高二数学必修五选修2-精品综合考试题

合集下载

高二理科数学试题(必修5+选修2―1)人教A版

高二理科数学试题(必修5+选修2―1)人教A版

高二理科数学试题(必修5+选修2―1)人教A版高二理科数学试题第一卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的。

1.命题:“如果x?2,那么?2?x?A,如果x?2,那么x?C,如果x?222”,反命题为“是”2,或x??2b若x?2或x??2,则x2?22或x??2,那么x2?2D如果?2.十、2,那么x2?二ba11?d?22ababab2.非零实数a,b,若a?b,则下列不等式正确的是aa?bba|c|?b|c|c223.哪里?在ABC中,角度a和B的对边分别是a和B,如果3A?2bsina,则B等于以下函数中的a30b60c30或150d60或1204,当x为正时,2的最小值为()a.y=x+41b.y?lgx?xlgxc.y?x2?1?1x2?1d.y=x2-2x+35.已知{an}是一个算术序列,A10?8.前10项和S10?60,则其公差D为a2424bc?d3933x2y2?1上一点,双曲线的一条渐近线方程为3x?2y?0,f1,f2分别6.设p是双曲线2?9a是其左、右焦点,若|pf1|?3,则|pf2|?A1或5b6c7d97已知x?0,y?0和2x?8岁?xy?0,然后是x?Y的最小值为a8b16c18d20高二理科数学试题第1页(共4页)8.序列1,1111,,,…,的前2021项的和1?21?2?31?2?3?41?2n2021202140162021abcd曲线C的方程是f(x,y)?0,点P(x1,Y1)在曲线C上,而Q(X2,Y2)不在曲线C上,那么方程f(x,y)?f(x1,y1)?f(x2,y2)?0表示的曲线与曲线c的关系是A没有交叉点B有一个交叉点C有两个交叉点D有无限多个交叉点10在哪里?在ABC 中,a=120°,SINB:sinc=3:2,三角形面积为63,那么边长a=a219b27c19d711,如果序列{an}是等比序列,A2?1.如果前n项之和为Sn,则S3的取值范围为a(??,1]b(??,0)?(1,??)c[3,??)d(??,?1]?[3,??)x2y212。

高二数学选修2-2综合测试卷新课标人教版

高二数学选修2-2综合测试卷新课标人教版

高二数学选修2-2综合测试卷一、选择题1、设)(x f 为可导函数,且满足12)1()1(lim 0-=--®xx f f x ,则过曲线)(x f y =上点))1(,1(f 处的切线斜率为 ( ))A 2B -1C 1D -22、若复数i m m m m z )23()232(22+-+--=是纯虚数,则实数m 的值为A 1或2B 21-或2 C 21-D 23、设)(,)(3bx a f x x f -=的导数是(的导数是( ))A )(3bx a -B 2)(32bx a b -- C 2)(3bx a b - D 2)(3bx a b --4、点P 在曲线323+-=x x y 上移动时,过点P 的切线的倾斜角的取值范围是(的切线的倾斜角的取值范围是( )) A ],0[p B ),43[)2,0(p p pÈ C ]43,2[]2,0[p ppÈ D ),43[]2,0[p p pÈ 5、已知0,,¹Îb a R b a 且,则在①ab b a ³+222;②2³+ba ab ;③2)2(b a a b +£;④2)2(222b a ba +£+这四个式子中,恒成立的个数是(这四个式子中,恒成立的个数是( ))A 1个B 2个C 3个D 4个6、利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n nÎ-´×××´´´=+×××++ ”时,从“k n =”变到”变到 ““1+=k n ”时,左边应增乘的因式是(”时,左边应增乘的因式是( )) A 12+k B112++k k C1)22)(12(+++k k k D132++k k7、若函数2)(3-+=ax x x f 在区间),1(+¥内是增函数,则实数a 的取值范围是(的取值范围是( )) A ),3(+¥ B ),3[+¥- C ),3(+¥- D )3,(--¥ 8、当n 取遍正整数时,nnii -+表示不同值得个数是A 1B 2C 3D 49、函数12)(2++=ax ax x f 在[-3[-3,,2]2]上有最大值上有最大值4。

