19.1变量与函数导学案

合集下载

八年级数学下册 19.1.1 变量与函数(第2课时)导学案(新版)新人教版

八年级数学下册 19.1.1 变量与函数(第2课时)导学案(新版)新人教版

19.1.1 变量与函数【学习目标】1.能根据所给定条件写出简单的函数关系式;2.能从实际问题中得到函数关系式;3.会求函数解析式中自变量的取值范围及函数值;【学习重点】会求自变量的取值范围及函数值.【学习难点】能从实际问题中得到函数关系式,会求自变量的取值范围.【学前准备】一颗树现高50cm,每个月长高2cm,x个月后这棵树的高度为ycm,y与x的关系式为,变量是,常量是 .【导入】【自主学习、合作交流】函数阅读课本P95页到97页探究以上的内容,回答下列问题:1.完成96页的归纳2.分组讨论:教科书P(96)页”思考”中的两个问题.3.根据函数定义归纳函数的三要素:4.什么是自变量和函数值完成P97页的探究例题解析例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油y(单位: L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子:,其中是自变量,是函数,像这样的式子叫做函数解析式.(2)自变量x的取值范围为 . (3)当汽车行驶200km时,油箱中还有多少升(L)汽油?例2:分别说出下列函数关系式中的自变量及谁是自变量的函数,并确定自变量的取值范围?(1)y=x-1(2)y=11-x(3)y=1-x(4)y=11-x归纳总结:求函数解析式中自变量取值范围的一般方法①当解析式为整式时,自变量取全体实数;②当解析式为分式时,分母不为0;③当解析式为算术平方根时,被开方数为非负数(大于等于0)④当解析式有上述多种形式组合时,应先求出各部分的取值范围,然后再求它们的公共部分.⑤当涉及实际问题时,不仅要考虑函数关系式自身有意义,而且还要考虑问题的实际意义.【知识应用】1.列问题中的两个变量是否是函数关系?是函数关系的指出自变量和函数.(1)平行四边形的面积S和它的一边长x的关系(2)圆的面积S与长C的关系2.函数y=3x-1中,自变量x的取值范围是 .3.函数y=521+x中,自变量x的取值范围是 .【课堂小结】如何确定自变量的取值范围及求函数值.【当堂测试】1.已知函数y=x2-x-2,当x=2时,函数值为 .2.在函数y=12+x 中,自变量x 的取值范围是 .在函数y=31--x x 中,自变量x 的取值范围是 . 在函数y=112+x 中,自变量x 的取值范围是__________.3.圆的面积为S ,半径为r ,则S=πr 2,则r 的取值范围是 .4.从甲地到乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,①若时间t ≥3分钟时,电话费y (元)与t (分钟)之间的函数关系式是 ;②当t=30分钟时,y= . 【课后作业】Ⅰ 必做题1.一个三角形的底边长为5,高h 可以任意伸缩,面积S 随h 变化的解析式为 ,其中常量是 ,变量是 , 自变量是 , 是 的函数,自变量的取值范围是 .2.x= 时,函数y=3x-2与函数y=5x+1有相同的函数值.3.一个正方形的边长为5cm ,它的边长减少xcm 后得到的新的正方形的周长为 ycm ,写出y 与x 的关系式 ,其中自变量x 的取值范围是 .4.个体户小勤购进一批苹果,到集贸市场零售,已知卖出的苹果数是x (千克) 与售价y (元)的关系如下表:(1)卖出的苹果数量x(千克)与售价y(元)的关系可以表示为 . (2)当小勤卖出的苹果数量从5千克变到10千克时,苹果的销售额 元变到 元. (3)当小勤卖出苹果150千克时,得到苹果货款 元. 5.观察下面式子: ①35y x =- ②21x y x -=-③y 回答:(1)说说上面每个式子中的y 是x 的函数吗?(2)写出自变量x 在什么范围内取值时函数解析式有意义?(3)当x=5时对应的函数值是多少?6.某种活期储蓄的月利率是0.06%,存入100元本金,求本息和(本金与利息的和)y 元随所存月数x 变化的函数解析式,并计算存期为4个月时的本息和.Ⅱ 选做题如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的一边长y (m )与另一边长x (m )的函数关系式,并求自变量的取值范围.【课后反思】【评价】yx。

人教版八年级“19.1.1 变量与函数”导学案

人教版八年级“19.1.1 变量与函数”导学案

概括并理解函数的概念,理解“变化与对应”的含义 学 习 流 程 【自主学习】 ★思考下面几个问题: (1)汽车以 60 km/h 的速度匀速行驶,行驶路程为 s km,行驶时间为 t h.填写下表,s 的值随 t 的值的变化而变化吗? t/h s / km 1 2 3 4 5
解答:____________________________________. (2)电影票的售价为 10 元/张.第一场售出 150 张票,第二场售出 205 张 票, 第三场售出 310 张票, 三场电影的票房收入分别是____元、____元、 ____ 元, 设一场电影售票 x 张票, 票房收入 y 元, y 的值随 x 的值的变化而变化吗? 解答:____________________________________. (3)圆形水波慢慢地扩大便形成了水中的涟漪 .在这一过程中,当圆的 半径 r 分别为 10 cm, 20 cm, 30 cm 时, 圆的面积 S 分别是____cm2, ____cm2, ____cm2,S 的值随 r 的值的变化而变化吗? 解答:____________________________________. (4) 用 10 m 长的绳子围一个矩形.当矩形的一边长 x 分别是 3 m, 3.5 m, 4 m,4.5 m 时,它的邻边长 y 分别是____m,____m,____m,y 的值随 x 的 值的变化而变化吗? 解答:____________________________________. ★归纳: 上述问题都反映了不同事物的变化过程.其中有些量的数值是变 化的,如时间 t,路程 s;售出票数 x,票房收入 y„„有些量的数值是始终保 持不变的,如速度 60 km/h,票价 10 元/张„„在一个变化过程中,我们称

人教版数学八年级下册 变量(导学案)

人教版数学八年级下册 变量(导学案)

