液压马达和液压泵有哪些相同点和不同点?
液压泵与液压马达的区别
四、泵和马达的不同点
1、泵是能源装置,马达是执行元件,泵输入机械能(转矩M和转速n)输出液压能(压力p和流量q );马达输入的是液压能(p、 q ),输出机械能(M、n)。
2、泵的吸油腔一般为真空(为改善吸油性和抗气蚀耐力),通常进口尺寸大于出口;马达排油腔的压力稍高于大气压力,没有特殊要求,所以马达的进出油口尺寸相同。
3、泵的结构需保证自吸能力,而马达无此要求。
4、马达需要正反转(内部结构需对称),泵一般是单向旋转。
5、马达的轴承结构,润滑形式需保证在很宽的速度范围内使用,而泵的转速虽相对比较高,但变化小,故无此苛刻要求。
6、泵的起动靠外机械动力;马达起动需克服较大的静摩擦力,因此要求起动扭矩大,扭矩脉动小,内部摩擦小(如齿轮马达的齿数比齿轮泵多)
7、泵需容积效率高;马达需机械效率高,一般地,液压马达的容积效率比泵低,液压泵的机械效率比液压马达低。
8、通常泵的转速高。
而马达输出较低的转速。
9、叶片泵的叶片倾斜安装,叶片马达的叶片则径向安装(考虑正反转)。
10、叶片马达的叶片依靠根部的扭转弹簧,使其压紧在定子表面上,而叶片泵的叶片则依靠根部的压力油和离心力压紧在定子表面上(起动动力不同)。
11、一般齿轮泵的齿数少,齿轮马达的齿数多。
12、液压泵是连续运转的,油温变化相对较小,马达经常空转或停转,受频繁的温度冲击。
13、泵与原动机装在一起,主轴不受额外的径向负载。
而马达主轴常受径向负载(轮子或皮带、链轮、齿轮直接装在马达上时)。
液压马达与液压泵的区别
液压马达与液压泵的区别
液压马达和液压泵的相同点
①从原理上讲,液压马达和液压泵是可逆的,如果用电动机带动时,输出的是压力能(压力和流量)这就是液压泵;若输入压力油,输出的是机械能(转矩和转速),则变成了液压马达。
②从结构上看,二者是相似的。
③液压马达和液压泵的工作原理均是利用密封工作容积的变化进行吸油和排油的。
对于液压泵,工作容积增大时吸油,工作容积减小时排出高压油。
对于液压马达,工作容积增大时进入高压油,工作容积减小时排出低压油。
液压马达和液压泵的不同点
①液压泵是将电动机的机械能转换为液压能的转换装置,输出流量和压力,希望容积效率高;液压马达是将液体的压力能转为机械能的转换装置,输出转矩和转速,希望机械效率高。
因此说,液压泵是能源装置,而液压马达是执行元件。
②液压马达输出轴的转向必须能正转和反转,而像齿轮泵和叶片泵等液压泵的转向有明确的规定,只能单向转动,不能随意。
液压马达是将液压能转换为连续回转运动机械能的执行元件。
液压马达与液压泵具有同样的基本结构要素——密闭而又可以周期变化的容积和相应的配油机构。
从工作原理而言,液压马达与液压泵都是依靠密封工作腔容积的变化而工作的,但因两者使用目的不同,结构上存在许多差异,一般不能直接互逆通用,只有少数泵能作液压马达使用。
液压泵与液压马达的区别和联系
液压马达与液压泵得区别详解液压马达习惯上就是指输出旋转运动得,将液压泵提供得液压能转变为机械能得能量转换装置、三维网技术论坛- {, ^8 V/ f- H* c一、液压马达得特点及分类C& y/ D1 w& E$ e- v|& U) l, p( s8 |; O从能量转换得观点来瞧,液压泵与液压马达就是可逆工作得液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达得主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样得基本结构要素--密闭而又可以周期变化得容积与相应得配油机构。
三维网技术论坛+ X3 D r6 g9 U% a" U- \但就是,由于液压马达与液压泵得工作条件不同,对它们得性能要求也不一样,所以同类型得液压马达与液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达得转速范围需要足够大,特别对它得最低稳定转速有一定得要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定得初始密封性,才能提供必要得起动转矩。
由于存在着这些差别,使得液压马达与液压泵在结构上比较相似,但不能可逆工作。
5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式与其它型式。
按液压马达得额定转速分为高速与低速两大类。
额定转速高于500r/min得属于高速液压马达,额定转速低于500r/min得属于低速液压马达。
