2013年广西省钦州市中考数学试卷(扫描版无答案)
钦州市初中毕业升学考试数学试题卷(及答案).doc
钦州市初中毕业升学考试试题卷数学(考试时间:120分钟;满分:120分)温馨提示:1.请将所有答案写在答题卷上,在试题卷上作答无效.试题卷、答题卷均要上交.2.请你在答题前先将你的准考证号、姓名填写到答题卷的相应位置上.3.可以使用计算器,但未注明精确度的计算问题不得采取近似计算,建议根据题型特点把握好使用计算器的时机.4.只装订答题卷!一、填空题:请将答案填写在答题卷中的横线上,本大题共10小题;每小题2分,共20分.1.分解因式:a2+2a=_▲_.2.如图,在□ABCD中,∠A=120°,则∠D=_▲_°.3.在钦州保税港区的建设中,建设者们发扬愚公移山、精卫填海的精神,每天吹沙填海造地约40亩.据统计,最多一天吹填的土石方达316700方,这个数字用科学计数法表示为_▲_方(保留三个有效数字).4.如图中物体的一个视图(a)的名称为_▲_.5.在不透明的袋子中装有4个红球和7个黄球,每个球除颜色外都相同,从中任意摸出一个球,摸到_▲_球的可能性大.6.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了_▲_度.7.一次函数的图象过点(0,2),且函数y的值随自变量x的增大而增大,请写出一个符合条件的函数解析式:_▲_.8.如图是反比例函数y=kx在第二象限内的图象,若图中的矩形OABC的面积为2,则k=_▲_.9.如图,P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在AB上,若PA长为2,则△PEF的周长是_▲_.10.一组按一定规律排列的式子:-2a,52a,-83a,114a,…,(a≠0)则第n个式子是_▲_(n为正整数).从正面看(a)B D二、选择题:本大题共8小题;每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入答题卷中选择题答题卡对应的空格内.每小题选对得3分,选错,不选或多选均得零分.11.实数1的倒数是(A)0 (B)1 (C)-1 (D)±112.sin30°的值为(A(B(C)12(D13.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是(A)等腰三角形(B)正三角形(C)等腰梯形(D)菱形14.点P(-2,1)关于y轴对称的点的坐标为(A)(-2,-1)(B)(2,1)(C)(2,-1)(D)(-2,1)15.如图,在等腰梯形ABCD中,AB=DC,AC、BD交于点O,则图中全等三角形共有(A)2对(B)3对(C)4对(D)5对16.将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是(A)y=2x2+3 (B)y=2x2-3(C)y=2(x+3)2(D)y=2(x-3)217.如图,AC=AD,BC=BD,则有(A)AB垂直平分CD(B)CD垂直平分AB(C)AB与CD互相垂直平分(D)CD平分∠ACB18.如图,有一长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上的顶点A的位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A2C与桌面成30°角,则点A翻滚到A2位置时,共走过的路径长为(A)10cm (B)3.5πcm(C)4.5πcm (D)2.5πcm三、解答题:本大题8题,共76分.解答应写出文字说明或演算步骤.19.(本题满分10分,每小题5分)(1)解不等式:13x-1<0,并把它的解集在数轴上表示出来;(2)解方程:21x+=1.20.(本题满分10分,每小题5分)(1)当b≠0时,比较1+b与1的大小;(2)先化简,再求值:311a aa a⎛⎫-⎪++⎝⎭·21aa-,其中a1(精确到0.01).A BCDA DO21.(本题满分10分,每小题5分)(1)已知:如图1,在矩形ABCD 中,AF =BE .求证:DE =CF ; (2)已知:如图2,⊙O 1与坐标轴交于 A (1,0)、B (5,0)两点,点O 1.求⊙O 1的半径.22.(本题满分8分)小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图; (2)求一个回合能确定两人先上场的概率.解:(1)树状图为:23.(本题满分10分) 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题: (1)写出用含x 、y 的代数式表示的地面总面积; (2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元? 24.(本题满分8分)如图是近三年广西生产总值增速(累计,%)的折线统计图,据区统计局初步核算,一季度全区生产总值为1552.38亿元,与去年同一时期相比增长12.9%(如图,折线图中其它数据类同).根据统计图解答下列问题: (1)求2008年一季度全区生产总值是多少(精确到0.01亿元)?(2)能否推算出2007年一季度全区生产总值?若能,请算出结果(精确到0.01亿元).(3)从这张统计图中,你有什么发现?用一句话表达你的看法.开始正面 正面 反面 正面 反面 正面 反面小王 小李 小林 不确定确定结果 确定确定图2 A D B 图125.(本题满分10分)已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.26.(本题满分10分)如图,已知抛物线y =34x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线y =34tx -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.(1)填空:点C 的坐标是_▲_,b =_▲_,c =_▲_; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.附加题:(本题满分10分,每小题5分)请你把上面的解答再认真地检查一遍,别留下什么遗憾,并估算一下成绩是否达到了80分,如果你的全卷得分低于80分,则本题的得分将计入全卷总分,但计入后全卷总分最多不超过80分;如果你全卷得分已经达到或超过80分,则本题的得分不计入全卷总分.(1)计算2 3的结果是_▲_;(2)一组数据1,2,3,它的平均数是_▲_.祝贺你,你真棒!但还是请你再检查一遍!ABCD EO钦州市初中毕业升学考试答题卷数 学一、填空题:(每小题2分,共20分)1.___________;2.___________;3.___________;4.___________;5.___________; 6.___________;7.___________;8.___________;9.___________;10.___________.三、解答题:(本大题共8题,共76分) 19.(本题满分10分,每小题5分) 解:(1)(2)20.(本题满分10分,每小题5分) 解:(1)(2)21.(本题满分10分,每小题5分) (1)证明:(2)解:22.(本小题满分8分)解:(1)树状图为:(2)23.(本小题满分10分)解:(1)(2)图2开始正面 正面 反面 正面反面 正面 反面 小王 小李 小林 不确定确定结果 确定确定A DB 图124.(本小题满分8分)解:25.(本小题满分10分)ABCD EO26.(本小题满分10分)解:(1)点C 的坐标是__________,b =________,c =_________; (2)附加题:(本小题满分10分)解:(1)__________________;(2)__________________. 祝贺你,你真棒!但还是请你再检查一遍!钦州市初中毕业升学考试参考答案及评分标准数学评卷说明:1.填空题和选择题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、填空题:(每小题2分,共24分)1.a(a+2)2.60 3.3.17×105 4.主视图5.黄6.907.y=kx+2(k>0即可)8.-2 9.4 10.31 (1)nnan--二、选择题:(每小题3分,共24分)三、解答题:(本大题共8小题,共76分.解答应写出文字说明或演算步骤)19.解:(1)去分母,移项,得x<3.······························································ 3分这个不等式的解集在数轴上表示如下:·································································· 5分(2)两边都乘以x+1,得2=x+1.··················································································· 7分移项,合并同类项,得x=1. ······················································································· 8分当x=1时,x+1=2≠0, ···························································· 9分∴原方程的根是:x=1. ······························································10分20.解:(1)∵b≠0时,∴b>0或b<0.·························································· 1分当b>0时,1+b>1, ·································································· 3分当b<0时,1+b<1; ·································································· 5分(2)原式=2211a aa a-⨯+····································································· 6分=2(1)(1)1a a aa a+-⨯+··························································· 7分=2(a-1). ········································································ 8分∵a+1,∴原式=2(a -1)=2+1-1) ······························································ 9分 =5.29. ································································ 10分21.