高二数学第一学期期末考试复习卷之一
2022-2023学年高二上学期期末考试数学(文)试题
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
2023-2024学年西安市高二数学第一学期期末考试卷附答案解析
2023-2024学年西安市高二数学第一学期期末考试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版选择性必修第一册至选择性必修第二册第四章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线350x +=的倾斜角为()A .30B .60C .120D .1502.已知()F 为双曲线22:14x y C m -=的一个焦点,则C 的渐近线的方程为()A .0x =B 0y ±=C .20x y ±=D .20x y ±=3.已知数列{}n a 的首项13a =,且122n na a +=-,则9a =()A .3B .2-C .43D .3-4.在三棱锥-P ABC 中,M 为AC 的中点,则PM =()A .1122BA BC BP ++B .1122BA BC BP +- C .111222BA BC BP +-D .111222BA BC BP++ 5.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为5.6m ,深度为0.7m ,则该抛物线的焦点到顶点的距离为()A .2.1mB .2.8mC .4.2mD .56m .6.若直线10ax by +-=与圆22:1O x y +=相离,则过点(),P a b 的直线与椭圆22165y x +=的交点个数是()A .0或1B .0C .1D .27.设n S 为等差数列{}n a 的前n 项和,若1354686,12a a a a a a ++=++=,则8S =()A .8B .12C .18D .248.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .过2F 的直线交双曲线C 右支于,A B 两点,且2213,AF F B AB AF ==,则C 的离心率为()A .2B .3C 2D 3二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.关于空间向量,以下说法正确的是()A .若非零向量a ,b,c 满足a b ⊥ ,c b ⊥ ,则a c∥ B .若对空间中任意一点O ,有121236OP OA OB OC=+- ,则P ,A ,B ,C 四点共面C .若空间向量()0,1,1a =,()1,1,2b =,则a 在b 上的投影向量为11,,122⎛⎫⎪⎝⎭D .已知直线l 的方向向量为()2,1,1a =-,平面α的法向量为()2,1,5b =---,则l α∥或l ⊂α10.已知圆22:60M x y x +-=和圆22:80,N x y y P ++=是圆M 上一点,Q 是圆N 上一点,则下列说法正确的是()A .圆M 与圆N 有四条公切线B .两圆的公共弦所在的直线方程为340x y +=C .PQ的最大值为12D .若(2,P ,则过点P 且与圆M 相切的直线方程为60x -+=11.已知数列{}n a 满足126a =,132n n a a +=-,n S 为{}n a 的前n 项和,则()A .{}1n a +为等比数列B .{}n a 的通项公式为4131n n a -=-C .{}n a 为递减数列D .当4n =或5n =时,nS 取得最大值12.已知F 是椭圆2222:1(0)x y C a b a b +=>>的右焦点,直线y kx =与椭圆C 交于A ,B 两点,M ,N 分别为AF ,BF 的中点,O 为坐标原点,若60MON ∠=︒,则椭圆C 的离心率可能为()A .2B .910C .12D .三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若直线l 与直线10x y +-=关于直线2y =对称,则直线l 的一般式方程为.14.已知空间中的三点()()()0,0,0,0,1,1,1,0,1O A B ,则点A 到直线OB 的距离为.15.已知()4,1A ,()3,0B ,M 是抛物线C :212y x =上的一点,则MAB △周长的最小值为.16.如图所示的数阵由数字1和2构成,将上一行的数字1变成1个2,数字2变成2个1,得到下一行的数据,形成数阵,设na 是第n 行数字1的个数,nb 是第n 行数字2的个数,则67a a +=,221n n a b ++=.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知圆C 过点()2,0A 和()0,0B ,且圆心C 在直线:0l x y -=上.(1)求圆C 的标准方程;(2)经过点()2,1-的直线l '与l 垂直,且l '与圆C 相交于,M N 两点,求MN.18.已知数列{}n a 的前n 项和为n S ,且25n S n n =+.(1)求{}n a 的通项公式;(2)设14n n n b a a +=,求数列{}n b 的前n 项和n T .19.一动圆经过点()0,2F 且与直线=2y -相切,设该动圆圆心的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l 与C 交于A ,B 两点,且线段AB 的中点坐标为()2,2,求直线l 的方程.20.在正三棱柱111ABC A B C -中,1AA AC=,E 为AB的中点.(1)证明:1//BC 平面1A EC.(2)求平面1A EC与平面11C CBB 夹角的余弦值.21.已知{}n a 是首项为1的等差数列,{}n b 是公比为2的等比数列,且12b a =,24b a =.(1)求{}n a 和{}n b 的通项公式;(2)在{}n a 中,对每个正整数k ,在ka 和1k a +之间插入k 个kb ,得到一个新数列{}n c ,设n T 是数列{}n c 的前n 项和,比较66T 与20000的大小关系.22.已知椭圆()2222:10x y a b C a b =>>+的上、下顶点分别是,A B ,点P (异于,A B 两点),直线PA 与PB的斜率之积为49-,椭圆C 的长轴长为6.(1)求C 的标准方程;(2)已知(0,1)T ,直线PT 与椭圆C 的另一个交点为Q ,且直线AP 与BQ 相交于点D ,证明点D 在定直线上.1.C【分析】根据直线方程可得斜率,进而可知倾斜角.【详解】设直线的倾斜角为α,则0180α≤<,由题意可得:直线350x +=的斜率为k =则tan α=120α=.故选:C 2.B【分析】根据题意求,,a b c ,即可得渐近线方程.【详解】由题意可知:2,a c ==x 轴上,可得b =所以C 的渐近线的方程为by x a =±=0y ±=.故选:B.3.A【分析】求出2345,,,a a a a ,发现周期,根据周期来求解.【详解】由题可得22a =-,312a =,443a =,53a =,故{}n a 是以4为周期的周期数列,故913a a ==.故选:A.4.B【分析】连接BM ,根据空间向量的运算法则,准确化简,即可求解.【详解】连接BM ,根据向量的运算法则,可得1122PM BM BP BA BC BP=-=+-.故选:B.5.B【分析】建立平面直角坐标系,得到()0.7,2.8A ,代入抛物线方程,求出 5.6p =,从而得到答案.【详解】如图所示,建立平面直角坐标系,则()0.7,2.8A ,将()0.7,2.8A 代入22y px =,故22.8 1.4p =,解得 5.6p =,所以该抛物线的焦点到顶点的距离为 2.82p=m.故选:B 6.D【分析】由直线与圆相离得221a b +<,则点(),P a b 在椭圆22165y x +=的内部,由此即可得解.【详解】由题意直线10ax by +-=与圆22:1O x y +=相离,所以圆心到直线的距离1d r=>=,即2201a b <+<,而2222116555b a a b ++≤<<,即点(),P a b 在椭圆22165y x +=的内部,所以过点(),P a b 的直线与椭圆22165y x +=的交点个数是2.故选:D.7.D【分析】直接由等差数列性质以及求和公式即可得解.【详解】由题意1353468636,312a a a a a a a a ++==++==,解得362,4a a ==,所以()()188368446242a a S a a ⨯+==+=⨯=.故选:D.8.A 【分析】设2F B n=,根据双曲线定义和线段之间的倍数关系求出14BF a=,18AF AB a==,由余弦定理求出11cos 4F BA ∠=,进而得到2c a =,得到答案.【详解】由已知可设2F B n=,则23AF n=,故2124AF AB A B nF F +===,由双曲线的定义有122a AF AF n=-=,故22F B n a==,148AF AB n a===,故1224BF a BF a=+=,在1AF B△中,由余弦定理得22222211111664641cos 22484BF AB AF a a a F BA BF AB a a ∠+-+-===⋅⨯⋅.在12BF F △中,由余弦定理得22212121212cos F F BF BF BF BF F BA=+-⋅∠,即222141622444a a a a c +-⋅⋅⋅=,解得224c a =,即2c a =,故C 的离心率为2.故选:A 9.BCD【分析】根据a,c 的方向不确定判断A ;根据空间向量共面定理判断B ;根据投影向量定义判断C ;利用4150a b ⋅=--+=,可得a b ⊥ ,从而判断D .【详解】对于A ,非零向量a ,b ,c 满足a b ⊥ ,c b ⊥ ,a ,c 的方向不确定,则a,c 不一定平行,故A 错误;对于B ,121236OP OA OB OC =+- ,1211236+-=,所以P ,A ,B ,C 四点共面,故B 正确;对于C ,因为=01+11+12=3a b ⋅⨯⨯⨯ ,22221+1+2=6b = ,所以a 在b上的投影向量为111,,1222a b b b bb ⋅⎛⎫⋅== ⎪⎝⎭,故C 正确;对于D ,因为直线l 的方向向量为()2,1,1a =-,平面α的法向量为()2,1,5b =---,所以4150a b ⋅=--+=,所以a b ⊥ ,则l α∥或l ⊂α,故D 正确.故选:BCD.10.BCD【分析】对于A ,判断两圆的位置关系即可;对于B ,两圆方程相减即可;对于C ,由max M NMN P r r Q =++验算即可;对于D ,点在圆上,利用垂直关系得切线斜率,进一步即可验算.【详解】对于A ,圆()22:39M x y -+=、()22:416N x y ++=的圆心、半径依次分别为()()3,0,3,0,4,4M N M r N r =-=,圆心距满足157N M M N r r MN r r -=<==<+=,所以两圆相交,圆M 与圆N 有两条条公切线,故A 错误;对于B ,两圆()22:39M x y -+=、()22:416N x y ++=方程相减得,698167x y -+--=-,化简并整理得两圆的公共弦所在的直线方程为340x y +=,故B 正确;对于C ,由题意max 53412M N P MN r r Q ++==++=,当且仅当,,,P Q M N 四点共线,PQ取最大值,故C 正确,对于D ,()(22239-+=,即点(2,P 在圆22:60M xy x +-=上面,又22023PM k ==--P 且与圆M相切的直线方程为)2y x -=-,化简并整理得,过点P 且与圆M相切的直线方程为60x -+=,故D 正确.故选:BCD.11.AC【分析】利用构造法得()1311n n a a ++=+,判断出{}11n a ++为首项为27,公比为13的等比数列,判断A 选项;利用等比数列通项公式求出1n a +通项公式,得出4113n n a -骣琪=-琪桫,判断B 选项;根据函数4113x y -骣琪=-琪桫是减函数,判断C 选项;令n a =,解得4n =,判断D 选项.【详解】因为132n n a a +=-,所以1331n n a a ++=+,即()1311n n a a ++=+,11113n na a ++=+,又因为126a =,所以1127a +=,所以{}11n a ++为首项为27,公比为13的等比数列,A 正确;141112733n n n a --骣骣琪琪+=´=琪琪桫桫,所以4113n n a -骣琪=-琪桫,B 错误;因为函数4113x y -骣琪=-琪桫是减函数,所以{}n a 为递减数列,C 正确;令0n a =,即41103n -骣琪-=琪桫,解得4n =,所以4n ≤时,n a ≥,5n ≥时,n a <,所以当3n =或4n =时,nS 取得最大值,D 错误.故选:AC 12.BD【分析】根据题意,先画出图象,然后判断四边形1AF BF为平行四边形,由60MON ∠=︒可得1120FAF ∠=︒,进而结合椭圆的定义与基本不等式可得有关,a c 的不等式,解不等式得到离心率的取值范围,从而逐项判断四个选项即可得到答案.【详解】根据题意,图象如图所示:设1F 为椭圆C 的左焦点,因为直线y kx =与椭圆C 交于A ,B 两点,所以由椭圆的对称性得OA OB =,又1OF OF =,于是四边形1AF BF 为平行四边形.因为M ,N 分别为AF ,BF 的中点,O 是1F F 中点,所以1//AF OM ,1//BF ON ,平行四边1AF BF 中160AF B MON ∠=∠=︒,1120FAF ∠=︒,在1AF F 中,2221112cos 120F F AF AF AF AF =+-∠()()()()2222111113AF AFAF AF AF AF AF AF AF AF ++=+-≥+-=.因为直线y kx =斜率存在,所以A ,B 两点不在y 轴上,即1AF AF ≠,又在2222:1(0)x y C a b a b +=>>中,112,2AF AF a FF c +==,所以,()221134AF AFF F +>,即2243c a ≥,又a c >,所以22314c a <<,即e <1<.综上所述,2e ⎛⎫∈ ⎪ ⎪⎝⎭;因为1,222⎛⎫∉ ⎪⎪⎝⎭,故A ,C错误;22758191210010010⎛⎛⎫=<=< ⎪ ⎝⎭⎝⎭,即910⎫∈⎪⎪⎝⎭,故B 正确;1244=<<,即42⎛⎫∈ ⎪ ⎪⎝⎭,故D 正确.故选:BD .13.30x y -+=【分析】在直线l 上任取一点(,)M x y ,则点M 关于直线2y =对称点(,4)M x y '-在直线10x y +-=上,即可求解.