计算问题的题型及解法6 定义新运算

合集下载

定义新运算(三种典型例题及补充练习

定义新运算(三种典型例题及补充练习

练习 二
1,对于两个数a与b,规定: a⊕b=a×b-(a+b)。 (1)求3⊕5, 5⊕3 。 (2)求12⊕ (3⊕4), (12⊕ 3)⊕4 。
练习 二
2,对于两个数A与B,规定: A○ B=A×B÷2。试算6 ○ 6。 - -4,4 ○ -
3,对于两个数a与b,规定:
a⊕b= a×b+a+b。如果5⊕x=29,求x。
定义新运算?定义新运算是一种人为的临时性的运算形式它使用的是一些特殊的运算符号如
定义新运算
定义新运算是一种人为的、临时性的运算 形式,它使用的是一些特殊的运算符号, 如:*、△、⊙等,这是与四则运算中的“+、 -、×、÷”不同的。 新定义的算式中有括号的,要先算括号里 面的。但它在没有转化前,是不适合于各 种运算定律的。 .
减去b的2倍,即:a△b = a×3-b×2。 (1)求5△6;6△5。 (2)求(17△6) △2 ;17 △( 6△2)。 (3)这个运算△有交换律和结合律吗? (4)如果已知4 △ b=2,求b。
练习 一
1,设a、b都表示数,规定: a○b=6×a-2×b。试计算3○4。
练习 一
2,设a、b都表示数,规定: a*b=3×a+2×b。试计算: (1)(5*6)*7 (2)5*(6*7)
3,有两个整数是A、B,A▽B表示A与B
的平均数。已知A▽6=17,求A。
例2:
对于两个数a与b,规定a⊕b=a×b+a+b。 (1)求6 ⊕ 2;2 ⊕ 6。 (2)求(17 ⊕ 6) ⊕ 2 ;17 ⊕ ( 6 ⊕ 2)。 (3)这个运算⊕有交换律和结合律吗? (4)如果5 ⊕ x=17,求x。

假设a*b=(a+b)+(a-b),求13*5和13* (5*4)。 解:13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10 =(13+10)+(13-10)=26

(完整版)四年级奥数详解答案第7讲定义新运算

(完整版)四年级奥数详解答案第7讲定义新运算

(完整版)四年级奥数详解答案第7讲定义新运算四年级奥数详解答案第7讲第七讲定义新运算一、知识概要1. 定义新运算定义新运算是指用某些特殊的符号(如△⊙※○—等)来表示一种特定的运算过程或运算顺序,从而解答某些特殊算式的一种运算。

因为它有别于我们日常学习的运算法则当然也有联系性,故称之为定义新运算。

2. 基本要求解答定义新运算问题,一定要严格按照新定义的运算法则进行计算,推理或证明,不得随便改变运算顺序。

二、典型题目精讲1. a、b是自然数,定义a?b = (a+b)÷2,(1)计算23?9 (2)计算17?(8?10)分析:本是所定义的a与b的运算规划是求a与b的和的一半。

在(1)题中,a是23,b 是9,把它们分别代入(a+b)÷2的式子中,就可求出27?9的值。

(2)题同这样的运算规划先求出8?10的值,然后用同样的运算规则再把17与算出来的值进行运算。

解:(1) 23?9= (23+9)÷2 =16(2) 17?(8?10) = 17?【(8+10)÷2】= 17?9= (17+9)÷2= 132. 定义运算?为:a?b = 5×a×b-(a+b), 求11?12.分析:定义新运算和我们日常的运算法制和顺序,即有区别又有联系。

比如说:先乘除后加、减;有括号的一定要先算括号中的运算等运算法制,在定义新运算中仍然适用。

按理说,这道题有四步计算过程:①(11+12)=23 ②5×11=55 ③55×12=660④660-23=637 这里②、③步是同时运算,所以②、③和①步可同时运算。