高速液压马达得基本型式有齿轮式、螺杆式、叶片式与轴向柱塞式等。
它们得主要特点就是转速较高、转动惯量小,便于启动与制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。
低速液压马达得基本型式就是径向柱塞式,此外在轴向柱塞式、叶片式与齿轮式中也有低速得结构型式,低速液压马达得主要特点就是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。
华中科技大学网络教育液压与气压传动作业答案
1.什么是液压传动?工作介质液体--液压传动,2.液压传动系统由哪几部分组成?组成部分:动力源(泵)、执行元件(缸、马达)、控制元件(阀)、辅助元件、工作介质3.在液压传动中有哪两个基本参数?压力传动中两个最重要的概念:负载决定压力和流量决定速度1、液压系统的压力和执行元件的运动速度分别取决于什么?系统的压力决定于(负载),而执行元件的运动速度决定于(流量)2、按照我过标准:牌号为N32的液压油,32是什么?数字表示该液压油在40摄氏度时的运动粘度,32就表示40摄氏度时该液压油运动粘度为323、液体在管道内流动时,存在哪两种流动状态?层流和湍流1. 液压泵主要有哪几种?按其结构形式分为齿轮泵、叶片泵、柱塞泵和螺杆泵;按泵的流量能否调节,分为定量泵和变量泵;按泵的输油方向能否改变,分为单向泵和双向泵。
2. 液压系统的工作温度升高后,对液压泵的工作性能有什么影响?1.液压油的标号是在40℃下定义的温度越高,其运动粘度越高粘度越高,泵的内泄越大3. 如何消除齿轮泵的困油现象?解决办法通常是在浮动侧板上开卸荷槽,卸荷槽开法是在高压啮合区开槽,使得啮入时形成的高压油流入压油区,也就是压油口,而低压区开槽使得啮出时形成的真空区与吸油口相通,这样就解决困油现象4. 常见的变量泵有哪些?叶片泵、径向柱塞泵或轴向柱塞泵1、斜盘式轴向柱塞泵的三对运动摩擦副是什么?柱塞与缸体,滑靴与斜盘,缸体与配流盘2、轴向柱塞泵如何实现变量?这样的容积泵,只能靠调转速来控制流量,但柱塞泵还可以通过控制柱塞的行程来控制流量,比如变普通的计量泵。
3、液压泵的排量V=50,转速n=1500容积效率0.98,求泵的输出流量?实际输出流量Q0=(50*1500*0.98)/60=1225 cm3/s1.液压装置的执行机构通常有哪些?液压马达的起动性能用什么来描述?答案:液压执行装置是液压系统五个基本组成系统之一液压执行装置(液压执行元件)是指将液压能能转换成机械能,从而实现执行机构的往复直线运动或摆动,输出力或力矩的装置。
液压与气动技术简答
液压与气动技术简答 Prepared on 22 November 20201.液压传动中常用的液压泵分为哪些类型2.如果与液压泵吸油口相通的油箱是完全封闭的,不与大气相通,液压泵能否正常工作3.什么叫液压泵的工作压力,最高压力和额定压力三者有何关系4.什么叫液压泵的排量,流量,理论流量,实际流量和额定流量他们之间有什么关系5.什么是困油现象外啮合齿轮泵、双作用叶片泵和轴向柱塞泵存在困油现象吗它们是如何消除困油现象的影响的6.柱塞缸有何特点7.液压缸为什么要密封哪些部位需要密封8.液压缸为什么要设缓冲装置9.液压马达和液压泵有哪些相同点和不同点10.液压控制阀有哪些共同点11.什么是换向阀的“位”与“通”各油口在阀体什么位置112.溢流阀在液压系统中有何功用13.试比较先导型溢流阀和先导型减压阀的异同点。
14.影响节流阀的流量稳定性的因素有哪些115.为什么调速阀能够使执行元件的运动速度稳定16.什么是液压基本回路常见的液压基本回路有几类各起什么作用17.多缸液压系统中,如果要求以相同的位移或相同的速度运动时,应采用什么回路这种回路通常有几种控制方法哪种方法同步精度最高18.液压系统中为什么要设置快速运动回路实现执行元件快速运动的方法有哪些19.什么叫液压泵的流量脉动对工作部件有何影响哪种液压泵流量脉动最小20.若先导型溢流阀主阀芯或导阀的阀座上的阻尼孔被堵死,将会出现什么故障21.齿轮泵的径向力不平衡是怎样产生的会带来什么后果消除径向力不平衡的措施有哪些22.调速阀和旁通型调速阀(溢流节流阀)有何异同点23.液压系统中为什么要设置背压回路背压回路与平衡回路有何区别24.多缸液压系统中,如果要求以相同的位移或相同的速度运动时,应采用什么回路这种回路通常有几种控制方法哪种方法同步精度最高25.液压系统中为什么要设置快速运动回路实现执行元件快速运动的方法有哪些26.选择三位换向阀的中位机能时应考虑哪些问题27.限压式变量叶片泵适用于什么场合有何优缺点28.图示为三种不同形式的平衡回路,试从消耗功率、运动平稳性和锁紧作用比较三者在性能上的区别。
