北京市人大附中2018-2019学年度第一学期期中七年级数学练习原卷扫描版无答案
2018-2019学年北京大学附属中学七年级上学期期中考试数学试题(含详解)
2018—2019学年度北大附中七年级第一学期期中测试数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共10小题,每小题只有一个选项符合题意,每小题3分,共30分)1.有理数的相反数是().A. B. C. D.【答案】D【解析】试题解析:∵只有符号不同的两个数互为相反数,∴的相反数是.故选.2.在有理数,,,中最大的一个有理数是()A. B. C. D.【答案】D【解析】试题解析:∵正数负数,∴.故在有理数,,,中最大的一个有理数是1.故选D.3.下列各式中,去括号正确的是().A. B.C. D.【答案】C【解析】试题解析:、,错误;、,错误;、,正确;、,错误;故选C.点睛:去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号去括号.4.年月日日在北京胜利召开了“中国共产党第十九次代表大会”.截止到年月日晚时,在百度上搜索关键词“十九大”,显示的搜索结果约为条,将用科学记数法表示应为().A. B. C. D.【答案】B【解析】试题解析:96 500 000用科学记数法表示应为:9.65×107,故选:B.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.5.下列各式计算正确的是().A. B. C. D.【答案】C【解析】试题解析::、,错误;、,错误;C. ,正确.、,错误.故选.6.单项式的系数与次数分别是().A. ,B. ,C. ,D. ,【答案】B【解析】试题解析:的系数为,次数为.故选B.7.在下列各数,,,,中,负数有().A. 个B. 个C. 个D. 个【答案】B【解析】试题解析:,,,,.∴负数有个.故选B.8.下列各对数中,数值相等的是().A. 和B. 和C. 和D. 和【答案】C【解析】试题解析:、,.、,.、,.、,.故选.9.如图,点和表示的数分别为和,下列式子中,不正确...的是().A. B. C. D.【答案】C【解析】由数轴可得:-1<a<0,b>1,A选项,-b<-1,所以a>-b,正确;B选项,a、b异号,所以ab<0,正确;C选项,a-b<0,错误;D选项a+b>0,正确.故选C.10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文个字母,,,,(不论大小写)依次对应,,,,这个自然数(见表格),当明码对应的序号为奇数时,密码对应的序号,当明码对应的序号为偶数时,密码对应的序号,按下述规定,将明码“”译成密码是:字母序号字母序号A. B. C. D.【答案】A【解析】试题解析:∵密码,中,,,,.∴.故选A.二、填空题(本题共8小题,每题2分,共16分)11.北大附中运动场跑道离底面的高度为米,记为米,新建体育馆地下篮球馆木地板离地面的高度为米,可记为__________米.【答案】-12【解析】试题解析:∵运动场跑道离底面的高度为米,记为米,∴新建体育馆地下篮球馆木地板离地面的高度为米,可记为-12米.故答案为:-12.12.的倒数是__________,绝对值等于的数是__________.【答案】(1). (2). ±10【解析】试题解析:∵,的倒数是,∴的倒数为,∵,∴.故答案为:,±10.13.如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的周长为__________.学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...【答案】【解析】试题解析:如图可知(长宽).故答案为:4a+16.14.多项式是次项式.【答案】五、三【解析】试题分析:因为多项式是单项式的和,而其中的次数最高为5,所以多项式是五次三项式.考点:多项式.15.若单项式与的和仍为单项式,则这两个单项式的和为__________.【答案】【解析】试题解析:单项式与的和为单项式,∴,为同类项,∴,,∴.故答案为:.16.在数轴上表示的点的距离等于个单位长度的点所表示的数是__________.【答案】或【解析】试题解析:的右侧,,的左侧,∴在数轴上表示的点的距离等于个单位长度的点所表示的数是或.故答案为:或.17.若,则的值为__________.【答案】1【解析】试题解析:∵,∴,∴.故答案为1.18.在有理数的原有运算法则中我们补充定义新运算“⊕”如下:当时,,当时,,则当时,的值为__________.(“”和“”仍为有理数运算中的乘号和减号)【答案】-6【解析】试题解析:∵,∴.故答案为-6.三、解答题(本大题共8个小题,共54分)19.计算:().().().().【答案】(1)1(2)-6(3)-20(4)17【解析】试题分析:(1)原式从左到右依次计算即可得到结果;(2)原式利用减法法则变形,相加即可得到结果;(3)原式先计算乘方运算,再利用乘法分配律计算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.试题解析:().().().().20.解方程:().().【答案】(1)(2)x=3【解析】试题分析:先去括号,然后移项合并,最后化系数为1即可得出方程的解.试题解析:()∴.()∴.21.化简().().()若,,求:当时,的值.()已知,,求代数式的值.【答案】()()()=-9()【解析】试题分析:(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果;(3)把A与B代入原式,去括号合并得到最简结果,把x的值代入计算即可求出值;(4)原式去括号合并后,将已知等式代入计算即可求出值.试题解析:().().(),代入,原式.(),∵,,∴原式.22.已知,,且,数轴上、、对应的点是、、.()若时,请在数轴上标出、、的大致位置:()在()的条件下,化简.【答案】(1)图形见解析;(2)2b-2a.【解析】试题分析:(1)根据题意判断出abc的符号及大小,再在数轴上表示出各数即可;(2)根据各点在数轴上的位置去绝对值符号,合并同类项即可.试题解析:()∵ab<0,∴a,b异号.∵>0,∴a,c同号.∵|a|=-a,∴a<0,∴b>0,c<0.∵|c|>|b|>|a|,∴c<a<0,且点B到原点的距离大于点a到原点的距离,小于点C到原点的距离,∴各点在数轴上表示为:;()∵如数轴所示,,,,∴原式.23.观察图形,解答问题:()按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积三个角上三个数的和积与和的商()请用你发现的规律求出图④中的数和图⑤中的数.【答案】(1)解析见表格(2)④-60⑤18【解析】试题分析:(1)仔细观察图形和表格中的数据变化,发现规律并利用规律分别写出即可;(2)根据发现的规律直接写出即可.试题解析:()填表如下:图①图②图③三个角上三个数的积三个角上三个数的和积与和的商()④,,,∴.⑤,,,∴.24.如图,一只甲虫在的方格(每小格边长为)上沿着网格线运动,网格线与网格线的交点为格点,甲虫从处出发去看望格点、、处的其它甲虫,若规定:向上向右走均为正,向下向左走均为负,如果从到记为:,从到记为:,其中第一个数表示左右方向,第二个数表示上下方向.()图中__________;()若这只甲虫从处出发,行走路线依次为,,,,最后在点停止运动,请在图中标出点的位置;()若这只甲虫的行走路线为,则该甲虫走过的路程长度为__________;()若图中另有两个格点、,且,,则应记为__________.【答案】();()图形见解析;();()应记为【解析】试题分析:(1)根据规定及实例可知:C→D记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)分别根据各点的坐标计算总长即可;(4)令M→A与M→N对应的横纵坐标相减即可得出.试题解析:().(2)P点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,-2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3-a,b-4),M→N(5-a,b-2),所以,5-a-(3-a)=2,b-2-(b-4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(-2,-2).25.运算:,,,,,.()请你认真思考上述运算,归纳*运算的法则:两数进行*运算时,__________.特别地,和任何数进行*运算,或任何数和进行*运算,__________.()计算:__________.()是否存在有理数、,使得,若存在,求出、的值,若不存在,说明理由.【答案】()同号两数,取正号,并把绝对值相加,等于这个数的绝对值()23()【解析】试题分析:(1)根据所给算式,总结规律即可;(2)根据(1)的规律进行计算即可;(3)根据(1)的规律进行计算求解.试题解析:()同号两数,取正号,并把绝对值相加,等于这个数的绝对值.().()由定义可知,∵,∴,∴.26.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于按固定顺序的个数:,,,,,称为数列,,,,,其中为整数且.定义.例如,若数列,,,,,则.根据以上材料,回答下列问题:()已知数列,,,求.()已知数列,,,,中个数均为非负数,且,直接写出的最大值和最小值.()已知数列,,,,其中,,,,为个整数,且,,,直接写出所有可能的数列中至少两种.【答案】(1)11(2)最大值为,最小为(3)①,②,【解析】【详解】试题分析:(1)根据定义V(A k)=|x1-x2|+|x2-x3|+…+|x k-1-x k|,代入数据即可求出结论;(2) 由数列A5:x1,x2,x3,x4,x5中5个数均为非负数,结合绝对值即可得出0≤V(A5)≤1009,此题得解;(3),然后进行分类讨论即可得解.试题解析:().()∵,,,,中个数均为非负数,∴,,,,,∴,∴,∴最大值为,最小为.(),∴∴x2=-1,0,1,2,3,4,5,6,7;x3=1,2,3,4,5,6,7,8,9从中找两组可能的取值进行计算如下,①当,时,.②当,时,.∴①,,②,.。
北京大学附属中学2018-2019年7、1年级数学中级考试试卷.doc
北京大学附属中学2018-2019年7、1年级数学中级考试试卷【一】选择题〔每题3分,共30分〕1、以下一组数:﹣8、2.7、﹣3、、0.66666…、0、2、0.080080008…,其中是有理数旳个数是()A、5个B、6个C、7个D、8个2、月球旳质量约为73400000000亿吨,用科学记数法表示那个数是()A、734×108亿吨B、73.4×109亿吨C、7.34×1010亿吨D、0.734×1011亿吨3、计算a3+a3旳结果是()A、a6B、a9C、2a3D、2a64、以下各选项中旳两项是同类项旳为()A、﹣ab2与﹣a2bB、32与﹣53C、x2与﹣y2a5D、3xy3与2x2y25、以下说法正确旳选项是()A、旳系数是﹣2B、32ab3旳次数是6次C、是多项式D、x2+x﹣1旳常数项为16、一个三位数,个位数字是a,十位数字是b,百位数字是c,那么那个三位数是()A、abcB、a+10b+100cC、100a+10b+cD、a+b+c7、以下各对数中,数值相等旳是()A、23和32B、〔﹣2〕2和﹣22C、﹣〔﹣2〕和|﹣2|D、和8、假设|a|=﹣a,那么a是()A、非负数B、负数C、正数D、非正数9、下面运算正确旳选项是()A、3ab+3ac=6abcB、4a2b﹣4b2a=0C、2x2+7x2=9x4D、3y2﹣2y2=y210、下面四个整式中,不能表示图中阴影部分面积旳是()A、〔x+3〕〔x+2〕﹣2xB、x〔x+3〕+6C、3〔x+2〕+x2D、x2+5x【二】填空题〔每题3分,共24分〕11、假设支出20元记为+20元,那么﹣50元表示﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、12、﹣3旳倒数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏,|﹣2|旳相反数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、13、某日中午,北方某地气温由早晨旳零下2℃上升了10℃,傍晚又下降了4℃,这天傍晚北方某地旳气温是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏℃、14、定义a*b=a2﹣b,那么2*3=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、15、单项式﹣旳次数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏,系数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、16、假设a,b互为相反数,c,d互为倒数,m旳绝对值为1,那么旳值是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、17、假设|y+3|+〔x﹣2〕2=0,那么y x=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、18、观看以下等式:,,,,…,依照你发觉旳规律,请写出第n个等式:﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、【三】解答题〔共66分〕19、把以下各数在数轴上表示出来,并用“<”号把它们连接起来、﹣,0,4,﹣3,2.5、20、〔36分〕计算〔1〕22+〔﹣4〕+〔﹣2〕+4〔2〕;〔3〕〔4〕﹣12018+〔﹣3〕2﹣32×23〔5〕﹣|﹣3|2÷〔﹣3〕2;〔6〕0﹣〔﹣3〕2÷3×〔﹣2〕3、21、先化简,再求值:5〔3a2b﹣ab2﹣1〕﹣〔﹣5ab2+3a2b﹣5〕,其中a=﹣1,b=、〔2〕求出中国队队员旳平均年龄、2018-2016学年河南省北大附中分校七年级〔上〕期中数学试卷【一】选择题〔每题3分,共30分〕1、以下一组数:﹣8、2.7、﹣3、、0.66666…、0、2、0.080080008…,其中是有理数旳个数是()A、5个B、6个C、7个D、8个【考点】实数、【分析】依照有理数是有限小数或无限循环小数,可得【答案】、【解答】解:﹣8、2.7、﹣3、0.66666…、0、2是有理数、应选:B、【点评】此题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数、2、月球旳质量约为73400000000亿吨,用科学记数法表示那个数是()A、734×108亿吨B、73.4×109亿吨C、7.34×1010亿吨D、0.734×1011亿吨【考点】科学记数法—表示较大旳数、【分析】科学记数法旳表示形式为a×10n旳形式,其中1≤|a|<10,n为整数、确定n旳值时,要看把原数变成a时,小数点移动了多少位,n旳绝对值与小数点移动旳位数相同、当原数绝对值>1时,n是正数;当原数旳绝对值<1时,n是负数、【解答】解:将73400000000亿吨用科学记数法表示为:7.34×1010亿吨、应选:C、【点评】此题考查科学记数法旳表示方法、科学记数法旳表示形式为a×10n旳形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a旳值以及n旳值、3、计算a3+a3旳结果是()A、a6B、a9C、2a3D、2a6【考点】合并同类项、【分析】将两项旳系数相加得到结果旳系数合并同类项即可、【解答】解:原式=a3+a3=〔1+1〕a3=2a3、应选C、【点评】此题考查了合并同类项旳知识,解题旳关键是认清多项式旳两项是同类项、