解:11?12 = 5×11×12-(11+12)= 660-23= 6373. 已知1○—3=1×2×3,6○—5=6×7×8×9×10,计算4○—5-5○—4。

定义新运算附答案

定义新运算附答案

定义新运算附答案定义新运算附答案我们学过的常⽤运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算⽅式不同,实际是对应法则不同.可见⼀种运算实际就是两个数与⼀个数的⼀种对应⽅法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有⼀个唯⼀确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这⼀讲中,我们定义了⼀些新的运算形式,它们与我们常⽤的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表⽰数,规定a△b=3×a-2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:⽤运算符号前⾯的数的3倍减去符号后⾯的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例⼦可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第⼆步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例⼦可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为 a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第⼆步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例⼦可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3 解出x=2.例3、定义新的运算a ⊕ b=a×b+a+b.①求6 ⊕ 2,2 ⊕ 6;②求(1 ⊕ 2)⊕ 3,1 ⊕(2 ⊕ 3);③这个运算有交换律和结合律吗?解:① 6 ⊕ 2=6×2+6+2=20,2 ⊕ 6=2×6+2+6=20.②(1 ⊕ 2)⊕ 3=(1×2+1+2)⊕ 3=5 ⊕ 3=5×3+5+3=231 ⊕(2 ⊕ 3)=1 ⊕(2×3+2+3)=1 ⊕ 11=1×11+1+11=23.③先看“⊕”是否满⾜交换律:a ⊕ b=a×b+a+bb ⊕ a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕ b=b ⊕ a,因此“⊕”满⾜交换律.再看“⊕”是否满⾜结合律:(a ⊕ b)⊕ c=(a×b+a+b)⊕ c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕ c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕ b)⊕ c=a ⊕(b ⊕ c),因此“⊕”满⾜结合律.说明:“⊕”对于普通的加法不满⾜分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有⼀个数学运算符号“?”,使下列算式成⽴:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这⼏个算式的观察,找到规律: a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表⽰两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为⾃然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采⽤分析法,从要求的问题⼊⼿,题⽬要求1△2)*3的值,⾸先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以⾸先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a*3,按“*”的定义: a*3=ma+3n ,在只有求出m 、n 时,我们才能计算a*3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.⼜因为m 、n 均为⾃然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4 =8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4 =9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是⾃然数⽭盾,因此m=3,n =1,k=971 这组值应舍去. 所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上⾯这⼀类定义新运算的问题中,关键的⼀条是:抓住定义这⼀点不放,在计算时,严格遵照规定的法则代⼊数值.还有⼀个值得注意的问题是:定义⼀个新运算,这个新运算常常不满⾜加法、乘法所满⾜的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运⽤这些运算律来解题.课后习题m=1n =2m=2n =23(舍去)m=3 n =11.a*b 表⽰a 的3倍减去b 的21,例如: 1*2=1×3-2×21=2,根据以上的规定,计算:①10*6;②7*(2*1). 2.定义新运算为 a ⼀b =b1a +,①求2⼀(3⼀4)的值;②若x ⼀4=1.35,则x =? 3.有⼀个数学运算符号○,使下列算式成⽴: 21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“?”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ?b=a ×b -1,①计算4?[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”, x △y=y×2x ×m y×x ×6+(其中m 是⼀个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成⽴,求a 的值.7.“*”表⽰⼀种运算符号,它的含义是: x*y=xy 1+))((A y 1x 1++,已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a ba +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为⾃然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表⽰选择两数中较⼤数的运算,例如:5◇3=3◇5=5,符号△表⽰选择两数中较⼩数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++&&=?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1) =10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.欢迎您的下载,资料仅供参考!致⼒为企业和个⼈提供合同协议,策划案计划书,学习资料等等打造全⽹⼀站式需求。

