2018-2019学年九年级数学上册 第25章 概率初步 25.1 随机事件与概率 25.1.2 概率测试题 (新版)新人教版

合集下载

九年级数学上册第25章概率初步25.1随机事件与概率25.1.1随机事件件新版新人教版

九年级数学上册第25章概率初步25.1随机事件与概率25.1.1随机事件件新版新人教版

分层作业
1.[2017· 沈阳] 下列事件中,是必然事件的是( A ) A.将油滴入水中,油会浮在水面上 B.车辆随机到达一个路口,遇到红灯 C.如果 a2=b2,那么 a=b D.掷一枚质地均匀的硬币,一定正面向上
2.[2017· 长沙] 下列说法正确的是( D ) A.检测某批次灯泡的使用寿命,适宜用全面调查 B.可能性是 1%的事件在一次试验中一定不会发生 C.数据 3,5,4,1,-2 的中位数是 4 D.“367 人中有 2 人同月同日出生”为必然事件
随机事件
6.图 2513 是几个转盘,若分别用它们做转盘游戏,你认为每个转盘转 出黄色和绿色的可能性相同吗?
图 2513
解: (1)不同,绿色可能性大;(2)相同;(3)相同;(4)不同,绿色可能性大.
7.如图 2514 所示,在一长方形内有对角线长分别为 2 和 3 的菱形,边 长为 1 的正六边形和半径为 1 的圆,则一点随机落在这三个图形内的可能性较 大的是( B ) A.落在菱形内 C.落在正六边形内 B.落在圆内 D.一样大
【点悟】 在各种不同的情况下,对问题进行全面思考,再辨析事件是必然 事件,不可能事件或随机事件.
类型之二 分析随机事件的可能性大小 [2016· 灌云月考] 图 2511 中第一排表示了十张扑克牌的不同情况, 任意摸一张,请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用 线连起来.
图25-1-1
(4)从口袋中取出的 6 个球中,如果是 3 个红球,2 个蓝球,1 个白球,则 红、蓝、白三种颜色的球都齐了,但如果是 5 个红球,1 个蓝球这一类情况, 则红、蓝、白三种颜色的球就没有齐,所以这种情况是随机事件; (5)因为口袋中共有 10 个球,从中取出 9 个球,只有 1 个球没有取出,这 1 个球是红、蓝、白三种颜色的球都有可能,而这三种球中任意一种球如果只有 1 个没有取出,则必然有球已取出,故取出的球中红、蓝、白三种颜色的球都 有,所以这种情况是必然事件.