第十九章一次函数灵师不挂怀,冒涉道转延。

——韩愈《送灵师》汪村学校钱少华19.1 函数19.1.1 变量与函数第1课时变量一、导学1.导入课题汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h.在这个过程中,哪些量变化,哪些量不变?这些量之间有什么关系?这就是我们今天要学习的“变量”(板书课题).2.学习目标(1)知道常量、变量,会用式子表示两个变量之间的变化关系.(2)通过分析探索生活实例理解常量、变量之间的关系,理解它们的相对性.3.学习重、难点重点:理解变量的实际意义.难点:能判断常量和变量,感知两个变量之间的变化关系.4.自学指导(1)自学内容:P71的内容.(2)自学时间:6分钟.(3)自学方法:仔细阅读教材内容,关键词语、重点内容做上记号.(4)自学参考提纲:①指出教材四个问题中的变量和常量.②在同一个问题中,如果存在两个变量,那么这两个变量之间应存在什么关系?③完成P71练习.④上面这些问题中的两个变量都有什么样的关系?⑤在圆的面积S和半径r中,r每取一个值,S都有唯一值与它对应吗?二、自学学生可参考自学参考提纲进行自学.三、助学1.师助生:(1)明了学情:关注学生对同一个问题中的两个变量的相关联系和一一对应关系的理解.(2)差异指导:对个性和共性问题进行分类指导.2.生助生:小组研讨,帮助解决疑难问题.四、强化1.强调常量与变量的意义.2.组织学生交流练习中的问题的答案.3.强调同一问题中的两个变量之间的对应关系.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己本节课的学习收获和存在的疑惑.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的态度、学习方法、学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时内容是学生的认知由常量到变量的一个飞跃,教学时应根据学生的认知基础,创设丰富的现实情境,使学生感知变量存在的意义,体会变量间的相互依存关系和变化规律.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)某人要在规定的时间内加工100个零件,则工作效率p与时间t之间的关系,下列说法正的是(C)A.数100和p,t都是变量B.数100和p都是常量C.p和t是变量D.数100和t都是常量2.(10分)圆的周长公式为C=2πr,下列说法正确的是(C)A.常量是2B.变量是C,π,rC.变量是C,rD.常量是2,r3.(15分)在下表中,设x表示乘公共汽车的站数(站),y表示应付的票价(元).上表中的变量(C)A.仅有一个,是站数B.仅有一个,是票价C.有两个,一个是站数,一个是票价D.一个也没有4.(10分)多边形内角和α与边数n之间的关系式是α=180(n-2).5.(10分)小明带着10元钱去文具商店买日记本.已知每本日记本售价2元,则小明剩余的钱数y(元)与所买日记本的本数x(本)之间的关系可表示为y=10-2x.在这个关系式中,x、y是变量,0,-2是常量.二、综合运用(15分)6.(15分)根据条件写出下列关系式:(1)购买50个羽毛球,羽毛球的价y(元)与单价x(元)之间的关系;(2)周长为60cm的等腰三角形的腰长y(cm)与底边长x(cm)之间的关系;(3)矩形的面积为36,矩形的长y与宽x之间的关系.解:(1)y=50x;(2)y=30-12x;(3)y=36x.7.如图,在一个半径为18 cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、函数各是什么?答案:小圆半、圆环面积.(2)如果挖去的圆半径为x(cm),那么圆环的面积y(cm2)与x的关系式是y=324π-πx2;(3)当挖去圆的半径由1 cm变化到9 cm时,圆环面的面积由323πcm2变化到243πcm2.三、拓展延伸(15分)8.从甲地到乙地的路程为300km.一辆汽车从甲地到乙地,每小时行驶50km.回答下列问题:(1)汽车行驶1h后,距离乙地 250 km,距离甲地 50 km.(2)设汽车行驶时间为t(h),与乙地的距离为s(km).用含t的式子表示s;其中哪些是变量?哪些是常量?(3)这辆汽车行驶多长时间可到达乙地?解:(2)s=300-50t.其中s,t是变量,300,-50是常量.(3)300÷50=6(h)【素材积累】1、冬天是纯洁的。