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =2-i2+i (i 为虚数单位)在复平面内对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限解析: ∵z =2-i 2+i =(2-i )2(2+i )(2-i )=4-4i -15=35-45i ,∴复数z 对应的点的坐标为⎝⎛⎭⎫35,-45,在第四象限. 答案: D2.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为( ) A .10 B .5 C .-1D .-37解析: f ′(x )=3x 2+4,f ′(1)=7,f (1)=10,y -10=7(x -1),y =0时,x =-37.答案: D3.类比下列平面内的三个结论所得的空间内的结论成立的是( ) ①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直; ③如果一条直线与两条平行直线中的一条相交,则必与另一条相交. A .①②③ B .①③ C .①D .②③解析: 类比①的结论为:平行于同一个平面的两个平面平行,成立;类比②的结论为:一个平面如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交,成立.答案: A4.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析: y ′=3x 2-6x -9=0,得x =-1,x =3,当x <-1时,y ′>0;当x >-1时,y ′<0. 当x =-1时,y 极大值=5,x 取不到3,无极小值. 答案: C5.函数y =4x 2+1x 的单调递增区间是( )A .(0,+∞)B .(-∞,1)C .⎝⎛⎭⎫12,+∞D .(1,+∞)解析: 令y ′=8x -1x 2=8x 3-1x 2>0,即(2x -1)(4x 2+2x +1)>0,且x ≠0,得x >12.答案: C6.下列计算错误的是( ) A .⎠⎛π-πsin x d x =0B .⎠⎛1x d x =23C .cos x d x =2cos x d xD .⎠⎛π-πsin 2x d x =0解析: 由微积分基本定理或定积分的几何意义易得结果. 答案: D7.用数学归纳法证明1n +1+1n +2+…+13n +1>1(n ∈N +)时,在验证n =1时,左边的代数式为( )A .12+13+14B .12+13C .12D .1解析: 当n =1时,不等式左边为11+1+11+2+13×1+1=12+13+14.答案: A8.函数y =ax 3-x 在(-∞,+∞)上的减区间是[-1,1],则( ) A .a =13B .a =1C .a =2D .a ≤0解析: x ∈[-1,1],y ′=3ax 2-1≤0,且y ′|x =±1=0, ∴3a =1,a =13.答案: A9.若z1,z2∈C,则z1z2+z1z2是()A.纯虚数B.实数C.虚数D.不能确定解析:设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1z2+z1z2=(a+b i)(c-d i)+(a -b i)(c+d i)=(2ac+2bd)∈R.答案:B10.设z=log2(m2-3m-3)+ilog2(m-3)(m∈R),若z对应的点在直线x-2y+1=0上,则m的值是()A.±15 B.15C.-15 D.15解析:log2(m2-3m-3)-2log2(m-3)+1=0,log2m2-3m-3(m-3)2=-1,m2-3m-3(m-3)2=12,m=±15,而m>3,所以m=15.答案:B11.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析:设m(x)=f(x)-(2x+4),则m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).答案:B12.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是()A .C 4H 9B .C 4H 10 C .C 4H 11D .C 6H 12解析: 后一种化合物应有4个C 和10个H , 所以分子式是C 4H 10. 答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知复数z =-1+i1+i -1,则在复平面内,z 所对应的点在第__________ 象限.解析: z =-1+i1+i -1=-1+i.答案: 二14.垂直于直线2x -6y +1=0并且与曲线y =x 3+3x 2-5相切的直线方程是________. 解析: 设切点为P (a ,b ),函数y =x 3+3x 2-5的导数为y ′=3x 2+6x ,切线的斜率k =y ′|x =a =3a 2+6a =-3,得a =-1,代入到y =x 3+3x 2-5,得b =-3,即P (-1,-3),y +3=-3(x +1),3x +y +6=0.答案: 3x +y +6=015.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与直线y =0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a 的值为________.解析: 由题意可知,f ′(x )=3x 2+2ax +b ,f ′(0)=0 ∴b =0,∴f (x )=x 2(x +a ),有274=∫-a 0[0-(x 3+ax 2)]d x =-⎝⎛⎭⎫x 44+ax 33| -a 0=a 412,∴a =±3. 又-a >0⇒a <0,得a =-3.答案: -316.若Rt △ABC 中两直角边为a ,b ,斜边c 上的高为h ,则1h 2=1a 2+1b 2,如图,在正方体的一角上截取三棱锥P -ABC ,PO 为棱锥的高,记M =1PO 2,N =1P A 2+1PB 2+1PC 2,那么M ,N 的大小关系是________.解析: 在Rt △ABC 中,c 2=a 2+b 2①,由等面积法得ch =ab , ∴c 2·h 2=a 2·b 2②,①÷②整理得1h 2=1a 2+1b2.