第25章《概率初步》教案

第25章《概率初步》教案
教学目标 教学重点 教学难点
25.1.1 随机事件 1 通过对生活中各种事件的判断,归纳出必然事件,不可能事件 和随机事件的特点, 并根据这些特点对有关事件作出准确判断。 随机事件的特点 对生活中的随机事件作出准确判断 课 堂 教 学 程 序 设 计 讨论完善
一、创设情境,引入 1.问题情境 下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是 100℃; (3)a2+b2=-1(其中 a,b 都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; (7)一元二次方程 x2+2x+3=0 无实数解。 2.引发思考 我们把上面的事件(1) 、 (4) 、 (5) 、 (7)称为必然事件, 把事件(2) 、 (3) 、 (6)称为不可能事件,那么请问:什么是 必然事件?什么又是不可能事件呢?它们的特点各是什么? 二、引导两个活动,自主探索新知 活动 1:5 名同学参加演讲比赛,以抽签方式决定每个人 的出场顺序。签筒中有 5 根形状大小相同的纸签,上面分别 标有出场的序号 1,2,3,4,5。小军首先抽签,他在看不 到的纸签上的数字的情况从签筒中随机(任意)地取一根纸 签。请考虑以下问题: (1)抽到的序号是 0,可能吗?这是什么事件? (2)抽到的序号小于 6,可能吗?这是什么事件? (3)抽到的序号是 1,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗? 根据学生回答的具体情况,教师适当地加点拔和引导。 活动 2:小伟掷一个质地均匀的正方形骰子,骰子的六 个面上分别刻有 1 至 6 的点数。请考虑以下问题,掷一次骰 子,观察骰子向上的一面:
第二十五章 概率初步第 3 页
得到结果 2 的组数
4、进行大量重复试验,验证猜测的正确性。 教师请同学们进行 400 次重复的“摸球”试验,教师提 问: 如果把刚才各小组的 20 次 “摸球”合并在一起是否等同 于 400 次“摸球”?这样做会不会影响试验的正确性? 待学生回答后,教师把结果统计在表中。 事件 A 发生的次数 事件 B 发生的次数 400 次摸球 5、对表中的数据进行分析,得出结论。 提问:通过上述试验,你认为,要判断同一试验中哪个 事件发生可能性的较大,必须怎么做? 先让学生回答,回答时教师注意纠正学生的不准确的用 语,最后由教师总结:要判断随机事件发生的可能性大小, 必须经过大量重复试验。 6、对试验结果作定性分析。 在经过大量重复摸球以后,我们可以确定,事件 A 发生 的可能性大于事件 B 发生的可能性,请同学们分析一下其原 因是什么? 三、练习反馈 1、一个袋子里装有 20 个形状、质地、大小一样的球, 其中 4 个白球,2 个红球,3 个黑球,其它都是黄球,从中任 摸一个,摸中哪种球的可能性最大? 2、一个人随意翻书三次,三次都翻到了偶数页,我们能 否说翻到偶数页的可能性就大? 3、袋子里装有红、白两种颜色的小球,质地、大小、形 状一样,小明从中随机摸出一个球,然后放回,如果小明 5 次摸到红球,能否断定袋子里红球的数量比白球多?怎样做 才能判断哪种颜色的球数量较多? 4、已知地球表面陆地面积与海洋面积的比均为 3:7。 如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落 在陆地上”哪个可能性更大? 四、小结 作业设计 教 学 反 思

九年级数学上册第25章概率初步25.1随机事件与概率25.1.1随机事件课件(新版)新人教版

九年级数学上册第25章概率初步25.1随机事件与概率25.1.1随机事件课件(新版)新人教版

讲授新课
一 必然事件、不可能事件和随机事件
互动探究
活动1 掷一枚质地均匀的骰子,骰子的六个面上 分别刻有1到6的点数.请思考以下问题:掷一次骰 子,在骰子向上的一面:
(1)可能出现哪些点数? 1点,2点,3点,4点,5点,6点,共6种 (2)出现的点数是7,可能发生吗? 不可能发生 (3)出现的点数大于0,可能发生吗? 一定会发生 (4)出现的点数是4,可能发生吗? 可能发生,也可能不发生
一定会发生
一定不会发生
可能发生, 也可 能不发生
概念学习
在一定条件下,事先知道其一定会发生的事
件叫作必然事件. 一定不会发生的事件叫作不可能事件. 无法确定在一次试验中会不会发生的事件叫 作随机事件.
不可能事件 确定性事件 必然事件 随机事件 一般用大写字母A, B,C,· · · 表示.
事件
小游戏(点击下图红色圆形按钮操作)
性从小到大的顺序排列:②<③<①<④ ____________.
例3 一个不透明的口袋中有7个红球,5个黄球,4
个绿球,这些球除颜色外没有其它区别,现从中任
意摸出一球,如果要使摸到绿球的可能性最大,需 要在这个口袋中至少再放入多少个绿球?请简要说 明理由.
解:至少再放入4个绿球. 理由:袋中有绿球4个,再至少放入4个绿球
活动2:摸球游戏 (1)小明从盒中任意摸出一球,一定能摸到红球吗?
(2)小麦从盒中摸出的球一定是白球吗? (3)小米从盒中摸出的球一定是红球吗?
(4)三人每次都能摸到红球吗?
可能发生, 也 可能不发生
必然不会发生
必然发生
试分析:“从如下一堆牌中任意抽一张牌,可以事先 知道抽到红牌的发生情况”吗?
2.如果袋子中有4个黑球和x个白球,从袋子中随机摸 出一个,“摸出白球”与“摸出黑球”的可能性相 同,则x= 4 .