【详解】设直线l 上任意一点(,)M x y ,则点M 关于直线2y =对称点(,4)M x y '-,因为直线l 与直线10x y +-=关于直线2y =对称,所以(,4)M x y '-在直线10x y +-=上,即410x y +--=,得到直线l 的一般式方程为30x y -+=故答案为:30x y -+=14.2【分析】由题意得OA OB === OA OB OB ⋅,结合勾股定理即可得解.【详解】由题意得()()0,1,1,1,0,1OA OB ==,所以OA OB ===22OA OB OB ⋅==,所以点A 到直线OB2.故答案为:.15.77【分析】利用抛物线的定义求解即可.【详解】由题可知()3,0B 为抛物线C 的焦点,C 的准线方程为3x =-.设d 为点M 到C 的准线的距离,则MA MB +=7MA d +≥.又AB =MAB △周长的最小值为7故答案为:716.1612n +【分析】由题意可知:112,n n n n a b b a ++==,且21212,21a b b a ====,进而可得22n n a a +=,结合等比数列运算求解.【详解】由题意可知:112,n n n n a b b a ++==,且21212,21a b b a ====,则2122n n n a b a ++==,可得12222n n n a a -=⋅=,2122n n n b a +==,所以1671221888816,2n n n a a a a b +++=+=+=+=.故答案为:16;12n +.17.(1)()()22112x y -+-=【分析】(1)由题意得(),C c c ,()2222222CA c c c c CB =-+=+=,由此即可得解.(2)首先得经过点()2,1-且与l 垂直的直线l '为1y x =-+,由弦长公式即可得解.【详解】(1)由题意设圆心(),C c c ,又圆C 过点()2,0A 和()0,0B ,所以()2222222CA c c c c CB =-+=+=,解得1c =,所以圆心()1,1C,半径为r CB ==所以圆C 的标准方程为()()22112x y -+-=.(2)由题意经过点()2,1-且与l 垂直的直线l '为()12y x +=--,即1y x =-+,又圆心()1,1C 到直线1y x =-+的距离为d =,r =所以MN ==18.(1)*24,N n a n n +∈=(2)()*,N 33n nT n n =∈+【分析】(1)由,n n a S 的关系即可得解.(2)由裂项相消法即可得解.【详解】(1)由题意116a S ==,当*2,N n n ≥∈时,所以()()()212155121524n n n a S S n n n n n n -⎡⎤-+-⎦==+-+--==+⎣,又1246=+=a ,所以{}n a 的通项公式为*24,N n a n n +∈=.(2)由题意()()14411242623n n n b a a n n n n +===-++++,所以()111111113445233333n n T n n n n =-+-++-=-=++++ .所以数列{}n b 的前n 项和()*,N 33n nT n n =∈+.19.(1)28x y=(2)220x y -+=.【分析】(1)根据抛物线的定义和标准方程可以确定曲线C 的方程.(2)利用点差法结合中点坐标公式和斜率公式求解.【详解】(1)依题意得该动圆的圆心到点()0,2F 的距离到直线=2y -的距离相等.又点()0,2F 不在直线=2y -上,所以根据抛物线的定义可知该动圆圆心的轨迹是以()0,2F 为焦点,=2y -为准线的抛物线,所以曲线C 的方程为28x y =.(2)设()11,A x y ,()22,B x y ,则21122288x y x y ⎧=⎨=⎩,两式相减得()2212128x x y y -=-,即1212128y y x xx x -+=-.因为线段AB 的中点坐标为()2,2,所以124x x +=,则121212y y x x -=-,即直线l 的斜率为12,所以直线l 的方程为()1222y x -=-,即220x y -+=,经检验,直线:l 220x y -+=与曲线:C 28x y =相交,满足题意,所以直线l 的方程为220x y -+=.20.(1)证明见解析;(2);【分析】(1)利用中位线性质构造线线平行即可证明线面平行;(2)建立空间直角坐标系,利用空间向量计算面面夹角.【详解】(1)连接1AC ,与1A C 交于点F ,连接EF ,则F 为1AC 的中点.因为E 为AB 的中点,所以1//EF BC ,又1BC ⊂/平面1A EC ,EF ⊂平面1A EC ,所以1//BC 平面1A EC .(2)取11A B 的中点D ,连接ED ,则1//DE AA ,CE AB ⊥.又1AA ⊥平面ABC ,所以DE ⊥底面ABC ,CE ⊂底面ABC ,所以DE CE ⊥,则可以E 为原点,,,EC EB ED 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,令11AA =,则()0,0,0E,C ⎫⎪⎪⎝⎭,110,,12A ⎛⎫- ⎪⎝⎭,10,,02B ⎛⎫ ⎪⎝⎭,110,,12B ⎛⎫ ⎪⎝⎭,所以EC ⎫=⎪⎪⎝⎭ ,110,,12EA ⎛⎫=- ⎪⎝⎭ ,()10,0,1BB =,1,02CB ⎛⎫= ⎪ ⎪⎝⎭ .设平面1A EC 的法向量为(),,n x y z = ,则1102302n EA y z n EC ⎧⋅=-+=⎪⎪⎨⎪⋅==⎪⎩ ,取20,1y x z =⇒==,即()0,2,1n = .设平面11C CBB 的法向量为(),,m a b c =,则101022m BB c m CB b ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取10a b c =⇒==,即()m = ,则cos ,m n m n m n ⋅=== ,即平面1A EC 与平面11C CBB夹角的余弦值为.21.(1)n a n =,2n n b =(2)6620000T <【分析】(1)根据题意结合等差、等比数列的通项公式运算求解;(2)根据题意分析可知6612111210()(210)T a a a b b b =++⋅⋅⋅++++⋅⋅⋅+,利用分组求和法结合等差、等比数列求和公式以及错位相减法运算求解.【详解】(1)设数列{}n a 的公差为d ,因为1224b a b a =⎧⎨=⎩,则111213b d b d =+⎧⎨=+⎩,解得112d b =⎧⎨=⎩,所以11n a n n =+-=,1222n n n b -=⨯=.(2)因为(1)1232k k k ++++⋅⋅⋅+=,当10k =时,(1)552k k +=,可知6612111210()(210)T a a a b b b =++⋅⋅⋅++++⋅⋅⋅+,且1211(111)11662a a a +⨯++⋅⋅⋅+==,令{}n nb 的前n 项和为n S ,则234122232422n n S n =⨯+⨯+⨯+⨯+⋅⋅⋅+⨯,可得234512122232422n n S n +=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯,两式相减得()231112(21)22222212221n n n n n n S n n n +++--=+++⋅⋅⋅+-⨯=-⨯=-⨯--,即1(1)22n n S n +=-⨯+,可得111210210922b b b ++⋅⋅⋅+=⨯+,所以1166922661850020000T =⨯++=<.22.(1)29x +24y =1(2)证明见解析【分析】(1)设11(,)P x y ,根据斜率之积和点P 在椭圆上整理可得椭圆C 的标准方程;(2)设直线PT 的方程为1y kx =+,联立椭圆方程消去y ,利用P ,Q 坐标表示出直线PA 与PB 的方程,求解出点D 的坐标,然后用韦达定理化简即可得证.【详解】(1)由题意可得(0,),(0,)A b B b -,且26a =,则3a =.设11(,)P x y ,则1111,PA PB y b y b k k x x -+==,所以22121PA PB y b k k x -⋅=*,因为点P 在椭圆C 上,所以2211221x y a b +=,所以()2221212b y a x b -=,代入*式得()222122221249PA PB y b b k k a b y a b -⋅==-=--,由29a =代入得24b =,故椭圆C 的标准方程为:29x +24y =1;(2)设22(,)Q x y ,00(,)D x y ,显然直线PT 不垂直于x 轴,故可设直线PT 的方程为1y kx =+,由221,1,94y kx x y =+⎧⎪⎨+=⎪⎩消去y 得22(49)18270k x kx ++-=,因为点(0,1)T 在椭圆C 的内部,则直线PT 与椭圆恒有两个交点,所以12122218279494,kx x x x k k -+==-++,由(1)知,(0,2),(0,2)A B -,所以直线AP 的方程为1122y y x x -=+,直线BQ 的方程为2222y y x x +=-,由直线AP 与BQ 相交于点00(,)D x y ,则100120022222y y x x yy x x -⎧=+⎪⎪⎨+⎪=-⎪⎩,消0x 得()()()1200212222x y y y x y ++=⋅--①,由(1)知11112249y y x x -+⋅=-,得()11112492y x x y -=-+,可得()()()()12121221121229229(3)(3)244x y y y kx kx x y x x x x +++++=-=--()2222121212227183·939999494274494k k k k x x k x x k k x x k --+++++++=-⋅=-⨯-+()222275499493427k k k --++=-⋅=-,将()()12212=32x y x y +-代入①式得()00232y y +=-,解得04y =,即点D 在直线4y =上.【点睛】思路点睛:应用韦达定理解决非对称式的关键在于借助圆锥曲线斜率之积为定值,将()()122122x y x y +-转化为()()12129224y y x x ++-对称式结构再处理即可.。
2023最新高二数学上册期末考试试卷及答案
2023最新高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)1、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C )A.p:∃x∈R,sinx≥1⌝B.p:∀x∈R,sinx≥1⌝C.p:∃x∈R,sinx>1⌝D.p:∀x∈R,sinx>1⌝2.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B ).A .160B .180C .200D .2203.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( C ).A .5B .13C .13D .374.若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线x 2a 2y 2b 2的离心率为( D )A. B. C.D. 735443535.在△ABC中,能使sinA >成立的充分不必要条件是( C )32A .A∈ B .A∈ C .A∈(0,π3)(π3,2π3)(π3,π2)D .A∈(π2,5π6)6.△ABC 中,如果==,那么△ABC 是( B ).Aatan Bbtan Cc tan A .直角三角形B .等边三角形 C .等腰直角三角形D .钝角三角形7.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( B )A .1∶2B .1∶1C .3∶1D .2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A. B.5553C. D. 255359.当x >1时,不等式x +≥a 恒成立,则实数a 的取值范围是( D 11-x ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组,所表示的平面区域被直线y =kx +分为⎪⎩⎪⎨⎧4≤ 34 ≥30≥y x y x x ++34面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A.B. C. D. (0,22)(0,33)(0,55)(0,66)解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈。
新疆乌鲁木齐市第四中学2021-2022学年高二上学期期末考试 数学试题解析(001)高中数学
A.3B.2C.1D.0
【答案】C
【解析】
【详解】若函数 是幂函数,则函数 的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数 的图象不过第四象限,则函数 是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C.
A. B. C. D.
【答案】B
【解析】
【分析】
利用双曲线 的实轴长为 ,求出 ,即可求出该双曲线的渐近线的斜率.
【详解】由题意 , ,所以 , ,
所以双曲线的渐近线的斜率为 .
故选:B.
【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.
5.已知△ABC的顶点B、C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A. B. C. D.
【答案】C
【解析】
【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.
【详解】根据题意,依次分析选项:
对于A, 为一次函数,不是偶函数,不符合题意;
对于B, , ,为奇函数,不是偶函数,不符合题意;
对于C, ,为二次函数,是偶函数且在 上是减函数,符合题意;
对于D, , ,为奇函数,不是偶函数,不符合题意;
3.已知等差数列 的前 项和为 , , ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】利用已知条件求得 ,由此求得 .
【详解】依题意 ,解得 ,所以 .
故选:C
【点睛】本小题主要考查等差数列的通项公式和前 项和公式,属于基础题.