类比得,S 2△ABC =S 2△P AB +S 2△PBC +S 2△P AC ③,由等体积法得S △ABC ·PO =12P A ·PB ·PC ,∴S 2△ABC ·PO 2=14P A 2·PB 2·PC 2④, ③÷④整理得M =N . 答案: M =N三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知曲线y =5x ,求: (1)曲线上与直线y =2x -4平行的切线方程; (2)求过点P (0,5)且与曲线相切的切线方程. 解析: (1)设切点为(x 0,y 0),由y =5x , 得y ′|x =x 0=52x 0.∵切线与y =2x -4平行, ∴52x 0=2,∴x 0=2516,∴y 0=254,则所求切线方程为y -254=2⎝⎛⎭⎫x -2516,即2x -y +258=0. (2)∵点P (0,5)不在曲线y =5x 上,故需设切点坐标为M (x 1,y 1),则切线斜率为52x 1.又∵切线斜率为y 1-5x 1,∴52x 1=y 1-5x 1=5x 1-5x 1,∴2x 1-2x 1=x 1,得x 1=4.∴切点为M (4,10),斜率为54,∴切线方程为y -10=54(x -4),即5x -4y +20=0.18.(本小题满分12分)设复数z 满足|z |=1且(3+4i)z 是纯虚数,求复数z . 解析: 设z =a +b i(a ,b ∈R ),由|z |=1,得a 2+b 2=1. ①(3+4i)z =(3+4i)(a +b i)=3a -4b +(4a +3b )i 是纯虚数,则3a -4b =0. ②联立①②解得⎩⎨⎧a =45,b =35或⎩⎨⎧a =-45,b =-35.所以z =45+35i 或z =-45-35i.19.(本小题满分12分)已知函数f (x )=ax 3+bx +1的图象经过点(1,-3)且在x =1处,f (x )取得极值.求:(1)函数f (x )的解析式;(2)f (x )的单调递增区间.解析: (1)由f (x )=ax 3+bx +1的图象过点(1,-3)得a +b +1=-3, ∵f ′(x )=3ax 2+b , 又f ′(1)=3a +b =0,∴由⎩⎪⎨⎪⎧ a +b =-43a +b =0得⎩⎪⎨⎪⎧a =2b =-6,∴f (x )=2x 3-6x +1. (2)∵f ′(x )=6x 2-6,∴由f ′(x )>0得x >1或x <-1,∴f (x )的单调递增区间为(-∞,-1),(1,+∞).20.(本小题满分12分)已知a >b >c ,求证:1a -b +1b -c ≥4a -c.证明: 已知a >b >c ,因为a -ca -b +a -c b -c =a -b +b -c a -b +a -b +b -c b -c =2+b -c a -b +a -bb -c ≥2+2b -c a -b ·a -bb -c=4,所以a -ca -b +a -c b -c ≥4,即1a -b +1b -c ≥4a -c.21.(本小题满分13分)用总长14.8 m 的钢条做一个长方体容器的框架.如果所做容器的底面的一边长比另一边长多0.5 m ,那么高是多少时容器的容积最大?并求出它的最大容积.解析: 设该容器底面的一边长为x m ,则另一边长为(x +0.5)m ,此容器的高为h =14.84-x -(x +0.5)=3.2-2x (0<x <1.6).于是,此容器的容积为V (x )=x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x ,其中0<x <1.6. 由V ′(x )=-6x 2+4.4x +1.6=0,得x =1或x =-415(舍去).因为V (x )在(0,1.6)内只有一个极值点,且x ∈(0,1)时,V ′(x )>0,函数V (x )单调递增;x ∈(1,1.6)时,V ′(x )<0,函数V (x )单调递减.所以,当x =1时,函数V (x )有最大值V (1)=1×(1+0.5)×(3.2-2×1)=1.8(m 3),h =3.2-2=1.2(m).即当高为1.2 m 时,长方体容器的容积最大,最大容积为1.8 m 3.22.(本小题满分13分)设函数f (x )=x 22(x -1),给定数列{a n },其中a 1=a >1,a n +1=f (a n )(n∈N +).(1)若{a n }为常数列,求a 的值;(2)判断a n 与2的大小,并证明你的结论. 解析: (1)若{a n }为常数列,则a n =a . 由a n +1=f (a n ),得a =f (a ). 因为f (x )=x 22(x -1),所以a =a 22(a -1).又a >1,所以a =2(a -1),解得a =2. (2)当a =2时,由(1)知a n =2.当a ≠2时,因为a 1=a ,a n +1=f (a n )=a 2n2(a n -1),所以a 2=a 212(a 1-1)=a 22(a -1).所以a 2-2=a 22(a -1)-2=a 2-4a +42(a -1)=(a -2)22(a -1)>0,即a 2>2.因为a 3-2=a 222(a 2-1)-2=(a 2-2)22(a 2-1)>0,所以a 3>2.猜想当n ≥2时,a n >2. 下面用数学归纳法证明:①n =2时,a 2>2,显然猜想成立. ②假设当n =k (k ≥2)时,猜想成立,即a k >2. 当n =k +1时,a k +1=f (a k )=a 2k2(a k -1),所以a k +1-2=a 2k -4a k +42(a k -1)=(a k -2)22(a k -1).由a k >2,知a k +1-2>0,所以a k +1>2.根据①和②可知,当a ≠2时,对于一切不小于2的正整数n 都有a n >2.综上所述,当a =2时,a n =2;当1<a <2时,a 1<2,a n >2(n ≥2);当a >2时,a n >2.模块综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析: 求出复数z ,再确定z 对应的点的坐标.∵z =1+2i ,∴z =1-2i ,∴z 在复平面内对应的点位于第四象限. 答案: D2.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析: 根据导函数值的大小变化情况,确定原函数的变化情况.