人教版九年级数学上第25章概率初步25.1.1随机事件教案

人教版九年级数学上第25章概率初步25.1.1随机事件教案
-概率计算的方法:学生在列举所有可能结果时可能会出现遗漏或重复,导致计算错误。
-解决方法:教师指导学生采用有序列举的方法,如画树状图或列表,确保结果不遗漏、不重复。
-实际问题的概率应用:将概率知识应用于解决实际问题,学生可能会感到难以入手。
-解决方法:通过设置真实的情境,引导学生分析问题结构,将实际问题转化为数学模型,再进行概率计算。
实践活动环节,同学们分组讨论和实验操作都进行得很顺利。我注意到,通过实际操作,大家更容易理解概率的计算过程,这也说明了动手实践在数学教学中的重要性。
不过,我也注意到在小组讨论中,有些同学还不够积极主动,可能是因为对主题不够感兴趣,或者是对自己的观点不够自信。在之后的课程中,我需要思考如何更好地激发这些同学的积极性,鼓励他们大胆表达自己的看法。
-例如:设计一个关于彩票中奖概率的问题,让学生了解如何将实际问题转化为概率计算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《随机事件》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过一些不确定的事情?”比如抛硬币、抽签等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索随机事件的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“随机事件在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

人教版九年级数学上册《25章 概率初步 25.1 随机事件与概率 概率

人教版九年级数学上册《25章 概率初步 25.1 随机事件与概率 概率

人教版九年级数学上册《25章概率初步 25.1 随机事件与概率概率人教版九年级数学上册《25章概率初步25.1随机事件与概率概率25.1.2概率教学设计教学目标知识技能:1.理解什么是随机事件的概率,并认识到概率是反映随机事件概率的数量。

2.理解“事件a发生的概率是p(a)=(在一次试验中有n种等可能的结果,其中事件a包含m种)”的求概率的方法,并能求出简单问题的概率。

过程和方法:经过实验操作、观察、思考和总结,理解随机事件概率的定义,掌握概率的计算方法。

情感态度和价值观:理解概率的含义,渗透辩证思维,感受数学与现实生活的联系,实现数学在现实生活中的应用价值。

教学重点:随机事件的概率的定义;“事件a发生的概率是p(a)=(在一次试验中有n种等可能的结果,其中事件a包含m种)”求概率的方法及运用。

教学难度:理解P(a)=n并运用。

教学过程设计:一、回顾与介绍(一)上节课我们学习了那些知识?1.不可避免的事件:在一定条件下必然发生的事件。

2.不可能事件:在特定条件下不会发生的事件。

3、随机事件:在一定条件下,可能会发生,也可能不发生的事件.也成为不确定性事件。

(二)、判断下列事件中哪些事件是必然事件?哪些是不可能事件?哪些事件是随机事件?(学生举手回答)。

1.铅球会落下。

2.运动员在100米赛跑中的成绩是2秒。

23.购买电影票的座位号为订单号。

4.X+1是一个正数。

5、投掷硬币时,国徽朝上。

6、直线y=kx+1过定点(-1,0)7、打开电视机,正在播广告。

8、明天的太阳从西方升起来。

(设计意图:通过复习旧知,唤起学生学习新知的欲望)二、情境引入,探索新知通过回顾不可避免事件、不可能事件和随机事件的定义,列出现实生活中的随机事件,我们觉得随机事件的概率是不同的。