2023-2024学年湖南师大附中高二数学上学期期末考试卷附答案解析
2023-2024学年湖南师大附中高二数学上学期期末考试卷时量:120分钟满分:150分一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.设复数z 满足=1i z -,z 在复平面内对应的点为(x,y),则A.22+11()x y +=B.22(1)1x y -+=C.22(1)1y x +-=D.22(+1)1y x +=2.直线() 2140x m y +++=与直线 320mx y +-=平行,则m =A.2B.2或3-C.3-D.2-或3-3.已知角α的终边与单位圆的交于点1,2P y ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=()A.3-B.3±C.32-D.32±4.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到()A.2022年12月B.2023年2月C.2023年4月D.2023年6月5.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1226.设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12F F 为半径的圆与E 交于P ,Q 两点,若12PF F ∆为直角三角形,则E 的离心率为A.1C.17.如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 为线段BD 上的一动点,若()0,0AF x AE yDC x y =+>>,则22341x y -+的最大值为()A.12B.34C.1D.28.已知当e x ≥时,不等式11e ln ax x a xx +-≥恒成立,则正实数a 的最小值为()A.1B.1eC.eD.21e二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.4个班分别从3个景点选择一处游览,不同的选法的种数是43;B.从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有10个;C.两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,一共有5种取法;D.从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,一共可以组成10个分数;10.设等比数列{}n a 的公比为q,其前n 项和为n S ,前n 项积为nT,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是()A.01q <<B.791a a ⋅>C.n S 的最大值为9S D.n T 的最大值为7T 11.已知函数()sin cos f x x x x x=+-的定义域为[)2,2ππ-,则()A.()f x 为奇函数B.()f x 在[)0,p 上单调递增C.()f x 有且仅有4个极值点D.()f x 恰有4个极大值点12.下列有关正方体的说法,正确的有()A.正方体的内切球、棱切球、外接球的半径之比为B.若正方体1111ABCD A B C D -的棱长为1,Q 为正方体侧面11BCC B 上的一个动点,,E F 为线段1AC 的两个三等分点,则QE QF+的最小值为C.若正方体8个顶点到某个平面的距离为公差为1的等差数列,则正方体的棱长为D.若正方体ABCD A B C D -''''的棱长为3,点P 在棱CC '上,且2PC PC =',则三棱锥B D AP '-'的外接球表面积为99π4三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()2ln 2f x x x ax =++,若()e 0f '=,则=a .14.若直线10x ay a +--=与圆22:(2)4C x y -+=交于,A B 两点,当AB 最小时,劣弧 AB 的长为.15.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()2cos sin cos a c B A A -=,a =且cos sin B C =-,则bc =.16.如图,椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n -=>>有公共焦点()()12,0,,0(0)F c F c c ->,椭圆的离心率为1e ,双曲线的离心率为2e ,点P 为两曲线的一个公共点,且1260,F PF I ∠=为12F PF △的内心,1,,F I G 三点共线,且0,GP IP x ⋅=轴上点,A B 满足,AI IP BG GP λμ==,则12e e 的最小值为;22λμ+的最小值为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2cos cos sin f x x x x x=-+.(1)求函数()f x 的单调递减区间和最小正周期;(2)若当ππ,62x ⎡⎤∈⎢⎥⎣⎦时,不等式()f x m ≥有解,求实数m 的取值范围.18.用总长为52m3的钢条制作一个长方体容器的框架,如果所制容器底面一边比另一边的长多1m ,那么高为多少时容器的容积最大?最大容积是多少?19.在如图所示的试验装置中,两个正方形框架,ABCD ABEF 的边长都是1,且它们所在的平面互相垂直.活动弹子,M N 分别在正方形对角线AC 和BF 上移动,且CM 和BN的长度保持相等,记(0CM BN t t ==<<.(1)求MN 长的最小值;(2)当MN 的长最小时,求二面角A MN B --的正弦值.20.已知数列{}n a 的首项11a =,且满足13,,4,.nn n a n a a n ++⎧=⎨⎩为奇数为偶数(1)记2n n b a =,证明:{}1n b +为等比数列;(2)求数列{}n a 的通项公式及其前21n -项和21n S -.21.阅读材料并解决如下问题:Bézier 曲线是计算机图形学及其相关领域中重要的参数曲线之一.法国数学家DeCasteljau 对Bézier 曲线进行了图形化应用的测试,提出了DeCasteljau 算法:已知三个定点,根据对应的一定比例,使用递推画法,可以画出抛物线.反之,已知抛物线上三点的切线,也有相应边成比例的结论.已知抛物线2Γ:2(0)y px p =>上的动点到焦点距离的最小值为12.(1)求Γ的方程及其焦点坐标和准线方程;(2)如图,,,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,若//AC DF ,求BD BF的值.22.设()()e e 21x x f x ax =--且()0f x ≥恒成立.(1)求实数a 的值;(2)证明:()f x 存在唯一的极大值点0x ,且()220e2--<<f x .1.C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【详解】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1y x +-=.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.2.B【分析】两直线平行,斜率相等;按10m +=,0m =和10,0m m +≠≠三类求解.【详解】当10m +=即1m =-时,两直线为240x +=,320x y -+-=,两直线不平行,不符合题意;当0m =时,两直线为240x y ++=,320y -=两直线不平行,不符合题意;当10,0m m +≠≠即1,0m m ≠-≠时,直线2(1)40x m y +++=的斜率为21m -+,直线320mx y +-=的斜率为3m -,因为两直线平行,所以213mm -=-+,解得2m =或3-,故选B.【点睛】本题考查直线平行的斜率关系,注意斜率不存在和斜率为零的情况.3.C【详解】分析:首先求出点P 的坐标,再利用三角函数的定义得出cos ,sin αα的值,进而由同角三角函数基本关系式求出结果即可.详解:∵点1,2P y ⎛⎫- ⎪⎝⎭在单位圆上,2y ∴=±,则由三角函数的定义可得得1cos ,22αα=-=±则23sin 34sin ·tan .1cos 22αααα===--点睛:此题考查了三角函数的定义以及同角三角函数基本关系式的应用,求出y 的值是解题的关键.4.B【分析】每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,结合等差数列的前n 项和公式列得关于n 的方程,解之即可.【详解】每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,则(1)70515002n n n -++⨯=,化简整理得,298600n n +-=,解得25.17n ≈或34.17-(舍负),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.故选:B.5.B【分析】运用赋值法建立方程组,解之可得选项.【详解】令x=1,得a5+a4+a3+a2+a1+a0=1①,令x=-1,得-a5+a4-a3+a2-a1+a0=-243②,①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.,①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.故选:B.【点睛】方法点睛:对形如()(),nax b a b R +∈的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可;对形如()(),nax by a b R +∈的式子求其展开式中各项系数之和,只需令1x y ==即可.6.B【分析】由12PF F ∆为直角三角形,得01290PF F ∠=,可得122,PF c PF ==,利用椭圆的定义和离心率的概念,即可求解.【详解】如图所示,因为12PF F ∆为直角三角形,所以01290PF F ∠=,所以122,PF c PF ==,则22c a +=,解得1ce a ==,故选B【点睛】本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中合理利用椭圆的定义和离心率的概念求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.A【分析】设BD、AE 交于O,根据题意可得AOB EOD ∽△△,所以32AE AO=,进而可得32AF x AO y AB=+ ,根据O、F、B 三点共线,可得x,y 的关系,代入所求,即可基本不等式,即可得答案.【详解】设BD、AE 交于O,因为DE AB ∕∕,所以AOB EOD ∽△△,所以2AO ABOE DE ==,所以2AO OE =,则32AE AO= ,所以32AF x AO y ABx AE yDC ++== ,因为O、F、B 三点共线,所以312x y +=,即232x y -=,所以222322141414x y y y y y -==+++,因为0,0x y >>,所以144y y +≥,当且仅当14y y =,即12y =时等号成立,此时13x =,所以223221141424x y y y -=≤=++,故选:A8.B【分析】原不等式可变形为11e ln e ln a a x xx x -≤-,令()ln f x x x =-则()1e a x f f x ⎛⎫≤ ⎪⎝⎭对于e x ≥恒成立,利用导数判断()ln f x x x=-的单调性可得1e axx ≤,转化为1ln a x x ≥,令()[)()ln e,h x x x x =∈+∞,利用导数求()h x最小值可得1ln x x 的最大值即可求解.【详解】由题意,原不等式可变形为11e ln a xx a x x -≤-,即11e ln e ln a a x x x x -≤-,设()ln f x x x=-,则当e x ≥时,()1e a x f f x ⎛⎫≤ ⎪⎝⎭恒成立,因为()111x f x x x -'=-=,所以函数()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为e x ≥,0a >所以1e 1x>,1ax >,因为()f x 在()1,+∞上单调递增,所以要使()1e a x f f x ⎛⎫≤ ⎪⎝⎭,只需1e a xx ≤,两边取对数,得1ln a x x ≤,因为e x ≥,所以1ln a x x ≥;令()[)()ln e,h x x x x =∈+∞,因为()ln 10h x x '=+>,所以()h x 在[)e,+∞上单调递增,所以()()min e eh x h ==,所以110ln e x x <≤,则1e a ≥,故正实数a 的最小值为1e ,故选:B.9.AB【分析】计算4个班分别从3个景点选择一处游览,共有几种选法,判断A;计算出从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有几个,判断B;根据分步乘法原理计算两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,有几种取法,判断C;考虑1作分子情况和不选1时的情况,计算出分数的个数,判断D.【详解】A,4个班分别从3个景点选择一处游览,每一个班都有3种选择,分4步完成,故有433333⨯⨯⨯=种选法,A 正确;B,从1,2,3,4,5选择2个数(可重复)组成两位偶数,先确定个位数字有2种可能,再确定十位数字有5种可能,故共有2510⨯=个偶数,B 正确;C,两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,共有236⨯=种取法,C 错误;D,从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,若选1作分子,则分母有4种可能,此时有4个分数,不选1时,共有24A 12=个分数,故共有41216+=个分数,故D 错误,故选:AB 10.AD【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可.【详解】因为11a >,781a a ⋅>,8711a a -<-,所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误;又71a >,81a <,所以n T 的最大值为7T ,故D 正确.故选:AD【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题.11.BC【分析】由函数的定义域不关于原点对称,可知函数是非奇非偶函数,求出函数的导数,利用导数分析函数的单调性与极值.【详解】因为()f x 的定义域为[)22ππ-,,定义域不关于原点对称,所以()f x 是非奇非偶函数,又()()1cos cos sin 1sin f x x x x x x x'+--+==,当[)0,x Îp 时,()0f x ¢>,则()f x 在[)0,p 上单调递增,显然()00f '≠,令()0f x '=,得1sin x x =-,分别作出sin y x =,y1x =-在区间[)22ππ-,上的图象,由图可知,这两个函数的图象在区间[)22ππ-,上共有4个公共点,且两图象在这些公共点上都不相切,故()f x 在区间[)22ππ-,上的极值点的个数为4,且()f x 只有2个极大值点,故选:BC.12.ABD【分析】设正方体棱长为a ,分别求出正方体的内切球、棱切球、外接球的半径判断A;利用补体法,把QE QF+转为1QE QF +,当1E Q F 、、共线的时候1QE QF EF +=最小,利用余弦定理求出1EF 判断B;利用已知条件确定棱长与8个顶点到某个平面的距离的关系,利用等体积法求出棱长判断C;利用坐标法求出球心坐标,进而求出球的半径,从而求出外接球表面积判断D.