八年级数学下册 19.1.1 变量与函数导学案 (新版)新人教版

八年级数学下册 19.1.1 变量与函数导学案 (新版)新人教版

第十九章一次函数19.1 函数19.1.1 变量与函数1.认识变量、常量.2.学会用一个变量的代数式表示另一个变量.3.认识变量中的自变量与函数.4.进一步理解掌握确定函数关系式.5.会确定自变量的取值范围.自学指导:阅读教材第71页至74页,独立完成下列问题:知识探究(1)一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.①根据题意填写下表:t/时 1 2 3 4 5s/千米60 120 180 240 300②试用含t的式子表示s为s=60t;③在以上这个过程中,不变化的量是60,变化的量是s与t.(2)每张电影票的售价为10元,早场售出票150张,日场售出票205张,晚场售出票310张.①三场电影的票房收入分别是1500元,2050元,3100元.②设一场电影售票x张,票房收入y元,则用含x的式子表示y为y=10x.③在以上这个过程中,不变化的量是10,变化的量是x与y.(3)变量:在一个变化的过程中,数值变化的量;常量:在一个变化的过程中,数值不变的量.(4)一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个变化值,y都有唯一确定的值与其对应,那么就称y是x的函数,其中x是自变量,如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数. (5)对于一个已知的函数,自变量的取值范围是使这个函数有意义的一切值;对于一个实际问题,自变量的取值必须使实际问题有意义.活动1 学生独立完成例1 分别指出下列关系中的变量和常量:(1)圆面积公式S=πr2(s表示面积,r表示半径);(2)匀速运动公式s=vt(v表示速度,t表示时间,s表示在时间t内所走的路程).解:(1)r、S是变量,π是常量;(2)t、s是变量,v是常量.π是圆周率,是定值,是常量,半径r每取一个值都有唯一的S值和它对应,故S和r是变量.因为是匀速运动,所以速度v是常量,t和s是变量.例2 如图,一个矩形推拉窗高1.5m,则活动窗的通风面积S(m2)与拉开长度b(m)的关系式是S=1.5b.窗高1.5m是一边长,拉开长度b(m)是另一边长,因此通风面积S=1.5b.例3 某火力发电厂,贮存煤1000吨,每天发电用煤50吨,设发电天数为x,该电厂开始发电后,贮存煤量为y(吨).(1)写出y与x之间的函数关系式;(2)为了保障电厂正常发电,工厂每天将从外地运回煤45吨,请写出按此方案执行时,y与x之间的函数关系式,并求出发电30天时,电厂贮存煤多少吨?解:(1)y=-50x+1000;(2)y=-5x+1000,当x=30时,y=-5×30+1000=850.∴当发电30天时,电厂贮存煤850吨.电厂贮存的煤量与原贮存量,每天发电的用煤量,每天从外地运回的煤量,以及发电天数有关.活动2 跟踪训练1.设圆柱的高h不变,圆柱的体积V与圆柱的底面半径r的关系是V=πr2h,这个式子中常量是π,h,变量是V,r.2.若球体体积为V,半径为R,则V=43πR3.其中变量是R,V,常量是43,π.找准不变的量,再确定变量.3.下列变量间的关系:①人的身高与年龄;②矩形的周长与面积;③圆的周长与面积;④商品的单价一定,其销售额与销售量,其中是函数关系的有③④.一是明确已知两个变量是什么;二是看两个变量之间是否存在一一对应关系.4.某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过12米3,按每立方米a元收费;若超过12米3,则超过部分每立方米按2a元收费,某户居民五月份交水费y(元)与用水量x(米3)(x>12)之间的关系式为y=2ax-12a,若该月交水费20a元,则这个月实际用水16米3.5.若等腰三角形底角度数值为x,则顶角度数值y与x的关系式是y=-2x+180,变量是x,y,常量是-2,180.6.在△ABC中,它的底边长是a,底边上的高是h,则三角形的面积S=12ah,当底边a的长一定时,在关系式中的常量是12,a,变量是S,h.7.已知水池里有水200m3,每小时向水池里注水20m3,设注水时间为x小时,水池里共有水ym3,用含x的式子表示y,则y=20x+200,其中变量为x,y,常量为20,200.8.人的心跳速度通常与人的年龄有关,如果a表示一个人的年龄,b表示正常情况下每分钟心跳的最高次数,经过大量试验,有如下的关系:b=0.8(220-a).(1)上述关系中的常量与变量各是什么?(2)正常情况下,一名15岁的学生每分钟心跳的最高次数是多少?解:(1)常量0.8,220,变量a,b; (2)164.9.蓄水池中原有水800m3,每小时从中放出60m3的水.(1)写出池中的剩余水量Q(m3)与放水时间t(h)之间的函数关系式;(2)写出自变量t的取值范围;(3)12h后,池中还有多少水?解:(1)Q=-60t+800; (2)0≤t≤403; (3)80m3.实际问题中的函数关系,自变量除了要使函数关系式本身有意义,还要满足实际意义.此题要根据函数Q的取值范围0≤Q≤800来确定自变量t的取值范围.活动3 课堂小结1.常量和变量是普遍存在的,它们只是相对于某个变化过程而言的两个概念,因此对它们的差别应紧扣定义及相应的实际背景.2.判断变量之间是否存在函数关系,主要抓住两点:一个变量的数值随着另一个变量的数值的变化而变化;自变量的每一个确定的值,函数都有且只有一个值与之对应.3.确定自变量取值范围时,不仅要考虑函数关系式有意义,而且还要注意使实际问题有意义.教学至此,敬请使用学案当堂训练部分.。

人教版数学八年级下册19.1.1 《变量与函数》导学案(无答案)

人教版数学八年级下册19.1.1 《变量与函数》导学案(无答案)
5.下列函数中,自变量x的取值范围是x≥2的是()
A .y= B.y= C.y= D.y= ·
6.已知函数自变量的取值范围是 <x≤1,下列函数适合的是()
A. B. D.
7.已知函数y= ,当x=a时的函数值为1,则a的值为()
A.3B.-1C.-3D.1
8.已知函数式y=-3x-6,当自变量x增加1时,函数值()
A.一切实数B.x≠0C.x≠0或x≠-2D.x≠0且x≠-2
4.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及变量x的取值范围是()
A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)
C.y= (60-x)(0<x<60)D.y= (60-x)(0<x<30)
情感态度与价值观:
1、体验生活中的数学的应用价值,激发学生学数学、用数学的兴趣。
2、在探索过程中体验成功的喜悦,树立学习的自信心。
3、用数量变化描述自然规律感受“万物皆变”的哲理。
二、学习重难点:
1、理解常量、变量和函数的概念,并能根据具体问题得出相应的函数关系式.
2、理解自变量、函数的关系,确定函数关系式
三、预习感知
常量、变量:在一个变化过程中,发生变化的量叫做;始终保持不变的量叫做;
练习一:1.某位教师为学生购买数学辅导书,书的单价是4元,则总金额y(元)与学生数n(个)的关系式是,其中的变量是,常量是。
2.计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的关系式为,其中的变量是,常量是。
八年级下册数学科导学案
主备人:审核组长:
集体备课
备注
课题
人教版数学八年级下册19.1.1《变量与函数》导学案

人教版数学八年级下册19.1《变量与函数(1)》导学案2

人教版数学八年级下册19.1《变量与函数(1)》导学案2

19.1.1 变量与函数〔1〕【学习目标】知识与技能:理解变量、常量的概念以及相互之间的关系;能指出一个变化过程中的变量与常量。

过程与方法:能找出变量之间的简单关系,列出简单关系式。

情感态度与价值观:学生通过对实际问题的讨论和分析,感受事物变化过程的普遍性,体会事物之间的相互联系与制约。

【学习重点】1.认识变量、常量.2.变量、常量必须存在于一个变化过程中【学习难点】常量与变量之间的关系,准确判断变量。

【课时安排】:1课时一、新课导入问题一:我到超市购置了假设干瓶矿泉水,这种矿泉水的单价是每瓶1.2元,花费的总金额为y元,购置的瓶数为x瓶,先填写下表,再用含x的式子表示y.1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y. y=_________________.这个问题反映了购置矿泉水需要的钱____随购置的数量___的变化过程.问题二:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:请说明你的道理:路程=__________________2..在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t 的式子表示s .s=_________________这个问题反映了匀速行驶的汽车所行驶的路程___随行驶时间___的变化过程. 二、预习导学【活动一】以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的〔如______________〕,有些量的数值是始终不变的〔如______________ 〕 结论: 在一个变化过程中,我们称数值发生变化....的量为________; 在一个变化过程中,我们称数值始终不变....的量为________; 【活动二】例题讲解指出以下关系式中的变量与常量:(1) y = 5x -6 (2) y=(3) y= 4x 2+5x -7 (4) S = Лr 2解:〔1〕5和-6是常量,x 和y 是变量。