第三章 液压泵与液压马达
(三)液压泵排量和流量
1.排量Vp (m3/r) 是指在不考虑泄漏的情况下,液压泵主轴每转一 周所排出的液体体积。 2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的 液体体积。 qt =Vn 3.实际流量qp 指液压泵工作时的输出流量。 qp= qt - △ q 4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(动画) 2、工作原理:
旋转一周,完成二次吸油,二次排油——双作用泵
径向力平衡——平衡式叶片泵(两个吸油区,两个排油区)
3、 流量计算
忽略叶片厚度:
V=2π(R2-r2)B q=Vnηv = 2π(R2-r2)Bn ηv
如考虑叶片厚度: V=2π(R2-r2)B -2BbZ(R-r)/cosθ q=Vnηv = 2π(R2-r2)Bn ηv -2BbZ(R-r)/cosθ nηv
2、液压泵进口压力 p 0 0MPa , 出口压力 pp 32MPa , 实际输出流量q 250 L min,泵输入转矩 T pi 1350N m , 输入转速 n 1000r min ,容积效率 0.96 。试求: (1)泵的输入功率 P i ,(2)泵的输出功率 P o ,(3) 泵的总效率 ,(4) 泵的机械效率 m
第三章 液压泵与液压马达
液压泵--动力元件: 将驱动电机的机械能转换成液体的压力能, 供液压系统使用,它是液压系统的能源。
3-1概
液压系统第二阶段作业
第二阶段作业一、填空题1.外啮合齿轮泵的排量与(模数)的平方成正比,与(齿数)的一次方成正比。
因此,在齿轮节圆直径一定时,增大(模数),减少(齿数)可以增大泵的排量。
2.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。
3.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。
4.齿轮泵产生泄漏的间隙为(断面)间隙和(径向)间隙,此外还存在(啮合)间隙,其中(断面)泄漏占总泄漏量的80%~85%。
5.双作用叶片泵的定子曲线由两段(长半径圆弧)、两段(短半径圆弧)及四段(过度曲线)组成,吸、压油窗口位于(过度曲线)段。
6.调节限压式变量叶片泵的压力调节螺钉,可以改变泵的压力流量特性曲线上(拐点压力)的大小,调节最大流量调节螺钉,可以改变(泵的最大流量)。
7.溢流阀的进口压力随流量变化而波动的性能称为(压力流量特性),性能的好坏用(调压偏差)或(开启压力比)、(闭合压力比)评价。
显然(p s—p k)、(p s—p B)小好,n k和n b大好。
8.溢流阀为(进口)压力控制,阀口常(闭),先导阀弹簧腔的泄漏油与阀的出口相通。
定值减压阀为(出口)压力控制,阀口常(开),先导阀弹簧腔的泄漏油必须(单独引回油箱)。
9.调速阀是由(定差减压阀)和节流阀(串联)而成,旁通型调速阀是由(差压式溢流阀)和节流阀(并联)而成。
二、选择题1.一水平放置的双伸出杆液压缸,采用三位四通电磁换向阀,要求阀处于中位时,液压泵卸荷,且液压缸浮动,其中位机能应选用(D );要求阀处于中位时,液压泵卸荷,且液压缸闭锁不动,其中位机能应选用(B )。
(A)O型(B)M型(C)Y型(D)H型2.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为(C );并联在液压泵的出口,泵的出口压力又为(A )。
液压马达与液压泵的区别
液压马达和液压泵一样,都是依靠密封工作容积的变化实现能量的转换,同样具有配流机构。
液压马达在输入的高压液体作用下,进液腔由小变大,并对转动部件产生扭矩,以克服负载阻力矩,实现转动;同时马达的回液腔由大变小,向油箱或泵的吸液口回液,压力降低。
高压液体不断从液压马达的进液口进入,从回液口流出,则液压马达的转子不断地转动而对外做功。
从理论上讲,除阀式配流的液压泵外,其他形式的液压泵和液压马达具有可逆性,可以互用。
实际上,由于使用性能和要求不同,同一种形式的泵和马达在结构上仍有差别。
(1)液压马达是输入带有压力的液体推动其转于旋转,所以必须保证初始密封性,而不必具备自吸能力。
而液压泵通常必须具备自吸能力。