(1)证明:∵AF =BE ,EF =EF ,∴AE =BF . ······················ 1分∵四边形ABCD 是矩形,∴∠A =∠B =90°,AD =BC . ···························· 3分 ∴△DAE ≌△CBF . ·········································· 4分 ∴DE =CF ; ··················································· 5分(2)解:过点O 1作O 1C ⊥AB ,垂足为C ,则有AC =BC . ················································· 6分 由A (1,0)、B (5,0),得AB =4,∴AC =2. ······ 7分 在1Rt AO C △中,∵O 1,∴O 1C. ··················································· 9分∴⊙O 1的半径O 1A3. ························ 10分22.解:(1)树状图为:(答对一组得1分); ···································································· 4分 (2)由(1)中的树状图可知:P (一个回合能确定两人先上场)=68=34. ····································· 8分 23.解:(1)地面总面积为:(6x +2y +18)m 2; ················································ 4分(2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩ ··············································· 6分解之,得4,3.2x y =⎧⎪⎨=⎪⎩ ········································································· 8分 ∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ·············· 9分 ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). ······································ 10分开始正面 反面 正面反面正面 反面 正面 反面 正面 反面 正面 反面小王 小李 小林不确定确定结果确定确定确定确定确定不确定图2A DB24.解:(1)根据题意,一季度全区生产总值为1552.38亿元,设2008年一季度全区生产总值为x 亿元,则1552.38x x-=12.9%. ········ 2分 解之,得x ≈1375.00(亿元). ······················································ 3分答:2008年一季度全区生产总值约是1375.00亿元; ·························· 4分(2)能推算出2007年一季度全区生产总值. ··········································· 5分设2007年一季度全区生产总值为y 亿元,同理,由(1)得1375.00y y-=11.3%. ·································································· 6分 解之,得y ≈1235.40(亿元).所以2007年一季度全区生产总值约是1235.40亿元; ························· 7分(3)近三年广西区生产总值均为正增长;2008年1季度增长率较2007年同期增长率有较大幅度下降;1季度增长率较2008年同期增长率有所上升,经济发展有所回暖;2007年广西经济飞速发展;….等等,只要能有自己的观点即可给分.································································································ 8分25.解:(1)∵∠ABC =90°,∴OB ⊥BC . ·················································· 1分∵OB 是⊙O 的半径,∴CB 为⊙O 的切线. ······································ 2分又∵CD 切⊙O 于点D ,∴BC =CD ; ·················································· 3分(2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. ······························· 4分又∵∠ABC =90°,∴∠ABD +∠CBD =90°.······························································· 5分由(1)得BC =CD ,∴∠CDB =∠CBD .∴∠ADE =∠ABD ; ······································································ 6分(3)由(2)得,∠ADE =∠ABD ,∠A =∠A .∴△ADE ∽△ABD . ······································································ 7分 ∴AD AB =AE AD . ············································································ 8分 ∴21BE +=12,∴BE =3, ····························································· 9分 ∴所求⊙O 的直径长为3. ··························································· 10分 ∙A B C D E O26.解:(1)(0,-3),b=-94,c=-3. ························································3分(2)由(1),得y=34x2-94x-3,它与x轴交于A,B两点,得B(4,0).∴OB=4,又∵OC=3,∴BC=5.由题意,得△BHP∽△BOC,∵OC∶OB∶BC=3∶4∶5,∴HP∶HB∶BP=3∶4∶5,∵PB=5t,∴HB=4t,HP=3t.∴OH=OB-HB=4-4t.由y=34tx-3与x轴交于点Q,得Q(4t,0).∴OQ=4t. ·················································①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.······················································· 5分②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.······················································· 6分综合①,②得QH=|4-8t|; ······················································ 6分(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似. ··············· 7分①当H在Q、B之间时,QH=4-8t,若△QHP∽△COQ,则QH∶CO=HP∶OQ,得483t-=34tt,∴t=732. ·············································································· 7分若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=484tt-,即t2+2t-1=0.∴t11,t2-1(舍去).·········································· 8分②当H在O、Q之间时,QH=8t-4.若△QHP∽△COQ,则QH∶CO=HP∶OQ,得843t-=34tt,∴t=2532. ·············································································· 9分若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=844tt-,即t2-2t+1=0.∴t1=t2=1(舍去). ································································10分综上所述,存在t的值,t11,t2=732,t3=2532. ·····················10分附加题:解:(1)8;······················································································ 5分(2)2. ····················································································10分。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
新-21.二次根式的运算及化简求值
A.不存在
B.有一组
C.有二组
D.多于二组
【答案】B
根据同类二次根式定义可知:
a − b = 2 2a + b = 7
,解之得
a b
= =
3 1
.
24. 【中】若 a+b 4b 与最简二次根式 3a + b 为同类二次根式,其中 a , b 为整数,则 a = ________, b = ________. 【解析】由题意可知, a + b = 2 ,故 a+b 4b = 2a+b b ,又 3a + b = b ⇒ a = 0 , b = 2 . 【答案】0;2.