2014年春人教版义务教育教科书数学8年级下册19.1.1变量与函数(第2课时)

2014年春人教版义务教育教科书数学8年级下册19.1.1变量与函数(第2课时)

14.1.1变量与函数(第2课时)导学案学习目标:1.了解函数的概念,弄清自变量与函数之间的关系.2.经历探索函数概念的过程,感受函数的模型思想.3.培养观察、交流、分析的思想意识,体会函数的实际应用价值.学习重、难点与关键:1.重点:认识函数的概念.2.难点:对函数中自变量取值范围的确定.3.关键:从实际出发,由具体到抽象,建立函数的模型.学习过程:一、回顾交流,聚焦问题1.回顾上课(P71)中的4个问题.同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量.【学生活动】思考问题,踊跃发言.(先归纳出4个思考题的关系式,•再举例)2.在地球某地,温度T (℃)与高度d (m )的关系可以挖地用T=10-150d 来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量.(2)填写下表. (3)观察两个变量之间的联系,当其中一个变量取定一个值时,•另一个变量就______.3.课本P72-73“思考”.【学生活动】四人小组互动交流,踊跃发言二、讨论交流,形成概念【函数定义】一般地,在一个__________中,如果有____________________,并且对于_____•的每一个确定的值,______都有唯一确定的值与其对应,那么我们就说____是自变量,_____是______的函数.【跟踪训练】课本P74练习第1、2题结合学生练习情况,强调上述活动中的关系式是函数关系式.提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的函数?高度d/m 0 200 400 600 800 1000 温度T/℃三、继续探究,感知轻重【学生活动】1、求下列函数的函数值(1)25y x =+ (2)22y x =解:当1x =时,y = , 解:当1x =时,y = ,当3x =时,y = , 当1x =-时,y = ,当3x =-时,y = , 当3x =时,y = ,当10x =时,y = 。

19.1.1变量与函数导学案(人教版)

19.1.1变量与函数导学案(人教版)

19.1.1《变量与函数》导学案班级_________ 姓名__________学习目标:1.结合实例,了解常量、变量的意义和函数的概念;2.能确定简单实际问题的函数解析式,并会求函数值。

引言:大千世界处在不停的运动变化中,万物皆变。

静止是相对的,运动是永恒的。

在运动变化过程中往往蕴含着量的变化。

那么,数学上怎样刻画各种运动变化呢?情境探究:.(1)4时的气温是多少?10时,16时呢?当时间t的值确定后,能确定气温T的值吗?当时间t取定一个值时,气温T就有唯一确定的值与其对应.(2)气温T的值随什么的值的变化而变化呢?60 km/h的速度匀速行驶,行驶的路程为s km,行驶时间为t h.请回答问题:(1)填表:它们之间的关系用式子如何表示?(2)数值变化的量是,数值始终不变的量是。

当时间t的值确定后,能确定路程s的值吗?当时间t取定一个值时,路程s就有______________________与其对应.(3)s的值随什么的值的变化而变化呢?情境3:圆形水波慢慢地扩大。

圆的面积为S cm2 ,圆的半径为r cm.请思考并回答问题:(1)当圆的半径r分别为10cm,20cm,30cm时,圆的面积S分别为多少?它们之间的关系用式子如何表示?(2)数值变化的量是,数值始终不变的量是。

当半径r的值确定后,能确定圆面积S的值吗?当半径r取定一个值时,面积S就有_____________________与其对应.(3)S的值随什么的值的变化而变化呢?情境4:福利院院长告诉同学们,福利院准备在院里修建一个周长为40m的矩形水池喂养金鱼.,如果矩形的一边长为x m,它的邻边长为y m.请思考如下问题:(1)当矩形的一边长x分别为5m,8m,12m时,它的邻边长为y分别为多少?它们之间的关系用式子如何表示?(2)数值变化的量是,数值始终不变的量是。

当一边x的值确定后,能确定邻边y的值吗?能确定几个邻边的值?当x取定一个值时,邻边y就有______________________与其对应.(3)y的值随什么的值的变化而变化呢?情境5:李强回到家完成了数学作业,内容涉及:(1)完成下列表格:数x 1 2 3 4 5平方根y当数x的值确定后,能确定平方根y的值吗?当数x取定一个值时,平方根y就有____________与其对应.(3)下图反映的是蚂蚁在墙上爬行的高度h与离出发点水平距离s关系图.当s的值确定后,能确定h的值吗?当s取定一个值时,h就有____________与其对应.生活中,一个量随另一个量的变化而变化的现象大量存在.在变化过程中涉及的量,有些量的数值是变化的,有些量的数值是始终不变的.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.我们再回顾刚才探究的5个情境,请同学们小组群学,完成表格并思考问题,最后请同学展示交流。

变量与函数导学案doc

变量与函数导学案doc

新乌江镇中心学校八年级数学导学案主备人马朝学审核人数学备课组编号19—2
班级姓名
19.1 变量与函数(2)
【学习目标】:
1.进一步体会运动变化过程中的数量变化;
2.结合实例,理解函数的概念以及自变量的意义.
学习重点:
结合实例,理解函数的概念以及自变量的意义.
【学习难点】函数的概念的理解.
【学习方法】创设情境-自主探究-合作交流-应用提高-反馈检测.
【学习过程】
一、设置问题情境激发学习兴趣.
二、探究函数变量的对应关系
阅读71页引例1—4,用表格表示每一个变化关系
体会上述每个变化过程中两个变量之间的变化,总结函数的概念:在一个变化过程中,有()个变量,例如,x、y,对于x的每一个值,y都有()的值与其对应,我们称y是x的函数.其中()是自变量.
三、学以致用
用解析式表示教材71页引例1—4 ,练习1------4;
教材74页练习第一题1---4
四、应用提高、拓展创新
自主学习教材73页例1 并思考如何根据实际意义写解析式?如何求自变量的取值范围?
五、归纳小结、
问题1:在一个变化过程中,对于变量x和y而言,满足什么对应关系时,y才是x的函数?两个变量满足“一对多”的关系是函数吗?
问题2:自变量的取值范围如何确定?受哪些因素的限制?
问题3:在解决什么问题时,往往需要建立函数模型?根据什么建立函数模型?建立函数模型最常见的方式是什么?
反馈检测(分组展示)
1、教材第75页练习第2题
2、教材81页习题19.1第1、2题
3、练习册第58页1---9。