(2)液压马达应能正反转,因而要求其内部结构必须对称。
液压泵通常都是单向旋转,在结构上一般没有此限制。
(3)液压马达的转速范围较大,特别是当转速较低时,应能保证正常工作,因此应采用滚动轴承或静压滑动轴承;若采用动压滑动轴承,就不易形成润滑油膜。
而液压泵的转速较高,一般变化小,就没有这一要求。
液压泵和液压马达的主要特点
液压泵和液压马达的主要特点齿轮泵(马达)结构简单,工艺性好,体积小,重量轻,维护方便,使用寿命长,但工作压力较低,流量脉动和压力脉动较大,如高压下不采用端面补偿时,其容积效率将明显下降。
内啮合齿轮泵与外啮合齿轮泵相比,其优点是结构更紧凑、体积小、吸油性能好、流量均匀性较好,但结构较复杂,加工性较差。
叶片泵结构紧凑,外形尺寸小,运动平稳,流量均匀,噪声小,寿命长,但与齿轮泵相比对油液污染较敏感,结构较复杂。
单作用式叶片泵有一个排油口和一个吸油口,转子旋转一周,每两片间的容积各吸、排油一次,若在结构上把转子和定子的偏心距做成可变的,就是变量叶片泵。
单作用式叶片泵适用于低压大流量的场合双作用式叶片泵转子每转一周,叶片在槽内往复运动两次,完成两次吸油和排油。
由于它有两个吸油区和两个排油区,相对转子中心对称分布,所以作用在转子上的作用力相互平衡,流量比较均匀。
柱塞泵精度高,密封性能好,工作压力高,因此得到广泛应用。
但它结构比较复杂,制造精度高,价格贵,对油液污染敏感。
轴向柱塞泵是柱塞平行缸体轴线,沿轴向运动;径向柱塞泵的柱塞垂直于配油轴,沿径向运动,这两类泵均可作为液压马达用。
螺杆泵螺杆泵实质上是一种齿轮泵,其特点是结构简单,重量轻;流量及压力的脉动小,输送均匀,无紊流,无搅动,很少产生气泡;工作可靠,噪声小,运转平稳性比齿轮泵和叶片泵高,容积效率高,吸入扬程高。
但加工较难,不能改变流量。
适用于机床或精密机械的液压传动系统。
一般应用两螺杆或三螺杆泵,有立式及卧式两种安装方式。
一般船用螺杆泵用立式安装。
齿轮马达结构简单,制造容易,但输出的转矩和转速脉动性较大,但当转速高于1000r/min时,其转矩脉动受到抑制,因此,齿轮马达适用于高转速低转矩情况下。
叶片马达结构紧凑,外形尺寸小,运动平稳,噪声小,负载转矩较小。
轴向柱塞马达结构紧凑,径向尺寸小,转动惯量小,转速高,易于变量,能用多种方式自动调节流量,适用范围广。
液压传动与控制之液压泵和液压马达
4.5.2 柱塞泵排量计算
柱塞泵类型
排量计算
单柱塞泵 三柱塞泵
q d 2h
4 q 3 d 2h
4
h 2e
轴 斜盘式 向 泵 斜轴式
q d 2hz
4
h D tan h D1 sin
径向泵
q d 2hzY
4
h 2e
柱塞直径d,柱塞行程 h,偏心距 e,柱塞数z,柱塞分布圆直径 D,主轴盘球铰分布圆直径D1,柱塞排数Y,斜盘或摆缸的倾角γ
=1–Δq /qt=1–kp/nV
k 为泄漏系数 液压泵内零件间的间隙很小,泄漏油液的流态可以看作是 层流→泄漏量和液压泵工作压力成正比
3. 转速 额定转速 nn:额定压力下能连续长时间正常运
转的最高转速 最高转速 nmax:额定压力下允许短时间运行的
最高转速 最低转速nmin:正常运转允许的最低转速 转速范围:最低转速和最高转速之间的转速
4.2 液压泵基本性能参数和特性曲线
4.2.1 液压泵基本性能参数
1. 压力
额定压力:泵在额定转速和最大排量下连续运转 时允许使用的压力限定值
工作压力:在实际工作中输出油液的压力值(泵出 口处的压力值)
最高压力:在短时间内超载所允许的极限压力
实际压力:大小取决于执行元件的负载。
压力分级
压力分级 低压
为减少两叶片间的密闭容积在吸压油腔转换时因 压力突变而引起的压力冲击,在配流盘的配流窗 口前端开有减振槽
4.4.3 单作用叶片泵 1 工作原理
组成
定子 内环为圆
转子 与定子存在偏心e, 铣有z 个叶片槽
叶片 在转子叶片槽内自
由滑动,宽度为b
单作用叶片泵结构简图 1-压油口;2-转子;3-定子;
第3章_液压泵与液压马达1
3.1 液压泵与液压马达概述
3.1.4 液压泵和液压马达的分类
按运动部件的形状和运动方式分:
齿轮泵(马达) 叶片泵(马达) 柱塞泵(马达) 螺杆泵(马达)
按排量能否改变分类:
定量泵(马达) 变量泵(马达)
按流量方向是否可以改变分:
单向变量泵(马达) 双向变量泵(马达)
排油过程: 密封容积减小
两个条件: 油箱通大气
配油装置
泵和马达的结构分析基础
3.1 液压泵与液压马达概述
液压泵的作用 (1)液压泵将机械能转换为液压能; (2)建立足够的压力以克服负载; (3)提供稳定的流量以满足执行元件运动速度的要求。