【详解】对于选项A,设正方体边长为a ,则其内切球、棱切球、外接球半径分别为12a ,故比值为,故A 正确;对于选项B,如图1QE QF QE QF +=+,当1E QF 、、共线的时候1QE QF EF +=最小,在1AC M 中,22211111||1cos 23C A C M AM AC M C A C M+-∠==,由余弦定理得22211111111112cos 9EF C E C F C E C F AC M =+-∠=,所以1EF =,所以QE QF +有最小值,故B 正确;对于选项C,因为点1111,,,,,,,A B C D A B C D 到某个平面的距离成等差数列,且公差为1.不妨设平面α为符合题意的平面,α过点C ,延长1111,,D C A B AB 分别交平面α于点,,E F G ,则点1111,,,,,,,C C B B D D A A 与平面α的距离分别应为0,1,2,3,4,5,6,7,因为11,,,D E A F DC AG 互相平行,所以它们与平面α所成角相等,故由比例关系得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =.设正方体的棱长为4a ,则11,2,3C E a BG a B F a ===,用几何方法可解得,,EF EC CF ===,由余弦定理可得222cos 2CE EF CF CEF CE EF +-∠==⋅,sin CEF∠==,故21sin2ECFS EF EC CEF=⋅⋅⋅∠=,由1CC⊥平面1111DCBA,知1CC为四面体1C EC F-的底面1EC F上的高,所以由11C ECF C EC FV V--=,算得点1C到平面α的距离,12121EC FECFS CCd aS⋅===,因为1d=,所以121a=,从而可得4a=,所以正方体的棱长为4a=C错误;对于选项D,以D为坐标原点,,,DA DC DD'所在直线分别为,,x y z轴建立如图所示的空间直角坐标系,则()()()()0,0,3,0,3,2,3,3,3,3,0,0D P B A'',设三棱锥B D AP'-'的外接球球心为(),,N x y z,由2222||ND NP NB NA===''得,222222222222(3)(3)(2)(3)(3)(3)(3)x y z x y z x y z x y z++-=+-+-=-+-+-=-++,解得75,44x z y===,所以三棱锥B D AP '-'的外接球半径3114R ==,所以三棱锥B D AP '-'的外接球表面积为2994ππ4S R ==,D 正确.故选:ABD.【点睛】方法点睛:几何体外接球半径的求法主要有:①直接法:确定球心位置,求出半径;②补形法:把几何体补成常见几何体,如正方体,长方体等;③向量坐标法:建立坐标系,设出球心,利用半径相等可得球心坐标,进而可求半径.13.1e -##1e--【分析】利用导数的运算法则及求导公式求出导数,再由给定的导数值求出a .【详解】函数()2ln 2f x x x ax =++,求导得()1ln 2f x x ax =++',于是(e)2e 20f a =+=',所以1a e =-.故答案为:1e-14.π【分析】先求出直线10x ay a +--=过定点的坐标,再求出圆22:(2)4C x y -+=的圆心和半径,当MC AB ⊥时AB 取得最小值,最后求出劣弧 AB 的长.【详解】直线10x ay a +--=可化为()()110x a y -+-=,则当10x -=且10y -=,即1x =且1y =时,等式恒成立,所以直线恒过定点()1,1M ,圆C 的圆心为()2,0C ,半径2r =,当MC AB ⊥时,AB取得最小值,且最小值为==,此时弦长AB 所对的圆心角为π2,所以劣弧 AB 的长为π2π2⨯=.故答案为:π【分析】利用正弦定理、诱导公式、和角公式、差角公式、二倍角公式分析运算即可得解.【详解】解:由题意,()2cos sin cos a c B A A-=,则由正弦定理可得()sin 2sin cos sin cos A C B A A A-=,∵0πA <<,∴sin 0A ≠,∴sin 2sin cos A C B A -=,又∵πA B C ++=,则()πA B C =-+,()sin sin A B C =+∴()sin 2sin cos B C C B A+-=,∴()sin B C A -=.又由πcos sin cos 2⎛⎫=-=+ ⎪⎝⎭B C C ,可得:π0π2<<<<C B ,则πππ22<+<C ,∴π2B C=+,即π2B C -=,则()sin 1B C -=,1A =,即cos 2A =,由0πA <<解得:π4A =,∴由π23π4B C B C ⎧-=⎪⎪⎨⎪+=⎪⎩解得:5π8=B ,π8C =.∴由正弦定理可得:π5ππsin sin sin488==b c ,解得:5π2sin 8=b ,π2sin 8=c ,∴5πππππ2sin 2sin 4sin cos 2sin 88884=⋅===bc .16.21【分析】根据椭圆和双曲线的定义可得12,PF m a PF a m=+=-,进而根据余弦定理,结合离心率公式可得2221314e e +=,即可利用基本不等式求解空1,根据内心的性质,结合椭圆定义和双曲线定义可得1e λ=,2e μ=,进而根据基本不等式乘“1”法即可求解.【详解】由题意得椭圆与双曲线的焦距为122F F c=,椭圆的长轴长为2a ,双曲线的实轴长为2m ,不妨设点P 在双曲线的右支上,由双曲线的定义:122PF PF m-=,由椭圆的定义:122PF PF a+=,可得:12,PF m a PF a m=+=-,又1260F PF ∠=,由余弦定理得:22221212124PF PF PF PF F F c +-⋅==,即()()222()()4,m a a m m a a m c ++--+⋅-=整理得:22234a m c +=,所以:2222221231344a m c c e e +=⇒+=;则1222121213,2e e e e e e +≥≥,当且仅当2212132e e ==时取等号.I 为12F PF △的内心,所以1IF 为12PF F ∠的角平分线,由于111112111211sin 2211sin 22PF I AF IPF IF PF F S PI S IA AF IF PF F ∠==∠ ,则有11PF IP AF AI =,同理:22PF IP AF AI=,所以1212PF PF IP AF AF AI==,所以12121212IPPF PF a AIAF AF c e +===+,即1AI e IP=,因为AI IP λ=,所以||||||AI IP λ= ,故1e λ=,I 为12F PF △的内心,1,,F I G 三点共线,即1F G 为1PF B ∠的角平分线,延长射线1F P ,连接2F G ,由G 点向112,,F P F B F P 作垂线,垂足分别为,,E D H ,1260,0F PF GP IP ∠=⋅=,260F PB BPE ∠∠∴== ,即BP 为2EPF ∠的角平分线.GH GE GD ∴==,即2F G 为2PF B ∠的角平分线,则有2121GBBF BF PG PF PF ==,又21BF BF ≠,所以1221222BGBF BF c e PGPF PF m-===-,即2BG e GP= ,因为BG GP μ=,所以||||BG GP μ= ,故2e μ=,所以()22222222221212121222222212212133113113134214442e e e e e e e e e e e e e e λμ⎛⎫⎛⎫⎛⎫+=+=++=+++≥+⋅=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当2241221222133334e e e e e e +=⇒==时,等号成立,所以22λμ+的最小值为312+.故答案为:32,312+【点睛】方法点睛:圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.17.(1)()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z ,π;(2)(],2-∞.【分析】(1)利用二倍角正弦、余弦公式和辅助角公式对函数进行化简,利用正弦定理函数的性质可得出函数()f x 的单调递减区间,利用正弦函数的周期公式即可求出函数()f x 的最小正周期;(2)根据题意可知m 小于等于()f x 的最大值,结合正弦函数的定义域求出的最大值,即可知m 的取值范围.【详解】(1)()()222cos 3sin cos sin 23sin cos cos sin f x x x x x x x x x=-+=-+π3sin2cos22sin 26x x x ⎛⎫=-=- ⎪⎝⎭.所以函数()f x 的最小正周期πT =.由ππ3π2π22π,262k x k k +≤-≤+∈Z ,解得π5πππ,36k x k k +≤≤+∈Z .所以函数()f x 的单调递减区间为()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z .(2)由题意可知,即max ()m f x ≤.因为ππ,62x ⎡⎤∈⎢⎥⎣⎦,所以ππ5π2666x ≤-≤.故当ππ262x -=,即π3x =时,()f x 取得最大值,且最大值为π23f ⎛⎫= ⎪⎝⎭.所以2m ≤,实数m 的取值范围为(],2-∞.18.当长方体容器的高为4m 3时,容积最大,最大容积为38m3.【分析】设底面的一边的长为m x ,求出另一边的长为()1m x +,以及高,表示出体积,利用导数求出最大值即可.【详解】设底面的一边的长为m x ,另一边的长为()1m x +.因为钢条长为52m3,所以,长方体容器的高为()52441103243x x x --+=-.设容器的容积为V ,则()()32104105122,03333V V x x x x x x x x ⎛⎫==+-=-++<<⎪⎝⎭,()28106033V x x x =-++=',解得59x =-(舍去),1x =,当()0,1x ∈时,()0V x '>,()V x 在()0,1单调递增;当51,3x ⎛⎫∈ ⎪⎝⎭时,()0V x '<,()V x 在51,3⎛⎫ ⎪⎝⎭单调递减;因此,1x =是函数()V x 在50,3⎛⎫⎪⎝⎭内的极大值点,也是最大值点.此时长方体容器的高为4m 3.所以,当长方体容器的高为4m 3时,容积最大,最大容积为38m 3.19.(1)22(2)【分析】(1)根据条件,建立空间直角坐标系,求出,0,122M ⎛⎫- ⎪ ⎪⎝⎭,,022N t ⎛⎫ ⎪ ⎪⎝⎭,再利用空间两点间的距离公式,即可求出结果;(2)根据(1)结果,得到1111,0,,,,02222M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,再求出平面AMN 和BMN 的法向量,再利用两平面夹角的向量法,即可求出结果.【详解】(1)因为面ABCD ⊥面ABEF ,又面ABCD ⋂面ABEF AB =,CB AB ⊥,CB ⊂面ABCD ,所以CB ⊥面ABEF ,又AB BE ⊥,如图,以B 为原点,,,BA BE BC 所在直线分别为x 轴、y 轴、z轴建立空间直角坐标系,因为两个正方形的边长为1,则()()1,0,0,0,0,0,(0,0,1)A B C ,又CM BN t ==,则CM ==-,得到,0,1M ⎫⎪⎪⎝⎭,同理可得,0N ⎫⎪⎪⎝⎭,所以MN =又0t <<t =时,MN 的长最小,最小值为22.(2)由(1)知,MN 的长最小时,M N 、分别为正方形对角线AC 和BF 的中点,可得1111,0,,,,02222M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,设平面AMN 的一个法向量为()111,,m x y z =r,又1111,0,,0,,2222MA MN ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由1111110,22110,22m MA x z m MN y z ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩ ,取11x =,可得()1,1,1m = ,设平面BMN 的一个法向量为(,,)n a b c = ,又11(,0,)22BM = ,110,,22⎛⎫=- ⎪⎝⎭ MN ,由110,22110,22n BM a n MN b c ⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩,取1a =-,可得()1,1,1n =- ,则1cos ,||||3m n m n m n ⋅==⋅,所以sin ,3m n == ,因此,二面角A MN B --的正弦值为3.20.(1)证明见解析(2)-1222544,54 1.n n n n a n -⎧⨯-⎪=⎨⎪⨯-⎩为奇数为偶数,1212574533n n S n --=⨯--.【分析】(1)先求出 n b 的递推关系式,利用等比数列的定义可证结论;(2)利用分组求和的方法可求答案.【详解】(1)因为13,,4,,nn n a n a a n ++⎧=⎨⎩为奇数为偶数且2n n b a =,则()()12122121134343n n n n n n b a a a a b +++++===+=+=+,可得()1141n n b b ++=+.且12134b a a ==+=,所以{}1n b +是以5为首项,4为公比的等比数列.(2)由(1)可得1154n n b -+=⨯,所以1541n n b -=⨯-,即12541n n a -=⨯-.又因为2213n n a a -=+,则12123544n n n a a --=-=⨯-.所以数列{}n a 的通项公式为1222544,,541,.n n n n a n --⎧⨯-⎪=⎨⎪⨯-⎩为奇数为偶数又1112125445411045n n n n n a a ----+=⨯-+⨯-=⨯-,所以()()()2112342122n n n nS a a a a a a a --=++++++- ()()()()0111104510451045541n n --=⨯-+⨯-++⨯--⨯- ()()0111104445541n n n --=⨯+++--⨯- 1114257105541451433n n n n n ---=⨯--⨯+=⨯---.所以数列{}n a的前21n -项的和1212574533n n S n --=⨯--.21.(1)抛物线Γ的标准方程为22y x =,其焦点坐标为1,02⎛⎫⎪⎝⎭,准线方程为12x =-(2)1【分析】(1)根据题意可得122p =,求出p ,即可得Γ的方程及其焦点坐标和准线方程;(2)设()()()322312123445566,,,,,,,,,,222y y y A y B y Cy D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,联立方程,根据Δ0=求出t ,进而可求得抛物线上过点A 的切线方程,同理可求得抛物线上过点,B C 的切线方程,两两联立,可以求得交点,,D E F 的纵坐标,再分别求出,,AD EF DBDE FC BF,再根据//AC DF 即可得解.