A. a2 +1 【答案】A
B. 1 2
C. 8
D. 27x
6. 【易】(2010 广州天河期中考试)下列各式中是最简二次根式的是( )
1/29
PDF pdfFactory Pro
A. 3 a 【答案】C
B. 8a
C. 1 a 2
D. a 2
7. 【易】(2010 年北京五中期中)下列各式不是最简二次根式的是( )
34. 【易】(2011 年广西区北海市中考数学试题)计算: 12- 3 = ________ 【答案】 3
35. 【易】(2011 年广雅实验初三上期中)计算: 12- 27 = ________ 【答案】 − 3
36. 【易】(天津市初中毕业生学业考试试卷)化简: 18 − 8 = ________. 【答案】 2
二次根式的运算及化简求值
一、最简二次根式 二、同类二次根式 三、二次根式的运算
题型一:加减运算 题型二:乘除运算 题型三:混合运算 题型四:巧算
广西钦州市2013年第二次中考模拟测试数学试题
新世纪教育网 精品资料版权所有@新世纪教育网2013广西钦州市中考数学二模试卷一、填空题(本大题共l0小题,每小题3分,共30分)1.(3分)(2010•梧州)|﹣10|=10.2.(3分)(2010•梧州)一组数据为:5,8,2,7,8,2,8,3,则这组数据的众数是8.3.(3分)(2010•梧州)如图,点A向左平移4个单位长度得到点A′,则点A′的坐标是(﹣1,4).4.(3分)(2010•梧州)方程x2﹣9=0的解是x=±3.新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网5.(3分)(2010•梧州)化简﹣的结果是.=2=6.(3分)(2010•梧州)计算:﹣=0.解:=.7.(3分)(2010•梧州)直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x= 2.8.(3分)(2010•梧州)120°的圆心角所对的弧长是12πcm,则此弧所在的圆的半径是18cm.,得.R==9.(3分)(2010•梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为10.10.(3分)(2010•梧州)如图,边长为6的正方形ABCD绕点B按顺时针方向旋转30°后得到正方形EBGF,EF交CD于点H,则FH的长为6﹣2(结果保留根号).∠×=2二、选择题(本大题共8小题、每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.)11.(3分)(2013•钦州二模)如图,a∥b,∠1=60°,则∠2的度数是()12.(3分)(2010•梧州)下列图形中是轴对称图形的是()13.(3分)(2010•梧州)据统计,上海世博园入园的人数高峰时每天约有400 000人,那么400 000用科14.(3分)(2010•梧州)由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不可能是()B.15.(3分)(2010•梧州)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘.再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼解:∵×16.(3分)(2010•梧州)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论一定正确的个数有()①CE=DE;②BE=OE;③=;④∠CAB=∠DAB;⑤AC=AD.,17.(3分)(2010•梧州)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()﹣18.(3分)(2010•梧州)用:0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个三、解答题(本大题共8小题,满分66分.)19.(6分)(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.20.(6分)(2010•梧州)把4个完全相同的乒乓球标上数字2,3,4,5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球.(1)请补充完整下面的树形图:(2)根据树形图可知,两次摸出的球所标数字之和是7的概率的多少?;种情况,所以概率是=..注意本题是不放回实验.21.(6分)(2010•梧州)如图,AB是∠DAC的平分线,且AD=AC.求证:BD=BC.22.(8分)(2010•梧州)如图,某飞机于空中探测某座山的高度.此时飞机的飞行高度是AF=3.7千米,从飞机上观测山顶目标C的俯视角为30°.飞机继续相同的高度飞行3千米到B处,此时观测目标C的俯角是60°,求此山的高度CD.(精确到0.1)(参考数据:,)xxBE=23.(8分)(2010•梧州)如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx ﹣3的图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y1>y2时自变量x的取值范围.,解得;24.(10分)(2010•梧州)2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?25.(10分)(2010•梧州)如图,⊙O的直径AC=13,弦BC=12.过点A作直线MN,使∠BAM=∠AOB.(1)求证:MN是⊙O的切线;(2)延长CB交MN于点D,求AD的长.BAM==可求(1)证明:∵AC是直径,∴∠ABC=90°,∠C+∠BAC=90°.∵∠BAM=∠AOB=∠C,∴∠BAM+∠BAC=90°,即∠CAM=90°.∴MN是⊙O的切线.(2)解:∵∠ABC=90°,AC=13,BC=12,∴AB=5.∵tanC==,,AD=.26.(12分)(2010•梧州)如图,在平面直角坐标系中,点A(10,0),∠OBA=90°,BC∥OA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB 向点B运动.现点E、F同时出发,当点F到达点B时,E、F两点同时停止运动.(1)求梯形OABC的高BG的长;(2)连接E、F并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形;(3)动点E、F是否会同时在某个反比例函数的图象上?如果会,请直接写出这时动点E、F运动的时间t的值;如果不会,请说明理由.AB===6 BG==4.8,即,DH=AG===3.6﹣;×=t×t的坐标为(tt×t=t=.。
广西南宁2013年中考数学试题(图片版)
广西南宁2013年中考数学试题预览:
接下来()会在第一时间内为考生提供广西南宁2013年中考数学试题答案,请关注。
中考频道于中考结束第一时间为考生提供了广西南宁2013年中考数学试题图片版广西南宁2013年中考数学试题形式为图片版随后我们会为大家提供2013广西南宁中考数学试卷word下载版请大家关注
广西南宁2013年中考数学试题(图片版)
中考网为您提供中考试题及答案:《2014年中考真题》《2014年中考试题答案》
2013年历年广西钦州市初三数学中考第二次模拟试卷及答案
123456-1-1123456xyO0A图(1)ab12图(4)广西钦州市2013年第二次中考模拟测试数学试题说明:1.本试卷共8页(试题卷4页,答题卷4页),满分120分,考试时间l20分钟.2.答卷前,请将准考证号、姓名写在答题卷密封线内,座位号写在答题卷密封线外指定位置,答案写在答题卷相应的区域内,在试题卷上答题无效。
一、填空题(本大题共l0小题,每小题3分,共30分)1.10-=_____________。
2.一组数据为5,8,2,7,8,2,8,3,则这组数据的众数是_____________。
3.如图(1),点A向左平移4个单位长度得到点A′,则点A′的坐标是_____________。
4.方程290x-=的解是x=_____________。
5.化简82-的结果是_____________。
6.计算:2x xxy y-=_____________。
7.直线2y x b=+与x轴的交点坐标是(2,0),则关于x的方程20x b+=的解是x=________。
8.120°的圆心角所对的弧长是12πcm,则此弧所在的圆的半径是_________cm。
9.如图(2),在Y ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3, EF=4,则CD 的长为_____________。
A BCDEF图(2)300图(3)A BCDEFG10.如图(3),边长为6的正方形ABCD绕点B按顺时针方向旋转30°后得到正方形EBGF,EF 交CD于点H,则FH的长为_____________。
(结果保留根号).二、选择题(本大题共8小题、每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.)11.如右图(4).a∥b,如果∠1=50°,则∠2的度数是(A)130° (B)50° (C)100° (D)120°12.下列图形中,是轴对称图形的是①②③④(A)①② (B )③④ (C )②③ (D )①④13.据统计,上海世博园入园的人数高峰时每天约有400 000人,那么400 000用科学记数法表示是(A)60.410⨯ (B) 5410⨯ (C) 4410⨯ (D) 44010⨯14.由四个大小相同的长方体搭成的立体图形的左视图如图(5)所示,则这个立体图形的搭法不可能...是15.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘.再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为(A)3000条 (B)2200条 (C)1200条 (D)600条16.如图(6),AB 是⊙0的直径,弦CD⊥AB 于点E ,则下列结论一定正确的个数有①CE=DE:②BE=OE;③»»CBBD =:而;④∠CAB=∠DAB;⑤AC=AD. (A)4个 (B)3个 (C)2个 (D)1个AB DCE O图(6)123456-1-2-3x yO 图(7)x=217.已知二次函数2y ax bx c =++的图象如图(7)所示,那么下列判断不正确的是(A)0ac < (B)0a b c -+> (C)4b a =- (D)关于x 的方程20ax bx c ++=的根是1215x x =-=,1 8.用0,l ,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是 (A)36 (B)117 (C) 115 (D)153 三、解答题(本大题共8小题,满分66分.) 19.(本题满分6分)先化简,再求值:22(54)(542)x x x x -+++-+,其中2x =-。
广西壮族自治区南宁市2013年广西中考数学试卷及参考答案
A . 19 B . 18 C . 16 D . 15 9. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
2
2
A . 图象关于直线x=1对称 B . 函数y=ax2+bx+c(a≠0)的最小值是﹣4 C . ﹣1和3是方程ax2+bx+c=0(a≠0)的两个根 D . 当x< 1时,y随x的增大而增大
A.3B.6C. D.