抓住密封容积的形成和变化是研究了解 泵结构特点和泵工作原理的关键
何谓配油? 配油方式?
⑶ 泵工作的两个条件:
油箱通大气或作用一定压力;配油(配流)装置不可少。
⑷ 泵输出压力取决于油液流动时所遇到的阻力大小;
⑸ 流量的建立靠密封容积的变化量和变化速率。
3.1 液压泵与液压马达概述
3.1.1 液压泵的工作原理
由上述原理知,液压泵工作的基本条件是:
1.必须构成封闭容积,并且容积可变;
流量脉动率
p(qma)sxhqp(qmi)nsh10% 0
产生流量脉动的原因 在轮齿不同的啮合点,密封容积的变化率不一样, 因此,瞬时输出的流量是变化的。
危害 流量脉动造成压力脉动,影响执行元件的工作平稳性。
1. 例:如图所示的齿
轮泵:
(1)试确定该泵有几个吸油口和压油口? (2)若三个齿轮的结构相同,其顶圆直径=48mm,齿宽B= 25mm,齿数z=14,n=1450r/min,容积效率,试求该泵的理 论流量和实际流量。 解:
液压泵与液压马达的区别和联系
液压马达与液压泵的区别详解液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置.三维网技术论坛- {, ^8 V/ f- H* c一、液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
三维网技术论坛+ X3 D r6 g9 U% a" U- \但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。
由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。
按液压马达的额定转速分为高速和低速两大类。
额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。
低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。
合工大液压及气压传动试卷和答案完整版2
三、判断题1.液压缸活塞运动速度只取决于输入流量的大小,与压力无关。
(○)2.液体流动时,其流量连续性方程是能量守恒定律在流体力学中的一种表达形式。
(×)3.理想流体伯努力方程的物理意义是:在管内作稳定流动的理想流体,在任一截面上的压力能、势能和动能可以互相转换,但其总和不变。
(○)4.雷诺数是判断层流和紊流的判据。
(×)5.薄壁小孔因其通流量与油液的粘度无关,即对油温的变化不敏感,因此,常用作调节流量的节流器。
(○)6.流经缝隙的流量随缝隙值的增加而成倍增加。
(×)7.流量可改变的液压泵称为变量泵。
(×)8.定量泵是指输出流量不随泵的输出压力改变的泵。
(×)9.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。
(○)10.配流轴式径向柱塞泵的排量q 与定子相对转子的偏心成正比,改变偏心即可改变排量。
(○)11.双作用叶片泵因两个吸油窗口、两个压油窗口是对称布置,因此作用在转子和定子上的液压径向力平衡,轴承承受径向力小、寿命长。
(○)12.双作用叶片泵的转子叶片槽根部全部通压力油是为了保证叶片紧贴定子内环。
(×)13.液压泵产生困油现象的充分且必要的条件是:存在闭死容积且容积大小发生变化。
(○)14.齿轮泵多采用变位齿轮是为了减小齿轮重合度,消除困油现象。
(×)15.液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以用来做马达使用。
(×)16.因存在泄漏,因此输入液压马达的实际流量大于其理论流量,而液压泵的实际输出流量小于其理论流量。
(○)17.双活塞杆液压缸又称为双作用液压缸,单活塞杆液压缸又称为单作用液压缸。
(×)18.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。
(○)19.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量(○)20.单向阀可以用来作背压阀。
液压马达的结构原理及使用
一、液压马达的特点及分类液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。
但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。