(完整版)小学奥数定义新运算

(完整版)小学奥数定义新运算

六年级数学讲义定义新运算教学目标: 1、在理解定义新运算的基础上,会灵活按照所给的规律对所给数字进行灵活的运算,2、培养学生对知识的运算能力和灵活运用能力。

一、 教学衔接414212115865.78+-+ )17281(1719+- 36×10.9+12×42.3(0.25×4-0.25×3)×40 119891988198719891988-⨯⨯+二、 教学内容(一)知识要点:所谓“定义新运算”是以学生熟知的四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。

运算时要严格按照新运算的定义(规定)进行代换,再进新计算。

具体程序如下:1.代换.即按照定义符号的运算方法,进行代换,注意此过程不能轻易改变原有的运算顺序。

2.计算.把代换后的算式准确地计算出来。

(二)例题讲解:例1、 对于任意数a ,b ,定义运算“*”: a*b=a ×b-a-b 。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、设45e。

a b a b=⨯-⨯(1)求(64)2e e的值;(2)若(2)18e e,则x等于多少?x x=3,x>=2,求x的值。

分析与解:按照定义的运算,<1,2,3,x>=2,x=6。

分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。

四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。

按通常的规则从左至右进行运算。

分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。

例6有一个数学运算符号⊗,使下列算式成立:9=7⊗,25⊗,求?3⊗7=3=2=48⊗,133⊗,115=5三、教学练习1、若A*B 表示(A +3B )×(A +B ),求5*7的值。

六奥 定义新运算

六奥 定义新运算

第3讲定义新运算主讲教师:陶老师学员姓名:小学的四则运算,是“+”“-”“×”“÷”四种运算符号,分别代表了加、减、乘、除四种运算,对于这四种运算,还定义了它们所满足的各种运算律。

定义新运算,是由一些新定义的运算符号派生出来的一种运算。

解答这类问题关键是理解新运算的意义,按规定的计算法则进行计算。

【例1】设a □ b=4a-3b.计算① 8□2;②(6□3)□1思路点拨:理解□的含义,按规定的法则进行运算。

【例2】对于任何数a和b,有a△b=(a+b)÷2.①计算2002△2003;②运算“△”有交换律吗?思路点拨:在定义新运算中要说明“△”有交换律,需要证明对任何数a、b,都有a△b=b△a.【例3】设a□b=[a、b]+﹙a、b﹚,其中[a、b]表示a与b的最小公倍数,﹙a、b﹚表示a与b的最大公因数。

①求4□4;②说明如c|a, c|b,则 c|a□b .思路点拨:在回答第②问时,会发现“数的整除的性质”在这里通行无阻。

但要注意a□b与(a-b)或(a+b)在这里只是“意义上的相同”。

【例4】对于平面上两个点M和N,定义M△N为M与N的中点。

已知ABCD为边长是4的正方形,求以A△B 、B△C、C△D、D△A为顶点的四边形面积。

思路点拨:画出边长为4的正方形,由所给的条件画出各个中点,答案显而易见。

【例5】a、b是任意自然数,k是固定不变的数,规定a△b=ab+k(a+b),且1△1=5,求5△8的值。

思路点拨: K值的求得是本题的突破口,由题设的第二个条件可顺利求出k值。

1、已知1△3=1×2×3,6△5=6×7×8×9×10,求2△5 。

2、若a□b=a×b+4a ,求(3□4)□2 。

3、规定3□4=3+4+5+6 6□5=6+7+8+9+10 。

若95□x=585 ,求x .4、对于两个自然数a和b(a≠b),较大的数除以较小的数,余数记为a▽b。

小学思维数学:定义新运算-带答案解析

小学思维数学:定义新运算-带答案解析

定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。

12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。

4×26﹣2。

小升初专练-计算问题-定义新运算通用版(含答案)

小升初专练-计算问题-定义新运算通用版(含答案)