从导函数的图象可以看出,导函数值先增大后减小,x =0时最大,所以函数f (x )的图象的变化率也先增大后减小,在x =0时变化率最大.A 项,在x =0时变化率最小,故错误;C 项,变化率是越来越大的,故错误;D 项,变化率是越来越小的,故错误.B 项正确.答案: B3.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析: 推理形式没有错误,而大前提“y =a x 是增函数”是不正确的,当0<a <1时,y =a x 是减函数;当a >1时,y =a x 是增函数.答案: A4.若复数z =1+b i2+i (b ∈R ,i 是虚数单位)是纯虚数,则复数z 的共轭复数是( )A .35iB .-35iC .iD .-i解析: 因为z =1+b i 2+i =(1+b i )(2-i )(2+i )(2-i )=2+b 5+2b -15i 是纯虚数,所以2+b =0且2b -1≠0,解得b =-2.所以z =-i ,则复数z 的共轭复数是i. 答案: C5.类比平面内正三角形“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是( )①棱长相等,同一顶点上的任意两条棱的夹角都相等; ②各个面都是全等的正三角形,相邻两个面所成的二面角相等; ③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等. A .① B .② C .③D .①②③解析: 三个性质都是正确的,但从“类比”角度看,一般是“线→面”、“角→二面角”.答案: B6.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-1处取得极小值,则函数y =xf ′(x )的图象可能是( )解析: 由题意知f ′(-1)=0,当x <-1时f ′(x )<0,当x >-1时f ′(x )>0, ∴当x <-1时,x ·f ′(x )>0, 当-1<x <0时,x ·f ′(x )<0, 当x >0时,x ·f ′(x )>0. 答案: B7.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2且a >1,则实数a 的值是( ) A .2 B .3 C .5D .6解析: ⎠⎛1a ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )| a 1=a 2+ln a -1=3+ln 2,所以a =2. 答案: A8.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出一般式子为( )A . 1+122+132+…+1n 2<12n -1(n ≥2)B . 1+122+132+…+1n 2<2n +1n (n ≥2)C . 1+122+132+…+1n 2<2n -1n (n ≥2)D . 1+122+132+…+1n 2<2n2n +1(n ≥2)解析: 由合情推理可得. 答案: C9.在平面内有n (n ∈N +,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若n 条直线把平面分成f (n )个平面区域,则f (9)等于( )A .18B .22C .37D .46解析: f (3)=7, f (4)-f (3)=4, f (5)-f (4)=5, …f (n )-f (n -1)=n . 以上各式相加: ∴f (n )=7+4+5+…+n∴f (9)=7+4+5+…+9=7+6×(4+9)2=46.答案: D10.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2 解析: 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,∴y ′|x =x 0=1x 0+a=1,即x 0+a =1. 又y 0=ln(x 0+a ), ∴y 0=0.∴x 0=-1.∴a =2. 答案: B11.定义复数的一种运算z 1* z 2=|z 1|+| z 2 |2 (等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =3,则z *z 的最小值为( )A .92B .322C .32D .94解析: z *z =|z |+|z |2=2a 2+b 22=a 2+b 2=(a +b )2-2ab ,又∵ab ≤⎝⎛⎭⎪⎫a +b 22=94, ∴-ab ≥-94,z *z ≥9-2×94=92=322. 答案: B12.函数f (x )是定义在R 上的奇函数,且f (1)=0,当x >0时,有xf ′(x )-f (x )x 2>0恒成立,则不等式f (x )>0的解集为( )A .(-1,0)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)解析: 由题意知g (x )=f xx 在(0,+∞)上是增函数,且g (1)=0,∵f (x )是R 上的奇函数, ∴g (x )是R 上的偶函数. f (x )x的草图如图所示: 由图象知:当x >1时,f (x )>0,当-1<x <0时,f (x )>0.∴不等式f (x )>0的解集为(-1,0)∪(1,+∞). 答案: A二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析: 根据题意先求出P ,Q 的坐标,再应用导数求出切线方程,然后求出交点. 因为y =12x 2,所以y ′=x ,易知P (4,8),Q (-2,2),所以在P ,Q 两点处切线的斜率的值为4或-2.所以这两条切线的方程为l 1:4x -y -8=0,l 2:2x +y +2=0, 将这两个方程联立方程组求得y =-4. 答案: -414.⎠⎛01(1-x 2+x )d x =________.解析: ⎠⎛011-x 2d x =14π,⎠⎛01x d x =12x 2| 10=12-0=12, ∴⎠⎛01(1-x 2+x )d x =14π+12.答案: 14π+1215.通过类比长方形,由命题“周长为定值l 的长方形中,正方形的面积最大,最大值为l 216”,可猜想关于长方体的相应命题为________________________________________ ________________________________________________________________________. 