《变量与函数》导学案

《变量与函数》导学案

19.1.1《变量与函数》(第2课时)导学案班级:姓名:座号:一、学习目标1、理解函数的概念,能准确识别出函数关系中的自变量和函数;2、理解自变量的取值范围和函数值的意义,会求自变量的取值范围,会根据自变量的取值求函数值.二、学习过程(一)温故知新分别写出下列各问题中的关系式,并指出各关系式中的常量和变量.(1)寄一封质量在20g以内的市内平信,需邮资0.80元,则寄x封这样的信所需邮资y(元)与x(封)之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x (分钟)之间的关系;根据以上问题进行观察与讨论:上面每个问题中有几个变量?在同一个式子中的变量之间有什么联系?归纳:上面每个问题中的个变量,当其中一个变量取定一个值时,另一个变量就有确定的值与其对应(二)问题探究课本73页思考题(1)、(2)(三)学习新知1、函数概念的学习一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.例如在复习题1中, y=0.8x,会随的变化而变化,所以是自变量,并且当x取定一个值时,y都有一个值与其对应,所以邮资y是x 的函数。

x=1时,其函数值为,x=2时,其函数值为。

总结:辨析是否是函数的关键:(1)是否存在着两个变量。

(2)是否符合唯一对应性。

2、辨析概念①下列各图象中的y是不是x的函数?②判断下列各关系式中的y 是不是x 的函数?①y=x 2 ②y 2=x ③说说日常生活中具有函数关系的例子。

3、课本73页例题讲解(四)练一练1、求出下列函数中自变量的取值范围(1)y=2x(5)y=(x+1)02、如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )B 、y=x 2+23、梯形的上底长2㎝,高3㎝,下底长x ㎝大于上底长但不超过5㎝。

19.1变量与函数(第1课时) 导学案

19.1变量与函数(第1课时) 导学案
学习
重点
用数学关系式表示变量之间的关系,并能找到其中的常量和变量.
学习
难点
会用式子表示变量间的关系。
教学
环节
“三环六步”教学模式
一、
目标导航
“万物皆变”——我们生活在一个变化的世界中,如气温随海拔而变化;汽车行程随着行驶时间而变化;同学们的身高、体重也在随着年龄的增长而变化……这些一种量随另一种量的变化而变化的现象大量存在.若能从数学的角度研究变化的量,将有助于我们了解自己、认识世界.那么如何从数学的角度认识千变万化的世界呢?让我们一起进入本课时的学习吧!
二、
自主学习
15
思考课本P71“练习”前面的四个问题,解决下面的问题:
(1)在问题(1)中,可用含有t的式子表示s:s=_______,这一变化过程中,数值没有发生变化的量是:____________,数值发生变化的量是____________.
(2)在问题(2)中,可用含有x的式子表示y:y=_______,这一变化过程中,数值没有发生变化的量是:____________,数值发生变化的量是_______导学案)
主备人:朱平集体备课人:数学教研组审核人:时间:2017年3月24日
年级
八年级
学科
数学
课题
19.1.1变量与函数
第1课时
课型
新授
教学设计
修改意见
学习
目标
1.知道变量与常量的概念.
2.能结合具体实例写出变量与常量的关系式,并指出其中的变量与常量.
小结:在一个变化过程中,__________________________为变量,__________________________为常量。
三、
合作探究