小升初专练-计算问题-定义新运算【知识点归纳】定义新运算是指用一个符号和已知运算表达式表示一种新的运算.注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.【常考题型】例1:规定:a△b=3a-2b.已知x△(4△1)=7,那么x△5=( )A、7B、17C、9D、19分析:根据所给出是等式,知道a△b等于3与a的积减去2与b的积,由此用此方法计算4△1的值,再求出x的值,进而求出x△5的值.解:4△1=3×4-2×1,=10,x△(4△1)=7,x△10=7,3x-2×10=7,3x-20=7,3x=20+7,3x=27,x=27÷3,x=9;x△5=9△5,=3×9-2×5,=27-10,=17,故选:B.点评:解答此题的关键是,根据所给出的等式找出新的运算方法,再根据新的运算方法解决问题.【经典题型】例2:定义新运算aVb=a+b-1,aWb=ab-1,若xV (xW4)=30,那么这个式子中x 的值为( )A 、4.3B 、3.2C 、6.4D 、12.8分析:由所给算式得出新运算方法为:aVb 等于两个数的和减去1,aWb 等于两个数的乘积减去1,据此计算xV (xW4)=30即可解出x 的值.解:xV (xW4)=30,xV (x ×4-1)=30,xV (4x-1)=30,x+4x-1-1=30,5x-2=30,5x=32,x=32÷5,x=6.4.故选:C .点评:解决本题的关键是找出新运算方法,根据这个方法计算.【解题方法点拨】(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.一.选择题1.、表示两个数,规定新运算“※”及“△”如下:※,△,则※△ A .441B .812C .8822.规定一种新运算“”, ,例如,那么 A .2B .C .D .83.规定※,则5※,同理可得:3※ A .24B .30C .26D .404.我们规定一种运算“”; ,,,,如x y x 65y x y =+x 3y xy =(45)6(=)**b b a b a a a a a ==⨯⨯⨯⋯⋯⨯ 个23*239==*1(4(2=)18116a (2)b a b =⨯+25(22)20=⨯+=8(=)⊕2123=⨯⨯⊕3234=⨯⨯⊕4345=⨯⨯⊕5456=⨯⨯⊕果,那么 A .B .C .D .5.对于两个数、,规定,求 A .15B .30C .25D .106.我们规定运算:,,并且满足运算律,那么仿照上述规定计算: A .11B .C .4D .7.规定一种新运算,则 A .7B .12C .D .8.假设◎一,已知◎◎,那么◎ A .19B .7C .9二.填空题9.有这样一种运算,规定※,若2※,则 .10.如果规定符号“△”为选择两数中的较大数,“”为选择两数中较小数,例如:3△,,那么△△ 11.规定一种新运算,★,若★,那么的值是 .12.假设★,如:1★,则2★ .13.设表示的3倍减去的2倍,已知,则 .14.如果表示,那么 15.规定运算符号表示:,那么 .16.如果定义,,,,那么,0,1, .三.判断题17.假设,那么. 四.计算题18.设、表示两个数,规定.111677A -=⨯⊕⊕⊕(A =)23351647A B *2A B A B =⨯÷5*6()25(52)3-=--=-4(3)(43)12⨯-=-⨯=-2552-=-+3(6)7(⨯-+=)11-4-11*11a b a b a b⨯=+11*(34=)127712A 3B A =2B X (41)7=X 4(=)a ()b a a b =⨯+44x =x = 55=533= [(63) 5][6(3⨯ 5)]=.m 53n m n =+x 937=x a ()b a b a =+÷2(12)13=+÷=3=&x y x y &(4&1)7a =a =&a b ()2a b +÷5&(4&8)=.&&321x y x y =++2&(0.14&1)9 §(a b c (3))10a c d c d a b+⨯+=+§(28)=*4()2a b a a b =⨯-+÷4*611=a b *0.010.01a b a b =÷-⨯求:19.△表示一种运算符号,其意义是△,计算△△7.20.定义新运算:△,计算:△△21.五.应用题21.对于数、,我们定义一种新运算,由这种运算得到的数,我们称之为“吉祥数”,记为,这时,叫做吉祥数对,如(1)若,则,,等于多少?(2)已知,,,求的值六.解答题22.定义一种新运算;,其中和为任意两个不为0的数,为常数,比如:。