二、填空题.
12. 若二次根式
有意义,则x的取值范围是________.
13. 一副三角板如图所示放置,则∠AOB=________°.
14. 分解因式:x2﹣25=________.
15. 某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这
(2) 求出点M的坐标,并解释该点坐标所表示的实际意义; (3) 若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机 保持联系时x的取值范围. 24. 如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点 F,连接AF,AF的延长线交DE于点P.
科学记数法表示,表示正确的是( )
A . 0.79×104 B . 7.9×104 C . 7.9×103 D . 0.79×103 4. 小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投 影是( ) A . 三角形 B . 线段 C . 矩形 D . 平行四边形 5. 甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道 ,若甲首先抽签,则甲抽到1号跑道的概率是( ) A.1B. C. D. 6. 若分式 的值为0,则x的值为( ) A . ﹣1 B . 0 C . 2 D . ﹣1或2 7. 如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
2013年中考数学试题及答案
2013年中考数学试题及答案一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 480B. 240C. 360D. 320答案:A3. 下列哪个表达式等价于 \( a^2 - b^2 \)?A. \( (a + b)(a - b) \)B. \( (a - b)(a + b) \)C. \( (a + b)^2 \)D. \( (a - b)^2 \)答案:B4. 一个数的75%是150,那么这个数是多少?A. 200B. 300C. 400D. 100答案:B5. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 20答案:D6. 下列哪个数是无理数?A. 3.14B. 2.71828C. \( \sqrt{2} \)D. 1/3答案:C7. 一个数的3/4加上它的1/2等于21,这个数是多少?A. 12B. 16C. 24D. 8答案:B8. 一个圆的直径是14cm,那么它的半径是多少厘米?A. 7B. 14C. 28D. 21答案:A9. 一个数的1/3与它的1/4的和是10,这个数是多少?A. 24B. 30C. 40D. 60答案:B10. 下列哪个数是最小的负整数?A. -1B. -2C. -3D. -4答案:A11. 一个数的2倍加上3等于这个数的3倍减去5,求这个数。
A. 8B. 5C. 10D. 6答案:B12. 一个等腰三角形的两个底角相等,顶角是80度,那么底角是多少度?A. 50B. 60C. 70D. 80答案:A二、填空题(每题4分,共24分)13. 一个数的1/2加上它的1/3等于22,这个数是________。
答案:3614. 一本书的价格是36元,打8折后的价格是________元。
2013年广西省钦州市中考真题数学
2013年广西省钦州市中考真题数学一、选择题(共12小题,每小题3分,共36分)1.(3分)7的倒数是( )A. -7B. 7C. -D.解析:7的倒数为.答案:D.2.(3分)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为( )A. 403×103B. 40.3×104C. 4.03×105D. 0.403×106解析:将403000用科学记数法表示为4.03×105.答案:C.3.(3分)下列四个图形中,是三棱柱的平面展开图的是( )A.B.C.D.解析:A、是三棱锥的展开图,答案:项错误;B、是三棱柱的平面展开图,答案:项正确;C、两底有4个三角形,不是三棱锥的展开图,答案:项错误;D、是四棱锥的展开图,答案:项错误.答案:B.4.(3分)在下列实数中,无理数是( )A. 0B.C.D. 6解析:A、B、D中0、、6都是有理数,C、是无理数.答案:C.5.(3分)已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是( )A. 外离B. 相交C. 内切D. 外切解析:∵⊙O1、⊙O2的半径分别是2cm和3cm,若O1O2=5cm,又∵2+3=5,∴⊙O1和⊙O2的位置关系是外切.答案:D.6.(3分)下列运算正确的是( )A. 5-1=B. x2·x3=x6C. (a+b)2=a2+b2D. =解析:A、5-1=,原式计算正确,故本选项正确;B、x2·x3=x5,原式计算错误,故本选项错误;C、(a+b)2=a2+2ab+b2,原式计算错误,故本选项错误;D、与不是同类二次根式,不能直接合并,原式计算错误,故本选项错误;答案:A.7.(3分)关于x的一元二次方程3x2-6x+m=0有两个不相等的实数根,则m的取值范围是( )A. m<3B. m≤3C. m>3D. m≥3解析:根据题意得△=(-6)2-4×3×m>0,解得m<3.答案:A.8.(3分)下列说法错误的是( )A.打开电视机,正在播放广告这一事件是随机事件B.要了解小赵一家三口的身体健康状况,适合采用抽样调查C.方差越大,数据的波动越大D.样本中个体的数目称为样本容量解析:A、打开电视机,正在播放广告这一事件是随机事件,根据随机事件的定义得出,此选项正确,不符合题意;B、要了解小赵一家三口的身体健康状况,适合采用全面调查,故此选项错误,符合题意;C、根据方差的定义得出,方差越大,数据的波动越大,此选项正确,不符合题意;D、样本中个体的数目称为样本容量,此选项正确,不符合题意.答案:B.9.(3分)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为( )A. +=1B. 10+8+x=30C. +8(+)=1D. (1-)+x=8解析:设乙工程队单独完成这项工程需要x天,由题意得:10×+(+)×8=1.答案:C.10.(3分)等腰三角形的一个角是80°,则它顶角的度数是( )A. 80°B. 80°或20°C. 80°或50°D. 20°解析:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°-80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.答案:B.11.(3分)如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为( )A. 甲<乙<丙B. 乙<丙<甲C. 丙<乙<甲D. 甲=乙=丙解析:图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,答案:D.12.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )A. 2B. 3C. 4D. 5解析:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.答案:C.二、填空题(共6小题,每小题3分,共18分)13.(3分)比较大小:-1 2(填“>”或“<”)解析:∵负数都小于正数,∴-1<2,答案:<.14.(3分)当x= 时,分式无意义.解析:由题意得:x-2=0,解得:x=2,答案:2.15.(3分)请写出一个图形经过一、三象限的正比例函数的解析式.解析:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).答案:y=x(答案不唯一).16.(3分)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是.解析:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4(或).答案:1:4(或)17.(3分)不等式组的解集是.解析:,解①得:x≤5,解②得:x>3,故不等式组的解集为:3<x≤5,答案:3<x≤5.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.解析:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.答案:10.三、解答题(本大题共8分,满分66分)19.(6分)计算:|-5|+(-1)2013+2sin30°-.解析:本题涉及绝对值、乘方、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:原式=5-1+2×-5=-1+1=0.20.(6分)如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.解析:由AB∥DE,∠DEC=∠C,易证得∠B=∠C,又由同一底上两个角相等的梯形是等腰梯形,即可证得结论.答案:∵AB∥DE,∴∠DEC=∠B,∵∠DEC=∠C,∴∠B=∠C,∴梯形ABCD是等腰梯形.21.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.解析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.