4、以下各选项中旳两项是同类项旳为()A、﹣ab2与﹣a2bB、32与﹣53C、x2与﹣y2a5D、3xy3与2x2y2【考点】同类项、【分析】依照同类项旳定义〔所含字母相同,相同字母旳指数相同〕,即可作出推断、【解答】解:A、相同字母旳次数不同,不是同类项,选项错误;B、正确;C、所含字母不同,不是同类项,选项错误;D、相同字母旳次数不同,不是同类项,选项错误、应选B、【点评】此题考查了同类项定义,定义中旳两个“相同”:相同字母旳指数相同,是易混点,因此成了中考旳常考点、5、以下说法正确旳选项是()A、旳系数是﹣2B、32ab3旳次数是6次C、是多项式D、x2+x﹣1旳常数项为1【考点】单项式、【分析】依照单项式次数、系数旳定义,以及多项式旳有关概念解答即可;单项式旳系数是单项式中旳数字因数,单项式旳次数是单项式中所有字母旳指数和、【解答】解:A、旳系数是﹣;故A错误、B、32ab3旳次数是1+3=4;故B错误、C、依照多项式旳定义知,是多项式;故C正确、D、x2+x﹣1旳常数项为﹣1,而不是1;故D错误、应选C、【点评】确定单项式旳系数和次数时,把一个单项式分解成数字因数和字母因式旳积,是找准单项式旳系数和次数旳关键、6、一个三位数,个位数字是a,十位数字是b,百位数字是c,那么那个三位数是()A、abcB、a+10b+100cC、100a+10b+cD、a+b+c【考点】列代数式、【分析】利用数旳表示法即可推断、【解答】解:一个三位数,个位数字是a,十位数字是b,百位数字是c,那么那个三位数是:100c+10b+A、应选B、【点评】此题考查了利用代数式表示数,正确理解数字与每个位上旳数字旳关系是关键、7、以下各对数中,数值相等旳是()A、23和32B、〔﹣2〕2和﹣22C、﹣〔﹣2〕和|﹣2|D、和【考点】有理数旳乘方、【分析】通过对备选【答案】进行计算,对结果进行比较大小就能够得出【答案】、【解答】解:A:23=832=9,8≠9,本选项错误;B:〔﹣2〕2=4,﹣22=﹣4,4≠4,本选项错误;C:﹣〔﹣2〕=2,|﹣2|=2,2=2,本选项正确;D:,,本选项错误、故C【答案】正确,应选C【点评】此题是一道有理数乘方旳计算题,考查了乘方旳意义,分数旳乘方于整数旳乘方旳区别,绝对值与相反数、8、假设|a|=﹣a,那么a是()A、非负数B、负数C、正数D、非正数【考点】绝对值、【分析】依照正数旳绝对值是它本身,负数旳绝对值是它旳相反数,0旳绝对值是0,即可解答、【解答】解:∵|a|=﹣a,∴a为非负数,应选:D、【点评】此题考查了绝对值,解决此题旳关键是熟记正数旳绝对值是它本身,负数旳绝对值是它旳相反数,0旳绝对值是0、9、下面运算正确旳选项是()A、3ab+3ac=6abcB、4a2b﹣4b2a=0C、2x2+7x2=9x4D、3y2﹣2y2=y2【考点】合并同类项、【专题】计算题、【分析】依照同类项旳定义和合并同类项法那么、【解答】解:A、3ab+3ac=3a〔b+c〕;B、4a2b﹣4b2a=4ab〔a﹣b〕;C、2x2+7x2=9x2;D、正确、应选D、【点评】此题考查旳知识点为:同类项旳定义:所含字母相同,相同字母旳指数相同、合并同类项旳方法:字母和字母旳指数不变,只把系数相加减、不是同类项旳一定不能合并、10、下面四个整式中,不能表示图中阴影部分面积旳是()A、〔x+3〕〔x+2〕﹣2xB、x〔x+3〕+6C、3〔x+2〕+x2D、x2+5x【考点】合并同类项、【分析】依照题意可把阴影部分分成两个长方形或一个长方形和一个正方形来计算面积,也能够用大长方形旳面积减去空白处小长方形旳面积来计算、【解答】解:A、大长方形旳面积为:〔x+3〕〔x+2〕,空白处小长方形旳面积为:2x,因此阴影部分旳面积为〔x+3〕〔x+2〕﹣2x,故正确;B、阴影部分可分为两个长为x+3,宽为x和长为x+2,宽为3旳长方形,他们旳面积分别为x〔x+3〕和3×2=6,因此阴影部分旳面积为x〔x+3〕+6,故正确;C、阴影部分可分为一个长为x+2,宽为3旳长方形和边长为x旳正方形,那么他们旳面积为:3〔x+2〕+x2,故正确;D、x2+5x,故错误;应选D、【点评】此题考查了长方形和正方形旳面积计算,难度适中、【二】填空题〔每题3分,共24分〕11、假设支出20元记为+20元,那么﹣50元表示收入50元、【考点】正数和负数、【分析】依照正数和负数是表示相反意义旳量,可得收入为负,支出为正、【解答】解:支出20元记为+20元,那么﹣50元表示收入50元,故【答案】为:收入50元、【点评】此题考查了正数和负数、注意正数、负数表示相反意义旳量、12、﹣3旳倒数是﹣,|﹣2|旳相反数是﹣2、【考点】倒数;相反数;绝对值、【专题】计算题、【分析】原式利用倒数及相反数旳定义化简即可得到结果、【解答】解:﹣3旳倒数是﹣,|﹣2|旳相反数是﹣2、故【答案】为:﹣;﹣2【点评】此题考查了倒数,相反数,熟练掌握各自旳定义是解此题旳关键、13、某日中午,北方某地气温由早晨旳零下2℃上升了10℃,傍晚又下降了4℃,这天傍晚北方某地旳气温是4℃、【考点】有理数旳加减混合运算、【专题】计算题、【分析】依照题意列出算式,计算即可得到结果、【解答】解:依照题意得:﹣2+10﹣4=4〔℃〕,那么这天傍晚北方某地旳气温是4℃、故【答案】为:4【点评】此题考查了有理数旳加减混合运算,熟练掌握运算法那么是解此题旳关键、14、定义a*b=a2﹣b,那么2*3=1、【考点】代数式求值、【专题】新定义、【分析】依照题目旳规定,直截了当代入计算即可、【解答】解:∵a*b=a2﹣b,∴2*3=22﹣3=4﹣3=1、【点评】此题属于新定义旳题目,题型简单,只要按照题目给出旳顺序代入求值即可、15、单项式﹣旳次数是3,系数是﹣、【考点】单项式、【分析】依照单项式系数及次数旳定义,即可得出【答案】、【解答】解:单项式﹣旳次数是3,系数是﹣、故【答案】为:3;、【点评】此题考查了单项式旳知识,解答此题旳关键是掌握单项式系数及次数旳定义、16、假设a,b互为相反数,c,d互为倒数,m旳绝对值为1,那么旳值是﹣2或0、【考点】有理数旳混合运算;相反数;绝对值;倒数、【专题】计算题、【分析】利用相反数,倒数,以及绝对值旳定义求出a+b,cd,以及m旳值,代入原式计算即可得到结果、【解答】解:依照题意得:a+b=0,cd=1,m=1或﹣1,当m=1时,原式=0+1﹣1=0;当m=﹣1时,原式=0﹣1﹣1=﹣2、故【答案】为:﹣2或0、【点评】此题考查了有理数旳混合运算,熟练掌握运算法那么是解此题旳关键、17、假设|y+3|+〔x﹣2〕2=0,那么y x=9、【考点】非负数旳性质:偶次方;非负数旳性质:绝对值、【分析】依照非负数旳性质列式求出x、y,然后代入代数式进行计算即可得解、【解答】解:依照题意得,y+3=0,x﹣2=0,解得x=2,y=﹣3,因此,y x=〔﹣3〕2=9、故【答案】为:9、【点评】此题考查了非负数旳性质:几个非负数旳和为0时,这几个非负数都为0、18、观看以下等式:,,,,…,依照你发觉旳规律,请写出第n个等式:n﹣=、【考点】规律型:数字旳变化类、【专题】规律型、【分析】等式左边,分数旳分子与整数相同,分母比整数旳平方大1,等式旳右边分母与左边旳分母相同,分子是整数旳立方,然后写出即可、【解答】解:1﹣=,2﹣=,3﹣=,4﹣=,…,第n个等式是n﹣=、故【答案】为:n﹣=、【点评】此题是对数字变化规律旳考查,从等式两边旳分数旳分子、分母与整数旳关系考虑求解是解题旳关键、【三】解答题〔共66分〕19、把以下各数在数轴上表示出来,并用“<”号把它们连接起来、﹣,0,4,﹣3,2.5、【考点】有理数大小比较;数轴、【分析】先在数轴上表示出来,再比较即可、【解答】解:在数轴上表示出来为:用“<”号把它们连接起来为:﹣3<﹣1<0<2.5<4、【点评】此题考查了数轴和有理数旳大小比较旳应用,注意:在数轴上表示旳数,右边旳数总比左边旳数大、20、〔36分〕计算〔1〕22+〔﹣4〕+〔﹣2〕+4〔2〕;〔3〕〔4〕﹣12018+〔﹣3〕2﹣32×23〔5〕﹣|﹣3|2÷〔﹣3〕2;〔6〕0﹣〔﹣3〕2÷3×〔﹣2〕3、【考点】有理数旳混合运算、【分析】〔1〕先化简,再计算加减法;〔2〕直截了当运用乘法旳分配律计算;〔3〕先算乘除法,再算减法;〔4〕〔5〕〔6〕按照有理数混合运算旳顺序,先乘方后乘除最后算加减,有括号旳先算括号里面旳、【解答】解:〔1〕22+〔﹣4〕+〔﹣2〕+4=22﹣4﹣2+4=26﹣6=20;〔2〕=×24﹣×24+×24=18﹣44+21=﹣5;〔3〕=3﹣3×=3﹣=;〔4〕﹣12018+〔﹣3〕2﹣32×23=﹣1+9﹣9×8=﹣1+9﹣72=﹣64;〔5〕﹣|﹣3|2÷〔﹣3〕2;=﹣9÷9=﹣1;〔6〕0﹣〔﹣3〕2÷3×〔﹣2〕3、=0﹣9÷3×〔﹣8〕=0+24=24、【点评】此题考查旳是有理数旳运算能力、注意:〔1〕要正确掌握运算顺序,在混合运算中要专门注意运算顺序:先三级,后二级,再一级;有括号旳先算括号里面旳;同级运算按从左到右旳顺序;〔2〕去括号法那么:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣、21、先化简,再求值:5〔3a2b﹣ab2﹣1〕﹣〔﹣5ab2+3a2b﹣5〕,其中a=﹣1,b=、【考点】整式旳加减—化简求值、【专题】计算题、【分析】原式去括号合并得到最简结果,把a与b旳值代入计算即可求出值、【解答】解:原式=15a2b﹣5ab2﹣5+5ab2﹣3a2b+5=12a2b,当a=﹣1,b=时,原式=4、【点评】此题考查了整式旳加减﹣化简求值,熟练掌握运算法那么是解此题旳关键、〔2〕求出中国队队员旳平均年龄、【考点】正数和负数、【分析】〔1〕找出年龄最大旳和年龄最小旳,再相减即可;〔2〕依照平均数旳计算公式求出即可、【解答】解:〔1〕∵年龄最大旳队员旳年龄是34岁,年龄最小旳队员旳年龄是20岁,∴年龄最大旳队员与年龄最小旳队员旳年龄差是34﹣21=13〔岁〕;〔2〕中国队队员旳平均年龄是:×〔21+29+24+27+33+22+25+25+32+31+28+31+24+24+23+21+20+27+26+28+23+34+34〕≈27〔岁〕、【点评】此题考查了正数和负数,有理数旳加减运算旳应用,能依照题意列出算式是解此题旳关键,题目比较好,难度不大、。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
_北京市人大附中七年级上学期期中考试数学试题_
○…………外…………○…………装…………○…………订…………○…………线…………○……姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○……北京市人大附中2018-2019年七年级上学期期中考试数学试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人得分一、单选题(共9题)1. 年中秋国庆又在一起放假啦!我国人们旅游热情高涨,小振老师喜欢自驾游,他统计了在年双节期间,全国自驾游(跨市)游客达到人次,将用科学记数法表示应为( ).A .B .C .D .2. 下列各式计算正确的是( ). A . B .C .D .3. 下列各式结果为负数的是( ).A .B .C .D .4.A .汉城与纽约的时差为13小时B .汉城与多伦多的时差为13小时C .北京与纽约的时差为14小时D .北京与多伦多的时差为14小时5. 下列去括号正确的是( ).A .B .C .D .6. 小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过元时,所购买的商品按原价打折后,再减少元”.若某商品的原价为元,则购买该商品实际付款的金额(单位:元)是( ).A .B .C .D .7. 已知是关于的方程的根,则的值为( ).A .B .C .D .8. 有理数,在数轴上的对应点如图所示,则下面式子中正确的是( ). ①;②;③;④.A .①②B .①④C .②③D .③④9. 如图,在一底面为长方形(长为,宽为)的盒子底部,不重叠的放两张形状大小完全相同的两个长方形卡片,,(长为,宽为),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分(长方形和)的周长和是( ).A .B .C .D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共9题)1. 有理数的相反数是__________,有理数的倒数是__________.2. 单项式的系数是__________.3. 用四舍五入法将取近似数并精确到千分位,得到的值为__________.…………外…………○…………装…………○…………订…………○…………线…………○………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………4. 已知、满足,那么的值是__________,的值是__________.5. 若单项式与是同类项,那么的值是__________.6. 比较大小(填,,):__________.7. 小莎喜欢剪纸,某天看到了一扇漂亮的窗户(如图),它是由一个大的正方形和一个半圆构成的.她就想到了利用长方形纸片(如图,长方形的长是,宽是)来剪成类似的窗户纸片(如图,半圆的直径是).问原长方形纸片周长是__________,小莎剪去纸片(不要的部分)的面积是__________(用含的代数式表示,保留).8. 有理数、、在数轴上对应的点如图所示,化简的值是__________.9. 若,且,则以下结论正确的是__________. ①,;②;③关于的方程的解为;④;⑤在数轴上点,,表示数、、,若,则线段与线段的大小关系是.评卷人 得分二、解答题(共10题)10. .11. .12..13..14. 计算.15. 解方程. 16. 先化简,再求值,其中,.17. 小兵喜欢研究数学问题,在计算整式的加减的时候,想到了小学的列竖式加减法,令,,然后将两个整式关于进行降幂排列,,,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,若,,请你按照小兵的方法,先对整式,关于某个字母进行降幂排列,再写出其各项系数进行竖式计算,并写出值.18. 关于的多项式是关于的二次多项式.()求的值.()若该多项式的值,且表示不超过的最大整数,例如,请在此规定下求的值. 19.已知如图,在数轴上点,所对应的数是,.对于关于的代数式,我们规定:当有理数在数轴上所对应的点为之间(包括点,)的任意一点时,代数式取得所有值的最大值小于等于,最小值大于等于,则称代数式,是线段的封闭代数式. 例如,对于关于的代数式,当时,代数式取得最大值是;当时,代数式取得最小值是,○…………外…………○…………装…………○…………订…………○…………线…………○……姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○……所以代数式是线段的封闭代数式.问题:()关于代数式,当有理数在数轴上所对应的点为之间(包括点,)的任意一点时,取得的最大值和最小值分别是__________.所以代数式__________(填是或不是)线段的封闭代数式.()以下关的代数式:①;②;③;④.是线段的封闭代数式是__________,并证明(只需要证明是线段的封闭代数式的式子,不是的不需证明).()关于的代数式是线段的封闭代数式,则有理数的最大值是__________,最小值是__________.参数答案1.【答案】:answer_6035579.png 【解释】:parse_6035579.png 2.【答案】:answer_6035580.png 【解释】:parse_6035580.png 3.【答案】:answer_6035581.png 【解释】:parse_6035581.png answer_3451305.png【解释】:parse_3451305.png 5.【答案】:answer_6035582.png 【解释】:parse_6035582.png 6.【答案】:answer_6035583.png 【解释】:parse_6035583.png 7.