五年级奥数:定义新运算

五年级奥数:定义新运算

五年级奥数:定义新运算五年级奥数重难点:定义新运算定义新运算是指使用新的符号来进行运算。

在解题时需要按照所规定的“运算程序”进行运算,以得出最终结果。

不同的题目有不同的规定,我们应该严格按照题目中的规定进行运算。

类型一:直接运算型在这种类型的问题中,我们需要直接根据运算公式进行计算。

例如,对于题目“★”表示一种新运算,规定A★B=5A+7B,求4★5,我们可以直接代入A=4,B=5,然后按照规定进行计算。

练题:1.设a、b都表示数,规定:a○b=6×a-2×b。

试计算3○4.2.“♀”表示一种新的运算,规定A♀B=2A+3B,求0.3♀1.4.3.设a、b都表示数,规定:a*b=3×a+2×b。

试计算:(1)(5*6)*7(2)5*(6*7)4.a、b是自然数,规定a※b=(a+b)÷2,求3※(4※6)5.令A®B=3×A+4×B,试计算:(1)(4®5)®6(2)(1®5)+(2®4)类型二:反解未知数型在这种类型的问题中,我们需要建立方程来求解未知数。

例如,对于题目规定a&b=3a-2b,如果x&4=7,求x的值,我们可以建立方程3x-8=7,然后解方程得到x=5.练题:1.如果规定 ab cd =a×d-b×c,已知126 x2.4=7.2,求x的值。

2.对于任意正整数a,b,规定a※b=a÷b×2+3.若256※a=19,求a的值。

3.对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。

已知x□6=27,求x。

类型三:观察规律型在这种类型的问题中,我们需要观察规律来进行计算。

例如,对于题目如果1※3=1+2+3=6,5※4=5+6+7+8=26,那么9※5=?我们可以发现,每个数的结果都是从第一个数开始加上后面的连续的几个数,因此9※5=9+10+11+12+13=55.练题:1.已知1∆3=1×2×3,6∆5=6×7×8×9×10,求2∆5.2.如果2※3=2+3+4=9,5※4=5+6+7+8=26,按此规则计算:(1)1※x=15(2)x※3=12类型四:综合类型在这种类型的问题中,我们需要综合运用不同的方法来进行计算。

奥数定义新运算专题

奥数定义新运算专题

奥数定义新运算专题第1篇:奥数定义新运算专题1、规定a▽b=a×k+ba×b,且5▽6=6▽5,求2▽1-1▽2的值。

2、若3□4=3+4+5+6=18,6□5=6+7+8+9+10=40。

(1)计算1995□5(2)若95□x=585,求x(3)若x□3=5973,求x.3、按如下规则:1!=1,2!=1×2=2,3!=1×2×3=6……(1)计算5!=?(2)x!=5040,求x=?4、已知:1※6=1×2×3×4×5×6,6※5=6×7×8×9×10,按此规定,计算(2※5)+(6※4)。

5、若“+、-、×、÷”的意义与通常相同,而式子中的数字却不是的数字,试问下面的4个算式,(1)8×7=8(2)7×7×7=6(3)(7+8+3)×9=39(4)3×3=3。

第2篇:奥数专题之定义新运算例题[例4]规定自然数a、b在a?b中表示:a?b=a×(a+1)×…×(a+b-1)。

计算:2?3+4?5。

解:2?3+4?5=2×3×4+4×5×6×7×8=24+6720=6744[形成*练习]3?2+5?4=?[例5]规定数a!b=4×a+2×b;a~b=2×a+4×b。

试算:(3~4-3!4)~2!4。

解:(3~4-3!4)~2!4=[(2×3+4×4)-(4×3+2×4)]~2!4=2~2!4=(2×2+4×2)!4=12!4=4×12+2×4=56。

[形成*练习]3~4+(3!4~2)!4=?[例6]数a、b,当a≥b时,规定a◎b=3×x+2×b;当a<b时,规定a◎b=2×x+3×b,若x◎2=7,试求x的值。