解析: 表面积为定值S 的长方体中,正方体的体积最大,最大值为⎝⎛⎭⎫S 632. 答案: 表面积为定值S 的长方体中,正方体的体积最大,最大值为⎝⎛⎭⎫S 63216.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是________. 解析: f ′(x )=3x 2+2x +m 要使f (x )是R 上的单调函数, 需使Δ=4-12m ≤0, ∴m ≥13.答案: m ≥13三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若复数z =1+i ,求实数a ,b 使得az +2b z =(a +2z )2. 解析: 由z =1+i ,可知z =1-i ,代入az +2b z =(a +2z )2,得a (1+i)+2b (1-i)=[a +2(1+i)]2,即a +2b +(a -2b )i =(a +2)2-4+4(a +2)i.所以⎩⎪⎨⎪⎧a +2b =(a +2)2-4,a -2b =4(a +2),解得⎩⎪⎨⎪⎧ a =-4,b =2或⎩⎪⎨⎪⎧a =-2,b =-1.18.(本小题满分12分)已知函数f (x )=ln(1+x )-x +k2x 2(k ≥0).当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程.解析: 当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x -1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.19.(本小题满分12分)用数学归纳法证明:当n ∈N *时,1+22+33+…+n n <(n +1)n . 证明: (1)当n =1时,左边=1,右边=2,1<2,不等式成立. (2)假设当n =k (k ∈N *)时不等式成立,即1+22+33+…+k k <(k +1)k ;那么,当n =k +1时,左边=1+22+33+…+k k +(k +1)k +1<(k +1)k +(k +1)k +1=(k +1)k (k +2)<(k +2)k +1=[(k +1)+1]k +1=右边,即左边<右边,即当n =k +1时不等式也成立.根据(1)和(2)可知,不等式对任意n ∈N *都成立.20.(本小题满分12分)设函数f (x )=x 33-(a +1)x 2+4ax +b ,其中a ,b ∈R .(1)若函数f (x )在x =3处取得极小值12,求a ,b 的值;(2)求函数f (x )的单调递增区间;(3)若函数f (x )在(-1,1)内有且只有一个极值点,求实数a 的取值范围. 解析: (1)因为f ′(x )=x 2-2(a +1)x +4a , 所以f ′(3)=9-6(a +1)+4a =0,得a =32.由f (3)=12,解得b =-4.(2)因为f ′(x )=x 2-2(a +1)x +4a =(x -2a )(x -2), 令f ′(x )=0,得x =2a 或x =2.当a >1时,f (x )的单调递增区间为(-∞,2),(2a ,+∞); 当a =1时,f (x )的单调递增区间为(-∞,+∞); 当a <1时,f (x )的单调递增区间为(-∞,2a ),(2,+∞).(3)由题意可得⎩⎪⎨⎪⎧a <1,f ′(-1)·f ′(1)<0,解得-12<a <12.所以a 的取值范围是⎝⎛⎭⎫-12,12. 21.(本小题满分13分)某厂生产产品x 件的总成本c (x )=1 200+275x 3(万元),已知产品单价P (万元)与产品件数x 满足:P 2=kx,生产100件这样的产品单价为50万元.(1)设产量为x 件时,总利润为L (x )(万元),求L (x )的解析式;(2)产量x 定为多少件时总利润L (x )(万元)最大?并求最大值(精确到1万元). 解析: (1)由题意有502=k100,解得k =25×104, ∴P =25×104x =500x, ∴总利润L (x )=x ·500x -1 200-2x 375=-2x 375+500x -1 200(x >0).(2)由(1)得L ′(x )=-225x 2+250x,令L ′(x )=0⇒250x =225x 2,令t =x ,得250t =225t 4⇒t 5=125×25=55,∴t =5,于是x =t 2=25,所以当产量定为25时,总利润最大. 这时L (25)≈-416.7+2 500-1 200≈883.答:产量x 定为25件时总利润L (x )最大,约为883万元. 22.(本小题满分13分)已知函数f (x )=x 3+ax 2-3x (a ∈R ). (1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =13是函数f (x )的极值点,求函数f (x )在[-a,1]上的最大值;(3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出b 的取值范围;若不存在,请说明理由.解析: (1)f ′(x )=3x 2+2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0. ∴-a3≤1且f ′(1)=2a ≥0.∴a ≥0.(2)由题意知f ′⎝⎛⎭⎫13=0,即13+2a3-3=0, ∴a =4.∴f (x )=x 3+4x 2-3x .令f ′(x )=3x 2+8x -3=0得x =13或x =-3.∵f (-4)=12,f (-3)=18,f ⎝⎛⎭⎫13=-1427,f (1)=2, ∴f (x )在[-a,1]上的最大值是f (-3)=18.(3)若函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3+4x 2-3x =bx 恰有3个不等实根.∵x =0是其中一个根,∴方程x 2+4x -(3+b )=0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-(3+b )≠0, ∴b >-7且b ≠-3.∴满足条件的b 存在,其取值范围是(-7,-3)∪(-3,+∞).。