【详解】(1)因为抛物线22(0)y px p =>上的点到焦点距离的最小值为12,转化为到准线距离的最小值为12,所以122p =,所以1p =,因此抛物线Γ的标准方程为22y x =,其焦点坐标为1,02⎛⎫⎪⎝⎭,准线方程为12x =-;(2)设()()()322312123445566,,,,,,,,,,222y y y A y B y Cy D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,将切线方程与抛物线方程联立,得:联立()211222y x t y y y x ⎧-=-⎪⎨⎪=⎩,消去x ,整理得2211220y ty ty y -+-=,所以()()2222211111Δ(2)4248440t ty y t ty y t y =---=-+=-=,从而有1t y =,所以抛物线上过点A 的切线方程为2112y x y y =-,同理可得抛物线上过点,B C 的切线方程分别为223223,22y y x y y x y y =-=-,两两联立,可以求得交点,,D E F 的纵坐标分别为132312456,,222y y y y y y y y y +++===,则121141213124523222y y y AD y y y y y y y y DE y y y y +---===++---,同理可得12122323,EF y y DB y y FCy y BFy y --==--,即AD EF DB DEFCBF==,当//AC DF 时,ADCF DE FE=,故EFFC FCEF=,即EF FC=,因此1BDEF BFFC==.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)12(2)证明见解析【分析】(1)将问题转化为()e 21,x x ax x ϕ=--∈R,()0x ϕ≥恒成立,利用导数求解()x ϕ的单调性,即可求解()ln222ln210a a a a ϕ=--≥,构造函数()22ln21(0)g a a a a a =-->,继续利用导数求解函数的单调性得最值即可求解,(2)利用导数求解函数的单调性,结合零点存在性定理,即可求证.【详解】(1)由条件知()()e e 210x x f x ax =--≥恒成立,e 0,e 210x x ax >∴--≥ 恒成立,令()e 21,x x ax x ϕ=--∈R,则()0x ϕ≥恒成立,()e 2x x aϕ∴-'=,①当0a ≤时,()()0,x x ϕϕ'>在R 上单调递增,又()00ϕ=,∴当0x <时,()0x ϕ<,与()0x ϕ≥矛盾,不合题意;②当0a >时,()x ϕ在(),ln2a ∞-单调递减,在()ln2,a ∞+单调递增,∴当ln2=x a 时,()x ϕ有极小值,也为最小值,且最小值为()ln222ln21a a a a ϕ=--,又()0x ϕ≥恒成立,22ln210a a a ∴--≥,令()22ln21(0)g a a a a a =-->,则()22ln222ln2g a a a-=-'=-,令()2ln20g a a ='->,解得102a <<,()g a ∴在10,2⎛⎫ ⎪⎝⎭单调递增,在1,2∞⎛⎫+ ⎪⎝⎭单调递减,()102g a g ⎛⎫∴≤= ⎪⎝⎭,所以由()22ln210g a a a a =--≥,解得12a =,综上,实数a 的值为12.(2)由题可得()()e 2e 2x x f x x '=--,令()2e 2xh x x =--,则()2e 1xh x ='-,由()0h x '=得1ln2x =,在1,ln 2∞⎛⎫- ⎪⎝⎭上,()0h x '<,在1ln ,2∞⎛⎫+⎪⎝⎭上,()0h x '>,所以()h x 在1,ln 2∞⎛⎫- ⎪⎝⎭单调递减,在1ln ,2∞⎛⎫+ ⎪⎝⎭单调递增,又()()()1ln 22211200,ln 2e ln 2ln210,22e 22022e h h h -⎛⎫==--=--=---= ⎪⎝⎭,()12ln 02h h ⎛⎫∴-< ⎪⎝⎭,由零点存在定理及()h x 的单调性知,方程()0h x =在12,ln 2⎛⎫- ⎪⎝⎭有唯一根,设为0x 且002e 20xx --=,从而()h x 有两个零点0x 和0,且在区间()0,x ∞-上,()0f x '>,在区间()0,0x 上,()0f x '<,在区间()0,∞+上,()0f x '>,所以()f x 在()0,x ∞-单调递增,在()0,0x 单调递减,在()0,∞+单调递增,从而()f x 存在唯一的极大值点0x ,由002e 20x x --=得0002e ,12x x x +=≠-,()()()()022000000000222111ee 1122224424x x x x x xf x x x x x -++-++⎛⎫⎛⎫∴=--=--=-+≤== ⎪ ⎪⎝⎭⎝⎭,等号不成立,所以()202f x -<,又()012ln ,2x f x -<<在()0,x ∞-单调递增,所以()()()2242202e e 21e e ef x f -----⎡⎤>-=---=+>⎣⎦,综上可知,()f x 存在唯一的极大值点0x ,且()220e2f x --<<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)
石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。
高二上学期期末考试数学试卷含答案(word版)
新高考地区高二上学期期末考试试题数学试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试卷上作答无效.3.考试结束后,请将答题卡交回,试卷自行保存.满分150分,考试用时120分钟.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数列{}n a 中,23341,2a a a a +=+=,则45a a +=( ) A .4B .8C .16D .322.已知直线 l :360x y +-=和圆C :22240x y y +--=交于A ,B 两点,则弦 AB 所对的圆心角的大小为( )A .π4B .π3C .π2D .2π33.已知双曲线22221(0,0)x y a b a b-=>>的离心率为 )A 0y ±=B .0x =C .30x y ±=D .30x y ±=4.已知直线10x ay +-=是圆C :224210x y x y +--+=的对称轴,过点()3,A a -作圆C 的一条切线,切点为B ,则AB 等于( )A .2B .5C .D .5.已知过抛物线2:8C y x =的焦点F 且倾斜角为45︒的直线交C 于A ,B 两点,Q 为弦AB 的中点,P 为C 上一点,则||||PF PQ +的最小值为( ) A .53B .8C .112D .56.已知正四棱柱1111ABCD A B C D -的底面边长为2,且该四棱柱的外接球表面积为17π,M 为BC 的中点,则点1D 到平面1AB M 的距离为( )A .97B C D .1877.已知等比数列{}n a 满足516a =,434a a -=,若n n b na =,n S 是数列{}n b 的前n 项和,对任意*n ∈N ,不等式1n n S mb -≤恒成立,则实数m 的取值范围为( ) A .[)4,+∞B .[)3,+∞C .[)2,∞+D .[)1,+∞8.已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为( )A B C .1D .12二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.等差数列{}n a 的前n 项和为n S ,若677889,,S S S S S S =<>.则下列结论正确的有( ) A .790a a += B .610S S >C .数列{}n a 是递减数列D .使0n S >的n 的最大值为1510.已知圆22:4C x y +=,直线:(3)4330(R)l m x y m m ++-+=∈,则下列结论正确的是( ) A .直线l 恒过定点(3,3)B .当0m =时,圆C 上有且仅有三个点到直线l 的距离都等于1 C .圆C 与曲线22680x y x y m +--+=恰有三条公切线,则16m =D .当13m =时,直线l 上动点P 向圆C 引两条切线P A ,PB ,其中A ,B 为切点,则直线AB 经过点164,99⎛⎫-- ⎪⎝⎭11.在长方体1111ABCD A B C D -中,1222AA AB BC ===,点,E F 满足1(01)AF AA λλ=<<,1CE EC =.下列结论正确的有()A .若直线BE 与1D F 异面,则12λ≠ B .若AE BF ⊥,则13λ=C .直线AE 与平面11ABCD D .若直线AE平面1BFD ,则14λ=12.已知抛物线2:2(0)C y px p =>的准线=1x -与x 轴相交于点K ,过抛物线C 的焦点F 的直线l 与抛物线C 相交于P Q 、两点,且P Q 、两点在准线上的投影点分别为M N 、,则下列结论正确的是( )A .2p =B .PQ 的最小值为4C .2||MN PF QF为定值12D .PKF QKF ∠∠=第II 卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩135a =,则数列的第2022项为___________. 14.已知1F ,2F 为椭圆C :22142x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12||PQ F F =,则四边形12PFQF 的面积为__________.15.在直三棱柱111ABC A B C中,CA =CB =16CC =,90BCA ∠=,112AM MB =,则异面直线CM 与1A B 夹角的余弦值为______.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 的直线与C 的右支交于A ,B两点,若1221F AF AF F ∠=∠,222F B F A =,则C 的离心率为______.四、解答题:本题共6小题,第17小题10分,其余小题每题12分,共70分.解答题应写出文字说明、证明过程或演算步骤.17.若n S 是公差不为0的等差数列{}n a 的前n 项和,且1S ,2S ,4S 成等比数列,24S =. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=,求数列{}n b 的前n 项和n T .18.如图,直三棱柱111ABC A B C 中,90BAC ∠=︒,12AB AC AA ===,E 是BC 中点.(1)若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (2)求直线BC 与平面1AEC 所成角的余弦值.19.已知抛物线C :()220y px p =>的焦点为F ,()02,A y 是抛物线C 上的点,且5AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为5,23⎛⎫- ⎪⎝⎭,求MNF 的面积.20.如图,在三棱柱111ABC A B C 中,底面是边长为2的等边三角形,112,60.,CC ACC D E ∠==分别是线段1,AC CC 的中点,二面角1C AC B --为直二面角.(1)求证:1A C ⊥平面BDE ;(2)若点P 为线段11B C 上的动点(不包括端点),求锐二面角P BD E --的余弦值的取值范围.21.已知数列{}n a 满足11a =,()121n n a a n *+=+∈N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足()()312111144441n n bb b b b n a n ----*=+∈N ,证明{}n b 是等差数列;(3)证明:()122311232n n n a a a nn a a a *+-<+++<∈N .22.双曲线2221(0)3x y C a a -=>:的左、右顶点分别为A ,B ,过点()2,0D 且垂直于x 轴的直线l 与该双曲线C交于点E ,F ,设直线EA 的斜率为1k ,直线FB 的斜率为212,1k k k ⋅=-. (1)求曲线C 的方程;(2)动点M ,N 在曲线C 上,已知点()2,1P -,直线PM ,PN 分别与y 轴相交的两点关于原点对称,点Q 在直线MN 上,PQ MN ⊥,证明:存在定点T ,使得QT 为定值.新高考地区高二期末考试参考答案第I 卷(选择题)一、单选题1.在等比数列{}n a 中,23341,2a a a a +=+=,则45a a +=( ) A .4 B .8C .16D .32【答案】A【分析】根据3423()a a q a a +=+求出q ,再根据4534()a a q a a +=+可得答案. 【详解】设等比数列的公比为q ,由3423()a a q a a +=+,可得q =2,所以4534()4a a q a a +=+=. 故选:A.2.已知直线 l :360x y +-=和圆C :22240x y y +--=交于A ,B 两点,则弦 AB 所对的圆心角的大小为( )A .π4B .π3C .π2D .2π3【分析】根据弦长公式可得弦长,根据ABC 的边长关系,确定圆心角的大小,可得2(x +CA CB ==π3.已知双曲线22221(0,0)x y a b a b-=>>的离心率为 )A 0y ±=B .0x =C .30x y ±=D .30x y ±=【详解】由双曲线的离心率为22,得22222122c a b b e a a a +⎛⎫⎛⎫===+= ⎪ ⎪⎝⎭⎝⎭,所以7b a =,又双曲线22221x y a b-=的渐近线方程为b y x a =±,所以渐近线方程为7y x =±,即70x y ±=.故选:A .4.已知直线10x ay +-=是圆C :224210x y x y +--+=的对称轴,过点()3,A a -作圆C 的一条切线,切点为B ,则AB 等于( ) A .2 B .5C .42D .210【答案】B【分析】求出圆的圆心与半径,然后求解a ,求出A 的坐标,画出示意图,利用勾股定理求解AB 即可. 【详解】解:圆224210x y x y +--+=即22(2)(1)4x y -+-=,圆心为()2,1C ,半径为2r =, 由题意可知:10l x ay +-=过圆的圆心()2,1C , 则210a +-=,解得1a =-,点A 的坐标为()3,1--, 作示意图如图所示:225229,2AC BC r =+===,切点为B ,则AB BC ⊥, 所以225AB AC BC =-=.故选:B .5.已知过抛物线2:8C y x =的焦点F 且倾斜角为45︒的直线交C 于A ,B 两点,Q 为弦AB 的中点,P 为C 上一点,则||||PF PQ +的最小值为( ) A .53B .8C .112D .5【答案】B【分析】根据给定条件,求出直线AB 的方程,再与抛物线方程联立,结合抛物线定义,借助几何意义求解作答.D ,连接P PD PQ +6.