四则运算(一)奥数五年级讲义

四则运算(一)奥数五年级讲义

第一讲计算问题的题型及解法(一)教学目标1、四则混合运算法则和定律、性质的简便计算、分数运算技巧——变形约分等方法;2、区分每个方法所对应题目的特征,知道题目该用什么方法比较好;3、熟悉综合计算问题(多方法综合运用)。

教学重点:熟练掌握每个方法,每个方法之间的区别和联系。

教学难点:1、记住所学的方法以及每个方法所对应的题目的特征;2、利用已学的方法综合应用解计算题。

方法点拨1、考点与题型:主要考查四则混合运算的意义和运算顺序,四则运算各部分之间的关系,和、差、积、商的变化规律,运算定律和运算性质,脱式运算,简算,巧算,估算,倒算,定义算,解方程,列式算。

主要题型是填空题、计算题和解答题。

2、分值与解法:分值都在20%~35%。

对于一般的算法,要按四则混合运算的法则,一步一步地脱式计算;运算复杂题时,算一步回头查验一步,做到一步一回头,步步无差错;对于特殊算法,可采用变形、约分、裂项、消去、活用定律性质、设字母代换、分组找规律等方法。

模块一定义新运算1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例1: 定义新运算为a△b=(a+1)÷b,求的值。

6△(3△4)例2: 规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。

计算下式:[(7◎3)& 5]×[ 5◎(3 & 7)]例3: 羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼,以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了。

小朋友总是希望羊能战胜狼.所以我们规定另一种运算,用符号☆表示:羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼,这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了。

对羊或狼,可以用上面规定的运算作混合运算,混合运算的法规是从左到右,括号内先算.运算的结果或是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼)例4: 规定新运算※:a※b=3a-2b.若x※(4※1)=7,则x= .例5: 规定:6※2=6+66=722※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5=模块二、加减法凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例1】、计算:(1)117+229+333+471+528+622(2)(1350+249+468)+(251+332+1650)(3)9+99+999+……+999999999【巩固】计算:19999919999199919919++++【例2】、计算:17+117+1117+...+1111111117=______。

三年级数学思维专题训练—定义新运算(含答案解析)

三年级数学思维专题训练—定义新运算(含答案解析)

三年级思维专题训练—定义新运算一、已知当口大于或等于6时,规定a△6=3×a+4×6;当a小于b时,规定a△6=4×a+3×b,按此规定计算:(6△4)△35=二、定义新运算符号*为A* B=A×B-A-B,已知X*5=11,那么X=三、规定2⊕I= 2 , 2⊕2=2+22=24, 3⊕3=3+33+333=369 ,那么5⊕5=四、通过一种新的运算“△”计算,有以下结果:2△3=2×3×4=244△2=4×5=20那么6△3-7△2等于多少?五、定义f(1)=1,f(2)=1+2=3,f(3)=1+2+3=6,…,那么f(100)=六、若记号“贝贝京京”代表“贝贝比京京高”,依照下图的记号,最高的是七、如果P↑表示P+1,P↓表示P-1,则(4↑)×(3↓)等于1.A.9↓B.10↓C.11↓ D.12↑ E.13↓八、规定一种运算符号“@”,M@N=(M+N)÷5,那么X@5=l0中X的值是九、在密码学中,直接可以看到的内容是明码,对明码进行某种处理后得到的内容为密码有一种密码,将英文26个字母a、b、c…、z(不论大小写)依次对1、2、3…、26这26个自然数(见表格)。