最新人教版八年级数学下册19.1.1变量与函数(2课时)word导学案教学设计

最新人教版八年级数学下册19.1.1变量与函数(2课时)word导学案教学设计

第十九章 函数19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 . 3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ; (2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.四、我的疑惑____________________________________________________________ ____________________________________________________________一、要点探究探究点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s 千米.行驶时间为t 小时. (1)请同学们根据题意填写下表:(2)试用含t 的式子表示s,则s= ;(3)在以上这个过程中,变化的量有 ,不变化的量有__________.问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元. (1)请同学们根据题意填写:早场电影的票房收入为 元; 日场电影的票房收入为 元; 晚场电影的票房收入为 元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x 的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S 分别为多少? (1)填空:当圆的半径为10cm 时,圆的面积为 cm 2; 当圆的半径为20cm 时,圆的面积为 cm 2; 当圆的半径为30cm 时,圆的面积为 cm 2; 当圆的半径为r 时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________. 要点归纳:在一个变化过程中,数值发生变化的量为 ,数值始终不变的量为 .典例精析例1 指出下列事件过程中的常量与变量 (1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是________,变量是________; (2)周长C 与圆的半径r 之间的关系式是C =r 2π,其中常量是________,变量是________; (3)三角形的一边长5cm ,它的面积S(cm 2)与这边上的高h(cm)的关系式52y h =中,其中常量是________,变量是________. 变式题阅读并完成下面一段叙述:(1)某人持续以a 米/分的速度用t 分钟时间跑了s 米,其中常量是________,变量是________. (2)s 米的路程不同的人以不同的速度a 米/分各需跑的时间为t 分,其中常量是________,变量是________.t/小时 1 2 3 4 5S/千米课堂探究(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________.方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.探究点2:确定两个变量之间的关系 例2.弹簧的长度与所挂重物有关.如果弹簧原长为10cm ,每1kg 重物使弹簧伸长0.5cm ,试填下表: 怎样用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)?变式题:如果弹簧原长为12cm ,每1kg 重物使弹簧压缩0.5cm ,则用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)为________. . 写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分钟,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.1.若球体体积为V,半径为R,则343V Rπ=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是________,其中的常量是________,变量是________.4.表格列出了一项实验的统计数据,表示小球从高度x(单位:m)落下时弹跳高度y(单位:m)与下落高的关系,据表可以写出的一个关系式是.5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的关系式.完成上表,并写出瓶子总数y 与层数x之间的关系式.50 80 100 15025 40 50 75x 123…ny…教学备注配套PPT讲授5.当堂检测(见幻灯片19-21)第十九章 函数) 2.下列式子中:y 是x 的函数的有 .(填序号)①y=|x|;②x+1=|y|;③y=x 2-2;④3.已知函数y=2x2-1.(1)求出当x=2时y的值;(2)求出当y=3时x的值.四、我的疑惑___________________________________________________________________________ ___________________________________________________________________________二、要点探究探究点1:函数的概念问题1:填表并回答问题:x14916y=+2x(1)对于x的每一个值,y都有唯一的值与之对应吗?(2)y是x的函数吗?为什么?问题2:如何判断两个变量间具有函数关系?典例精析例1.下列关于变量x ,y 的关系式:y =2x+3;y =x2+3;y =2|x|;④y=x±;⑤y2-3x=10,其中表示y 是x 的函数关系的是.方法总结:判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.例2.已知函数421xyx-=+.(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0. 课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-14)1.下列说法中,不正确的是()A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数2.下列各表达式不是表示y是x的函数的是( )3.设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为,这个关系式中,是常量,是变量,是的函数.4.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min)之间的函数关系式是,自变量t的取值范围是 .5.求下列函数中自变量x的取值范围:2(1)2y x x=--;3(2)48yx=+;(3)3y x=+;1(4)11y xx+-.6. 我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里,一律收费8元;超过3公里时,超过3公里的部分,每公里加收1.8元;设乘坐出租车的里程为x(公里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x≤3和x>3时,表示y与x的关系式,并直接写出当x=2和x=6时对应的y值;(2)当0<x≤3和x>3时,y都是x的函数吗?为什么?八年级数学下册期中综合检测卷一、选择题(每小题3分,共30分)1.3x-x的取值范围是()A.x≥3B.x≤3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,12C.6,8,11D.5,12,233.下列各式是最简二次根式的是()97200.34.下列运算正确的是()532149138222(25)-=255.方程|4x-8|x y m--当y>0时,m的取值范围是()A.0<m<1 B.m≥2 C.m≤2 D.m<26.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( ) A.8 B.10 C.27 D.10或277.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A.可能是锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形8.能判定四边形ABCD 为平行四边形的题设是( ) A.AB ∥CD ,AD=BC B.AB=CD ,AD=BC C.∠A=∠B ,∠C=∠D D.AB=AD ,CB=CD9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC ⊥BD 时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD 时,它是正方形第9题图 第10题图 第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4) S △AOB =S 四边形DEOF 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.43a b +126b a b +-+可以合并,则ab = .12.若直角三角形的两直角边长为a 、b 269a a -+|b -4|=0,则该直角三角形的斜边长为 .13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S 1=258π,S 2=2π,则S 3= .14.四边形ABCD 的对角线AC ,BD 相交于点O ,AC ⊥BD,且OB=OD,请你添加一个适当的条件 ,使四边形ABCD 成为菱形(只需添加一个即可).15.如图,△ABC 在正方形网格中,若小方格边长为1,则△ABC 的形状是 .16.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标.三、解答题(共66分)19.(8分)计算下列各题:(1)(48-418)-(313-20.5);(2)(2-3)2015·(2+3)2016-2×|-3|-(-3)0.20.(8分)如图是一块地,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,且CD⊥AD,求这块地的面积.21.(8分)已知9+11与9-11的小数部分分别为a,b,试求ab-3a+4b-7的值.22.(10分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D 点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹) (2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.八年级数学下期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式0.5、27、30、2x +、240x 、22a b +中,最简二次根式有( ) A.1个 B.2个 C.3个 D.4个2.若式子43x x --有意义,则x 的取值范围为( ) A.x ≥4 B.x ≠3 C.x ≥4或x ≠3 D.x ≥4且x ≠3 3.下列计算正确的是( )A.4×6=46B.4+6=10C.40÷5=22D.2(15)-=-154.在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.365 B.1225 C.94D.335.平行四边形ABCD 中,∠B=4∠A,则∠C=( ) A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm ,AC ∶BD=4∶3,则菱形的面积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm 2第6题图 第8题图 第10题图7.若方程组 的解是 .则直线y =-2x +b 与y =x -a的交点坐标是()A.(-1,3)B.(1,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,410.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.54B.52C.53D.65二、填空题(每小题3分,共24分)11.当x= 时,二次根式x+1有最小值,最小值为.12.已知a,b,c是△ABC的三边长,且满足关系式222c a b--+|a-b|=0,则△ABC的形状为.13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为.第14题图第16题图第18题图15.在数据-1,0,3,5,8中插入一个数据x,使得该组数据的中位数为3,则x的值为.16.如图,□ABCD中,E、F分别在CD和BC的延长线上,∠ECF=60°,AE∥BD,EF ⊥BC,EF=23,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF,②∠AEB=75°,③BE+DF=EF,④S正方形ABCD=3其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)2-3|-212-⎛⎫-⎪⎝⎭18(2)先化简,再求值:a ba+÷(-a-22ab ba+),其中a3+1,b3-1.20.(8分)如图,折叠矩形的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10cm,AB=8 cm.求EF的长.21.(9分)已知一次函数的图象经过点A(2,2)和点B(-2,-4).(1)求直线AB的解析式;(2)求图象与x轴的交点C的坐标;(3)如果点M(a,-12)和点N(-4,b)在直线AB上,求a,b的值.22.(9分)(湖北黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.(10分)(山东德州中考)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?24.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25.(12分)如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B 两点,且△ABO的面积为12.(1)求k的值;(2)若点P为直线AB上的一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形?求出此时点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗?如果是,试说明理由;如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.更多全套优质教学课件、教案、习题、试卷,请关注本人主页!教学备注 1.情景引入 配套PPT 讲授 5.当堂检测 (见幻灯片。