已知正四棱柱1111ABCD A B C D -的底面边长为2,且该四棱柱的外接球表面积为17π,M 为BC 的中点,则点1D 到平面1AB M 的距离为( )A .97B C D .187为坐标原点,1,,DA DC DD 的方向分别为(2,2,3),(1,2,0),M D ,所以11(0,2,3),(1,2,0),(2,0,3)AB AM AD ==-=-的法向量为(,,)n x y z =00=,可取(6,3,2)n =-,的距离为112187||364AD n n ⋅-==+.故选:D7.已知等比数列{}n a 满足516a =,434a a -=,若n n b na =,n S 是数列{}n b 的前n 项和,对任意*n ∈N ,不等式1n n S mb -≤恒成立,则实数m 的取值范围为( ) A .[)4,+∞ B .[)3,+∞ C .[)2,∞+ D .[)1,+∞【答案】C【分析】本题首先可根据516a =、434a a -=得出12n n a -=,然后根据n n b na =得出12n n b n -=⋅,再然后根据错位相减法求出()121nn S n =-⨯+,最后根据题意得出对任意*n ∈N 不等式1n nS m b -≥恒成立,根据()*1222n n n N S b n-=-∈<即可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为516a =,434a a -=,所以413211164a q a q a q ⎧=⎨-=⎩,解得2q ,11a =,12n n a -=,因为n n b na =,所以12n n b n -=⋅,0n b >,则01211222322n n S n -=⨯+⨯+⨯+⋅⋅⋅+⨯,12321222322nn S n =⨯+⨯+⨯+⋅⋅⋅+⨯,12112222222212112n nn n nn n n nS S S n n n , 对任意*n ∈N 不等式1n n S mb -≤恒成立,即对任意*n ∈N 不等式1n nS m b -≥恒成立, 因为()*11(1)22222n n n n S n b n n N n ---⋅==-<⋅∈,所以2m ≥,m 的取值范围为[)2,∞+. 故选:C.【点睛】方法点睛:本题考查根据数列不等式恒成立求参数的取值范围,考查数列求和,常见的数列求和方法有等差等比公式法、错位相减法、裂项相消法、分组求和法、倒序相加法,考查计算能力,是难题. 8.已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为( )ABC .1D .12二、多选题9.等差数列{}n a 的前n 项和为n S ,若677889,,S S S S S S =<>.则下列结论正确的有( )A .790a a +=B .610S S >C .数列{}n a 是递减数列D .使0n S >的n 的最大值为1510.已知圆22:4C x y +=,直线:(3)4330(R)l m x y m m ++-+=∈,则下列结论正确的是( ) A .直线l 恒过定点(3,3)B .当0m =时,圆C 上有且仅有三个点到直线l 的距离都等于1C .圆C 与曲线22680x y x y m +--+=恰有三条公切线,则16m =D .当13m =时,直线l 上动点P 向圆C 引两条切线P A ,PB ,其中A ,B 为切点,则直线AB 经过点164,99⎛⎫-- ⎪⎝⎭ 【答案】CD【分析】对A 将直线化成(3)(343)0m x x y +++-=,则303430x x y +=⎧⎨+-=⎩,解出即为定点;对B 直接计算圆心到直线的距离与1的大小关系,即可判断B ,对C ,直接将m 代入,通过几何法判断两圆位置关系即可,对D ,设点(,94)P t t --,利用两点直径式方程写出以PC 为直径的圆的方程,两圆方程作差,得到公共弦所在直线方程,化成关于参数t 的方程,即可求出定点坐标.【详解】由直线l :(3)4330m x y m ++-+=,(R)m ∈,整理得:(3)(343)0m x x y +++-=,故303430x x y +=⎧⎨+-=⎩,解得33x y =-⎧⎨=⎩,即经过定点()3,3-,故A 错误; 当0m =时,直线l 为3430x y +-=,∴圆心(0,0)到直线3430x y +-=的距离11.在长方体1111ABCD A B C D -中,1222AA AB BC ===,点,E F 满足1(01)AF AA λλ=<<,1CE EC =.下列结论正确的有()A .若直线BE 与1D F 异面,则12λ≠B .若AE BF ⊥,则13λ=C .直线AE 与平面11ABC DD .若直线AE平面1BFD ,则14λ= 【答案】ACD 【分析】建立空间坐标系,用空间向量逐项计算.【详解】建立如图所示的空间直角坐标系:1(1,0,0),(1,1,0),(0,1,1),(0,0,2)A B E D 1(1,0,2),(1,0,1),(1,0,22)F BE D F λλ=-=-1(1,1,1),(0,1,2),(1,1,2)AE BF BD λ=-=-=--对于A :若直线BE 与1D F 异面,则12211λ-≠-,则12λ≠,故A 正确; 对于B :若,0AE A BF E BF ∴⊥⋅=,(1,1,1)(0,1,2)0λ∴-⋅-=,12λ∴=,故B 错误; 对于C :1(0,1,0),(1,0,2)AB D A ==-,设平面11ABC D 的法向量为()111,,n x y z =则100AB n D A n ⎧⋅=⎪⎨⋅=⎪⎩,即111020y x z =⎧⎨-=⎩,取(2,0,1)n = 直线AE 与平面11ABC D 所成角θ满足(1,1,1)(2,0,1)15sin |cos ,|1535AE nAE n AE n θ⋅-⋅=〈〉===⨯⋅,故C 正确; 对于D :设平面1BFD 的法向量()222,,m x y z =1100BD m D F m ⎧⋅=⎪⎨⋅=⎪⎩,即2222220(22)0x y z x z λ--+=⎧⎨+-=⎩,取(22,2,1)m λλ=- 若直线AE平面1BFD ,则22210AE m λλ⋅=-++=12.已知抛物线2:2(0)C y px p =>的准线=1x -与x 轴相交于点K ,过抛物线C 的焦点F 的直线l 与抛物线C 相交于P Q 、两点,且P Q 、两点在准线上的投影点分别为M N 、,则下列结论正确的是( ) A .2p =B .PQ 的最小值为4C .2||MN PF QF 为定值12D .PKF QKF ∠∠=所以()()222161||441m MN PF QF m +==+,所以C 不正确; 对于D ,()()()1122,,,,1,0P x y Q x y K -,111PK y k x =+,221PQ y k x =+, ()()()()()()222112122112121212+1+1+1+144++==1+11+11+1PK KQ y y y y y x y x y y k k x x x x x x ⎛⎫⎛⎫+ ⎪ ⎪+⎝⎭⎝⎭=+++ ()()()()()2221121212121212121+++4441+11+1y y y y y y y y y y y y x x x x +++==++()214444044m m m -⋅+==+ 所以PKF QKF ∠∠=,故D 正确.故选:ABD.第II 卷(非选择题)三、填空题13.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩135a =,则数列的第2022项为___________. 【答案】15##0.2 【分析】根据递推关系可通过计算前面2345n ,,,,发现数列{}n a 是周期为4的周期数列,进而由周期性即可求解.【详解】由112,0,2121,1,2n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =得2131212155a a =-=⨯-=,23222155a a ==⨯=,32242255a a ,4243212155a a ,543122155a a ,,故数列{}n a 是周期为4的周期数列,故2022215a a , 故答案为:1514.已知1F ,2F 为椭圆C :22142x y +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12||PQ F F =,则四边形12PFQF 的面积为__________.【答案】4【分析】根据题意分析可得12π2F PF ∠=,利用勾股定理结合椭圆定义求12PF PF ,进而可求四边形12PFQF 的面积.【详解】由椭圆22142x y +=可得:2212122,2,2,24,222a b c a b PF PF a F F c ===-=+====, 由题意可得:12||,||OP OQ OF OF ==,则12PFQF 为平行四边形, ∵12||PQ F F =,则121||2OP F F =, ∴12π2F PF ∠=,则22212128PF PF F F +==, 又 ()222121212216PF PF PF PF PF PF +=++=,∴124PF PF =, 则四边形12PFQF 的面积121212242PF F S S PF PF △==⨯=. 故答案为:4.15.在直三棱柱111ABC A B C 中,33CA =32CB =16CC =,90BCA ∠=,112AM MB =,则异面直线CM 与1A B 夹角的余弦值为______.【答案】8215【分析】根据条件,可建立空间直角坐标系,得出CM 与1A B 的坐标,利用向量法解决.【详解】由已知可得,1,,CA CB CC 两两垂直,可如图建立空间直角坐标系. 则,()133,0,6A ,()10,32,6B ,()0,0,0C ,()0,32,0B , 由112AM MB =可得,1122CM CA CB CM -=-, 则()()()11212133,0,60,32,623263333CM CA CB =+=+=,,, ()133326A B =--,,,()()222232652CM ==++,()()()2221333269A B =--=++,11863648CM A B ⋅=-+-=-,所以,111cos ,CM A BCM A B CM A B ⋅=488215952-==-⨯. 所以,异面直线CM 与1A B 夹角的余弦值为8215. 故答案为:8215. 16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 的直线与C 的右支交于A ,B 两点,若1221F AF AF F ∠=∠,222F B F A =,则C 的离心率为______.【答案】53##213【分析】设2AF 的中点为M ,连接1F M ,1BF ,由题意可得1122AF F F c ==,12F M AF ⊥,由双曲线的定义可得222F A c a =-,2MF c a =-,244BF c a =-,142BF c a =-,2121BF F MF F π∠+∠=,2121cos cos 0BF F MF F ∠+∠=,在12MF F △和12BF F △中利用余弦定理表示出两个角的余弦值,即可求出,a c 的关系,从而可得双曲线C 的离心率.【详解】解:如图:设2AF 的中点为M ,连接1F M ,1BF ,因为1221F AF AF F ∠=∠,所以1122AF F F c ==,因为M 为2AF 的中点,所以12F M AF ⊥,由122AF F A a =-,得222F A c a =-,所以2212F A M F c a ==-, 在12MF F △中,22112cos 2MF c a MF F F F c-∠==, 因为22244BF AF c a ==-,所以12242BF a BF c a =+=-, 在12BF F △中,()()()22222212212112241642cos 2224F F BF BF c c a c a BF F F F BF c c a +-+---∠==⨯⨯⨯-()224121616c a ac c c a +-=-, 因为2121BF F MF F π∠+∠=,所以2121cos cos 0BF F MF F ∠+∠=,即()22412160216c a c a ac c c c a -+-+=-, 整理可得221616120a ac c -+=,即225830a ac c -+=, 所以()()530a c a c --=,所以53a c =或a c =(舍),所以离心率53c e a ==, 故答案为:53. 四、解答题17.若n S 是公差不为0的等差数列{}n a 的前n 项和,且1S ,2S ,4S 成等比数列,24S =.(1)求数列{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)()21N n a n n +=-∈(2)321n n + 【分析】(1)等差数列通项公式和求和公式列方程求解;(2)利用裂项相消法11221231n b n n ⎛⎫=- ⎪-+⎝⎭,可求和. 【详解】(1)根据题意,设等差数列{}n a 公差为()0d d ≠, 因为1S ,2S ,4S 成等比数列,24S =,所以221424S S S S ⎧=⋅⎨=⎩, 整理得:()()2111146224a a d a d a d ⎧⋅+=+⎪⎨+=⎪⎩, 解得112a d =⎧⎨=⎩. 故()21N n a n n +=-∈.(2)由(1)得:()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 311111313112335212122121n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.如图,直三棱柱111ABC A B C 中,90BAC ∠=︒,12AB AC AA ===,E 是BC 中点.(1)若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (2)求直线BC 与平面1AEC 所成角的余弦值. )建立空间直角坐标系,利用110B M C E ⋅=求得1AEC 所成角的余弦值)依题意,建立如图所示空间直角坐标系,),02t t ≤≤, ()(112,0,2,1,1B M t C E =--=-若11B M C E ⊥,则112B M C E ⋅=--则棱1AA 上存在一点M ,满足1B M (2)()()(2,0,0,0,2,0,2,2,0B C BC =-的法向量为(),,n x y z =12n AC y n AE x y ⎧⋅=+⎪⎨⋅=+⎪⎩,故可取()1,1,1n =-设直线BC 与平面所成角为,0θθ≤≤22n BC n BCθ⋅==⋅,所以cos BC 与平面AEC19.已知抛物线C :()220y px p =>的焦点为F ,()02,A y 是抛物线C 上的点,且5AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为5,23⎛⎫- ⎪⎝⎭,求MNF 的面积.【答案】(1)212y x = (2)8【分析】(1)直接由抛物线中焦半径公式求出p 即可.(2)用横截式设出直线MN 的方程以及M N ,的坐标,联立直线与抛物线方程,得到0∆>及韦达定理,再利用线段MN 的中点坐标求出直线中的参数,再利用弦长公式求出线段MN 的长度,用点到直线的距离公式求出点F 到直线MN 的距离,进而可求出MNF 的面积. 【详解】(1)由抛物线的定义知02522p pAF x =+=+=,解得6p ,则抛物线的方程为212y x =故:答案为212y x =.