【答案】:answer_6035584.png 【解释】:parse_6035584.png 8.【答案】:answer_4943222.png 【解释】:parse_4943222.png 9.【答案】:answer_6035585.png 【解释】:parse_6035585.png 【答案】:answer_6035586.png 【解释】:parse_6035586.png 【答案】:answer_6035587.png 【解释】:parse_6035587.png 【答案】:answer_6035588.png 【解释】:parse_6035588.png 【答案】:answer_6035589.png 【解释】:parse_6035589.png【答案】:answer_6035590.png 【解释】:parse_6035590.png 【答案】:answer_6203425.png 【解释】:parse_6203425.png 【答案】:answer_6035592.png 【解释】:parse_6035592.png 【答案】:answer_6035593.png 【解释】:parse_6035593.png 【答案】:answer_6035594.png 【解释】:parse_6035594.png 【答案】:answer_6035595.png 【解释】:parse_6035595.png 【答案】:answer_6203426.png 【解释】:parse_6203426.png 【答案】:answer_6203427.png 【解释】:parse_6203427.png 【答案】:answer_6035598.png 【解释】:parse_6035598.png 【答案】:answer_6035599.png 【解释】:parse_6035599.png 【答案】:answer_6035600.png 【解释】:parse_6035600.png 【答案】:answer_6035601.png 【解释】:parse_6035601.png 【答案】:answer_6035602.png 【解释】:parse_6035602.png 【答案】:answer_6035603.png 【解释】:parse_6035603.png 【答案】:answer_6035604.png 【解释】:parse_6035604.png。
北京市XX初中2018—2019学年初一上期中考试数学试卷含答案.doc
北京市 XX 初中 2018— 2019 学年初一上期中考试数学试卷含答案— 2019 学年度第一学期期中考试初一数学试题班 ______________姓名 ______________学号 _________考1.本试卷共 3 页,考试时间 100 分钟。
试卷由主卷和附加卷组成,主卷部分满分100分,附加卷部分满分 20 分。
生2.试卷答案一律书写在答题纸上,在试卷上作答无效。
须3.在答题纸上,用黑色字迹钢笔或签字笔作答。
知4.考试结束后,将答题纸交回。
第Ⅰ卷(主卷部分,共 100 分)一、(本大共10 小,每小 3 分,共 30 分)1.2016的绝对值是1B .2016 C.2016 D.2016A .20162.近年来,高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.到 2015 年底,高速铁路营运里程达到18 000 公里 . 将 18 000 用科学记数法表示应为A . 18×103B .1.8 ×103 C.1.8 ×104 D .1.8 ×1053.下列式子中,正确的是A .0.4 1 B. 4 6 C.9 8 D .( 4)2 ( 3)22 5 7 8 94.下列运算正确的是A .2m2 3m3 5m5 B.5xy 4xy xyC.5c2 5d 2 5c2 d 2 D .2x2 x2 25.有理数a, b 在数轴上的位置如图所示,则下列各式成立的是A .b a 0B. b 0C.a b D .ab0 6.下列说法中正确的是A. a一定是正数B. a 一定是负数C. ( a) 一定是正数D. 如果| a |1,那么a < 0.a7.若 x=2 是关于 x 的方程 ax+6=2 ax 的解,则 a 的值为A. 3B. 2C. 11D.28.已知a2 2b 1,则代数式2a2 4b 3 的值是A. 1B. 1C. 5D. 59.下列式子的变形中,正确的是A. 由 6+x=10 得 x=10+6B. 由 3x+5=4x 得 3x 4x= -5C. 由 8x= 4 3x 得 8x 3x = 4D. 由 2(x 1)= 3 得 2x 1=310.用火柴棍按如图所示的方式摆大小不同的“H ”,依此规律,摆出第n 个“ H”需要火柴棍的根数是⋯第 1 个第 2 个第 3 个A. 2 n+ 3B. 3n+ 2C. 3n+ 5D. 4n+ 1二、填空(本大共8 小, 11-14 每 2 分, 15-18 每 3 分,共 20 分)11. 用四舍五入法将 5.876 精确到0.01,所得到的近似数为.12. 请写出一个只含有x, y 两个字母,次数为5,系数是负数的单项式.13. 一家商店把一种旅游鞋按成本价 a 元提高50%标价,然后再以8 折优惠卖出,则这种旅游鞋每双的售价是 _____________ 元 .( 用含 a 的式子表示 )14.数轴上点 A 表示的数为4,点 B 与点 A 的距离为 5,则点 B 表示的数为 _______________.15. 若 x 7y22016的值为.60 ,则( x y)16. 若 5x6 y 2 m与3x n 9 y6是同类项,那么n m的值为___________.17. 在如 所示的 3× 3 方 中, 于同一横行、同一 列、同一斜角 上的 3 个数之和都相等. 在方 中已填写了一些数和代数式(其中每个代数式都表示一个 数), x 的 ,空白 填写的 3 个数的和....18. a 是不1 的有理数,我 把1 称a 的差倒数的差倒数是 11, 1 的差倒数 1 a....如: 21 2是11.已知 a 15,a 2 是 a 1 的差倒数, a 3 是 a 2 的差倒数, a 4 是 a 3 的差的倒数, ⋯ , 1 ( 1)2依此 推, a的差倒数 a=.20152016三、计算(本大题共 4 小题,每题 4 分,共 16 分)19. ( 12.7)( 5 2) 87.3 3 355 20. 2.55 ( 1) ( 4)16 8 21. (12 5 ) ( 36)63 1222. 14173 ( 2 )2 264 325. 先化 ,再求3(4a22ab 3) 4(5a23ab 3) ,其中 a1, b1 .226. 已知:A 3a 2 5ab 3 ,B a 2 ab ,求当 a 、 b 互 倒数 ,A 3B 的 .27. 有理数 a , b , c 在数 上的位置如 所示.( 1)用“<” 接:0, a , b , c ;( 2)化 代数式:3 c a 2 b c 3 a b .28. 用“☆ ”定 一种新运算: 于任意有理数a 和b , 定 a ☆ b = ab 22ab a .如: 1☆ 2 = 1 22 2 1 2 1= 9 .( 1)求 ( 2) ☆ 3 的 ;( 2)若(a1☆ 3 )☆ (1) = 8 ,求 a 的 ;22 ( 3)若 2 ☆ x = m , ( 1x) ☆ 3 = n (其中 x 有理数), 比 m, n 的大小.4四、解下列方程(本大题共 2 小题,每题 5 分,共 10 分)23. 3 x 2 x (2 x 1)24. x1 2x 1146第 Ⅱ 卷( 附 加 卷部 分 ,共 20 分 )五、解答题(本大题共 4 小题,每题 6 分,共 24 分)解答题(共 3 小题,第 1、2 题每题 6 分,第 3 题 8 分,共 20 分)1.1883 年,德国数学家格奥 格·康托 引入位于一条 段上的一些点的集合,他的做法如下:取一条 度1 的 段,将它三等分,去掉中 一段,余下两条 段,达到第1 段;将剩下的两条 段再分 三等分,各去掉中 一段,余下四条 段,达到第2 段;再将剩四条 段,分 三等分,分 去掉中 一段,余下八条 段,达到第3 段;⋯⋯; 的操作一直 下去,在不断分割舍弃过程中,所形成的线段数目越来越多, 把 种分形,称做康托 点集.下 是康托 点集的最初几个 段,当达到第 5 个 段 ,余下的段的 度 之和;当达到第n 个 段 ( n 正整数 ) ,余下的 段的 度....之和.2. 于正整数 a ,我 定:若a 奇数, f (a) 3a 1;若 a 偶数, f (a) a.例如2f (15) 3 15 146 , f (10) 10 .若 a 1 8 , a 2f (a 1 ) , a 3f ( a 2 ) , a 4 f (a 3 ) ,⋯,52依此 律 行下去, 得到一列数 a 1 , a 2 , a 3 , a 4 ,⋯, a n ,⋯( n 正整数), a 3 ,a 1 a 2 a 3 a 2016.12 1 1 23 0 1 23 23 1 2 34 1 2 3334 1 3 45 2 3 43将 三个等式的两 相加,可以得到1 2 2 3 3 41 3 4 5 203完 段材料, 你 算:( 1) 1 2 2 3100 101( 2) 12 2 3n n 1( 3) 1 2 3 2 3 4 n n 1 n 2XX 中学 2018—2019 学年度第一学期期中考试3. 材料,大数学家高斯在上学 曾 研究 一个 ,1+2+3+⋯⋯ 10=?初一数学标准答案和评分标准研究, 个 的一般 是 1 2 3n1n(n 1) ,其中 n 是正整数, 在第 Ⅰ卷 (主 卷 部 分, 共 100 分)2一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)我 来研究一个 似的 :1 2 2 3 n(n 1) ?察下面三个特殊的等式:号1 2 3 4 5 6 7 8 9 10答案DCDBADABBB二、填空题(本大题共 8 小题, 11-14 题每题 2 分, 15-18 题每题 3 分,共 20 分)11.5.88 12.2x 3 y 2 等13. 1.2a 14.-9 或 115.116.-2717.. -1 ( 2 分); _-4_(16分) 18. .5三、计算(本大题共 4 小题,每题 4 分,共 16 分)19.解原式12.7 5287.3 33⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分55=-100+9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分=-91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分20.解:原式5 16 ( 1) ( 1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分2 5 8 41 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分421.1 2 5) ( 36)解:原式 = (3612=36 1 36 ( 2) ( 36)5 ⋯⋯⋯⋯⋯ 2 分6 3 12= 6 2415 3⋯⋯⋯⋯ 4 分 22.解:原式 = 1 1 34 2...........2 分6 4 9=1 3 14 ........... .3 分649=1 766=4 ..............4 分3四、解下列方程(本大题共 2 小题,每题 5 分,共 10 分)23.3 x 2 x (2 x 1)解: 3x 6x 2x 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分3x x 2x1 6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分 4x 7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x 7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分.424.1 x 1 2x 14 6解: 12 3( x 1) 2(2 x 1) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分12 3x3 4x 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分3x 4x 2 12 37x13 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x 13 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分7五、解答题(本大题共 4 小题,每题 6 分,共 24 分)25. 先化 ,再求3(4a22ab 3 ) 4(5a23ab 3) ,其中 a1, b1 .2解:3(4a 22ab 3 ) 4(5a 2 3ab 3 )=12a 2 6ab 3 20a212 ab 3 --------------------------------------- 2 分 .= 8a 2 6ab 3 .----------------------------------------3分 .当 a1,b 1. ,2原式 = 8 ( 1)26 1( 1)3 ---------------------------------------4分 .522=----------------------------------------------- 6分 .26. 已知:设 A3a25ab 3, B a2ab ,求当 a 、 b 互为倒数时, A 3B 的值.解: 由题意得, ab1--------------------------------------- 1分 .原式 = A 3B= 3a 2 5ab 3 3(a 2 ab) ------------------------------------- 2分 .= 8ab3-------------------------------------4 分 .当 ab 1 时,原式 =11--------------------------------------6分 .27.解:( 1) a b 0c --------------------------------------1分( 2) 3 c a 2 b c 3 a b= 3(ca) 2 c b 3 a b -------------------------------------- 4分= 3c 3a 2c 2b 3a3b --------------------------------------5 分 = 5c b--------------------------------------6分28.解:( 1)解:( 1)(﹣ 2) ☆3=﹣ 2×32+2×(﹣ 2) ×3+(﹣ 2)=﹣ 18﹣ 12﹣ 2=﹣ 32; --------------------------------------2分( 2)解:☆3=×32+2× ×3+=8( a+1)8( a+1) ☆(﹣ )2=8( a+1) ×(﹣ ) +2×8( a+1)×(﹣ ) +8(a+1)=8解得: a=3;-------------------------------------- 4分( 3)由题意 m=2x 2+2×2x+2=2x 2+4x+2 ,2 =4x ,n= ×3 +2 × x ×3+所以 m ﹣ n=2x 2> 0.-------------------------------------- 6分 +2 所以 m > n .第 Ⅱ 卷 ( 附 加 卷部 分, 共 20 分)解答题(共 3 小题,第 1、2 题每题 6 分,第 3 题 8 分,共 20 分)2 5 2 n1. _________________ ;__________________ . (每空 3 分)332. a 3 _____2____________ ;a 1 a 2 a 3 a 2016 __________4711_________ .(每空 3 分)3.解: ( 1) 1 2 2 3100 101 =343400--------------------------------------2分( 2) 12 2 3n n 1 = 1n n 1 (n2)3--------------------------------------5分( 3)1 2 3 2 3 4n n 1 n 2 =1n n 1 ( n 2)( n3) 4--------------------------------------8分。