《变量与函数》导学案

《变量与函数》导学案

19.1.1变量与函数第一课时【三维目标】1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;【学习重点】了解常量与变量的意义;【学习难点】较复杂问题中常量与变量的识别【学习过程】一、提出问题,创设情景问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s:s=________,t的取值范围是_________.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.二、深入探究,得出结论(一)问题探究:, 每 问题二:每张电影票的售价为 10 元,如果早场售出票 150 张,午场售出 205 张,晚场售出 310 张,三场电影的票房收入各多少元?设一场电影售票 x 张,票房收入 y 元.•1.请同学们根据题意填写下表:售 出 票 数 早场 150 午场 206 晚场 310 x(张)收入 y (元)2.在以上这个过程中,变化的量是 _____________.不变化的量是 __________.3 . 试 用 含 x 的 式 子 表 示 y: y=______ ,x 的 取 值 范 围是.这个问题反映了票房收入 _________随售票张数 _________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长 10cm• • 1kg•重物使弹簧伸长 0.5cm ,设重物质量为mkg ,受力后的弹簧长度为 L cm.1.请同学们根据题意填写下表:所挂重物(kg ) 1 2 3 4 5 m受力后的弹簧长度L (cm )2.在以上这个过程中,变化的量是 _____________.不变化的量是__________.3.试用含m的式子表示L:L=____________,m的取值范围是.这个问题反映了_________随_________的变化过程.问题四:要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30cm2呢?怎样用含有圆面积S的式子表示圆半径r?1.请同学们根据题意填写下表:(用含的式子表示)面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.r=_________,s的取值范围是.这个问题反映了____随___的变化过程.问题五:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。

变量与函数()导学案

变量与函数()导学案

18.1变量与函数(2)学习目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.复习回顾:一般地,在一个变化过程中有两个变量x与y,如果对于的每一个值, 都有唯一的值与它对应,那么就说是自变量,是因变量, 此时也称的函数.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系.在数学中,“y是x的函数”这句话常用y = x的代数式来表示,这里x是自变量,y是x的函数.知识新解:例1 判断下列变量关系是不是函数?(1)等腰三角形的面积与底边长.(2)关系式y=±x中, y是x的函数吗?函数关系式如何书写呢?列函数解读式1.填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系.2.试写出等腰三角形中顶角的度数y 与底角的度数x 之间的函数关系式.3.如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分面积y cm²与MA 长度x cm 之间的函数关系式.怎样列函数解读式? AM(1)对于一些简单问题的函数解读式,往往可以通过利用已有的公式列出.例如:底边一定,三角形的面积随高的变化而变化.(2)一些实际问题的函数解读式自变量的取值范围y =10-x(0<x<10 x 为整数)y =180-2x(0<x<90)y = 21x ²(0 ≤x ≤10 用来表示函数关系的等式叫做函数关系式,也称为函数的解读式.例1 求下列函数中自变量x 的取值范围(1) y = 3x -1 。

(2) y =2x ²+7 。

(3) y =21+x 。

(4) y =2-x .函数解读式是数学式子的自变量取值范围:1.当函数解读式是只含有一个自变量的整式时,2.当函数解读式是分式时,3.当函数解读式是二次根式时,实际问题的函数解读式中自变量取值范围:1. 函数自变量的取值范围既要使实际问题有意义,同时又要使解读式有意义.2.实际问题有意义主要指的是:(1)问题的实际背景(例如自变量表示人数时,应为非负整数等) .(2)保证几何图形存在(例如等腰三角形底角大于0度小于90度等).1.求下列函数中自变量x 的取值范围(1) y =x -3(2)y=1-x +x -1例2在上面试一试的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?小结1. 函数的定义2. 函数关系式3. 求函数解读式的方法3 函数自变量的取值范围:4 求自变量取值范围的方法:检测反馈1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2;(3)y =x (x +3); (3)36+=x x y ;(4)12-=x y .3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (M )由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1)y =(x +1)(x -2);(2)y =2x 2-3x +2;(3)12-+=x x y .。

八年级数学下册19.1.1变量与函数第2课时导学案新版新人教版2

八年级数学下册19.1.1变量与函数第2课时导学案新版新人教版2

19.1.1 变量与函数(第二课时)学习目标:我能理解函数的概念,能准确识别出函数关系中的自变量和函数,会用变化的量描述事物,能学会列函数解析式,会确定自变量的取值范围。

学习重点:函数的概念及确定自变量的取值范围。

学习难点:认识函数,领会函数的意义。

学习过程:一、创设情境:请你举出生活中含有两个变量的变化过程,说出其中的常量和变量。

二、自主学习:请看书72——74页内容,完成下列问题:1、思考书中第72页的问题,归纳出变量之间的关系。

当其中一个变量取定一个值时,__________________________________。

2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

3、归纳出函数的定义,明确函数定义中必须要满足的条件。

归纳:一般的,在一个变化过程中,如果有____变量x和y,并且对于x的___________ ,y都有_________与其对应,那么我们就说x是_______,y是x的_____。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