答案:(1)如图所示:点A1的坐标(2,-4);(2)如图所示,点A2的坐标(-2,4).22.(12分)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是,众数是,极差是:②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?解析:(1)①根据平均数、众数、极差定义分别进行计算即可;②根据样本估计总体的方法,用800乘以调查的学生做好事不少于4次的人数所占百分比即可;(2)①根据题意画出树状图可直观的得到所有可能出现的结果;②根据①所列树状图,找出符合条件的情况,再利用概率公式进行计算即可.答案:(1)①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;众数:5次;极差:6-2=4;②做好事不少于4次的人数:800×=624;(2)①如图所示:②一共出现6种情况,其中和为偶数的有3种情况,故概率为=.23.(7分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A(-2,m),B(4,-2)两点,与x轴交于C点,过A作AD⊥x轴于D.(1)求这两个函数的解析式:(2)求△ADC的面积.解析:(1)因为反比例函数过A、B两点,所以可求其解析式和m的值,从而知A点坐标,进而求一次函数解析式;(2)先求出直线AB与与x轴的交点C的坐标,再根据三角形的面积公式求解即可.答案:(1)∵反比例函数y=的图象过B(4,-2)点,∴k=4×(-2)=-8,∴反比例函数的解析式为y=-;∵反比例函数y=的图象过点A(-2,m),∴m=-=4,即A(-2,4).∵一次函数y=ax+b的图象过A(-2,4),B(4,-2)两点,∴,解得∴一次函数的解析式为y=-x+2;(2)∵直线AB:y=-x+2交x轴于点C,∴C(2,0).∵AD⊥x轴于D,A(-2,4),∴CD=2-(-2)=4,AD=4,∴S△ADC=·CD·AD=×4×4=8.24.(7分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)解析:(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.答案:(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE-DE=5+15+5-15=20-10≈2.7m.答:宣传牌CD高约2.7米.25.(10分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.解析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积-扇形DOF的面积-扇形EOG的面积,求出即可.答案:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC-AE=7.5-3=4.5,∴S阴影=S△BDO+S△OEC-S扇形FOD-S扇形EOG=×2×3+×3×4.5-=3+-=.26.(12分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解析:(1)由y=x2+2x得,y=(x+2)2-2,故可得出抛物线的顶点A的坐标,令x2+2x=0得出点B的坐标过点A作AD⊥x轴,垂足为D,由∠ADO=90°可知点D的坐标,故可得出OD=AD,由此即可得出结论;(2)由题意可知抛物线m的二次项系数为,由此可得抛物线m的解析式过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H,根据勾股定理可求出OC的长,同理可得AC的长,OC=AC,由翻折不变性的性质可知,OC=AC=OC′=AC′,由此即可得出结论;(3)过点C′作C′G⊥x轴,垂足为G,由于OC和OC′关于OA对称,∠AOB=∠AOH=45°,故可得出∠COH=∠C′OG,再根据CE∥OH可知∠OCE=∠C′OG,根据全等三角形的判定定理可知△CEO≌△C′GO,故可得出点C′的坐标把x=-4代入抛物线y=x2+2x进行检验即可得出结论;(4)由于点P为x轴上的一个动点,点Q在抛物线m上,故设Q(a,(a-2)2-4),由于OC为该四边形的一条边,故OP为对角线,由于点P在x轴上,根据中点坐标的定义即可得出a 的值,故可得出结论.答案:(1)∵由y=x2+2x得,y=(x+2)2-2,∴抛物线的顶点A的坐标为(-2,-2),令x2+2x=0,解得x1=0,x2=-4,∴点B的坐标为(-4,0),过点A作AD⊥x轴,垂足为D,∴∠ADO=90°,∴点A的坐标为(-2,-2),点D的坐标为(-2,0),∴OD=AD=2,∴∠AOB=45°;(2)四边形ACOC′为菱形.由题意可知抛物线m的二次项系数为,且过顶点C的坐标是(2,-4),∴抛物线的解析式为:y=(x-2)2-4,即y=x2-2x-2,过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H,∴OE=2,CE=4,AF=4,CF=CE-EF=2,∴OC===2,同理,AC=2,OC=AC,由翻折不变性的性质可知,OC=AC=OC′=AC′,故四边形ACOC′为菱形.(3)如图1,点C′不在抛物线y=x2+2x上.理由如下:过点C′作C′G⊥x轴,垂足为G,∵OC和OC′关于OA对称,∠AOB=∠AOH=45°,∴∠COH=∠C′OG,∵CE∥OH,∴∠OCE=∠C′OG,又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO,∴OG=CE=4,C′G=OE=2,∴点C′的坐标为(-4,2),把x=-4代入抛物线y=x2+2x得y=0,∴点C′不在抛物线y=x2+2x上;(4)存在符合条件的点Q.∵点P为x轴上的一个动点,点Q在抛物线m上,∴设Q(a,(a-2)2-4),∵OC为该四边形的一条边,∴OP为对角线,∴=0,解得a1=6,a2=-2,∴Q(6,4)或(-2,4),∴点Q的坐标为(6,4)或(-2,4).。
广西钦州市中考数学第四次模拟测试试题
1ABDC图2广西钦州市2013年第四次中考模拟测试数学试题本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟. 注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回. 第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1.下列所给的数中,是无理数的是: (A)2 (B)2 (C)12(D)0.1 2.下图所示的几何体中,主视图与左视图不相同的几何体是:3.下列计算结果正确的是: (A)257+=(B)3223-=(C)2510⨯= (D)25105= 4.图1中,每个小正方形的边长为1,ABC V 的三边a ,b ,c 的大小关系是: (A)a<c<b (B)a<b <c (C)c<a<b (D)c<b<a5.有“华南第一湖”美称的青狮潭,风光秀丽,气候宜人,2010年6月第一周每天的最高气温(单位:℃)分别是:23,24,23,24,x ,25,25,这周的平均最高气温为24°,则这组数据的众数是: (A)23 (B)24 (C)24.5 (D)256.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解有:(A)1个 (B)2个 (C)3个 (D)4个 7.如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D 到BC 的距离是:(A)3 (B)4 (C)5 (D)6 8.下列二次三项式是完全平方式的是:(A)2816x x -- (B)2816x x ++ (C)2416x x -- (D)2416x x ++圆锥 圆柱 球 正三棱柱 (A )(B )(C )(D )2 图 31A 2A 3B2B1B3C2C1C Oxy3A图79.将分式方程()523111x x x x +-=++去分母,整理后得:(A)810x += (B)830x -= (C)2720x x -+= (D)2720x x --=10.如图3,从地面坚直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为2305h t t =-,那么小球从抛出至回落到地面所需要的时间是:(A)6s (B)4s (C)3s (D)2s11.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为x ,掷第二次,将朝上一面的点数记为y ,则点(x y ,)落在直线5y x =-+上的概率为:(A)118 (B)112 (C )19 (D)41 12.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为:(A)10 (B)12 (C)14 (D)16第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.当x =__________时,分式21x -没有意义. 14.如图5所示,直线a 、b 被c 、d 所截,且c a ⊥,c b ⊥,170∠=°,则2∠=_________.15.2010年上海世博会中国国家馆,采用极富中国建筑文化元素的红色“斗冠”造型,建筑面积46500m 2,高69m ,表现出“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化精神与气质,将数46500用科学记数法表示为__________. 