2018-2019学年北京人大附中七年级(上)期中数学试卷
2018-2019学年北京人大附中七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.的相反数是()A.﹣B.3C.﹣3D.2.港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A.1269×108B.1.269×1010C.1.269×1011D.1.269×10123.以下说法正确的是()A.一个数前面带有“﹣”号,则是这个数是负数B.整数和小数统称为有理数C.数轴上的点都表示有理数D.数轴上表示数a的点在原点的左边,那么a是一个负数4.下列等式变形,正确的是()A.由6+x=7得x=7+6B.由3x+2=5x得3x﹣5x=2C.由2x=3得x=D.由2﹣3x=3得x=5.用四舍五入法对0.4249取近似数精确到百分位的结果是()A.0.42B.0.43C.0.425D.0.4206.以下代数式中不是单项式的是()A.﹣12ab B.C.D.07.下列计算正确的是()A.a+a=a2B.6x3﹣5x2=xC.3x2+2x3=5x5D.3a2b﹣4ba2=﹣a2b8.下列等式,是一元一次方程的是()A.2x+3y=0B.+3=0C.x2﹣3x+2=x2D.1+2=39.以下说法正确的是()A.不是正数的数一定是负数B.符号相反的数互为相反数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.当a≠0,|a|总是大于010.下列去括号正确的是()A.4(x﹣1)=4x﹣1B.﹣5(1﹣x)=﹣5﹣xC.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c11.当x=2时,代数式px3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px3+qx+1值是()A.2017B.2018C.2019D.202012.有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A.b+c>0B.a+c<0C.>1D.abc≥0二、填空题(共12小题,每小题2分,满分24分)13.(2分)下列数(﹣)2,+6,﹣2,0.9,﹣π,﹣(﹣),0,,0.,﹣4.95中,是负分数的有.14.(2分)比大小:﹣﹣(填写“>”或“<”)15.(2分)单项式的系数是.16.(2分)多项式ab﹣2ab2﹣3a2+5b﹣1的次数是.17.(2分)若关于x的方程m﹣3x=x﹣4的解是x=2,则m的值为.18.(2分)如果|x|=2,则x的倒数是.19.(2分)把多项式x2﹣2﹣3x3+5x的升幂排列写成.20.(2分)|a+3|+(b﹣2)2=0,求a b=.21.(2分)一个两位数个位上的数是1,十位上的数是x,把1与x对调,新的两位数比原两位数小18,则依此题意所列的方程为.22.(2分)已知a,b在数轴上的对应点如图所示,则化简|a+b|﹣|2a﹣b|的结果是.23.(2分)《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两,则用含x的式子表示一只燕的重量为两.24.(2分)对于有理数a,b定义运算“*”如下:a*b=b,则关于该运算,下列说法正确的有(请填写正确说法的序号)①5*7=9*7②如果a*b=b*a,那么a=b③该运算满足交换律④该运算满足结合律,三、解答题(共1小题,满分20分,每小题20分)25.(20分)(1)计算:12﹣(﹣18)+(﹣7)﹣15(2)计算:﹣52×|1﹣|﹣|﹣|+×[(﹣1)3﹣7](3)计算:﹣÷(﹣)﹣24×(﹣﹣)(4 )解方程:x﹣3=x+1四、解答题:(本题共12分,每题4分26.(4分)先化简下式,在求值:2(﹣x2+3+4x)﹣(5x+4﹣3x2),其中x=.27.(4分)求单项式﹣x2m﹣n y3与单项式x5y m+n可以合并,求多项式4m﹣2n+5(﹣m﹣n)2﹣2(n﹣2m)2的值.28.(4分)将连续的奇数1,3,5,7,排成如下表:如图所示,图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)设T字框内处于中间且靠上方的数是整个数表当中从小到大排列的第n个数,请你用含n 的代数式表示T字框中的四个数的和;(2)若将T字框上下左右移动,框住的四个数的和能等于2018吗?如能,写出这四个数,如不能,说明理由.五、解答题[本题共8分,每题4分29.(4分)阅读下面材料并回答问题观察有理数﹣2和﹣4在数轴上对应的两点之间的距离是2=|﹣2﹣(﹣4)|有理数1和﹣3在数轴上对应的两点之间的距离是4=|1﹣(﹣3)|归纳:有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义应用(1)如果表示﹣1的点A和表示x点B之间的距离是2,那么x为;(2)方程|x+3|=4的解为;(3)小松同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x对应点到1和﹣2对应点的距离之和,而当﹣2≤x≤1时,取到它的最小值3,即为1和﹣2对应的点的距离.由方程右式的值为5可知,满足方程的x对应点在1的右边或﹣2的左边,若x的对应点在1的右边,利用数轴分析可以看出x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3;故原方程的解是x=2或x=﹣3参考小松的解答过程,回答下列问题:(Ⅰ)方程2|x﹣3|+|x+4|=20的解为;(Ⅱ)设x是有理数,令y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|下列四个结论中正确的是(请填写正确说法的序号)①有多于1个的有限多个x使y取到最小值②只有一个x使y取得最小值③有无穷多个x使y取得最小值④y没有最小值30.(4分)数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;【问题背景】对于一个正整数n,我们进行如下操作:(1)将n拆分为两个正整数m1,m2的和,并计算乘积m1×m2;(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.【尝试探究】:(1)正整数1和2的“神秘值”分别是(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在图3中绐出计算正整数7的“神秘值”的过程.【结论猜想】结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为,(用含字母n的代数式表示,直接写出结果)2018-2019学年北京人大附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的定义,得的相反数是﹣.故选:A.【点评】本题主要考查了相反数的求法,比较简单.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1269亿用科学记数法表示为1.269×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】利用有理数的定义、数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴,再结合数轴的性质分析得出答案.【解答】解:A、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B、整数和分数统称为有理数,故选项错误;C、数轴上的点都表示实数,故选项错误;D、数轴上表示数a的点在原点的左边,那么a是一个负数,故选项正确.故选:D.【点评】此题主要考查了有理数、数轴,正确把握数轴的定义是解题关键.4.【分析】根据等式的性质进行判断即可.【解答】解:A、由6+x=7得x=7﹣6,错误;B、由3x+2=5x得3x﹣5x=﹣2,错误;C、由2x=3得x=,正确;D、由2﹣3x=3得x=﹣,错误;故选:C.【点评】本题考查了等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:0.4249≈30.42(精确到百分位).故选:A.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.【分析】直接利用单项定义分析得出答案.【解答】解:A、﹣12ab,是单项式,不合题意;B、,是单项式,不合题意;C、,是多项式,不是单项式,符合题意;D、0,是单项式,不合题意;故选:C.【点评】此题主要考查了单项式,正确把握单项式的定义是解题关键.7.【分析】根据同类项的定义和合并同类法则进行计算,判断即可.【解答】解:A、a+a=2a,故本选项错误;B、6x3与5x2不是同类项,不能合并,故本选项错误;C、3x2与2x3不是同类项,不能合并,故本选项错误;D、3a2b﹣4ba2=﹣a2b,故本选项正确;故选:D.【点评】本题考查的是合并同类项,掌握同类项的概念、合并同类项法则是解题的关键.8.【分析】根据一元一次方程的定义[只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)]对以下选项进行一一分析、判断.【解答】解:A、本方程中含有两个未知数,不是一元一次方程,故本选项错误;B、该方程不是整式方程,故本选项错误;C、由原方程知﹣3x+2=0,符合一元一次方程的定义;故本选项正确;D、1+2=3中不含有未知数,不是方程,故本选项错误.故选:C.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.9.【分析】A、根据有理数的定义即可作出判断;B、根据相反数的定义即可作出判断;C、根据绝对值的意义即可作出判断;D、根据绝对值的性质即可作出判断.【解答】解:A、0不是正数,也不是负数,故选项错误;B、符号相反的两个数互为相反数,例如,3与﹣5不是相反数,故选项错误;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,故选项错误;D、a≠0,不论a为正数还是负数,|a|都大于0,故选项正确.故选:D.【点评】本题考查了相反数、绝对值、数轴,解决本题的关键是熟记相反数、绝对值的性质.10.【分析】根据去括号的方法解答.【解答】解:A、原式=4x﹣4,故本选项错误;B、原式=﹣5+x,故本选项错误;C、原式=a+2b﹣c,故本选项错误;D、原式=a﹣4b+2c,故本选项正确.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.11.【分析】先将x=2代入代数式,然后求出p与q的关系式,再将x=﹣2代入原式求值即可.【解答】解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.【点评】本题考查代数式求值,涉及整体的思想.12.【分析】根据两个数的正负以及加减乘除法法则,对每个选择作出判断,得正确结论.【解答】解:由于|a|<|b|,由数轴知:a<0<b或0<a<b,a<c<b,所以b+c>0,故A成立;a+c可能大于0,故B不成立;可能小于0,故C不成立;abc可能小于0,故D不成立.故选:A.【点评】考查了数轴上点的表示的数的正负及实数的加减乘除法的符号法则.解决本题的关键是牢记实数的加减乘除法则.二、填空题(共12小题,每小题2分,满分24分)13.【分析】直接利用有理数的乘方运算法则以及分数的定义分析得出答案.【解答】解:(﹣)2=,+6,﹣2,0.9,﹣π,﹣(﹣)=,0,,0.,﹣4.95,则是负分数的有:﹣4.95,故答案为:﹣4.95.【点评】此题主要考查了有理数的乘方运算以及分数的定义,正确掌握分数的定义是解题关键.14.【分析】化为同分母的分数后比较大小.【解答】解:﹣=﹣,﹣=﹣,∵|﹣|<|﹣|,∴﹣>﹣,∴﹣>﹣.故答案是:>.【点评】考查了有理数大小比较.比较有理数的大小可以利用数轴,它们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.15.【分析】根据单项式的系数即可求出答案.【解答】解:原式=x2y,所以该单项式的系数为;故答案为:﹣【点评】本题考查单项式的概念,属于基础题型.16.【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【解答】解:多项式ab﹣2ab2﹣3a2+5b﹣1的次数是:三.故答案为:三.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.17.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:m﹣6=﹣2,解得:m=4,故答案为:4【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.【分析】根据绝对值的意义,可得x的值,根据倒数,可得答案.【解答】解:∵|x|=2,∴x=±2,∴x的倒数是±,故答案为:±.【点评】本题考查了倒数,先求出x值,再求出倒数.19.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:多项式x2﹣2﹣3x3+5x的各项是x2,﹣2,﹣3x3,5x,按x升幂排列为﹣2+5x+x2﹣3x3.故答案为:﹣2+5x+x2﹣3x3.【点评】本题主要考查了多项式的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.20.【分析】根据非负数的性质列出方程,求出a、b的值,代入a b进行计算即可.【解答】解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得a=﹣3,b=2.∴a b=9.【点评】本题考查了初中范围内的两个非负数,转化为解方程的问题,这是考试中经常出现的题目类型.21.【分析】首先表示出这个两位数,然后表示出新的两位数,再根据新两位数比原两位数小18列出方程即可.【解答】解:由题意,可得原数为10x+1,新数为10+x,根据题意,得10x+1=10+x+18,故答案为:10x+1=10+x+18.【点评】考查了由实际问题抽象出一元一次方程,对于这类问题,一般采取设未知数的方法,通过解方程,解决问题.22.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据题意得:a<0<b,且|a|>|b|,∴a+b<0,2a﹣b<0,则原式=﹣a﹣b+2a﹣b=a﹣2b.故答案为:a﹣2b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.23.【分析】设一只燕的重量为y两,根据“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两”,列出关于x和y的方程,解之,求得含有x得y,代入求出五只雀的重量和六只燕的重量,如果五只雀比六只燕重,则为所求答案.