当明码对应的序号x为奇数时,密码对应的序号y=(x+1)÷2;当明码对应的序号x为偶数时,密码对应的序号y=x÷2+13。

字 a b c d e f g h i j k l m 序 1 2 3 4 5 6 7 8 9 10 11 12 13 字n o p q r s t u v w x y z序14 15 16 17 18 19 20 21 22 23 24 25 26 按上述规定,请你算出明码“love”译成密码是什么?十、对于任意自然数,定义n!=l×2×…×n,如4!-1×2×3×4.那么,1!+2!+3 !+4 !+5 !=十一、规定3☆2=3+33=36, 2☆3=2+22+222=246, l☆4=1+11+111+111l=1234.如果一位数a、b满足a☆b=49380,求a和b.十二、规定1※2=1+2=3,2※3=2+3+4=9,5※4=5+6+7+8=26.如果a※15=165,那么a=十三、如果A*B=2A+B,若A*2A*3A*4A*5A=570,那么A=十四、已知有一个数学符号△使下列等式成立:2△4=8,5△3=13,3△5=11, 9△7=25,那么7△3=十五、我们规定:AΟB表示A、B中较大的数,A△B表示A、B中较小的数.则(10△8-6Ο5)×(11Ο13+15△20)=十六、已知“△”表示一种运算符号,若a△b=(a-b)÷2,则3△(6△4)=十七、对于数x、y,定义两种运算“*”及“△”如下:x* y=6x+5y,x△y=3xy,则(2*3)△4=十八、如果6*2=6+7。

定义新运算-中考数学命题点及重难题型分类(全国通用)

定义新运算-中考数学命题点及重难题型分类(全国通用)

类型一 定义新运算“新定义”型问题,指的是命题老师用下定义的方式,给出一个新的运算、符号、概念、图形或性质等,要求同学们“化生为熟”、“现学现用”,能结合已有知识、能力进行理解,进而进行运算、推理、迁移的一种题型,这类题型往往是教材中一些数学概念的拓展、变式,是近几年中考数学命题的热点。

“新定义”型试题主要考查同学们学习新知识的能力,具体而言,就是考查大家的阅读理解能力、数学规则的选择与运用能力、综合运用数学知识分析问题解决问题的能力,有较强的数学抽象,旨在引导、培养大家在平时的数学学习中,能养成自主学习、主动探究的学习方式。