高二数学(必修5选修2-1第一章)综合测试卷五

高二数学(必修5选修2-1第一章)综合测试卷五

高二数学(必修5选修2-1第一章)测试卷五一.选择题(每题5分,共60分)1.△ABC 中,若a=1,b=2,B=60°,则△ABC 的面积为A.B.21C.1D.32.若a,b,c,d ∈R ,且a>b,c>d ,则下列不等式一定成立的是A. a-c>b-dB.ac>bdC.D.a-d>b-c3.在△ABC 中,角A,B,C 的对边分别为a,b,c 已知a=2,A=45°,若三角形有两解,则边b 的取值范围是A. b>2B.b<2C.222<<bD.322<<b 4.命题“∀x ∈(0,1),x 2-x <0”的否定是( ) A. ∃x 0∉(0,1), B. ∃x 0∈(0,1), C. ∀x 0∉(0,1),D. ∀x 0∈(0,1),5.在等比数列{}n a 中,a 5a 7=6,a 2+a10=5,则等于A. 或B.32C.23D.32或236.已知{}n a 是等比数列,a 2=2,a 5=41,则a 1a 2+a 2a 3+...+a n a n+1=A. B. C.16(1-2-n ) D.16(1-4-n)7.若不等式x 2-ax +b <0的解集为(1,2),则不等式<的解集为( ) A. (,+∞) B. (-∞,0)∪(,+∞) C. (,+∞)D. (-∞,0)∪(,+∞)8.“-3<a <1”是“存在x ∈R ,使得|x -a |+|x +1|<2”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件9.要测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A、B两点,观察对岸的点C,测得∠CAB=45°,∠CBA=75°,且AB=120m,由此可得河宽为(精确到1cm)()A.170mB.98mC.95mD.86m10..已知x,y为正实数,则的最小值为()A. B. C. D. 311.已知x≥5,则f(x)=有()A.最大值8 B.最小值10 C.最大值12 D.最小值1412. 已知为正实数, 且成等差数列, 成等比数列, 则的取值范围是A. B. C. D.二.填空题(每题5分共20分)13. 关于x的不等式x2-2ax-3a2<0(a>0)的解集为(x1,x2),且|x1-x2|=8,则a= ______14. 数列{a n}的前n项和S n=n2-4n,则|a1|+|a2|+…+|a10|=________15.若关于x的不等式x2﹣ax﹣a≤﹣3的解集不是空集,则实数a的取值范围是_16.《张邱建算经》是我国古代数学著作大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月,日织九匹三丈,问日益几何?”该题大意是:“一女子擅长织布,一天比一天织的快,而且每天增加的量都一样,已知第一天织了5尺,一个月后,共织布390尺,问该女子每天增加尺.(一月按30天计)三.解答题(共70分)17.(10分)若△ABC 中,,点D 在边AB 上,BD=1,且DA=DC(1) 若△BCD 的面积为3,求CD ; (2) 若3=AC ,求∠DCA18.(12分)18.(本小题10分) 数列满足.(1)求证:数列是等差数列,并求出的通项公式;(2)若,求数列的前n 项和19.(12分)已知命题P :对任意实数x 都有ax 2+ax+1>0恒成立;命题q :关于x 的方程x 2-x+a=0有实数根,如果命题p 与命题q 中有且仅有一个真命题,求示数a 的取值范围。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解析:∵z=2-i=5/√26-i√26/√26=(5-i√26)/√26。

在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10/3B.5/7C.-1/7D.-3/7解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=0时,x=-3/7.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A.①②③B.①③C.①D.②③解析:类比①的结论为:平行于同一个平面的两个平面平行,成立;类比②的结论为:一个平面如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A.(0,+∞)B.(-∞,1)C.(1,2)D.(2,+∞)解析:令y′=8x-1/x^2=0,得x=1/2,y′<0时,x<1/2;y′>0时,x>1/2.答案:C6.下列计算错误的是()A.∫π-πsinxdx=0B.∫1/2xdx=1/8C.∫(x^2-1)(x+1)dx=∫(x^3-x^2+x-1)dxD.∫(x^2+1)/(x^2-2x+2)dx=∫(1+2/(x^2-2x+2))dx解析:B选项计算错误,正确结果为∫1/2xdx=1/8.答案:B1.剔除格式错误和明显有问题的段落:无明显问题的段落为第7、9、10、11题,保留。

(完整版)高中数学选修2-2综合测试题(附答案)

(完整版)高中数学选修2-2综合测试题(附答案)

高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。

已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。

【高二数学】选修2-2综合测试含答案解析

【高二数学】选修2-2综合测试含答案解析

选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

高二数学人教版选修2-2模块综合测试题(含答案)

高二数学人教版选修2-2模块综合测试题(含答案)

高二数学人教版选修2-2模块综合测试题(含答案)高二数学选修2-2模块综合测试题(本科考试时间为120分钟,满分为150分)一.选择题(本大题有10小题,每小题5分,共50分) 1.在“近似替代”中,函数)(x f 在区间],[1+i ix x 上的近似值( )(A )只能是左端点的函数值)(ix f (B )只能是右端点的函数值)(1+i x f(C )可以是该区间内的任一函数值()∈iif ξξ(],[1+i i x x )(D )以上答案均正确 2.已知22123i 4(56)izm m m z m =-+=++,,其中m 为实数,i 为虚数单位,若12z z -=,则m 的值为 ( )(A) 4 (B) 1- (C) 6 (D) 03.已知1,1x y <<,下列各式成立的是 ( )(A )2x y x y ++-> (B )221x y +< (C )1x y +< (D )1xy x y +>+4.设f (x )为可导函数,且满足0(1)(1)lim 2x f f x x →--=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是 ( )(A )2 (B )-1 (C )12(D )-25.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0” 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )必要条件 6.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( )(A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(-(D )不存在7.1x y z ++=,则22223x y z ++的最小值为 ( ) (A)1 (B)34 (C)611(D)588. 曲线xy e =,xy e -= 和直线1x =围成的图形面积是( ) (A)1e e -- (B) 1e e -+ (C)12e e ---(D) 12e e-+-9.点P 是曲线xxy ln 2-=上任意一点, 则点P 到直线2y x =-的(A) 1 (B) 2(C)2 (D) 22 10.设2()f x x ax b=++(,a b R ∈),当[]11,x ∈-时,()f x 的最大值为m ,则m的最小值为( )(A) 12(B) 1 (C) 32(D) 2二.填空题(本大题有4小题,每小题5分,共20分) 11.定义运算ab ad bcc d=-,若复数z 满足112zzi-=,其中i 为虚数单位,则复数z =.12.如图,数表满足:⑴第n 行首尾两数均为n ;⑵表中递推关系类似杨辉三角,记第(1)n n >行第2个数为()f n .根据表中上下两行数据关系,1 2 2可以求得当2n …时,()f n = .13.设函数f (x )=n 2x 2(1-x )n (n 为正整数),则f (x )在[0,1]上的最大值为 . 14.设ia R +∈,ix R +∈,12,,i n =L ,且222121n aa a ++=L ,222121n xx x ++=L ,则1212,,,n na a ax xx L 的值中,现给出以下结论,其中你认为正确的是 .①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1三 解答题(本大题共6小题,共80分)15、(本小题12分)已知等腰梯形OABC 的顶点A B ,在复平面上对应的复数分别为12i +、26i -+,且O 是坐标原点,OA BC∥.求顶点C 所对应的复数z .16(本小题满分14分)(1) 求定积分1222x dx --⎰ 的值;(2) (2)若复数12()z a i a R =+∈,234zi=-,且12z z 为纯虚数,求1z17(本小题满分12分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。