16.如图6,AB 为半圆O 的直径,OC AB OD ⊥,平分BOC ∠,交半圆于点D ,AD 交OC 于点E ,则AEO ∠的度数是____________.17.如图7所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的ad21b图5cD ABRP F CGK图4EAB图6DCE OE3图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为___________. 18.古希腊数学家把数1,3,6,10,15,21……叫做三角形数,它有一定的规律性.若把第一个三角形数记为1a ,第二个三角形数记为2a ,……,第n 个三角形数记为n a ,计算213243a a a a a a ---,,,……,由此推算,10099a a -=____________,100a =__________.考生注意:第三至第八大题为解答题,要求在答题卷上写出解答过程.如果运算含有根号,请保留根号. 三、(本大题共2小题,每小题满分6分,共12分) 19.计算:()()()011π20103tan 60---+--°+2.20.先化简,再求值:()()()322484a b a b ab a b ab +-+-÷,其中a =2,1b =. 四、(本大题共2小题,每小题满分8分,共16分)21.某厂房屋顶呈人字架形(等腰三角形),如图8所示,已知8AC BC ==m ,30A ∠=°,CD AB ⊥,于点D .(1)求ACB ∠的大小. (2)求AB 的长度.22.2010年世界杯足球赛在南非举行.赛前某足球俱乐部组织了一次竞猜活动,就哪一支球队将在本届世界杯足球赛中夺冠进行竞猜,并绘制了两幅不完整的统计图(如图9-①和9-②所示).请你根据图中提供的信息,解答下列问题:(1)求出参加这次竞猜的总人数;(2)请你在图9-①中补全频数分布直方图,在图9-②中分别把“阿根廷队”和“巴西队”所对应的扇形图表示出来.五、(本大题满分8分) 23.如图10,已知ABC ADE Rt △≌Rt △,90ABC ADE ∠=∠=°,BC 与DE 相交于点F ,连接CD ,EB .(1)图中还有几对全等三角形,请你一一列举. (2)求证:.CF EF =图9-①图9-②ABDACD图8B4六、(本大题满分10分)24.2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A 、B 两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A 地,某余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费. 七、(本大题满分10分)25.如图11-①,AB 为⊙O 的直径,AD 与⊙O 相切于点A DE ,与⊙O 相切于点E ,点C 为DE 延长线上一点,且.CE CB = (1)求证:BC 为⊙O 的切线;(2)连接AE ,AE 的延长线与BC 的延长线交于点(如图11-②所示).若2AB AD ==,求线段BC 和EG 的长.八、(本大题满分10分)26.如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛B图11-②GAC图11-①BAC5物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E . (1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2013年钦州市第四次模拟测试数学试题参考答案及评分标准ACDE BO2l 1l图12y x6二、填空题(本大题共6小题,每小题3分,共18分) 13.1 14.70 15.44.6510⨯ 16.67.5 17.49918.100(1分) 5050(2分) 三、(本大题共2小题,每小题满分6分,共12分) 19.解:()()()011π201060---+- °+2=1112+……………………………………………………………(4分) =1232-+…………………………………………………………………………(5分)=12-………………………………………………………………………………(6分) 20.解:(1)()()()322484a b a b ab a b ab +-+-÷=2222a b b ab -+-……………………………………………………………(3分) =22a ab -………………………………………………………………………(4分) 当2a =,1b =时,原式=22221-⨯⨯…………………………………………………(5分) =44-=0………………………………………………………………(6分)四、(本大题共2小题,每小题满分8分,共16分) 21.解:(1)30AC BC A =∠=Q ,°,30A B ∴∠=∠=°…………………………(1分)180A B ACB ∠+∠+∠=Q °…………………………(2分)180ACB A B ∴∠=∠-∠°-=180°30-°30-° =120°…………………………(4分)(2)AC BC CD AB =⊥Q ,2AB AD ∴=………………………………………………………………(5分) 在Rt ADC △中,30A AC ∠==°,8.cos AD AC A ∴=·,………………………………………………………(6分)ACDB7=8·cos 30°=3832⨯= )283m AB AD ∴==.…………………………………………………(8分) 22.(1)参加这次竞猜的总人数是500人.………………………………………………(2分) (2)补充图①……………………………………………………………………………(4分)补充图②…………………………………………………………………………(8分)五、(本大题满分8分)23.(1)ADC ABE CDF EBF ∆∆∆∆≌,≌.…………………………………………(2分) (2)证法一:连接CE…………………………………(3分) Rt ABC ADE ∆∆Q ≌Rt AC AE ∴=…………………………………(4分) ACE AEC ∴∠=∠…………………………………(5分) 又Rt Rt ABC ADE △≌△Q ACB AED ∴∠=∠…………………………………(6分)ACE ACB AEC AED ∴∠-∠=∠-∠即BCE DEC ∠=………………………………………………………………(7分) CF EF ∴=.………………………………………………………………………(8分) 证法二:Rt Rt ABC ADE △≌△Q AC AE AD AB CAB EAD ∴==∠=∠,, CAB DAB EAD DAB ∴∠-∠=∠-∠ 即CAD EAB ∠=……………………(3分) ()ACD AEB SAS ∴△≌△.………………………………(4分) CD EB ADC ABE ∴=∠=∠,ACEBDFACEBDF8………………………………(5分) 又ADE ABC ∠=∠Q CDF EBF ∴∠=∠………………………………(6分) 又DFC BFE ∠=∠Q()CDF EBF AAS ∴△≌△.……………………………………………………(7分) CF EF ∴=.………………………………………………………………………(8分) 证法三:连接AF .………………………………………………………………(3分) Rt Rt ABC ADE △≌△,Q90AB AD BC DE ABC ADE ∴==∠=∠=,,°. 又AF AF =Q .()Rt Rt ABF ADF HL ∴△≌△.……………………………(5分) BF DF ∴=.……………………………(6分) 又BC DE =Q .BC BF DE DF ∴-=-,………………………………(7分) 即CF EF =.……………………………(8分)六、(本大题满分10分)24.解(1)解法一:设大车用x 辆,小车用y 辆.依据题意,得20x y x y +=⎧⎨⎩,15+10=240.…………………………………………………………………(2分) 解得812x y =⎧⎨=⎩,.∴大车用8辆,小车用12辆.……………………………………………………(4分)解法二:设大车用x 辆,小车用()20x -辆.依题意,得()151020240x x +-=…………………………………………………………(2分)解得8x =.2020812x ∴-=-=.∴大车用8辆,小车用12辆.……………………………………………………(4分)(2)设总运费为W 元,调往A 地的大车a 辆,小车()10a -辆;调往B 地的大车()8a -辆,小车()2a +辆.则……………………………………………………………………(5分)()()()6304201075085502W a a a a =+-+-++,ACEBDF9即:1011300W a =+ (0a a ≤≤8,为整数),………………………………(7分) ()151010a a +-Q 115≥.a ∴≥3.………………………………………………………………………………(8分) 又W Q 随a 的增大而增大, ∴当3a =时,W 最小.当3a =时,1031130011330W =⨯+ = .…………………………………………(9分) 因此,应安排3辆大车和7辆小车前往A 地;安排5辆大车和5辆小车前往B 地.最少运费为11 330元.……………………………………………………………………………(10分) 七、(本大题满分10分)25.