在相同的条件下,随机事件可能会发生,也可能不会发生。

发生的可能性有多大?我们能用数值来描述它吗?(引导话题:如何计算概率和其他可能事件的概率)老师首先解释概率的含义和概率的定义。

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件新版新人教版_397

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件新版新人教版_397
第二十五章
概率初步
25.1 随机事件与概率
25.1.2 概 率
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.理解一个事件概率的意义. 2.会在具体情境中求出一个事件的概率.(重点) 3.会进行简单的概率计算及应用.(难点)
导入新课
视频引入
视频中的游戏公平吗?为什么?
讲授新课
一 概率的定义及适用对象
的概率,记为P(A).
例如 :“抽到1”事件的概率:P(抽到1)=
1 . 5
想一想 “抽到奇数”事件的概率是多少呢?
二 简单概率的计算
互动探究
试验1:抛掷一个质地均匀的骰子 (1)它落地时向上的点数有几种可能的结果? (2)各点数出现的可能性会相等吗?
相等 6种
1 (3)试猜想:各点数出现的可能性大小是多少? 6
解:A区域的方格总共有8个,标号3表示在这8个方 格中有3个方格各藏有1颗地雷.因此,点击A区域的任 3 一方格,遇到地雷的概率是 ; 8 B区域方格数为9×9-9=72.其中有地雷的方格数 为10-3=7.因此,点击B区域的任一方格,遇到地雷
7 的概率是 72
;
3 7 由于 8 > 72 ,即点击A区域遇到地雷的可能 性大于点击B区域遇到地雷的可能性,因而第
活动2 掷一枚骰子,向上一面的点数有6种可能,即 1,2,3,4,5,6. 因为骰子形状规则、质地均匀,又是随机 掷出,所以每种点数出现的可能性大小相 等.我们用 性大小.
1 6
表示每一种点数出现的可能
概率的定义 一般地,对于一个随机事件A,我们把刻画其
发生可能性大小的数值,称为随机事件A发生
(2)指向红色或黄色;
(3)不指向红色.

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1 随机事件与概率25.1.1 随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1 掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2 摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1 有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是( )A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它( )A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D 解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2 一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件(新版)新人教版

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件(新版)新人教版

事件发生的可能性越来越小
0 不可能事件
1 事件发生的可能性越来越大
概率的值
必然事件
典例精析
例1 掷一枚质地均匀的骰子,观察向上一面的点 数,求下列事件的概率: (1)点数为 2; (2)点数为奇数; (3)点数大于 2 且小于 5. 口头做答 ↓ 看课本131页规范步骤
典例精析
例2 如图是一个可以自由转动的转盘,转盘分成 7个大小相同的扇形,颜色分为红、 绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指 针所指的位置(指针指向两个扇形的交线 时,当作指向右边的扇形).求下列事件的 概率: (1)指针指向红色; 红 (2)指针指向红色或黄色; 绿 (3)指针不指向红色. 绿 独立书写答案 红 ↓ 黄 黄 红 对比课本132页步骤 ↓ 把(1)、(3)两问及答案联系起来,你有什么发现?同桌互说
典例精析
例3 如图是计算机中“扫雷”游戏的画面.在一个有 9×9 个方格的正方形雷区中, 随机埋藏着 10颗地雷,每个方格内最多只能埋藏 1 颗地雷. 小王在游戏开始时随机地点击一个方格,点击后出现 了如图所示的情况.我们把与标号 3 的方格相邻的方格记为 A 区域(画线部分),A 区域外的部分记为 B 区域.数字 3 表示在 A 区域埋藏有 3 颗地雷. 下一步应该点击 A 区域 还是 B 区域?
对于具有上述特点的试验,如何求某事件的概率? 一般地,如果在一次试验中,有 n 种可能的结果, 并且它们发生的可能性都相等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= .
2 P(抽到偶数) 5
m n
如何求等可能事件概率
追问1:根据上述求概率的方法,事件 A 发生的概率 0≤ P(A) ≤1 . 取值范围是怎样的?

九上数学第25章《概率初步》全章教案

九上数学第25章《概率初步》全章教案

第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。

人教版数学九年级上册第25章-概率初步(教案)

人教版数学九年级上册第25章-概率初步(教案)
概率的性质
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。