高二数学理科(必修5、选修2-1)测试卷二

高二数学理科(必修5、选修2-1)测试卷二

新化十二中2014-2015学年度第一学期高二理科数学期末综合测试卷(二) 一.选择题1.不等式0322>-+x x 的解集是( )A .{x |-1<x <3}B .{x |x >3或x <-1}C .{x |-3<x <1}D .{x |x >1或x <-3} 2.在ΔABC 中,a =5,B =30°,A =45°,则b =( )A .225 B .335 C .265 D .25 3.已知数列{}n a 首项11=a ,且121+=-n n a a (n ≥ 2),则5a 的值等于( ) A .7 B .15 C .30 D .314.已知q 是r 的必要不充分条件,s 是r 的充分且必要条件,那么s 是q 成立的( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件 5.等差数列}{n a 中,已知前15项的和9015=S ,则8a 等于( )A .245 B .12 C .445 D .6 6.已知x+y=3,则=Z y x 22+的最小值是( )A .8B .6C .23D .247.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x8.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条9.椭圆上116922=+y x 一动点P 到两焦点距离之和为( ) A .10 B .8 C .6 D .不确定10.双曲线14122222=--+m y m x 的焦距是( )A .4B .22C .8D .与m 有关11.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 ( )A .2B .3C .4D .512.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333二、填空题13.命题“R x ∈∃0,0020≥-x x .”的否定是________________________. 14.在ΔABC 中,ab c b a -=+222,则角C =__________.15.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值是_______16.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

高二数学理科(必修五和选修2-1综合题)第三套

高二数学理科(必修五和选修2-1综合题)第三套

①2013-2014学年第一学期期末考试题高二数学(理科必修5与2-1)一.选择题(每小题5分,共60分). 1.不等式12--x x ≥0的解集是( ) A.[2,+∞) B.(-∞,1)∪[2,+∞) C. (-∞,1) D.(-∞,1)∪[2,+∞)2.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样 的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30 B .25 C .20 D .15 3.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64B .100C .110D .1204.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A .6B .3C .2D .335.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件7.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且2A K A F=,则AFK ∆的面积为( ) A.4 B.8 C.16 D.38.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖9.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )②A. 2B. 4C.152D.17210.已知点()1,3,4P --,且该点在三个坐标平面yoz 平面,zox 平面,xoy 平面上的射 影的坐标依次为()111,,x y z ,()222,,x y z 和()333,,x y z ,则( )A 、2222310x y z ++= B 、2221230x y z ++= C 、2223120x y z ++= D 、以上结论都不对 11.命题:“若12<x ,则11<<-x ”的逆否命题是( )A.若12≥x ,则11-≤≥x x ,或 B.若11<<-x ,则12<x C.若11-<>x x ,或,则12>x D.若11-≤≥x x ,或,则12≥x 12.双曲线2218yx -=上有一点P 到左焦点的距离为3,求P 到右焦点的距离 ( )A. 1或5B. 1C. 5D. 3填空题(本大题共4小题,每小题4分,共16分)13.阅读右边的程序框图,若输入4m =,6n =,则输出a = ,i = .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) 14.若直线340x y m ++=与圆222440x y x y +-++=没有 公共点,则实数m 的取值范围是15.若一个球的体积为43π,则它的表面积为 . 16.设.11120,0的最小值,求且yx y x y x +=+>>解答题(本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.开始 1i =n 整除a ? 是 输入m n ,结束 a m i =⨯输出a i , 1i i =+图3 否③18.(10分)设F 1, F 2分别为椭圆C : 12222=+by a x (a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,23)到F 1, F 2两点的距离之和等于4. (1)写出椭圆C 的方程;(2)设K 椭圆上的动点,求线段F 1K 的中点M 的轨迹方程;19.(12分)如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学必修五选修2-精品综合考试题 2020-12-12
【关键字】条件、焦点、充分、满足、中心 一.选择题
1.已知{}n a 为等差数列,),(,2,042n f S a a n =-==则)(n f 的最大值为( )
A .
8
9 B .
4
9 C .1 D .0
2.双曲线两条渐近线的夹角为60º,该双曲线的离心率为( )
A B .
3
C 或2
D .
3
或2 3.“a 和b 都不是偶数”的否定形式是( )
A .a 和b 至少有一个是偶数
B .a 和b 至多有一个是偶数
C .a 是偶数,b 不是偶数
D .a 和b 都是偶数
4.已知椭圆的焦点是12F F 、,P 是椭圆上的一动点.如果延长1F P 到Q ,使得
2||||PQ PF =, 那么动点Q 的轨迹是( )
A .双曲线的一支
B .椭圆
C .圆
D .抛物线
5.已知数列}{n a 的通项公式是1
1
++=n n a n ,前n 项和9n S =,则n 等于( )
A .100
B .99
C .10
D .9
6.条件甲:“00>>b a 且”,条件乙:“方程12
2=-b
y a x 表示双曲线”,那么甲是乙的( )
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件 7.下列结论正确的是( )
A .当2
lg 1lg ,10≥+≠>x x x x 时且 B .当0x >2≥
C .x
x x 1
,2+
≥时当的最小值为2 D .当x
x x 1
,20-
≤<时无最大值 8.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点
的横坐标为
2
1
,则椭圆方程为( ) A .222212575x y += B .222217525x y += C .2212575x y += D .22
17525x y += 9.已知双曲线C 的焦点、实轴端点分别恰好是椭圆
22
12516
x y +=的长轴端点、焦点,则双曲线C 的渐近线方程为( )
A .430x y ±=
B .340x y ±=
C .450x y ±=
D .540x y ±=
10.双曲线13
62
2=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r =( ) A .6 B .2 C .3 D .3
11.已知点F 为双曲线19
162
2=-y x 的右焦点,M 是双曲线右支上一动点,定点A 的坐标是(5,4),则4│MF │-5│MA │的最大值为( )
A .12
B .20
C .9
D .16
12.已知椭圆2222:1(0)x y C a b a b
+=>>的离心率为3
2,过右焦点F 且斜率为(0)
k k >的直线与C 相交于A 、B 两点.若3AF FB =,则k =( )
A .1
B 2
C 3
D .2 二.填空题(本大题共4小题,每小题5分,共20分)
13.已知△ABC 中,A =60°,最大边和最小边是方程2
980x x -+=的两个实数根,那
么BC 边长是___________. 14.短轴长为5,离心率2
3
e =
的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆周长为___________.
15.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是_ _.
16.双曲线22221x y a b -=的离心率为1e ,双曲线22
221y x a b
-=的离心率为2e ,则12e e +的
最小值为____________.
三.解答题(本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程) 17.(本小题满分10分)
在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且1
cos 3
A =。