(1)连接OE OC ,……………………………………………………………………(1分) CB CE OB OE OC OC ===Q ,,, ()OBC OEC SSS ∴△≌△, OBC OEC ∴∠=∠.………………………(2分) 又DE Q 与O ⊙相切于点E , 90OEC ∴∠=°.…………………………(3分) 90OBC ∴∠=°.BC ∴为O ⊙的切线.…………………………(4分) (2)过点D 作DF BC ⊥于点F ,AD DC BG Q ,,分别切O ⊙于点A E B ,,, DA DE CE CB ∴==,. ………………………………(5分)设BC 为x ,则22CF x DC x =-=+,. 在Rt DFC △中,()()(22222x x +--=,解得:52x =.…………………………………………………………………………(6分)AD BG Q ∥,DAE EGC ∴∠=∠.DA DE =Q ,DAE AED ∴∠=∠.AED CEG ∠=∠Q , EGC CEG ∴∠=∠, 52CG CE CB ∴===,………………………………………………………………(7分) 5BG ∴=.AG ∴===……………………………………………(8分) BCBGACF10 解法一:连接BE ,12ABG ∆=S AB BG AG BE =1··,25∴=,103BE ∴=.…………………………………………………………………………(9分) 在Rt BEG △中,EG ===…………………(10分)解法二:DAE EGC AED CEG ∠=∠∠=∠Q ,,ADE GCE ∴△∽△,…………………………………………………………………(9分)AD AE EGCG EG EG∴==2,,2.5解得:EG =…………………………………………………………………(10分) 八、(本大题满分10分)26.解:(1)()21:11l y x =--+(或22y x x =-+);………………………………(1分)()22:11l y x =--+(或22y x x =--);………………………………(2分)(2)以P 、Q 、C 、D 为顶点的四边形为矩形或等腰梯形.………………………(3分)理由:Q 点C 与点D ,点P 与点Q 关于y 轴对称,CD PQ x ∴∥∥轴.①当P 点是2l 的对称轴与l 1的交点时,点P 、Q 的坐标分别为(-1,-3)和(1, -3),而点C 、D 的坐标分别为(1-)和(1,1),所以CD PQ CP CD =⊥,,四边形CPQD 是矩形.………………………………………………………………………………………(4分) ②当P 点不是2l 的对称轴与1l 的交点时,根据轴对称性质, 有:CP DQ =(或CQ DP =),但CD PQ ≠.∴四边形CPQD (或四边形CQPD )是等腰梯形.…………………………………(5分)(3)存在.设满足条件的M 点坐标为()x y ,,连接MA MB AD ,,,依题意得: ()()()20A B E ,,-2,0,0,1,()121322AOED S +⨯==梯形.……………………………………………………………(6分)11 ①当0y >时,13422ABM S y ∆=⨯⨯=,34y ∴=.…………………………………………………………………………………(7分) 将34y =代入1l 的解析式,解得:132x =,2x 1=.2132M ⎛⎫∴ ⎪⎝⎭3,4,212M ⎛⎫⎪⎝⎭3,.4……………………………………………………………(8分) ②当0y <时,()13422ABM S y ∆=⨯⨯-=,34y ∴=-.………………………………………………………………………………(9分) 将34y =-代入1l的解析式,解得:12x =±3M ⎫∴⎪⎪⎝⎭3-4,4M ⎫⎪⎪⎝⎭3-.4……………………………………(10分)。
广西钦州市中考数学真题试题(无答案)
2015年广西钦州市中考数学试题一、选择题(每小题3分,共36分)1.(3分)下列图形中,是轴对称图形的是( )2.(3分)下列实数中,无理数是( ) A .﹣1 B .12C .5D .3 3.(3分)计算32()a 的结果是( ) A .9a B .6a C .5a D .a 4.(3分)下列几何体中,主视图是圆的是( )5.(3分)国家统计局4月15日发布数据,初步核算,2015年一季度全国国内生产总值为140667亿元,其中数据140667用科学记数法表示为( )A .1.40667×105B .1.40667×106C .14.0667×104D .0.140667×1066.(3分)如图,要使▱ABCD 成为菱形,则需添加的一个条件是( )A .AC =ADB .BA =BC C .∠ABC =90° D.AC =BD 7.(3分)用配方法解方程21090x x ++=,配方后可得( )A .2(5)16x += B .2(5)1x += C .2(10)91x += D .2(10)109x +=8.(3分)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)9.(3分)对于函数4yx=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小10.(3分)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.1011.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC12.(3分)对于任意的正数m、n定义运算※为:m※n=()()m n m nm n m n⎧-≥⎪⎨+<⎪⎩,计算(3※2)×(8※12)的结果为()A.246- B.2 C.25 D.20二、填空题(每小题3分,共18分)13.(3分)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1=度.14.(3分)一组数据3,5,5,4,5,6的众数是.15.(3分)一次函数y kx b =+(0k ≠)的图象经过A (1,0)和B (0,2)两点,则它的图象不经过第 象限.16.(3分)当m =2105时,计算:2422m m m -++= . 17.(3分)如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB 绕点O 逆时针旋转90°得到△COD ,则旋转过程中形成的阴影部分的面积为 .18.(3分)如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变化,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的12,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的12,经第三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的12,......,按此规律,经第n 次变化后,所得正方形OA n B n C n 的边长为正方形OABC 边长的倒数,则n = .三、解答题(8个小题,共66分) 19.(5分)计算:0542(3)+--⨯-20.(6分)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE =BF .21.(8分)抛物线243y x x =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),点C 是此抛物线的顶点. (1)求点A 、B 、C 的坐标; (2)点C 在反比例函数ky x=(0k ≠)的图象上,求反比例函数的解析式. 22.(8分)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?23.(10分)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A .唱歌、B .舞蹈、C .绘画、D .演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共 人,a = ,并将条形统计图补充完整;(2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A 、B 、C 、D 四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.24.(9分)如图,船A 、B 在东西方向的海岸线MN 上,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东60°方向上,在船B 的北偏西37°方向上,AP =30海里.(1)尺规作图:过点P 作AB 所在直线的垂线,垂足为E (要求:保留作图痕迹,不写作法); (2)求船P 到海岸线MN 的距离(即PE 的长);(3)若船A 、船B 分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(8分)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=12,AD=3,求直径AB的长.26.(12分)如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t.(1)用含t的式子表示点E的坐标为_______;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.。
2013广西钦州初中学业考试数学试卷.