(2)由线段MN 的中点为5,23⎛⎫- ⎪⎝⎭知直线MN 的斜率存在且不为0,设直线MN x my b =+:,()()1122,,,M x y N x y ,联立直线与抛物线方程,有212x my b y x=+⎧⎨=⎩,即212120y my b --=,所以有()()2212484830m b m b ∆=+=+>, 且12121212y y m y y b +=⎧⎨=-⎩,则()212122122x x m y y b m b +=++=+ 所以2124101223m m b =-⎧⎪⎨+=⎪⎩,即131m b ⎧=-⎪⎨⎪=⎩ 所以直线:33MN y x =-+,21281013MN m y y =+-=,点F 到直线MN 的距离233361013d -⨯+==+. 所以182MNFSMN d ==. 故:答案为8.20.如图,在三棱柱111ABC A B C 中,底面是边长为2的等边三角形,112,60.,CC ACC D E ∠==分别是线段1,AC CC 的中点,二面角1C AC B --为直二面角.(1)求证:1A C ⊥平面BDE ;(2)若点P 为线段11B C 上的动点(不包括端点),求锐二面角P BD E --的余弦值的取值范围. 【答案】(1)证明见解析(2)13,22⎛⎫ ⎪ ⎪⎝⎭【分析】(1)首先证明1A C DE ⊥,然后证明BD ⊥平面11AAC C ,可得1BD A C ⊥,即可证明;(2)首先证明1C D ⊥平面ABC ,然后以D 为坐标原点,1,,DB DA DC 所在直线为,,x y z 轴建立空间直角坐标系,设()111,,,(01)P x y z C P C B λλ=<<,算出两个平面的法向量,然后求出二面角的余弦值,然后可得答案.【详解】(1)连接1AC ,由题设知四边形11AAC C 为菱形,11AC AC ∴⊥, ,D E 分别为1,AC CC 中点,11,DE AC AC DE ∴∴⊥∥; 又D 为AC 中点,BD AC ∴⊥,因为二面角1C AC B --为直二面角, 即平面11AA C C ⊥平面ABC ,平面11AAC C平面,ABC AC BD =⊂平面,ABCBD ∴⊥平面11AAC C ,又1AC ⊂平面111,AAC C BD AC ∴⊥;又,,BD DE D BD DE =⊂平面1,BDE AC ∴⊥平面BDE . (2)112,60CA CC ACC ∠===,1ACC ∴△为等边三角形,1C A D C ∴⊥,平面11AA C C ⊥平面ABC ,平面11AAC C 平面ABC AC =,1C D ⊂平面11,ACC A1C D ∴⊥平面ABC ,则以D 为坐标原点,1,,DB DA DC 所在直线为,,x y z 轴,可建立如图所示空间直角坐标系,则()()()()()11130,0,0,3,0,0,0,,,0,0,3,3,1,3,0,1,022D BE C B C ⎛⎫-- ⎪ ⎪⎝⎭,()10,2,3A ,()()()111133,0,0,0,,,3,1,0,0,3,322DB DE C B CA ⎛⎫∴==-== ⎪ ⎪⎝⎭111,(0C P C B λλ=<(3DP λ∴=的一个法向量(10,3,m CA ==的法向量(),,n a b c =30330DB n a DP n a b c λλ⎧⋅==⎪⎨⋅=++=⎪⎩3,则(,0,3,a n λ==-∴=-33cos ,233m nm n m n -⋅==⋅⨯, ()2,3t λ-=∈,则113,126212m n λ==-+211112613,,1,,3222m n t t t ⎛⎛⎫⎛∈∴-+∈∈ ⎪ ⎝⎭⎝⎝即锐二面角的余弦值的取值范围为1,2⎛ ⎝21.已知数列{}n a 满足11a =,()121n n a a n *+=+∈N .(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()()312111144441n n bb b b b n a n ----*=+∈N ,证明{}n b 是等差数列;(3)证明:()122311232n n n a a a nn a a a *+-<+++<∈N . 【答案】(1)21nn a =-(2)证明见解析 (3)证明见解析【分析】(1)推导出数列{}1n a +为等比数列,确定该数列的首项和公比,可求得数列{}n a 的通项公式; (2)由已知条件变形可得出()12322n n b b b b n nb ++++-=,令1n =可求得1b 的值,令2n ≥,由()12322n n b b b b n nb ++++-=可得()()()123112211n n b b b b n n b --++++--=-,两式作差结合等差中项法可证得结论成立;(114n b a --=)2n b ++-1b ,解得b )232n n b b b nb +++-=可得)1n b -++-上述两个等式作差可得(22n n b nb -=-)11n b --=-,故())11n n b b --, ,因此,数列{)解:122n n n a a +=1n n a a +++<(111211122122232nn n n a a ++-==≥--⋅所以,12221111116212322221n n n a a a n n a a a +- ⎛⎫⎝+++≥-+++=- ⎪⎝⎭-因此,对任意的N n *∈,122311232n n a a a n n a a a +-<+++<. 【点睛】关键点点睛:解本题的第(3)问的关键在于利用放缩法推导出和结合不等式进行推导,从而证得结论成立.22.双曲线2221(0)3x y C a a -=>:的左、右顶点分别为A ,B ,过点()2,0D 且垂直于x 轴的直线l 与该双曲线C交于点E ,F ,设直线EA 的斜率为1k ,直线FB 的斜率为212,1k k k ⋅=-. (1)求曲线C 的方程;(2)动点M ,N 在曲线C 上,已知点()2,1P -,直线PM ,PN 分别与y 轴相交的两点关于原点对称,点Q 在⊥,证明:存在定点T,使得QT为定值.直线MN上,PQ MN。
天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)
天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
人教版高二(理科)第一学期期末考试数学试题-含答案
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
福建省莆田第一中学2022-2023学年高二上学期期末考试数学试题
第 1 页共 4 页莆田一中2022-2023学年第一学期期末试卷高二数学第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知f (x )=alnx −12x 2+x ,且f ′(1)=3,则a =( )A .4B .3C .2D .12.直线l 1:ax +y −1=0,l 2:(a −2)x −ay +1=0,则“a =−2”是“12//l l ”的( )条件 A .必要不充分 B .充分不必要 C .充分必要D .既不充分也不必要3.已知圆的方程为2260x y x +−=,过点(1,2)的直线被该圆所截得的最短弦长为( ) A .1B .2C .3D .44.等差数列{a n }中,公差12d =,且1359960a a a a ++⋅⋅⋅+=,则123100a a a a +++⋅⋅⋅+=( ) A .145B .150C .170D .1205.在正项等比数列{a n }中,a 3、a 7是函数f (x )=13x 3−4x 2+4x −1的极值点,则a 5=( ) A .2−或2B .2−C.D .26.已知1F 、2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .47.已知8ln 6a =,7ln 7b =,6ln 8c =,则a 、b 、c 的大小关系为( ) A .b c a >> B .c b a >>C .a c b >>D .a b c >>第 2 页 共 4 页8.法国数学家加斯帕尔·蒙日发现:与椭圆22221(0)x y a b a b+=>>相切的两条互相垂直的直线的交点轨迹是以椭圆中心为圆心的圆2222x y a b +=+,我们通常把这个圆称为该椭圆的蒙日圆.若圆()22:()()4R C x a y a −+=∈上存在点P ,使得过点P 可作两条互相垂直的直线与椭圆2213x y +=相切,则实数a 的取值范围为( )A . []0,4B .[]4,4−C .[]0,2D . []22−,二、多选题:本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的. 全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列{}n a 的通项公式为a n =(−1)n ,n S 为数列{}n a 的前n 项和,则下列数列一定成等比的有( ) A .数列{}1n n a a ++ B .数列{}2n a C .232,,n n n n n S S S S S −−D .数列{}1n n a a +⋅10.任取一个正整数,若是奇数,将该数乘以3再加上1;若是偶数,将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1,这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等). 如:取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:数列{a n }满足:1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时.若a 2=m (m 为正整数),a 6=1,则m 所有可能的取值为( ) A .2B .5C .16D .3211.椭圆22:14x C y +=的左、右焦点分别为F 1、F 2,O 为坐标原点,则下列说法错误..的是( )A .过点2F 的直线与椭圆C 交于A ,B 两点,则△ABF 1的周长为4 B .椭圆C 的离心率为12C .P 为椭圆C 上一点,Q 为圆221x y +=上一点,则点P ,Q 的最大距离为3D .椭圆C 上不存在点P ,使得120PF PF ⋅=第 3 页共 4 页12.已知函数()2ln 2f x x x mx =−,则下列说法正确..的是( ) A .当0m ≤或12em =时,()f x 有且仅有一个零点 B .当0m ≤或14m =时,()f x 有且仅有一个极值点 C .若()f x 为单调递减函数,则14m > D .若()f x 与x 轴相切,则12em =第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l 经过点P (2,−2),其纵截距为正,且纵截距比橫截距大1,则直线l 的方程为 .14.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,过1F 且倾斜角为30的直线与过2F 的直线2l 交于P 点,1290F PF ∠=,且点P 在椭圆上.则椭圆C 的离心率=e __________.15.点P 是曲线x x y ln 2−=上任意一点,且点P 到直线y =x +a 的距离的最小值是√2,则实数a 的值是 .16.已知点(,)P m n 在圆22:(2)(2)9C x y −+−=上运动,则m +n 的最大值为 ,的取值范围为 .四、解答题:本题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(1) 已知圆22110C x y +=:与圆22222140C x y x y +++−=:.证明圆1C 与圆2C 相交;并求两圆公共弦所在直线的方程;(2) 求圆心既在第一象限又在直线3x −y =0上,与x 轴相切,且被直线x −y =0截得的弦长为2√7的圆的方程.第 4 页 共 4 页18.(12分) 设函数f(x)=x +ax 2+blnx ,曲线y =f(x)过点P(1,0),且在P 点处的切线斜率为2.(1) 求a 、b 的值; (2) 证明:f(x)≤2x -2.19.(12分) 设{}n a 是公比不为1的等比数列,1a 为2a 、3a 的等差中项.(1) 求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.20. (12分) 设首项为2的数列{}n a 的前n 项和为n S ,前n 项积为n T ,且满足_________. 条件①:111n n a a n n +=++; 条件②:23n nn S a +=; 条件③:12n n n n T a T n ++=. 请在以上三个条件中,选择一个补充在上面的横线处,并解答以下问题: (注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)求证:数列13n n S ⎧⎫+⎨⎬⎩⎭的前n 项和34nM <. (参考公式....:22221123(1)(21)6n n n n ++++=++)21.(12分) 已知点A(−2,0)、B(2,0),动点M(x,y)满足直线AM 与BM 的斜率之积为43−.记M 的轨迹为曲线C .(1) 求C 的方程,并说明C 是什么曲线;(2) 经过点P(−1,0)的直线l 与曲线C 交于C 、D 两点. 记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1−S 2|的最大值.22.(12分) 已知函数()e 1,R x f x ax a =−−∈. (1)求函数()f x 的极值;(2)若1是关于x 的方程()()2R f x bx b =∈的根,且方程2()f x bx =在(0,1)上有实根,求b 的取值范围.莆田一中2022-2023学年第一学期期末考试高二数学姓名: 班级: 考场/座位号:正确填涂缺考标记注意事项1.答题前请将姓名、班级、考场、准考证号填写清楚。
山东省潍坊市诸城市2022高二数学上学期期末考试试题(含解析)
∴ ,
∴x+y=(x+y)( )=5+ ≥5+2 =9,当且仅当x=2y取等号,结合x+4y=xy,
解得x=6,y=3
∴x+y的最小值为9,
故答案为A.
【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.
A. B. C.1D.0
【答案】C
【解析】
【分析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.
【详解】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,
故答案为 或 .
【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出 ,代入公式 ;②只需要根据一个条件得到关于 的齐次式,结合 转化为 的齐次式,然后等式(不等式)两边分别除以 或 转化为关于 的方程(不等式),解方程(不等式)即可得 ( 的取值范围).
16.若函数 对于 时,恒有 ,则实数 的取值范围是_____.
【详解】(1)设 为等比数列 的公比,则由 , ,
得 ,即 ,解得 或 (舍去),因此 ,
所以 的通项公式为 ;
(2)∵ 是首项为1,且 ,
所以数列 是公差为2的等差数列,
∴ ,
∴
【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知 和 的关系,求 表达式,一般是写出 做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.