【解答】解:设一只燕的重量为y两,根据题意得:4x+y=x+5y,4y=3x,y=x,则五只雀的重量为:5x,六只燕的重量为:x×6=x,5x>x,(符合题意),故答案为:x.【点评】本题考查了列代数式,正确找出等量关系列出方程是解题的关键.24.【分析】根据对于有理数a,b定义运算“*”如下:a*b=b,可以判断各个小题中的结论是否成立.【解答】解:∵对于有理数a,b定义运算“*”如下:a*b=b,∴5*7=7,9*7=7,∴5*7=9*7,故①正确,∵a*b=b,b*a=a,a*b=b*a,∴a=b,故②正确,当a≠b时,则a*b≠b*a,故③错误,∵(a*b)*c=b*c=c,a*(b*c)=a*c=c,∴(a*b)*c=a*(b*c),故④正确,故答案为:①②④.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,可以判断各个小题中的结论是否正确.三、解答题(共1小题,满分20分,每小题20分)25.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣25×﹣﹣6=﹣﹣﹣6=﹣2﹣6=﹣8;(3)原式=﹣16+18+2=4;(4)去分母得:2x﹣6=5x+2,移项合并得:﹣3x=8,解得:x=﹣.【点评】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题:(本题共12分,每题4分26.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣2x2+6+8x﹣5x﹣4+3x2=x2+3x+2,当x=时,原式=++2=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.【分析】根据同类项的概念即可求出m与n的值,然后将原式化简即可求出答案.【解答】解:依题意知,,解得,m=,n=,4m﹣2n+5(﹣m﹣n)2﹣2(n﹣2m)2=4m﹣2n+5m2+10mn+5n2﹣2n2+8mn﹣8m2=﹣3m2+18mn+3n2﹣2n+4m,当m=,n=时,原式=﹣3×()2+18××+3×()2﹣2×+4×=47.【点评】本题考查的是合并同类项,代数式求值,掌握合并同类项的概念、完全平方公式是解题的关键.28.【分析】(1)根据题意,可用含n的代数式表示T字框中的四个数,相加求和即可;(2)令由(1)中得到的结论等于2018,解一元一次方程,若存在正整数解,则说明有符合题意的四个数,若不是正整数解,则不存在这样四个数.【解答】解:(1)由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.(2)由题意,令框住的四个数的和为2018,则有:8n+6=2018,解得n=251.5由于n必须为正整数,因此n=251.5不符合题意.故框住的四个数的和不能等于2018.【点评】本题考查用字母表示数、代数式的运算及一元一次方程,难度不大,关键在于根据题目中数字对的规律,用含n的代数式表示各数,对于第二问要注意n只能是正整数.五、解答题[本题共8分,每题4分29.【分析】根据绝对值的几何意义即可以解题.【解答】解:(1)依题意得,|x﹣(﹣1)|=2x﹣(﹣1)=±2∴x=﹣3或x=1故答案为:﹣3或1(2)依题意,|x+3|=4得x+3=±4,解得x=1或x=﹣7故答案为:1或﹣7(3)(Ⅰ)当x<﹣4时,则2(3﹣x)+[﹣(x+4)]=20,解得x=﹣6当﹣4≤x<3时,则2(3﹣x)+(x+4)=20,解得x=﹣10(不合题意,舍去)当x≥3时,则2(x﹣3)+(x+4)=20,解得x=∴该方程的解为x=﹣6或x=故答案为:﹣6或(Ⅱ)根据题意,当x=0时,y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|取得最小值.故只有②正确.故答案为:②【点评】此题考查绝对值的几何意义.有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义30.【分析】(1)根据神秘数的定义,将正整数分解,求和即可;(2)将6和7分解,直到不能分解位置,再将所有的乘积求和即可;结论猜想:找出多个数的神秘数,再找出规律即可.【解答】解:(1)根据“神秘数”的定义,1不能在分,∴1的神秘数是1,∵2可以分为1和1,∴2的神秘数是1,故答案为:1,1;(2)如图所示:结论猜想:∵3的神秘数是3,4的神秘数是6,5的神秘数是10,6的神秘数是15,7的神秘数是21,…,∴n的神秘数是(n>1).【点评】本题主要考查数字的变化规律的阅读型题目,解决此题时,要认真阅读分析材料,再根据相关的定义解答即可.。
最新北京师大附中2018-2019学年七年级上学期期中考试数学试卷-
绝密★启用前北京师大附中2018-2019学年七年级上学期期中考试数学试卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.12-的倒数是()A.112B.23C.-112D.-232. 2.3万这个数用科学记数法可表示为()A. B. C. D.3.化简的结果为()A. B. C. D.4.若a a>,则a是()A.正数B.负数C.非正数D.非负数5.下列各组数中,相等的是()A.-1与(-4)+(-3)B.与C.与-(-3)D.与-166.下列说法正确的有()个①a是单项式,它的系数为0;②是多项式;③多项式是单项式、、的和;④如果一个多项式的次数是3,那么这个多项式的任何一项的次数都不大于3.A.1B.2C.3D.47.若方程的解为-1,则的值为( ) A .10B .-4C .-6D .-88.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A.ab>0B.a-b>0C.a+b>0D.0a b ->9. 设,且,则化简结果为( ). A.3B.-3C.D.10.设[a]是有理数,用[a]表示不超过a 的最大整数,如[1,7]=1,[-1]=-1,[0]=0,[-1,2]=-2,则在以下四个结论中,正确的是( ). A .[a]+[-a]=0 B .[a]+[-a]等于0或-1 C .[a]+[a]≠0 D .[a]+[-a]等于0或1第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.平方得25的数是_____,12.计算:________________;_________________.13.单项式358ab的系数是,次数是.14.若是关于x,y的六次三项式,则m=__________. 15.若代数式与是同类项,那么m+n=____________.16.已知关于x的方程为一元一次方程,则该方程的解为_____________.17.已知,则代数式的值为__________.18.一件商品提价25%后发现销路不是很好,若恢复原价,则应降价______%.19.“※”定义新运算:对于有理数a、b都有:a※b=ab-(a+b),那么5※3=__________;当m为有理数时,3※(m※2)=____________。
北京市XX中学2018-2019学年度七年级上数学期中试卷含答案
北京市XX 中学2018-2019学年度七年级上数学期中试卷含答案XX 中学2018-2019学年度七年级数学期中测试 2018年11月一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。
1、某市2013年元旦的最高气温为2℃,最低气温为-8℃,这天的最高气温比最低气温高( )A .-10℃B .-6℃C .6℃D .10℃2、地球与太阳之间的距离约为149600000千米,将149600000用科学记数法表示应为( ).A .5101496⨯B .71096.14⨯C .810496.1⨯D .9101496.0⨯ 3、下列式子中,正确的是 ( ) A .0<-21 B .54<76- C .89> 98D .4->3- 4、下列式子的变形中,正确的是( )A . 由6+x =10得x =10+6B . 由3x +5=4x 得3x -4x =-5C . 由8x =4-3x 得8x -3x =4D . 由2(x -1)= 3得2x -1=3 5、下列各式中运算正确的是( )A . 43m m -=B . 220a b ab -=C . 33323a a a -=D . 2xy xy xy -=- 6、若0)3-(22=++y x ,则=yx( )A . -8B . -6C . 6D . 87、今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,如果设妹妹今年x 岁,可列方程为( )A .2x+4=3(x-4)B .2x-4=3(x-4)C .2x=3(x-4)D .2x-4=3x8、已知代数式-2.5x a+b y a-1与3x 2y 是同类项,则a-b 的值为( )A.2B.0C. 2-D.19、表示x 、y 两数的点在x 轴上的位置如图所示,则x y 1x -+-等于( )A .y -1B .x y 21-+C .x y 21--D .2x -y -110、如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点可能是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题(本题共16分,每小题2分) 11、31-的倒数是 . 12、某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 元.13、若关于x 的一元一次方程23=+x ax 的解是1=x ,则a = . 14、化简3()()2()m n m n m n ---+-的结果是 . 15、当x = 时,代数式534x +的值为2. 16、若代数式2x 2+3y +7的值为8,那么代数式6x 2+9y +8的值为 . 17、定义运算“∆”,对于两个有理数a ,b ,有a ∆b =ab -(a +b ),例如:-3∆2=516)23(23-=+-=+--⨯-,则[]4)1()1(∆-∆-m =___ __. 18、有一列式子,按一定规律排列成-2a 2,4a 5,-8a 10,16a 17,-32a 26,……,第n 个式子为 (n 为正整数).ab x三、解答题(本题共40分,每小题4分)19、计算:(1)23-17-(-7)+(-16) (2) )32(176)211(652-÷⨯-⨯ (3) 2111()()941836-+÷- (4)-72 + 2 ⨯ (-3)2 + (-6) ÷ (-21)320、化简:(1)3x 2-y 2-3x 2-5y +x 2-5y +y 2 (2) 22123(2)33x y x y --+()21、求abc c a c a abc b a b a 3431323212222-⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛----的值, 其中a = -1, b = -3, c = 1.22、解方程:(1)90.55.14--=-x x x (2)2(10)6x x x -+=(3)+221=132x x --四、解答题(本题共14分,其中23题4分,24、25每题5分) 23、某日,司机小张作为志愿者在东西向的公路上免费接送游客。
北京市人大附中2018-2019年七年级上期中数学试卷含答案解析
北京市人大附中2018-2019年七年级上期中数学试卷含答案解析-2019学年人大附中七年级(上)期中数学试卷一、选择题(本大题共36分,每小题3分,请将答案填入下表中相应的空格内)1.﹣的倒数是()A.﹣ B.C.﹣5 D.52.火星和地球的距离约为34000000千米,用科学记数法表示34000000,应记作()A.0.34×108B.3.4×106C.3.4×105D.3.4×1073.多项式3x2﹣2x﹣1的各项分别是()A.3x2,2x,1 B.3x2,﹣2x,1 C.﹣3x2,2x,﹣1 D.3x2,﹣2x,﹣14.下列说法正确的是()A.正数和负数统称为有理数B.绝对值等于它本身的数一定是正数C.负数就是有负号的数D.互为相反数的两数之和为零5.下列各式﹣x2y,0,,﹣,x,﹣ +y2,﹣ ab2﹣中单项式的个数有()A.3个B.4个C.5个D.6个6.下列各题中,错误的是()A.x的5倍与y的和的一半,用代数式表示为5x+B.代数式5(x+y)的意义是5与(x+y)的积C.代数式x2+y2的意义是x,y的平方和D.比x的2倍多3的数,用代数式表示为2x+37.如图为小明家住房的结构(单位:m),他打算铺上木地板,请你帮他算一算,他至少应买()m2的木地板.A .13xyB .14xyC .15xyD .16xy8.下列各组数中,不是同类项的是( )A .52与25B .﹣ab 与baC .πa 2b 与﹣a 2bD .a 2b 3与﹣a 3b 29.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q10.下列去括号正确的是( )A .a+(﹣2b+c )=a+2b+cB .a ﹣(﹣2b+c )=a+2b ﹣cC .a ﹣2(﹣2b+c )=a+4b+2cD .a ﹣2(﹣2b+c )=a+4b ﹣c11.下列计算正确的是( )A .2a ﹣a=1B .2x 2y ﹣3xy 2=﹣xy 2C .4a 2+5a 2=9a 4D .3ax ﹣2xa=ax12.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2018的值为( )A .﹣1005B .﹣1006C .﹣1007D .﹣2014二、填空题13.比较两个数的大小:﹣ ﹣.(填“>”“<”或“=”)14.近似数3.50万精确到 位;3.649用四舍五入法精确到十分位的近似数应为 .15.单项式的系数是 ;次数是 .16.若|a+2|+(b ﹣3)2=0,则a 的值为 ;a b = .17.已知a、b互为相反数,c、d互为倒数,则(a+b)2018+(﹣cd)2019的值为;数轴上数x所对应点到数(a+b)2018+(﹣cd)2019所对应点距离为2,则x为.18.把多项式x2﹣1+4x3﹣2x按x的降幂排列为.19.数a,b在数轴上的对应点的位置如图所示,化简|2b+a|﹣|b﹣a|= .20.如果代数式2x+y的值是5,那么代数式7﹣6x﹣3y的值是.21.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三、计算题22.(1)﹣37+(﹣12)﹣(﹣18)﹣13(2)(﹣1)×+(﹣1)5×0(3)﹣|﹣|×|﹣0.25|﹣(﹣5)(4)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].四、作图题23.已知一组数:﹣22,(﹣2)2,﹣0.5,﹣1,|﹣2|,在数轴上画出这些数所对应的点,并在这些点的上方标出的这些数.五、解答题24.先化简,再求值. x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.25.关于x的三次多项式a(x4﹣x3+7x)+b(x3﹣x)+x4﹣5,当x取2时多项式的值为﹣8,求当x取﹣2时该多项式的值.26.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?六、解答题(本题6分)27.定义正整数m,n的运算:m△n=++++…+(1)计算3△2的值为;运算“△”满足交换规律吗?回答:(填“是”或“否”)(2)探究:计算2△10=++++…+的值.为解决上面的问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系的几何图形结合起来,最终解决问题.