广西钦州市2013年中考数学试卷一、选择题(共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合题意的。
用2B铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)7的倒数是()A.﹣7 B.7 C.﹣17 D.172.(3分)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为()A.403×103B.40.3×104C.4.03×105D.0.403×1063.(3分)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.(3分)在下列实数中,无理数是()A.0 B.C.D. 65.(3分)已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是()A.外离B.相交C.内切D.外切6.(3分)下列运算正确的是()A.5﹣1= B.x2•x3=x6C.(a+b)2=a2+b2D .=7.(3分)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3 C.m>3 D. m≥3 8.(3分)下列说法错误的是()A.打开电视机,正在播放广告这一事件是随机事件B.要了解小赵一家三口的身体健康状况,适合采用抽样调查C.方差越大,数据的波动越大D.样本中个体的数目称为样本容量9.(3分)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为()A.+=1 B.10+8+x=30 C.+8(+)=1D.(1﹣)+x=810.(3分)等腰三角形的一个角是80°,则它顶角的度数是()A.80° B.80°或20°C.80°或50°D. 20°11.(3分)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙12.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A. 2 B. 3 C. 4 D. 5二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上)13.(3分)比较大小:﹣12(填“>”或“<”)14.(3分)当x=时,分式无意义.15.(3分)请写出一个图形经过一、三象限的正比例函数的解析式.16.(3分)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是.17.(3分)不等式组的解集是.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题(本大题共8分,满分66分,请将答案写在答题卡上,解答应写出文字说明或演算步骤)19.(6分)计算:|﹣5|+(﹣1)2013+2sin30°﹣.20.(6分)如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD 是等腰梯形.21.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.(12分)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4,众数是5,极差是6:②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?23.(7分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.(1)求这两个函数的解析式:(2)求△ADC的面积.24.(7分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)25.(10分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.26.(12分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案1、D2、C3、B4、C5、D6、A7、A8、B9、C 10、B 11、D 12、C 13、<14、215、y=x(答案不唯一)16、1:417、3<x≤518、10 19.:解:原式=5﹣1+2×﹣5=﹣1+1=0.20.:证明:∵AB∥DE,∴∠DEC=∠B,∵∠DEC=∠C,∴∠B=∠C,∴梯形ABCD是等腰梯形.21.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).22.:解:(1)①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;众数:5次;极差:6﹣2=4;②做好事不少于4次的人数:800×=624;(2)①如图所示:②一共出现6种情况,其中和为偶数的有3种情况,故概率为=.23.解:(1)∵反比例函数y=的图象过B(4,﹣2)点,∴k=4×(﹣2)=﹣8,∴反比例函数的解析式为y=﹣;∵反比例函数y=的图象过点A(﹣2,m),∴m=﹣=4,即A(﹣2,4).∵一次函数y=ax+b的图象过A(﹣2,4),B(4,﹣2)两点,∴,解得∴一次函数的解析式为y=﹣x+2;(2)∵直线AB:y=﹣x+2交x轴于点C,∴C(2,0).∵AD⊥x轴于D,A(﹣2,4),∴CD=2﹣(﹣2)=4,AD=4,∴S△ADC=•CD•AD=×4×4=8.24.:解:(1)过B作BG⊥DE于G,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.25.解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AC为圆O的切线;(3)∵OD ∥AC , ∴=,即=,∴AC=7.5,∴EC=AC ﹣AE=7.5﹣3=4.5,∴S 阴影=S △BDO +S △OEC ﹣S 扇形BOD ﹣S 扇形EOG =×2×3+×3×4.5﹣ =3+﹣ =.26. 解:(1)∵由y=x 2+2x 得,y=(x ﹣2)2﹣2,∴抛物线的顶点A 的坐标为(﹣2,﹣2),令x 2+2x=0,解得x 1=0,x 2=﹣4,∴点B 的坐标为(﹣4,0),过点A 作AD ⊥x 轴,垂足为D ,∴∠ADO=90°,∴点A 的坐标为(﹣2,﹣2),点D 的坐标为(﹣2,0),∴OD=AD=2,∴∠AOB=45°;(2)四边形ACOC ′为菱形.由题意可知抛物线m 的二次项系数为,且过顶点C 的坐标是(2,﹣4), ∴抛物线的解析式为:y=(x ﹣2)2﹣4,即y=x 2﹣2x ﹣2,过点C 作CE ⊥x 轴,垂足为E ;过点A 作AF ⊥CE ,垂足为F ,与y 轴交与点H , ∴OE=2,CE=4,AF=4,CF=CE ﹣EF=2,∴OC===2,同理,AC=2,OC=AC , 由反折不变性的性质可知,OC=AC=OC ′=AC ′,故四边形ACOC ′为菱形.(3)如图1,点C ′不在抛物线y=x 2+2x 上.理由如下:过点C′作C′G⊥x轴,垂足为G,∵OC和OC′关于OA对称,∠AOB=∠AOH=45°,∴∠COH=∠C′OG,∵CE∥OH,∴∠OCE=∠C′OG,又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO,∴OG=4,C′G=2,∴点C′的坐标为(﹣4,2),把x=﹣4代入抛物线y=x2+2x得y=0,∴点C′不在抛物线y=x2+2x上;(4)存在符合条件的点Q.∵点P为x轴上的一个动点,点Q在抛物线m上,∴设Q(a,(a﹣2)2﹣4),∵OC为该四边形的一条边,∴OP为对角线,∴=0,解得x1=6,x2=4,∴P(6,4)或(﹣2,4)(舍去),∴点Q的坐标为(6,4).。