广东省中山市中山纪念中学2022-2023学年高二上学期数学期末考试试卷
中山纪念中学2022-2023学年高二上学期期末考考试题数学试卷本试卷满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x =tan60°的倾斜角为( ) A .30°B .60°C .90°D .不存在2.已知向量 a ⃗=(1,1,0),b ⃗⃗=(−1,0,2),且 ka ⃗+b ⃗⃗⃗⃗与 a ⃗−b ⃗⃗⃗⃗互相平行,则实数 k 的值为( ) A .-2B .2C .1D .-13.已知等差数列{}n a 的前n 项和为n S ,若22,6n n S S ==,则4n S =( ) A .8B .12C .14D .204.某班有包括甲、乙在内的4名学生到2个农场参加劳动实践活动,且每个学生只能到一个农场,每个农场2名学生.则甲、乙两名学生被安排在不同农场的概率为( ) A .13B .12C .23D .345.已知{}n a 是等比数列, a 8 ,a 16 是()21614f x x x =++的两个不同零点,则618420816a a a a a a +=( ) A .16 B .16− C .14 D .14−6. 设 e 1,e 2,e 3为空间的三个不同向量,如果 λ1e 1+λ2e 2+λ3e 3=0 成立的等价条件为 λ1=λ2=λ3=0, 则称 e 1,e 2,e 3 线性无关,否则称它们线性相关.若 a =(2,1,−3) ,b =(1,0,2) ,c =(1,−1,m) 线性相关,则 m = ( ) A . 3B .5C . 7D . 97.双曲线2221(0)16x y a a −=>的一条渐近线方程为124,,3y x F F =分别为该双曲线的左右焦点,M 为双曲线上的一点,则2116MF MF +的最小值为( ) A .2B .4C .8D .128.如图,在棱长为1的正方体1111ABCD A B C D −中,P 为棱1BB 的中点,Q 为正方形11BB C C 内一动点(含边界),则下列说法中不正确...的是( )A .若1//D Q 平面1A PD ,则动点Q 的轨迹是一条线段B .存在Q 点,使得1D Q ⊥平面1A PDD . 当且仅当Q 点落在棱1CC 上某点处时,三棱锥1Q A PD −的体积最大D .若1D Q Q 点的轨迹长度为4二、选择题:本大题共4小题,每小题5分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.点(1,1)M 到抛物线2y ax =的准线的距离为2,则 a 的值可以为( )A .14B .112−C .112 D .14−10.等差数列{a n }的前n 项和为 S n ,若 a 1>0,公差 d ≠0,则( ) A .若 S 5>S 9,则 S 15>0 B .若 S 5=S 9,则 S 7 是 S n 中最大的项 C .若 S 6>S 7, 则 S 7>S 8D .若 S 6>S 7则S 5>S 6.11.如图,椭圆1C 与椭圆2C 有公共的左顶点和左焦点,且椭圆2C 的右顶点为椭圆1C 的中心,设椭圆1C与椭圆2C 的长半轴长分别为1a 和2a ,半焦距分别为1c 和2c ,离心率分别为1e 和2e ,则以下结论中正确的是( )A .2121e e =−B .1221a c a c >C .1221a c a c +=+D .122122a c a c −>−12.若数列{}n a 满足()*12121,1,3,n n n a a a a a n n N −−===+≥∈,则称数列{}n a 为斐波那契数列,斐波那契数列被誉为是最美的数列.则下列关于斐波那契数列结论正确的是( ) A .12321n n a a a a a +++++=− B .202020202021S a a =+ C .135********a a a a a ++++= D .24620202021a a a a a ++++>第 II 卷(非选择题 共90分)三、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位 置上.答错位置,书写不清,模棱两可均不得分.13.在我市今年高三年级期中联合考试中,某校数学单科前10名的学生成绩依次是:143,140,144,142,142,145,148,147,147,150,这10名同学数学成绩的 60% 分位数是___________.14.直线 l:y =x +b 将单位圆 C:x 2+y 2=1分成长度 1:2 的两段弧,则 b =____ __. 15.已知定点(,0)(0)A a a >到椭圆22194x y +=上的点的距离的最小值为1,则 a 的值为___________. 16.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E (如右图)是由椭圆C 1:216x + 24y = 1和双曲线C 2:29x - 23y =1在y 轴右侧的一部分(实线)围成.光线从椭圆C 1上一点P 0出发,经过点F 2,然后在曲线E 内多次反射,反射点依次为P 1,P 2,P 3,P 4,…,若P 0 ,P 4重合,则光线从P 0到P 4所经过的路程为 _________ .四、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)在平面直角坐标系xOy 中,点A 的坐标为()1,1−−,动点P 满足PO PA = (1)求动点P 的轨迹C 的方程(2)若直线l 过点()4,1Q −且与轨迹C 相切,求直线l 的方程.18.(本小题满分12分)如图,在四棱锥P ABCD −中,CD ⊥平面PAD ,∆PAD 为等边三角形,AD BC ∥,22AD CD BC ===,E ,F 分别为棱PD ,PB 的中点.(1)求证:⊥AE 平面PCD ;(2)求平面AEF 与平面PAD 夹角的余弦值;(3)在棱PC 上是否存在点G ,使得DG ∥平面AEF ?若存在,求直线DG 与平面AEF 的距离;若不存在,说明理由.19. (本小题满分12分) 在平面直角坐标系xOy 中,抛物线C :()20y ax a =>的焦点F 到其准线的距离为2,直线l 过点()0,1P 且与C 交于A B 、两点. (1)求a 的值及直线l 的斜率的取值范围; (2)若8AF BF +=,求直线l 的方程.20.(本小题满分12分)近年来,“直播带货”受到越来越多人的喜爱,目前已经成为推动消费的一种主流经济形式.某直播平台对平台内800个直播商家进行调查统计,发现所售商品多为小吃、衣帽、果蔬、玩具、饰品类等,各类直播商家所占比例如图.(1)该直播平台为了更好地服务买卖双方,打算随机抽取40个直播商家进行问询交流.如果按照分层抽样的方式抽取,则应抽取小吃类、玩具类商家各多少家?(2)在问询了解直播商家的利润状况时,工作人员对抽取的40个商家的平均日利润进行了统计(单位:元),并将平均日利润超过300元的商家称为“优秀商家”,所得频率直方图如图所示.(i )请根据频率直方图计算抽取的商家中“优秀商家”个数,并以此估计该直播平台“优秀商家”的个数;(ii )若从抽取的“优秀商家”中随机邀请两个商家分享经验,求邀请到的商家来自不同平均日利润组别的概率.21.(本小题满分12分)正项数列{}n a 的前n 项和为n S ,其中 ()()212,4142,N n n a S a n n *==++≥∈.(1)求{}n a 的通项公式,并判断{}n a 是否是等差数列,说明理由; (2)证明:当2n ≥时,1223341111113n n a a a a a a a a +++++<.22.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b +=>>的焦距为2c ,左右焦点分别为1F 、2F ,圆221:()1F x c y ++=与圆222:()9F x c y −+=相交,且交点在椭圆E 上,直线:l y x m =+与椭圆E 交于A 、B两点,且线段AB 的中点为M ,直线OM 的斜率为14−.(1)求椭圆E 的方程;(2)若1m =,试问E 上是否存在P 、Q 两点关于l 对称,若存在,求出直线PQ 的方程,若不存在,请说明理由。
浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
甘肃省兰州市等2地2022-2023学年高二上学期期末考试数学试题及答案
兰州、金昌两地联考2022-2023学年度第一学期期末考试试卷高二数学(答案在最后)第Ⅰ卷(选择题)一、选择题(每题5分,共60分)1.已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=1,则a 1=( ) A.12 B .2 C. 2 D .22【答案】D2.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .14【答案】B3.已知点,,则A ,B 两点间的距离为( )A .B .C .D .【答案】B4.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-= 【答案】D5.设点A 在x 轴上,点B 在y 轴上,AB 的中点是(21)P -,,则AB 等于( )A .5B .2C .5D .10【答案】C6.经过两点A (-2,5)、B (1,-4)的直线l 与x 轴的交点的坐标是 ( )A .(-13,0) B .(-3,0) C .(13,0) D .(3,0)【答案】A7.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( )A .[0,1)B .(0,1)C .(-1,1) D.⎝ ⎛⎭⎪⎫0,12【答案】B8.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为() A.13 B.12 C.23 D .1【答案】A9.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断【答案】B10.圆()2211x y -+=的圆心到直线y x =的距离是( )A .12BC .1D 【答案】A11.“3a =”是“直线230ax y a ++=和直线3(1)(7)0x a y a +---=平行且不重合”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【答案】C12.已知抛物线22(0)y px p =>上一点M 到其准线及对称轴的距离分别为3和,则p =( )A .2B .2或4C .1或2D .1【答案】B 第Ⅱ卷(非选择题)二、填空题(每题5分,共20分)13.曲线y =x e x -1在点(1,1)处切线的斜率为________.【答案】:214.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =________.【答案】1215.已知点M (5,3)和点N (-3,2),若直线PM 和PN 的斜率分别为2和-74,则点P 的坐标为________. 【答案】(1,-5)16.已知等比数列{a n }中,a 3=3,a 10=384,则a 4=________.【答案】6 三、解答题17.全科试题免费下载公众号《高中僧课堂》(本题10分)求连接下列两点的线段的长度和中点坐标:(1)()()7,4,3,2A B ;(2)()()3,1,2,1M N ;【解析】 (1)AB ==()7342,5,322++⎛⎫= ⎪⎝⎭.(2)22101MN =+=,中点坐标32115,,1222++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 18.(本题12分)设曲线y =e -x (x ≥0)在点M (t ,e -t )处的切线l 与x 轴,y 轴围成的三角形面积为S (t ).(1)求切线l 的方程;(2)求S (t )的解析式.【答案】(1)x +e t y -(t +1)=0.(2)S (t )=12(t +1)·e -t (t +1)=12(t +1)2e -t (t ≥0). 19.(本题12分)已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *).(1)求a 2,a 3;(2)求数列{a n }的通项公式a n .【答案】(1)6,20.(3)a n =⎝ ⎛⎭⎪⎫n -12·2n . 20.(本题12分)已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.【答案】3x +y +2=0.(2)(x -2)2+y 2=8.21.(本题12分)在平面直角坐标系xOy 中,平面上的动点P 到点()1,0F 的距离与它到直线1x=-的距离相等.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与点P 的轨迹C 交于两个不同点A 、B .若点()0,1E ,且EA EB ⊥,求直线l 的方程.【答案】(1)24y x =;(2)220x y +-=.22.(本题12分)已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎪⎫1,m +12上是单调函数,求实数m 的取值范围. 【答案】(1)f (x )=6ln x +x 2-8x +2.(2)⎝ ⎛⎦⎥⎤12,52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学第一学期期末考试复习卷之一
一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 要求的.)
1、命题“若b a >,则c b c a +>+”的逆否命题为( )
A .若b a <,则c b c a +<+.
B .若b a ≤,则c b c a +≤+.
C .若c b c a +<+,则b a <.
D .若c b c a +≤+,则b a ≤. 2、抛物线2y x =的焦点坐标是( ) A .()1,0 B .1,04⎛⎫
⎪⎝⎭
C .10,8⎛⎫
⎪⎝⎭
D .10,4⎛
⎫ ⎪⎝⎭
3、空间三条平行直线可以确定的平面个数是( )
A. 1
B. 2
C. 3
D. 1或3
4、,,A B C 是三个集合,那么“B A =”是“A C B C = ”成立的( )
A .充分非必要条件.
B .必要非充分条件.
C .充要条件.
D .既非充分也非必要条件.
5、若椭圆22
110036
x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) A .4 B .194 C .94 D .14 6、圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )
A .1个
B .2个
C .3个
D .4个
7、正方体1111ABCD A BC D -中,1BB 与平面1ACD 所成角的余弦值为 ( )
A.
C.23
8、直线3y kx =+与圆2
2
(3)(2)4x y -+-=相交于,M N 两点,若MN ≥则k 的取值范围是( )
A. 3,04⎡⎤
-⎢⎥⎣⎦
B.
[)3,0,4⎛⎤-∞-+∞ ⎥⎝⎦ C. ⎛ ⎝⎭
D. 2,03⎡⎤
-⎢⎥⎣⎦
9、已知集合{}
18,P x x x Z =≤≤∈,直线21y x =+与双曲线22
1mx ny -=有且只有一个公
共点,其中,m n P ∈,则满足上述条件的双曲线共有( )
A. 1个
B. 2个
C. 3个
D. 4个 10、 如图,在正三棱柱(底面是正三角形,侧棱垂直于底面的三棱柱)
中,11AB AA ==,若点P 在平面ABC 内运动,使得△1AC P 的面积为
2
1
,则动点P 的轨迹是( ) A .圆
B .椭圆
C .双曲线
D .抛物线
11、已知:点()2,3-与抛物线22(0)y px p =>的焦点的距离是5,则
p 的值____
12、设m 是常数,若(0,5)F 是双曲线
22
19
y x m -=的一个焦点,则m =___ _______ 13、已知动点P 在曲线220x y -=上移动,则点(0,1)A -与点P 连线中点的轨迹方程是________________
14、 直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A 、B ,弦AB 的中点为(0,1),则直线l 的方程为_________________
15、若直线l 过抛物线()2
0y ax a =>的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长
为4,则a =_____.
16、过双曲线822=-y x 的右焦点2F 有一条弦PQ ,7PQ =,1F 是左焦点,那么1F PQ ∆的周长为___ _______.
17、矩形ABCD 中, 3,4AB BC ==,沿对角线BD 将ABD ∆折起,使A 点在平面BCD 内的射影落在BC 边上,若二面角C AB D --的平面角大小为θ,则sin θ的值为_______________ 18、已知命题P :“若,0≥ac 则二次方程02
=++c bx ax 没有实根”. (1)写出命题P 的否命题;
(2)判断命题P 的否命题的真假, 并证明你的结论.
1
19、已知过抛物线22(0)y px p =>
的焦点,斜率为的直线交抛物线于11(,)A x y ,
22(,)B x y 12()x x <两点,且9AB =. (1)求该抛物线的方程;
(2)O 为坐标原点,是否存在平行于OB 的直线l ,使得直线l 与抛物线有公共点,且直线OB 与
l
l 的方程;若不存在,说明理由.
20、在如图所示的几何体中,四边形ABCD 为平行四边形,
45,ABC ∠=
2AB AC AE EF ===,EA ⊥平面ABCD ,
EF ∥AB ,FG ∥BC ,EG ∥AC .
(1)若M 是线段AD 的中点,求证:GM ∥平面ABFE ; (2)求二面角A BF C --的余弦值.
M
C
B
A
D
G
F
E
21、已知椭圆22a x +2
b y = l(a>b>0)与直线x+y-l=0相交于两点A 、B
(1)当椭圆的半焦距C=1,且2
a ,2
b ,2
c 成等差数列时,求椭圆的方程; (2)在(1)的条件下,求弦AB 的长度|AB |; (3)当椭圆的离心率e 满足33
≤e ≤
2
2时,且0=⋅(0为坐标原点)时,求髓圆长
轴的取值范围。