如图所示,第一次分割,把正方形的面积二等分,其中阴影部分的面积为;第2此分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续二等分,…;依此类推,…第10次分割,把二次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为﹣++…+,最后空白部分的面积是;根据第10次分割图可以得出计算结果:++++…+=1﹣.进一步分析可得出, ++++…+=(3)已知n是正整数,计算4△n=+﹣+﹣…+的结果.按指定方法解决问题:请仿照以上做法,只需画出第n次分割图并作标注,写出最终结果的推理步骤;或借用以上结论进行推理,写出必要的步骤.2018-2019学年人大附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共36分,每小题3分,请将答案填入下表中相应的空格内)1.﹣的倒数是()A.﹣ B.C.﹣5 D.5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣的倒数是﹣5.故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.火星和地球的距离约为34000000千米,用科学记数法表示34000000,应记作()A.0.34×108B.3.4×106C.3.4×105D.3.4×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将34000000用科学记数法表示为3.4×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.多项式3x2﹣2x﹣1的各项分别是()A.3x2,2x,1 B.3x2,﹣2x,1 C.﹣3x2,2x,﹣1 D.3x2,﹣2x,﹣1【考点】多项式.【分析】根据多项式项的定义求解.【解答】解:多项式3x2﹣2x﹣1的各项分别是:3x2,﹣2x,﹣1.故选D.【点评】本题主要考查了多项式的概念.解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.4.下列说法正确的是()A.正数和负数统称为有理数B.绝对值等于它本身的数一定是正数C.负数就是有负号的数D.互为相反数的两数之和为零【考点】有理数.【分析】根据有理数的分类可得A错误;根据绝对值的性质可得B错误;根据负数的概念可得C错误;根据有理数的加法法则可得D正确.【解答】解:A、正数和负数统称为有理数,说法错误,还有0;B、绝对值等于它本身的数一定是正数,说法错误,应为绝对值等于它本身的数一定是非负数;C、负数就是有负号的数,说法错误,例如:﹣(﹣1)=1;D、互为相反数的两数之和为零,说法正确;故选:D.【点评】此题主要考查了有理数的分类、绝对值、以及有理数的加法,关键是熟练掌握各知识点.5.下列各式﹣x2y,0,,﹣,x,﹣ +y2,﹣ ab2﹣中单项式的个数有()A.3个B.4个C.5个D.6个【考点】单项式.【分析】直接利用单项式中的定义,分析得出答案.【解答】解:﹣ x2y,0,﹣,x是单项式,共有4个.故选:B.【点评】此题主要考查了单项式,正确把握单项式的定义是解题关键.6.下列各题中,错误的是()A.x的5倍与y的和的一半,用代数式表示为5x+B.代数式5(x+y)的意义是5与(x+y)的积C.代数式x2+y2的意义是x,y的平方和D.比x的2倍多3的数,用代数式表示为2x+3【考点】列代数式;代数式.【分析】根据代数式的意义对各选项分析判断后利用排除法求解.【解答】解:A、x的5倍与y的和的一半,用代数式表示为(5x+y),故本选项错误;B、代数式5(x+y)的意义是5与(x+y)的积正确,故本选项正确;C、代数式x2+y2的意义是x、y的平方和,故本选项正确;D、比x的2倍多3的数,用代数式表示为2x+3,故本选项正确.故选:A.【点评】此题考查列代数式,根据题意,根据数量关系列出代数式即可.7.如图为小明家住房的结构(单位:m),他打算铺上木地板,请你帮他算一算,他至少应买()m2的木地板.A.13xy B.14xy C.15xy D.16xy【考点】列代数式.【分析】根据长方形的面积公式分别把卫生间,厨房,卧室以及客厅的面积相加即可得出答案.【解答】解:根据题意列得:xy+2xy+8xy+4xy=15xy(平方米).则他至少应买15xym2的木地板.故选C.【点评】此题考查了列代数式,用到的知识点是长方形的面积公式、整式的混合运算,弄清题意是解本题的关键.8.下列各组数中,不是同类项的是()A.52与25B.﹣ab与ba C.πa2b与﹣a2b D.a2b3与﹣a3b2【考点】同类项.【分析】根据同类项的概念求解.【解答】解:A、52与25是同类项,B、﹣ab与ba是同类项,C、πa2b与﹣a2b是同类项,D、a2b3与﹣a3b2所含字母相同,指数不同,不是同类项;故选D.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项概念中的两个“相同”:相同字母的指数相同.9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【考点】有理数大小比较.【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.【点评】本题考查了数轴,相反数,绝对值,有理数的大小比较的应用,解此题的关键是找出原点的位置,注意数形结合思想的运用.10.下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC .a ﹣2(﹣2b+c )=a+4b+2cD .a ﹣2(﹣2b+c )=a+4b ﹣c【考点】去括号与添括号.【专题】常规题型.【分析】A 、B 直接利用去括号法则,C 、D 注意利用乘法分配律.【解答】解:A 、根据去括号法则可知,a+(﹣2b+c )=a ﹣2b+c ,故此选项错误;B 、根据去括号法则可知,a ﹣(﹣2b+c )=a+2b ﹣c ,故此选项正确;C 、根据去括号法则可知,a ﹣2(﹣2b+c )=a+4b ﹣2c ,故此选项错误;D 、根据去括号法则可知,a ﹣2(﹣2b+c )=a+4b ﹣2c ,故此选项错误.故选B .【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.11.下列计算正确的是( )A .2a ﹣a=1B .2x 2y ﹣3xy 2=﹣xy 2C .4a 2+5a 2=9a 4D .3ax ﹣2xa=ax【考点】合并同类项.【分析】根据同类项的合并进行计算解答即可.【解答】解:A 、2a ﹣a=a ,错误;B 、不是同类项,不能合并,错误;C 、4a 2+5a 2=9a 2,错误;D 、3ax ﹣2xa=ax ,正确;故选D【点评】此题考查同类项的合并问题,关键是根据同类项的合并法则进行计算.12.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2018的值为( )A .﹣1005B .﹣1006C .﹣1007D .﹣2014【考点】规律型:数字的变化类.【分析】根据条件求出前几个数的值,再分n是奇数时,结果等于﹣;n是偶数时,结果等于﹣;然后把n的值代入进行计算即可得解.【解答】解:a1=0,a 2=﹣|a1+1|=﹣|0+1|=﹣1,a 3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a 4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a 5=﹣|a4+4|=﹣|﹣2+4|=﹣2,…,所以n是奇数时,结果等于﹣;n是偶数时,结果等于﹣;a2018=﹣=﹣1007.故选:C.【点评】此题考查数字的变化规律,根据所求出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键.二、填空题13.比较两个数的大小:﹣<﹣.(填“>”“<”或“=”)【考点】有理数大小比较.【分析】根据两个负数,绝对值大的反而小进行比较即可.【解答】解::|﹣|==,|﹣|==.∵,∴|﹣|>|﹣|.∴﹣<﹣.故答案为:<.【点评】本题主要考查的是比较有理数的大小,掌握法则是解题的关键.14.近似数3.50万精确到百位;3.649用四舍五入法精确到十分位的近似数应为 3.6 .【考点】近似数和有效数字.【分析】先将3.50万还原,然后确定0所表示的数位即可;把3.649精确到十分位就是对这个数的十分位后面的数进行四舍五入即可.【解答】解:近似数3.50万精确到百位,3.649用四舍五入法精确到十分位的近似数应为3.6;故答案为:百,3.6.【点评】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.15.单项式的系数是﹣;次数是 3 .【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是3.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.若|a+2|+(b﹣3)2=0,则a的值为﹣2 ;a b= ﹣8 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:由题意得,a+2=0,b﹣3=0,解得,a=﹣2,b=3,则a b=﹣8,故答案为:﹣2;﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.已知a、b互为相反数,c、d互为倒数,则(a+b)2018+(﹣cd)2019的值为 1 ;数轴上数x 所对应点到数(a+b)2018+(﹣cd)2019所对应点距离为2,则x为﹣1或3 .【考点】代数式求值;相反数;倒数.【专题】计算题;实数.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算确定出值,求出到其值对应数距离为2的点,即为x的值.【解答】解:根据题意得:a+b=0,cd=1,则原式=0+1=1;数轴上数x所对应的点到数1所对应点的距离为2,可得x=﹣1或3,故答案为:1;﹣1或3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.把多项式x2﹣1+4x3﹣2x按x的降幂排列为4x3+x2﹣2x﹣1 .【考点】多项式.【分析】首先分清各项次数,进而按将此排列得出答案.【解答】解:把多项式x2﹣1+4x3﹣2x按x的降幂排列为:4x3+x2﹣2x﹣1.故答案为:4x3+x2﹣2x﹣1.【点评】此题主要考查了多项式,正确把握各项次数的确定方法是解题关键.19.数a,b在数轴上的对应点的位置如图所示,化简|2b+a|﹣|b﹣a|= 2a+b .【考点】整式的加减;数轴;绝对值.【分析】首先根据数轴判断出2b+a>0,b﹣a>0,进而去掉绝对值符号,最后合并化简.【解答】解:根据数轴可知,a<0,b>0,即2b+a>0,b﹣a>0,则|2b+a|﹣|b﹣a|=2b+a﹣b+a=2a+b,故答案为2a+b.【点评】本题主要考查了整式的加减的知识,解答本题的关键是根据数轴判断出a<0,b>0,b>|a|,此题难度不大.20.如果代数式2x+y的值是5,那么代数式7﹣6x﹣3y的值是﹣8 .【考点】代数式求值.【专题】计算题;实数.【分析】原式后两项提取﹣3变形后,将2x+y的值代入计算即可求出值.【解答】解:∵2x+y=5,∴原式=7﹣3(2x+y)=7﹣15=﹣8,故答案为:﹣8【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.21.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n .【考点】多边形.【专题】压轴题;规律型.【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.【解答】解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.【点评】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.三、计算题22.(2018秋•校级期中)(1)﹣37+(﹣12)﹣(﹣18)﹣13(2)(﹣1)×+(﹣1)5×0(3)﹣|﹣|×|﹣0.25|﹣(﹣5)(4)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣37﹣12+18﹣13=﹣62+18=﹣44;(2)原式=﹣××+0=﹣;(3)原式=﹣×+×=﹣+=;(4)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、作图题23.已知一组数:﹣22,(﹣2)2,﹣0.5,﹣1,|﹣2|,在数轴上画出这些数所对应的点,并在这些点的上方标出的这些数.【考点】数轴.【分析】求出:﹣22=﹣4,(﹣2)2=4,|﹣2|=2,在数轴上把各个数表示出来.【解答】解:因为:﹣22=﹣4,(﹣2)2=4,|﹣2|=2,所以数轴上表示为:【点评】本题考查了有理数的大小比较和数轴的应用,关键是求出各个数的大小和在数轴上把各个数表示出来,注意:在数轴上右边的数总比左边的数大.五、解答题24.先化简,再求值. x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.关于x的三次多项式a(x4﹣x3+7x)+b(x3﹣x)+x4﹣5,当x取2时多项式的值为﹣8,求当x取﹣2时该多项式的值.【考点】代数式求值.【专题】计算题;实数.【分析】把x=2代入代数式,使其值为﹣8,求出22a+b的值,再由多项式为三次多项式确定出a的值,进而求出b的值,将x=﹣2及a,b的值代入计算即可求出值.【解答】解:∵多项式为三次多项式,∴a=﹣1,把x=2代入代数式得:22a+b+11=﹣8,即22a+b=﹣19,∴b=﹣41,则当x=﹣2时,原式=10a﹣b+11=﹣10+41+11=42.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.26.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款(3600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【考点】代数式求值;列代数式.【专题】应用题.【分析】(1)方案①需付费为:西装总价钱+20条以外的领带的价钱,方案②需付费为:西装和领带的总价钱×90%;(2)把x=30代入(1)中的两个式子算出结果,比较即可.【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.六、解答题(本题6分)27.定义正整数m,n的运算:m△n=++++…+(1)计算3△2的值为;运算“△”满足交换规律吗?回答:否(填“是”或“否”)(2)探究:计算2△10=++++…+的值.为解决上面的问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系的几何图形结合起来,最终解决问题.如图所示,第一次分割,把正方形的面积二等分,其中阴影部分的面积为;第2此分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续二等分,…;依此类推,…第10次分割,把二次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为﹣++…+,最后空白部分的面积是;根据第10次分割图可以得出计算结果:++++…+=1﹣.进一步分析可得出, ++++…+= 1﹣(3)已知n是正整数,计算4△n=+﹣+﹣…+的结果.按指定方法解决问题:请仿照以上做法,只需画出第n次分割图并作标注,写出最终结果的推理步骤;或借用以上结论进行推理,写出必要的步骤.【考点】规律型:图形的变化类.【分析】(1)根据新定义运算法则进行计算即可;(2)根据计算2△10=++++…+的值的计算过程得到规律解题;(3)根据探究的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可.【解答】解:(1)3△2=+=.而2△3=++=,则3△2≠2△3,所以运算“△”不满足交换规律.故答案是:;否;(2)如图所示,第一次分割,把正方形的面积二等分,其中阴影部分的面积为;第2此分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续二等分,…;依此类推,…第10次分割,把二次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为﹣++…+,最后空白部分的面积是;根据第10次分割图可以得出计算结果: ++++…+=1﹣.进一步分析可得出, ++++…+=1﹣.故答案是:1﹣.(3)第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为: +++…+,最后的空白部分的面积是,根据第n次分割图可得等式: +++…+=1﹣,两边同除以3,得+++…+=﹣.【点评】本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.。