补充小结:对函数的定义的理解:(1)必须是一个变化过程中有两个变量;(2)其中一个变量每取一个值,另一个变量有且只有唯一的值对它对应。

三、合作交流与展示:1、P73的例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200千米时,油箱中还有多少汽油?1、求下列函数中自变量的取值范围(1) y=x-2 (2)y=1 x-2四、当堂检测:(1、2、3题必做,4题选做)1、P74:1题2、判断下列变量之间是不是函数关系:(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高.2、求下列函数中自变量的取值范围(1)y=-x-2 (2)y=x-35(3)y=1x-3(4)y=1x-34.写出下列函数的解析式.(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.(3)P74.2题2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且OA=OD ,∠OAD=50°,则∠OAB 的度数为( )A .40°B .50°C .60°D .70°2.若线段a ,b ,c 组成直角三角形,则它们的比可以为( )A .2∶3∶4B .7∶24∶25C .5∶12∶14D .4∶6∶103.如图,正方形ABCD 的周长是16,P 是对角线AC 上的个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .25B .23C .22D .44.下列多项式中能用完全平方公式分解的是( )A .x 2-x +1B .a 2+a +12C .1- 2x +x 2D .-a 2+b 2-2ab5.已知反比例函数1y x =,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x 1>时,0y 1<<D .当x 0<时,y 随着x 的增大而增大 6.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°7.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第n 个图形中小菱形的个数用含有n 的式子表示为( )A .21nB .32n -C .31n +D .4n8.下列命题中的真命题是( )A .有一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .对角线互相垂直平分的四边形是正方形D .有一组邻边相等的平行四边形是菱形9.已知多项式x 2+bx+c 分解因式为(x+3)(x ﹣1),则b 、c 的值为( )A .b =3,c =﹣2B .b =﹣2,c =3C .b =2,c =﹣3D .b =﹣3,c =﹣210.下列式子成立的是( )A .2(3)-=3B .23﹣3=2C .3=3D .(3)2=6 二、填空题11.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差2s 甲____2s 乙.(填“>”、“<”或“=”) 12.有一组数据:2,4,4,,5,5,6x 其众数为4,则x 的值为_____.13.如图所示,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若DE=5,则AC 的长等于_____.142x -x 的取值范围是________.15.如图,AC 是菱形ABCD 的对角线,AC=8,AB=5,则菱形ABCD 的面积是_________.16.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒2cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.17.如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为_________.三、解答题18.有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.19.(6分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).(1)填空:a =_________,b =_________.(2)补全频数分布直方图.(3)该校有2000名学生,估计这次活动中爱心捐款额在1525≤≤x 的学生人数.20.(6分)解方程:2x 2﹣4x+1=0.(用配方法)21.(6分)已知一个三角形的三边长分别为1545,20,5245x x x x ,求这个三角形的周长(要求结果化简).22.(8分)如图,一块铁皮(图中阴影部分),测得3AB =,4BC =,12CD =,13AD =,90B =∠.求阴影部分面积.23.(8分)如图,一次函数y= 34x+6的图象与x 轴、y 轴分别交于A 、B 两点,点C 与点A 关于y 轴对称.动点P 、Q 分别在线段AC 、AB 上(点P 与点A 、C 不重合),且满足∠BPQ=∠BAO .(1)求点A 、 B 的坐标及线段BC 的长度;(2)当点P 在什么位置时,△APQ ≌△CBP,说明理由;(3)当△PQB 为等腰三角形时,求点P 的坐标.24.(10分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.(1)通过计算说明边长分别为2,3,13的ABC ∆是否为直角三角形;(2)请在所给的网格中画出格点ABC ∆.25.(10分)实践与探究宽与长的比是512-(约0.618)的矩形叫做黄金矩形。

19.1变量与函数导学案

19.1变量与函数导学案

18.1变量与函数学案Ⅰ、教学目标1、知识与技能目标:运用丰富的实例,使学生从具体的问题情境中了解常量与变量的含义,能分清实例中的常量与变量,领悟函数的概念,了解自变量与函数的意义。

2、过程与方法目标:通过动手实践与探索,让学生参与变量的发现与函数的形成过程,感受获取知识的成功体验,提高学生分析问题和解决问题的能力。

3、情感态度价值观目标:在引导学生探索实际问题的数量关系中,培养学生学习数学的兴趣并积极参与数学活动的热情,在解决问题的过程中体会数学的应用价值。

Ⅱ、教学重点了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。

Ⅲ、教学难点函数概念的理解;函数关系式的确定Ⅳ、教学过程一、自主探究(一)提出问题,创设情景问题一:汽车以 60 千米/时的速度匀速行驶,行驶路程为 s 千米,行驶时间为 t 小时。

问题二:电影票的售价为10元∕张。

第一场售出150张票,第二场场售出205张票,第三场场售出310张票,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y元.•怎样用含x的式子表示y ?问题三:你见过水中涟漪吗?圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为 10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的变化而变化吗?问题四:用100 cm长的绳子围一个矩形,当矩形的一边长x 分别为 30 cm,35 cm,40 cm,45 cm 时,它的邻边长y 分别为多少?y的值随x的变化而变化吗?小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。

(二)归纳总结:1、在一个变化过程中,我们称数值发生变化的量为________;2、在一个变化过程中,我们称数值始终不变的量为________;(三)快速抢答:练习1 指出下列问题中的变量和常量:(1)某市的自来水价为 4 元/t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.1变量与函数导学案
学习目标:
1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义.
2、学会用含一个变量的代数式表示另一个变量.(重点)
一、 提出问题,创设情景
自主探究P 71问题(1),汽车以60千米/小时的速度匀速行驶,行驶里程为
s 千米,行驶时间为t 小时.
①.请同学们根据题意填写下表:
②.在以上这个过程中,变化的量是 ,不变化的量是
_______.
③.试用含t 的式子表示s : s=________,t 的取值范围是 _________ .
这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间 的变化过程.
在(4)中用含x 的式子表示y,则y = ;
二、得出结论:
1、在一个变化过程中,我们称数值发生变化的量为________;
2、在一个变化过程中,我们称数值始终不变的量为________;
三、问题引申,探索概念
(一)观察探究:
1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制
约的.
2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之
间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)
归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变
量就有________确定的值与其对应。

四.展示知识点
1、在一个变化过程中,我们称数值发生变化的量....
为 .有些量的数值是始终不变..
的,我们称它们为 . 2、五个问题中,(1)中的常量是 ,变量
是 ;
(2)中的常量是 ,变量是 ;(3)中的常量是 ,
变量是 ;
(4)中的常量是 ,变量是 ;(5)中的常量是 ,
变量是 .
五、实际应用
【活动2】自主探究71页问题(2)--(4),然后完成下列填空
在(2)中用含x 的式子表示y , 则y = ;
在(3)中用含r 的式子表示S, 则S = ;
汽车邮箱中有汽油50L。

如果不再加油,那么邮箱中的油量y随行驶路程x的增加而减少,平均耗油量为0.1L/km。

(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200km时,邮箱中还有多少汽油?
六.知识检测
1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()
A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+50 2.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v (千米/时)满足S=vt,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量
3.长方形相邻两边长分别为x、•y•,面积为100•,•则用含x•的式子表示y•,则y=_______,在这个问题中,常量;是变量.
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.
x与y之间的关系是y= ,在这个变化过程中,常量是 ,变量是.
5.一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨)。

(1)写出表示y与t的函数关系的式子;
(2)指出自变量x的取值范围;
(3)当时间为20小时,水箱中还有多少水?。

相关文档
最新文档