例如:1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。
2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。
而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。
3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。
因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。
4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。
若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。
5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。
6.液压马达必须具有较大的起动扭矩。
所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。
由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。
液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。
通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。
高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。
液压泵与液压马达的区别和联系
液压泵与液压马达的区别和联系文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]液压马达与液压泵的区别详解液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置.三维网技术论坛- {, ^8 V/ f- H* c一、液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
三维网技术论坛+ X3 D r6 g9 U% a" U- \但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。
由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。
按液压马达的额定转速分为高速和低速两大类。
额定转速高于500r /min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。
低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压马达和液压泵有哪些相同点和不同点?
液压马达和液压泵的相同点:1)从原理上讲,液压马达和液压泵是可逆的,如果用电机带动时,输出的是液压能(压力和流量),这就是液压泵;若输入压力油,输出的是机械能(转矩和转速),则变成了液压马达。
2)从结构上看,二者是相似的。
3)从工作原理上看,二者均是利用密封工作容积的变化进行吸油和排油的。
对于液压泵,工作容积增大时吸油,工作容积减小时排出高压油。
对于液压马达,工作容积增大时进入高压油,工作容积减小时排出低压油。
液压马达和液压泵的不同点:1)液压泵是将电机的机械能转换为液压能的转换装置,输出流量和压力,希望容积效率高;液压马达是将液体的压力能转为机械能的装置,输出转矩和转速,希望机械效率高。
因此说,液压泵是能源装置,而液压马达是执行元件。
2)液压马达输出轴的转向必须能正转和反转,因此其结构呈对称性;而有的液压泵(如齿轮泵、叶片泵等)转向有明确的规定,只能单向转动,不能随意改变旋转方向。
3)液压马达除了进、出油口外,还有单独的泄漏油口;液压泵一般只有进、出油口(轴向柱塞泵除外),其内泄漏油液与进油口相通。
4)液压马达的容积效率比液压泵低;通常液压泵的工作转速都比较高,而液压马达输出转速较低。
另外,齿轮泵的吸油口大,排油口小,而齿轮液压马达的吸、排油口大小相同;齿轮马达的齿数比齿轮泵的齿数多;叶片泵的叶片须斜置安装,而叶片马达的叶片径向安装;叶片马达的叶片是依靠根部的燕式弹簧,使其压紧在定子表面,而叶片泵的叶片是依靠根部的压力油和离心力作用压紧在定子表面上。