(1)求2sin cos 22
B C
A ++的值; (2)若3a =
ABC 面积S 的最大值.
18.(本小题满分12分)
已知双曲线22
1167
x y +=的左、右两个焦点分别为1F 、2F ,动点P 满足124PF PF -=. (1)求动点P 的轨迹E 的方程;
(2)若M 是曲线E 上的一个动点,求12MF MF ⋅的最小值. 19.(本小题满分12分)
已知等差数列{}
n a 的前n 项和为n S ,且35a =,15225S =. (1)求数列{}
n a 的通项n a ; (2)设2
2n
a n
b n =+,求数列{}n b 的前n 项和n T .
20.(本小题满分12分)
已知椭圆12222=+b y a x (a >b >0)的离心率22e =, 直线
10x y ++=与椭圆交于P ,Q 两点, 且OP ⊥OQ (如图) .
(1)求这个椭圆方程;
(2)求弦长|PQ |. 21、(本小题满分12分)
某学校拟建一块周长为400m 的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,
为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽? 22.(本小题满分12分)
已知椭圆2222:1(0)x y C a b a b
+=>>

(1)求椭圆C 的方程;
(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l
,求AOB △面积的最大值.
答案:CDACB ABDAD CB
m ≤-
17、解:(1)19
-
;(2
)4.
18、解:(1)22
145
x y -=;(2)-5. 19、解:(1)21n a n =-;(2)2(41)(1)3
n
n T n n =
-++. 20、解:(1)22
243x y += (2

3
. 21、解:设矩形的长为x m ,半圆的直径是d ,中间的矩形区域面积为S m 2. 由题知:S=dx ,且2x +πd =400 ∴S=
1()(2)2d x ππ21220000
()22d x πππ
+≤=
当且仅当πd=2x=200,即x=100时等号成立
设计矩形的长为100m 宽约为63.7m 时,矩形面积最大.
21.解:(Ⅰ)设椭圆的半焦距为c
,依题意3c a a ⎧=⎪
⎨⎪=⎩
,1b ∴=,∴所求椭圆方程为
2
213
x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥
轴时,AB .
(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+. 由已

2
=
,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得
2
2
2
(31)6330k x kmx m +++-=,122631
km
x x k -∴+=+,2122
3(1)31m x x k -=+. 2222222
22
12(1)(31)3(1)(91)
(31)(31)k k m k k k k ++-++==++2422
2121212
33(0)34196123696
k k k k k k
=+=+≠+=++⨯+++≤.
当且仅当22
1
9k k
=
,即3k =±时等号成立.当0k =
时,AB =, 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大

max 12S AB =⨯=.。

相关文档
最新文档