2018-2019学年北京师大附中七年级上学期期中考试数学试卷及答案解析
2018-2019学年北京师大附中七年级上学期期中考试数学试卷一、单项选择题:(本题共30分,每小题3分)1.的倒数是()A.1B.C.﹣1D.﹣2.2.3万这个数用科学记数法可表示为()A.2.3×105B.23×104C.23000D.2.3×1043.化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n4.若|a|>a,则a是()A.正数B.负数C.非正数D.非负数5.下列各组数中,相等的是()A.﹣1与(﹣4)+(﹣3)B.与C.|﹣3|与﹣(﹣3)D.(﹣4)2与﹣166.下列说法正确的有()个①a是单项式,它的系数为0;②+3xy﹣3y2+5是多项式;③多项式x2﹣2xy+y2是单项式x2、2xy、y2的和;④如果一个多项式的次数是3,那么这个多项式的任何一项的次数都不大于3.A.1B.2C.3D.47.若方程2x﹣kx+1=5x﹣2的解为﹣1,则k的值为()A.10B.﹣4C.﹣6D.﹣88.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.ab>0B.a﹣b>0C.a+b>0D.|a|﹣|b|>09.设a<0,且x≤,则化简|x+1|﹣|x﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x10.设[a]是有理数,用[a]表示不超过a的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是()A.[a]+[﹣a]=0B.[a]+[﹣a]等于0或﹣1C.[a]+[﹣a]≠0D.[a]+[﹣a]等于0或1二、填空题:(本题共20分,每小题2分)11.(2分)平方是25的数是.12.(2分)﹣2×(﹣2)2=;=.13.(2分)单项式的系数是,次数是.14.(2分)若(m﹣3)是关于x,y的六次三项式,则m=.15.(2分)若代数式3a5b m﹣1与﹣2a|n|b2是同类项,那么m+n=.16.(2分)已知关于x的方程(m+2)x2﹣(m﹣3)x+4=0为一元一次方程,则该方程的解为.17.(2分)已知x﹣2y=3,则代数式(x﹣2y)3﹣x+2y﹣9的值为.18.(2分)一件商品提价25%后发现销路不是很好,若恢复原价,则应降价%.19.(2分)“※”定义新运算:对于有理数a、b都有:a※b=ab﹣(a+b),那么5※3=;当m为有理数时,3※(m※2)=.20.(2分)如图1、2、3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,……根据图中花盆摆放的规律,图4中,应该有盆花;第n个图形中应该有盆花.三、计算:(每小题4分,共12分)21.(4分)(+16)+(﹣29)﹣(+11)+(+9)22.(4分)×(﹣36)。
北京市人大附中2018-2019学年七年级第一学期期中数学试题(原卷版)
(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;
(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);
(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,
请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.
【结论猜想】
结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为,(用含字母n的代数式表示,直接写出结果)
应用
(1)如果表示﹣1的点A和表示x点B之间的距离是2,那么x为;
(2)方程|x+3|=4的解为;
(3)小松同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x对应点到1和﹣2对应点的距离之和,而当﹣2≤x≤1时,取到它的最小值3,即为1和﹣2对应的点的距离.
A.由6+x=7得x=7+6B.由3x+2=5x得3x﹣5x=2
C.由2x=3得x= D.由2﹣3x=3得x=
5.用四舍五入法对0.4249取近似数精确到百分位的结果是()
A.0.42B.0.43C.0.425D.0.420
6.以下代数式中不是单项式的是()
A ﹣12abB. C. D. 0
7.下列计算正确的是( )
24.对于有理数a,b定义运算“*”如下:a*b=b,则关于该运算,下列说法正确的有_____(请填写正确说法的序号)
①5*7=9*7
②如果a*b=b*a,那么a=b
③该运算满足交换律
④该运算满足结合律,
北京市人大附中2018-2019学年度第一学期七年级上册期中数学测试卷(解析版)
北京市人大附中2018-2019学年度第一学期七年级上册期中数学测试卷一、选择题(共12小题,每小题3分,满分36分)1.的相反数是()A. ﹣B. 3C. ﹣3D.【答案】A【解析】试题解析:的相反数是故选A.2.港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A. 1269×108B. 1.269×1010C. 1.269×1011D. 1.269×1012【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1269亿用科学记数法表示为1.269×1011.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.以下说法正确的是()A. 一个数前面带有“﹣”号,则是这个数是负数B. 整数和小数统称为有理数C. 数轴上的点都表示有理数D. 数轴上表示数a的点在原点的左边,那么a是一个负数【答案】D【解析】【分析】利用有理数的定义、数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴,再结合数轴的性质分析得出答案.【详解】A、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B、整数和分数统称为有理数,故选项错误;C、数轴上的点都表示实数,故选项错误;D、数轴上表示数a的点在原点的左边,那么a是一个负数,故选项正确.故选:D.【点睛】此题主要考查了有理数、数轴,正确把握数轴的定义是解题关键.4.下列等式变形,正确的是()A. 由6+x=7得x=7+6B. 由3x+2=5x得3x﹣5x=2C. 由2x=3得x=D. 由2﹣3x=3得x=【答案】C【解析】【分析】根据等式的性质进行判断即可.【详解】A、由6+x=7得x=7﹣6,错误;B、由3x+2=5x得3x﹣5x=﹣2,错误;C、由2x=3得x=,正确;D、由2﹣3x=3得x=﹣,错误;故选:C.【点睛】本题考查了等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.用四舍五入法对0.4249取近似数精确到百分位的结果是()A. 0.42B. 0.43C. 0.425D. 0.420【答案】A【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】0.4249≈30.42(精确到百分位).故选:A.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.以下代数式中不是单项式的是()A. ﹣12abB.C.D. 0【答案】C【解析】【分析】直接利用单项定义分析得出答案.【详解】A、﹣12ab,是单项式,不合题意;B、,是单项式,不合题意;C、,是多项式,不是单项式,符合题意;D、0,是单项式,不合题意;故选:C.【点睛】此题主要考查了单项式,正确把握单项式的定义是解题关键.7.下列计算正确的是( )A. a+a=a2B. 6a3﹣5a2=aC. 3a2+2a3=5a5D. 3a2b﹣4ba2=﹣a2b【答案】D【解析】【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】A、a+a=2a,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选D.【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变.8.下列等式,是一元一次方程的是()A. 2x+3y=0B. +3=0C. x2﹣3x+2=x2D. 1+2=3【答案】C【解析】【分析】根据一元一次方程的定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)对以下选项进行一一分析、判断.【详解】A、本方程中含有两个未知数,不是一元一次方程,故本选项错误;B、该方程不是整式方程,故本选项错误;C、由原方程知﹣3x+2=0,符合一元一次方程的定义;故本选项正确;D、1+2=3中不含有未知数,不是方程,故本选项错误.故选:C.【点睛】本题考查了一元一次方程的概念.一元一次方程的未知数的指数为1.9.以下说法正确的是()A. 不是正数的数一定是负数B. 符号相反的数互为相反数C. 一个数的绝对值越大,表示它的点在数轴上越靠右D. 当a≠0,|a|总是大于0【答案】D【解析】【分析】A、根据有理数的定义即可作出判断;B、根据相反数的定义即可作出判断;C、根据绝对值的意义即可作出判断;D、根据绝对值的性质即可作出判断.【详解】A、0不是正数,也不是负数,故选项错误;B、符号相反的两个数互为相反数,例如,3与﹣5不是相反数,故选项错误;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,故选项错误;D、a≠0,不论a为正数还是负数,|a|都大于0,故选项正确.故选:D.【点睛】本题考查了相反数、绝对值、数轴,解决本题的关键是熟记相反数、绝对值的性质.10.下列去括号正确的是()A. 4(x﹣1)=4x﹣1B. ﹣5(1﹣x)=﹣5﹣xC. a﹣(﹣2b+c)=a+2b+cD. a+2(﹣2b+c)=a﹣4b+2c【答案】D【解析】【分析】根据去括号的方法解答.【详解】A、原式=4x﹣4,故本选项错误;B、原式=﹣5+x,故本选项错误;C、原式=a+2b﹣c,故本选项错误;D、原式=a﹣4b+2c,故本选项正确.故选:D.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.11.当x=2时,代数式px3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px3+qx+1值是()A. 2017B. 2018C. 2019D. 2020【答案】D【解析】【分析】先将x=2代入代数式,然后求出p与q的关系式,再将x=-2代入原式求值即可.【详解】当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.【点睛】本题考查代数式求值,整体思想的运用是解答此题的关键.12.有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A. b+c>0B. a+c<0C. >1D. abc≥0【答案】A【解析】【分析】根据两个数的正负以及加减乘除法法则,对每个选择作出判断,得正确结论.【详解】由于|a|<|b|,由数轴知:a<0<b或0<a<b,a<c<b,所以b+c>0,故A成立;a+c可能大于0,故B不成立;可能小于0,故C不成立;abc可能小于0,故D不成立.故选:A.【点睛】此题考查了数轴上点的表示的数的正负及实数的加减乘除法的符号法则.解决本题的关键是牢记实数的加减乘除法则.二、填空题(共12小题,每小题2分,满分24分)13.下列数(﹣)2,+6,﹣2,0.9,﹣π,,﹣4.95中,是负分数的有_____.【答案】-4.95【解析】【分析】直接利用有理数的乘方运算法则以及分数的定义分析得出答案.【详解】(﹣)2=,+6,﹣2,0.9,﹣π,﹣(﹣)=,0,,,﹣4.95,则是负分数的有:﹣4.95,故答案为:﹣4.95.【点睛】此题主要考查了有理数的乘方运算以及分数的定义,正确掌握分数的定义是解题关键.14.比大小:﹣_______(填写“>”或“<”)【答案】>【解析】【分析】化为同分母的分数后比较大小.【详解】﹣=﹣,﹣=﹣,∵|﹣|<|﹣|,∴﹣>﹣,∴﹣>﹣.故答案是:>.【点睛】此题考查了有理数大小比较.比较有理数的大小可以利用数轴,它们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.15.单项式的系数是_____.【答案】【解析】【分析】根据单项式的系数为代数式的数字部分即可解题.【详解】解:由单项式定义可知的系数是.【点睛】本题考查了单项式的定义,属于简单题,熟悉概念是解题关键.16.多项式ab﹣2ab2﹣3a2+5b﹣1的次数是_____.【答案】三【解析】【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】多项式ab﹣2ab2﹣3a2+5b﹣1的次数是:三.故答案为:三.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.17.若关于x的方程m﹣3x=x﹣4的解是x=2,则m的值为_____.【答案】4【解析】【分析】把x=2代入方程计算即可求出m的值.【详解】把x=2代入方程得:m﹣6=﹣2,解得:m=4,故答案为:4【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.如果|x|=2,则x的倒数是_____.【答案】±【解析】【分析】根据绝对值的意义,可得x的值,根据倒数,可得答案.【详解】∵|x|=2,∴x=±2,∴x的倒数是±,故答案为:±.【点睛】本题考查了倒数,先求出x值,再求出倒数.19.把多项式x2﹣2﹣3x3+5x的升幂排列写成_____.【答案】﹣2+5x+x2﹣3x3【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】多项式x2﹣2﹣3x3+5x的各项是x2,﹣2,﹣3x3,5x,按x升幂排列为﹣2+5x+x2﹣3x3.故答案为:﹣2+5x+x2﹣3x3.【点睛】本题主要考查了多项式的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.20.|a+3|+(b﹣2)2=0,求a b=_____.【答案】9【解析】【分析】根据非负数的性质列出方程,求出a、b的值,代入a b进行计算即可.【详解】∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得a=﹣3,b=2.