的大小等于沿过该点等势面法 线方向上电势的变化率,负号表示电场强度的方向指 向电势减小的方向。
理学院 物理系 陈强
元功 dA 也可按如下方法表示
示波管内部的电场
理学院 物理系 陈强
等势面的性质: (1) 电场线与等势面处处正交。
E
a
dA q0 E dl q0 E cosdl
dA q0 (Va Vb ) Va Vb q0 E cos dl 0
2
dl
b
cos 0
沿等势面移动电荷时,电场力所作的功为零。 (2) 规定相邻两等势面间的电势差都相同 等势面密
理学院 物理系 陈强
§7.4 静电场的环路定理 电势
主要内容:
1. 静电场力的功 2. 静电场的环路定理 3. 电势能 4. 电势 电势差 5. 电势的计算
理学院 物理系 陈强
7.4.1 静电场力的功 静电场的环路定理 1. 静电场是保守场
• 单个点电荷产生的电场中
点电荷 q 的电场对 q0 所作的元功
E
a ( L)
a ( L )
0 E dl 0
L
a
—— 静电场的环路定理
在静电场中,电场强度的环流为零,静电场是无旋场。
理学院 物理系 陈强
静电场的环路定理(三种等价表述 ) : • 静电场中电场力作功与路径无关, 和…有关. • 静电场中,电荷q沿任一闭合路径回到原处, 电场 力作功为0. • 静电场中场强沿任意闭合路径的环量恒为0. 物理意义: 静电场是保守场, 可以引入势,势能 注意:只对静电场适用!
l
r P
l E 2 0 r

若仍以无穷远为电势零点,则由积分
VP
r
l dr 2 0 r
得出的电势为无穷大,无意义;若以 r = 0为电势零点,也 无意义。为此,我们选取 r = r0 处为电势零点,得
r0 l l VP dr ln r 2 r 2 0 r 0 l 当取 r 0=1时,VP ln r 2 0
Vin
p
R E dr r E1dr R E2dr
q 4 0 R
O
r
球内各点的电势相等,且等于球面上各点的电势。
理学院 物理系 陈强
讨论 对于半径为R ,带电量为q 的均匀带电球体,其电势分布
qr E1 4 R 3 0 E q 2 2 4 r 0
P P
uP
n
i 1
i 1 4 0 ri
qi
u Pi
i 1
n
i 1
P
3. 连续带电体电场中的电势 叠加法: uP duP
dq 4 0r
• 标量积分对电荷分布进行,r为dq到P点距离
理学院 物理系 陈强
例 半径为R ,带电量为q 的均匀带电球面。
求 带电球面的电势分布。
E大
等势面疏
E小
(3) 电场强度的方向总是指向电势降落的方向。
理学院 物理系 陈强
7.5.2 电场强度与电势的微分关系 取两相邻的等势面 把点电荷 q0 从 a 移到 b ,电 场力作功为 V+dV
V
dA q0 E dl q0 E cosdl
a
dn en b dl
对球外任一点P ( r > R )
rR rR
P r r R P
Vout Vin
p
E 2 dr
q 4 0 r
对球面内任一点P ( r < R )
p
V
R E1dr E2dr E dr r R
q 8 0 R
3
V
O R
W“0” = 0
q0 在电场中某点 a 的电势能: Wa
q0 E dl
理学院 物理系 陈强
讨论 (1) 电势能应属于q0 和产生电场的源电荷系统共有。
(2) 电荷在某点电势能的值与零点选取有关,而两点的差值 与零点选取无关。
(3) 选势能零点的原则: 当(源)电荷分布在有限范围内时,势能零点一般选在 无穷远处。
dA F dl q0 E dl q0 E dl cos
rb
r
a L
b
dl cos dr
q
dA q
b
q 4 0 r
0
dr 2
O
ra
dl q0 E
dr
移动 q0 从 a →b,静电场力所作的功
q0 q q0q 1 1 A dA dr ( ) 2 a( L) ra 4 r 4 0 ra rb 0
rb
与路径无关
理学院 物理系 陈强
• 任意带电体系产生的电场中
在点电荷系q1、q2、…、qn 的电场中,移动q0,有
Aab
b
a ( L) b
b F dl q0 E dl
a ( L)
b •
L
a ( L)
q0 ( E1 E2 En ) dl
u
WP AP q uP q0 q0 4 0r
u P 0
q>0
q<0
r
理学院 物理系 陈强
2. 点电荷系电场的电势
场强法: a)选共同零点; b)求E ; c)求u n n u P E d l E i d l Ei d l
q 0 E i dl
rbi
q0

i 1
n
b
q1 q2
a( L)
q0qi 1 1 ( ) rbi i 4 0 rai
qn
qi qn1
ri • rai a
结论 电场力作功只与始末位置有关,与路径无关,所以静电力
是保守力,静电场是保守力场。
理学院 物理系 陈强
• 环路定理要求电场线不能闭合(无旋)。
静电场是有源、无旋场。 思考:如图电场是静电场吗?
电场线
E
理学院 物理系 陈强
7.4.4 电势的计算
• 功能法(定义) • 场强法
势能零点
uP
P
Edl
• 叠加法 uP uPi 或 1. 点电荷场的电势 (功能法)
uP duP
V Ey y
V Ez z
理学院 物理系 陈强
进一步可表示为矢量形式
V V V E ( i j k ) grad V x y z
某点的电场强度等于该点电势梯度的负值。
理学院 物理系 陈强
例 已知 V 6 x 6 x 2 y 7 z 2。 求 电场强度的分布。 解
(3) 细杆左端在球面处时的电势能 W1
qQ Rl ln 4π 0 l R
细杆左端移到距球心 x 处时的电势能 W2
qQ xl ln 4π 0 l x
理学院 物理系 陈强
细杆左端从球面移到距球心 x 处 的过程中,电场力所作的功为
R Q x
r dr
q l
A W1 W2
qQ Rl xl (ln ln ) 4π 0 l R x qQ (R l)x ln 4π 0 l ( x l ) R
则电荷元 dq 在带电球体电场中所具有的电势能
Q Q q dW dq dr 4π 0 r 4π 0 r l
理学院 物理系 陈强
细杆具有的电势能
Q q W dr x 4π 0 r l qQ xl ln 4π 0 l x
相关文档
最新文档