2018-2019学年九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1

2018-2019学年九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1
3.“向上抛掷两枚硬币,落地后正面都向上”这一事件是( C ) A.必然事件 B.不可能事件 C.随机事件 D.以上都对 4.在一个袋子中装有10个红球,2个黄球,每个球除颜色外无其他 差别,充分搅匀后,摸到 红 球可能性较大.
对“随机事件”等概念的理解 【例】 判断下列事件中,哪些是确定性事件,哪些是随机事件?说 明理由. (1)随意翻一下日历,翻到的是星期六; (2)由今天的天气情况分析明天一定不会下雨; (3)小明和小亮随意各写一个有理数,这两个数的平方和为正数; (4)任意画两条相交直线,所得的对顶角相等. 分析这类问题要联系已学知识或实际情况,分析事件发生的可能 性大小, 根据确定性事件与随机事件的概念进行识别.
解:(1)是随机事件,因为随意翻到的还有可能是从星期日到星期 五的某一天.
(2)是随机事件,虽然根据经验,结合今天的天气情况可以预测明 天的天气,但只是预测,不一定准确.
(3)是随机事件,当两个人都写的是0时,两个数的平方和仍为0,不 是正数.
(4)是确定性事件,因为对顶角相等是已经证明了的数学事实. 点拨判断事件是确定性事件,还是随机事件的关键是看事情是否 一定发生或一定不发生,还是有可能发生.
第二十五章 概率初步
25.1 随机事件与概率
25.1.1 随机事件
1.在一定条件下,有些事件必然会发生,这样的事件称 为 必然事件 .相反地,有些事件必然不会发生,这样的事件称 为 不可能事件 . 必然事件 与 不可能事件 统称确定性事件.
2.在一定条件下,可能发生也可能不发生的事件,称为 随机事件 . 一般地, 随机事件 发生的可能性是有大小的.
关闭
(1)随机事件,因为明天可能刮南风,也可能刮北风等其他方向的风. (2)不可能事件,因为任何有理数的平方均是一个非负数. (3)必然事件,因为地球有引力,所以掷出的标枪会落地. (4)必然事件,因为这是一个肯定的正确事件.

2019最新九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件教案

2019最新九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件教案

25.1.1 随机事件01 教学目标1.理解必然事件、不可能事件和随机事件的特点,并会判断.2.了解和体会随机事件发生的可能性是有大小的.02 预习反馈1.在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.2.在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.下列事件:①打开电视正在播放电视剧;②投掷一枚普通的骰子,掷得的点数小于9;③射击运动员射击一次,命中10环;④在一个只装有红球的袋中摸出白球.其中必然事件有②,不可能事件有④,随机事件有①③.4.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性>摸到K的可能性.(填“<”“>”或“=”)03 新课讲授类型1 事件的分类例1(教材P127问题1变式)五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个大小相同的签,每个签上面分别标有表示出场顺序的数字1,2,3,4,5,在看不到数字的情况下,小军先抽,他任意(随机)从盒中抽取一个签.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字大于0吗?是什么事件?(3)抽到的数字会是6吗?是什么事件?(4)抽到的数字会是3吗?是什么事件?【解答】(1)1,2,3,4,5,共5种.(2)必然大于0;是必然事件.(3)不可能是6;是不可能事件.(4)可能是3,也可能不是3;是随机事件.思考:确定性事件和随机事件的特点各是什么呢?确定性事件:在发生之前可以预测结果.随机事件:事先不能预料事件是否发生,即事件的发生具有不确定性.【跟踪训练1】下列事件中,是必然事件的是(B)A.购买一张彩票,中奖B.通常温度降到0 ℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【跟踪训练2】不透明的口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是(C)A.随机摸出1个球,是白球B.随机摸出2个球,都是黄球C.随机摸出1个球,是红球D.随机摸出1个球,是红球或黄球类型2 事件发生的可能性大小例2(教材P129练习2变式)一只不透明的袋子中有2个红球,3个绿球和5个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(3)能否通过改变某种颜色球的数量,使“摸到红球”和“摸到白球”的可能性大小相同?【解答】(1)从袋子中任意摸出一个球,可能是红球,也可能是绿球或白球.(2)∵白球最多,红球最少,∴摸到白球的可能性最大,摸到红球的可能性最小.(3)拿出3个白球,或放入3个红球即可.思考:我们如何比较随机事件发生的可能性大小呢?事件发生的可能性大小往往是由发生事件的条件来决定的,因此我们可以通过比较各事件发生的条件及其对事件发生的影响来比较事件发生的可能性大小.【跟踪训练3】(25.1.1练习)如图,一个任意转动的转盘被均匀分成六份,随意转动一次,停止后指针落在阴影部分的可能性比指针落在非阴影部分的可能性(A)A.大B.小C.相等D.不能确定04 巩固训练1.下列事件是必然事件的是(D)A.打开手机就有未接电话B.乘坐公共汽车恰好有空座C.明天会下雨D.将油滴入水中,油会浮在水面上2.下列事件中,不可能事件是(C)A.两点确定一条直线B.五边形的内角和为540°C.实数的绝对值小于0D.如果a2=b2,那么a=b3.下列事件中,是随机事件的为(B)A.水涨船高B.冬天下雪C.水中捞月D.冬去春来4.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).5.一个袋中装有10个红球,6个黄球,4个白球,每个球除颜色外都相同,搅匀后,任意摸出一个球,摸到红球的可能性最大.05 课堂小结事件⎩⎪⎨⎪⎧确定性事件⎩⎪⎨⎪⎧必然事件不可能事件随机事件随机事件的特点:(1)事先不能预料事件是否发生,即事件的发生具有不确定性;(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.。