∴a b=9.故答案为:9【点睛】本题考查了初中范围内的两个非负数,转化为解方程的问题,这是考试中经常出现的题目类型.21.一个两位数个位上的数是1,十位上的数是x,把1与x对调,新的两位数比原两位数小18,则依此题意所列的方程为_____.【答案】10x+1=10+x+18【解析】【分析】首先表示出这个两位数,然后表示出新的两位数,再根据新两位数比原两位数小18列出方程即可.【详解】由题意,可得原数为10x+1,新数为10+x,根据题意,得10x+1=10+x+18,故答案为:10x+1=10+x+18.【点睛】此题考查了由实际问题抽象出一元一次方程,对于这类问题,一般采取设未知数的方法,通过解方程,解决问题.22.已知a,b在数轴上的对应点如图所示,则化简|a+b|﹣|2a﹣b|的结果是_____.【答案】a﹣2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】根据题意得:a<0<b,且|a|>|b|,∴a+b<0,2a﹣b<0,则原式=﹣a﹣b+2a﹣b=a﹣2b.故答案为:a﹣2b.【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.23.《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两,则用含x的式子表示一只燕的重量为_____两.【答案】x【解析】【分析】设一只燕的重量为y两,根据“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两”,列出关于x和y的方程,解之,求得含有x得y,代入求出五只雀的重量和六只燕的重量,如果五只雀比六只燕重,则为所求答案.【详解】设一只燕的重量为y两,根据题意得:4x+y=x+5y,4y=3x,y=x,则五只雀的重量为:5x,六只燕的重量为:x×6=x,5x>x,(符合题意),故答案为:x.【点睛】本题考查了列代数式,正确找出等量关系列出方程是解题的关键.24.对于有理数a,b定义运算“*”如下:a*b=b,则关于该运算,下列说法正确的有_____(请填写正确说法的序号)①5*7=9*7②如果a*b=b*a,那么a=b③该运算满足交换律④该运算满足结合律,【答案】①②④【解析】【分析】根据对于有理数a,b定义运算“*”如下:a*b=b,可以判断各个小题中的结论是否成立.【详解】∵对于有理数a,b定义运算“*”如下:a*b=b,∴5*7=7,9*7=7,∴5*7=9*7,故①正确,∵a*b=b,b*a=a,a*b=b*a,∴a=b,故②正确,当a≠b时,则a*b≠b*a,故③错误,∵(a*b)*c=b*c=c,a*(b*c)=a*c=c,∴(a*b)*c=a*(b*c),故④正确,故答案为:①②④.【点睛】本题考查有理数的混合运算,解答本题的关键是明确题意,可以判断各个小题中的结论是否正确.三、解答题(共1小题,满分20分,每小题20分)25.(1)计算:12﹣(﹣18)+(﹣7)﹣15(2)计算:(3)计算:(4 )解方程:x﹣3=x+1【答案】(1)8;(2)-8;(3)4;(4)x=﹣【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣25×﹣﹣6=﹣﹣﹣6=﹣2﹣6=﹣8;(3)原式=﹣16+18+2=4;(4)去分母得:2x﹣6=5x+2,移项合并得:﹣3x=8,解得:x=﹣.【点睛】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题:(本题共12分,每题4分)26.先化简下式,在求值:2(﹣x2+3+4x)﹣(5x+4﹣3x2),其中x=.【答案】【解析】【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【详解】原式=﹣2x2+6+8x﹣5x﹣4+3x2=x2+3x+2,当x=时,原式=++2=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.求单项式﹣x2m﹣n y3与单项式x5y m+n可以合并,求多项式4m﹣2n+5(﹣m﹣n)2﹣2(n﹣2m)2的值.【答案】47【解析】【分析】根据同类项的概念即可求出m与n的值,然后将原式化简即可求出答案.【详解】依题意知,,解得,m=,n=,4m﹣2n+5(﹣m﹣n)2﹣2(n﹣2m)2=4m﹣2n+5m2+10mn+5n2﹣2n2+8mn﹣8m2=﹣3m2+18mn+3n2﹣2n+4m,当m=,n=时,原式=﹣3×()2+18××+3×()2﹣2×+4×=47.【点睛】本题考查的是合并同类项,代数式求值,掌握合并同类项的概念、完全平方公式是解题的关键.28.将连续的奇数1,3,5,7,排成如下表:如图所示,图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)设T字框内处于中间且靠上方的数是整个数表当中从小到大排列的第n个数,请你用含n的代数式表示T字框中的四个数的和;(2)若将T字框上下左右移动,框住的四个数的和能等于2018吗?如能,写出这四个数,如不能,说明理由.【答案】(1)8n+6;(2)框住的四个数的和不能等于2018,理由见解析【解析】【分析】(1)根据题意,可用含n的代数式表示T字框中的四个数,相加求和即可;(2)令由(1)中得到的结论等于2018,解一元一次方程,若存在正整数解,则说明有符合题意的四个数,若不是正整数解,则不存在这样四个数.【详解】(1)由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.(2)由题意,令框住的四个数的和为2018,则有:8n+6=2018,解得n=251.5由于n必须为正整数,因此n=251.5不符合题意.故框住的四个数的和不能等于2018.【点睛】本题考查用字母表示数、代数式的运算及一元一次方程,难度不大,关键在于根据题目中数字对的规律,用含n的代数式表示各数,对于第二问要注意n只能是正整数.五、解答题[本题共8分,每题4分29.阅读下面材料并回答问题,观察:有理数﹣2和﹣4在数轴上对应的两点之间的距离是2=|﹣2﹣(﹣4)|有理数1和﹣3在数轴上对应的两点之间的距离是4=|1﹣(﹣3)|归纳:有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义应用(1)如果表示﹣1的点A和表示x点B之间的距离是2,那么x为;(2)方程|x+3|=4的解为;(3)小松同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x 对应点到1和﹣2对应点的距离之和,而当﹣2≤x≤1时,取到它的最小值3,即为1和﹣2对应的点的距离.由方程右式的值为5可知,满足方程的x对应点在1的右边或﹣2的左边,若x的对应点在1的右边,利用数轴分析可以看出x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3;故原方程的解是x=2或x=﹣3参考小松的解答过程,回答下列问题:(Ⅰ)方程2|x﹣3|+|x+4|=20的解为;(Ⅱ)设x是有理数,令y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|下列四个结论中正确的是(请填写正确说法的序号)①有多于1个的有限多个x使y取到最小值②只有一个x使y取得最小值③有无穷多个x使y取得最小值④y没有最小值【答案】(1)﹣3或1;(2)1或﹣7;(3)1或﹣7;(4)(Ⅰ)﹣6或;(Ⅱ)②【解析】【分析】(1)根据绝对值的几何意义即可以解题;(2)根据绝对值的几何意义即可以解题.【详解】(1)依题意得,|x﹣(﹣1)|=2,x﹣(﹣1)=±2,∴x=﹣3或x=1,故答案为:﹣3或1(2)依题意,|x+3|=4得x+3=±4,解得x=1或x=﹣7,故答案为:1或﹣7;(3)(Ⅰ)当x<﹣4时,则2(3﹣x)+[﹣(x+4)]=20,解得x=﹣6,当﹣4≤x<3时,则2(3﹣x)+(x+4)=20,解得x=﹣10(不合题意,舍去)当x≥3时,则2(x﹣3)+(x+4)=20,解得x=,∴该方程的解为x=﹣6或x=,故答案为:﹣6或(Ⅱ)根据题意,当x=0时,y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|取得最小值.故只有②正确.故答案为:②【点睛】此题考查绝对值的几何意义.有理数a、b在数轴上对应的两点A、B之间的距离是|a-b|;反之,|a-b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义.30.数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;【问题背景】对于一个正整数n,我们进行如下操作:(1)将n拆分为两个正整数m1,m2的和,并计算乘积m1×m2;(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.【尝试探究】:(1)正整数1和2的“神秘值”分别是(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在图3中绐出计算正整数7的“神秘值”的过程.【结论猜想】结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为,(用含字母n的代数式表示,直接写出结果)【答案】(1)1,1;(2)n的神秘数是(n>1)【解析】【分析】(1)根据神秘数的定义,将正整数分解,求和即可;(2)将6和7分解,直到不能分解位置,再将所有的乘积求和即可;结论猜想:找出多个数的神秘数,再找出规律即可.【详解】(1)根据“神秘数”的定义,1不能在分,∴1的神秘数是1,∵2可以分为1和1,∴2的神秘数是1,故答案为:1,1;(2)如图所示:结论猜想:∵3的神秘数是3,4的神秘数是6,5的神秘数是10,6的神秘数是15,7的神秘数是21,…,∴n的神秘数是(n>1).【点睛】本题主要考查数字的变化规律的阅读型题目,解决此题时,要认真阅读分析材料,再根据相关的定义解答即可.。
【强烈推荐】2018-2019学年度北京人大附中初一年级第一学期期中数学试卷及答案
人大附中2018-2019学年度第一学期期中初一年级数学练习 2016.11一 选择题:每小题3分,共10小题,共30分。
1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作( )A.-0.02克B.+0.02克C.0克D.+0.04克2.-5的相反数是( ) A.51 B.51 C.5 D.-5 3.有理数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是( )A.aB.bC.cD.d4.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开。
截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为( )A.96.5×107B.9.65×107C.9.65×108D.0.965×1095.若x=53是关于x 的方程5x-m=0的解,则m 的值为( ) A.3 B.31 C.-3 D.-31 6.下列各式中运算正确的是( )A.6a-5a=1B.a 2+a 2=a 4C.3ab-4ba=-abD.a+2a 2=3a 37.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,设台北故宫博物院有x 万件藏品,则北京故宫博物院有藏品( )A.(2x-50)万件B.(2x+50)万件C.(x+50)万件D.(x-50)万件8.下列式子的变形中,正确的是( )A.由6+x=7得x=7+6B.由3x+2=5x 得3x-5x=2C.由2x=3得x=32 D.由2x+4=2得x+2=19.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的周长为( )A.(2a+8)cmB.(3a+8)cmC.(4a+15)cmD.(4a+16)cm10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母abc ,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格)。
2018--2019学年度第一学期京改版七年级期中考试数学试卷
绝密★启用前2018--2019学年度第一学期京改版七年级期中考试数学试卷考试时间:100分钟;满分120分题号一二三总分得分温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,祝你成功!评卷人得分一、单选题(计30分)题号12345678910答案1.(本题3分)-12的相反数是()A .21B .-21C .2D .-22.(本题3分)若0)2(12=-++y x ,则=+22y x ().A.、3B、5C、-1D、-53.(本题3分)厦门市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月进行了公共日租车量的统计,估计4月份共租车2500000次,2500000用科学记数法表示为()A .25×105B .2.5×106C .0.25×107D .2.5×1074.(本题3分)4.(本题3分)(2014•博白县模拟)下列说法正确的是()A .近似数0.010只有一个有效数字B .近似数4.3万精确到千位C .近似数2.8与2.80表示的意义相同D .近似数43.0精确到个位5.(本题3分)若|x |=7,|y |=9,则x ﹣y 为()A .±2B .±16C .﹣2和﹣16D .±2和±166.(本题3分)(2015秋•南郑县校级月考)下列式子中结果为负数的是()A .|﹣2|B .﹣(﹣2)C .﹣|﹣2|D .(﹣2)27.(本题3分)下列各组两个数,相等的是()A .23与32B .(-2)2与-22C .-(-2)与2-D .223⎛⎫ ⎪⎝⎭与2238.(本题3分)计算:()()10010122-+-的是()A.1002 B.-1 C.-2D.-10029.(本题3分)夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A .+4B .﹣9C .﹣4D .+910.(本题3分)观察下列算式:21=222=423=824=1625=3226=6427=12828=256……通过观察,用你所发现的规律得出227的末位数是()A 、2B 、4C 、8D 、6评卷人得分11.(本题4分)有理数a在数轴上对应的点如图所示,则a,-a ,1的大小关系.12.(本题4分)-212的倒数是__________.13.(本题4分)若,,且,那么的值是_____________.14.(本题4分)数轴上与表示1-的点距离213的点表示的有理数是____________.15.(本题4分)已知从1,2,…,9中可以取出m 个数,使得这m 个数中任意两个数之和不相等,则m 的最大值为______.16.(本题4分)有一数值转换器,原理如图,若开始输入的x 的值是5,可发现第一次输出的结果是8,第二次输出的结果是4……请你探索第99次输出的结果是________.17.(本题4分)计算:10-9+8-7+6-···+2-1=_______.18.(本题4分)如图,在2012年3月的月历上,任意圈出一个由3个数组成的竖列,如果它们的和为36,二、填空题(计32分)那么其中最小的数是2010年3月_________号.评卷人得分三、解答题(计58分)19.(本题12分)计算:(1)﹣5﹣(﹣9)+13;(2)|﹣15|﹣(﹣2)﹣(﹣5);(3)()()8129---(4)()()94811649-÷⨯÷-20.(本题7分)有一句谚语说:“捡了芝麻,丢了西瓜。