九年级数学上册 第25章 概率初步 25.1 随机事件与概率 25.1.1 随机事件

九年级数学上册 第25章 概率初步 25.1 随机事件与概率 25.1.1 随机事件
第十二页,共二十五页。

分层作业
1.[2017·沈阳]下列事件中,是必然事件的是( A ) A.将油滴入水中,油会浮在水面上 B.车辆随机到达一个路口,遇到红灯 C.如果 a2=b2,那么 a=b D.掷一枚质地均匀的硬币,一定正面向上
第十三页,共二十五页。
2.[2017·长沙]下列说法正确的是( D ) A.检测某批次灯泡的使用寿命,适宜用全面调查 B.可能性是 1%的事件在一次试验中一定不会发生 C.数据 3,5,4,1,-2 的中位数是 4 D.“367 人中有 2 人同月同日出生”为必然事件
第十一页,共二十五页。
2.[2017·铁岭]下列事件中,是不可能事件的是( C ) A.抛掷一枚骰子,出现 4 点向上 B.五边形的内角和为 540° C.实数的绝对值小于 0 D.明天会下雨 3.有 6 张卡片,每张卡片上都写有一个数字,分别是 1,2,3,4,4,4,把它们 背面朝上,则摸到写有数字 4 的卡片的可能性最大.
第四页,共二十五页。
2.随机事件的概念 随机事件:在一定条件下,有些事件有可能(kěn发én生g) ,也有可能(kěné发ng)生不 ,事
先无法确定,这种事件称为随机事件.
3.随机事件发生的可能性 可能性:一般地,随机事件发生的可能性是 有 件发生的可能性大小有可能 不同(bù.tónɡ)
大小的,不同的随机事
∴一点随机落在这三个图形内时,可能性较大的是落在圆内.
第二十页,共二十五页。
8.有一只蚂蚁在如图 25-1-5 所示的圆上爬来爬去,两 圆半径分别为 1 和 2,则蚂蚁最终停留在白色区域的可能 性 > 停留在灰色区域的可能性(填“>”“<”或“=”).
【解析】 灰色区域的面积为 π×12=π,白色区域的面 积为 π×22-π×12=3π.∵3π>π,∴蚂蚁停留在白色区域的 可能性大于停留在灰色区域的可能性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.1.2 概率
1.抛掷一枚均匀的硬币,前两次都正面朝上,第三次正面朝上的概率( ) A .大于1
2
B .等于1
2
C .小于1
2
D .无法确定
2.如图25­1­8所示,从中任取一个图形是中心对称图形的概率是( )
图25­1­8
A.14
B.12
C.34
D .1
3.从装有4个红球的袋中随机摸出一个球,若摸到白球的概率是P 1,摸到红球的概率是P 2,则( )
A .P 1=1,P 2=1
B .P 1=0,P 2=1
C .P 1=0,P 2=1
4
D .P 1=P 2=1
4
4.下面四个转盘中,C ,D 转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
A B C D
5.如图25­1­9所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为____.
图25­1­9
6.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是____.
7.如图25­1­10,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
图25­1­10
A.6
13 B.513 C.413
D.313
8.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是1
3.求从袋
中取出黑球的个数.
9.端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你分析计算:
图25­1­11
(1)小明获得奖品的概率是多少?
(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?
10.已知⊙O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图25­1­12所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,求P 1
P 2
.
图25­1­12
参考答案
【分层作业】
1.B 2.C 3.B 4.A 5.13 6.2
5
7.B
8.(1)P (黄球)=1
4
. (2)从袋中取出了2个黑球.
9.(1)P (获得奖品)=38. (2)P (获得玩具熊)=116,P (获得童话书)=216=1
8,P (获得水
彩笔)=3
16
.
10.P 1P 2=2π
.。

相关文档
最新文档