“定义新运算”是指用一个符号和已知运算表达式表示一种新的运算. 解决这类问题的关键是理解新运算规定的规则,明白其中的算理算法. 运算时,要严格按照新定义的运算规则,转化为已学过的运算形式,然后按正确的运算顺序进行计算.“定义新符号”试题是定义了一个新的数学符号,要求同学们要读懂符号,了解新符号所代表的意义,理解试题对新符号的规定,并将新符号与已学知识联系起来,将它转化成熟悉的知识,而后利用已有的知识经验来解决问题. 1.定义运算:m ☆n =21mn mn .例如: 4☆2=4×22-4×2-1=7.则1☆x =0方程的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根 【答案】A【解析】由定义新运算可得210x x ,∴△=411-14-1-2+=⨯⨯)()(=5>0,所以方程有两个不相等的实数根,因此本题选A . 2.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .x =4 B .x =5 C .x =6 D .x =7 【答案】B【解析】根据新定义运算,把方程转化为分式方程.因为211(2)(2)4x x x ⊗-==---,所以原方程可转化为12144x x =---,解得x =5.经检验,x =5是原方程的解.3.如果一个数等于两个连续奇数的平方差,那么我们称这个数为"幸福数".下列数中为"幸福数"的是( )A.205B.250C.502D.520【答案】 D【解析】设较小的奇数为x ,较大的为x +2,根据题意列出方程,求出解判断即可. 设较小的奇数为x ,较大的为x +2,根据题意得:(x +2)2﹣x 2=(x +2﹣x )(x +2+x )=4x +4,若4x +4=205,即x ,不为整数,不符合题意;若4x +4=250,即x ,不为整数,不符合题意;若4x +4=502,即x ,不为整数,不符合题意;若4x +4=520,即x =129,符合题意. 故选:D .4.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A. 1- B. 1C. 0D. 2【答案】C【解析】根据题目中给出的新定义运算规则进行运算:2211☆=+-=+x x x ,又21x =☆,∴11x +=,∴0x =.故选:C .5.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b a b a b +-3⊕23232+-512⊕4=______.2【解析】依题意可知12⊕4124124+-482.6.(乐山)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[-1.5]=-2,那么:(1)当-1<[x ]≤2时,x 的取值范围是________;(2)当-1≤x <2时,函数y =x 2-2a [x ]+3的图象始终在函数y =[x ]+3的图象下方,则实数a 的范围是________.【答案】(1)0≤x ≤3;(2)a <-1或a ≥32.【解析】(1)根据符号[x ]表示不大于x 的最大整数,得到-1<[x ]≤2时[x ]=0,1,2;当[x ]=0时,0≤x <1;当[x ]=1时,1≤x <2;当[x ]=2时,2≤x <3;从而x 的取值范围是0≤x <3;(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.令y 1=x 2-2a [x ]+3,y 2=[x ]+3,y 3=y 2-y 1,由题意可知:y 3=-x 2+(2a +1)[x ]>0时,函数y =x 2-2a [x ]+3的图象始终在函数y =[x ]+3的图象下方.①当-1≤x <0时,[x ]=-1,y 3=-x 2-(2a +1),此时y 3随x 的增大而增大,故当x =-1时,y 3有最小值-2a -2>0,得a <-1; ②当0≤x <1时,[x ]=0,y 3=-x 2,此时y 3≤0;③1≤x <2时,[x ]=1,y 3=-x 2+(2a +1),此时y 3随x 的增大而减小,故当x =2时,y 3有最小值2a -3≥0,得a ≥32;综上所述,a <-1或a ≥32.7.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b=2a+b .例如3⊗4=2×3+4=10. (1)求2⊗(-5)的值;(2)若x ⊗(-y )=2,且2y ⊗x=-1,求x+y 的值.【解析】(1)依据关于“⊗”的一种运算:a ⊗b=2a+b ,即可得到2⊗(﹣5)的值; (2)依据x ⊗(﹣y )=2,且2y ⊗x=﹣1,可得方程组,即可得到x+y 的值.8.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 【解析】解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6. ∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数, ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1. ∵s 是“相异数”, ∴x ≠2,x ≠3. ∵t 是“相异数”, ∴y ≠1,y ≠5. ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54, ∴k 的最大值为54.9.我们规定:形如()ax ky a b k k ab x b+=≠+、、为常数,且的函数叫做“奇特函数”.当0a b ==时,“奇特函数”ax k y x b +=+就是反比例函数(0)ky k x=≠. (1) 若矩形的两边长分别是2和3,当这两边长分别增加x 和y 后,得到的新矩形的面积为8 ,求y 与x 之间的函数关系式,并判断这个函数是否为“奇特函数”;(2) 如图,在平面直角坐标系中,点O 为原点,矩形OABC 的顶点A ,C 的坐标分别为(9,0)、(0,3).点D 是OA 的中点,连结OB ,CD 交于点E ,“奇特函数”6ax ky x +=-的图象经过B ,E 两点.①求这个“奇特函数”的解析式; ②把反比例函数3y x=的图象向右平移6个单位,再向上平移 个单位就可得到①中所得“奇特函数”的图象.过线段BE 中点M 的一条直线l 与这个“奇特函数”的图象交于P ,Q 两点,若以B 、E 、P 、Q 为顶点组成的四边形面积为16103,请直接写出点P 的坐标.【解析】 (1)322x y x -+=+,是 “奇特函数”;(2)①296x y x -=-;②(7,5)或53,3⎛⎫- ⎪⎝⎭或715,3⎛⎫ ⎪⎝⎭或(5,1)-.试题分析:(1)根据题意列式并化为322x y x -+=+,根据定义作出判断. (2)①求出点B ,D 的坐标,应用待定系数法求出直线OB 解析式和直线CD 解析式,二者联立即可得点E 的坐标,将B (9,3),E (3,1)代入函数6ax ky x +=-即可求得这个“奇特函数”的解析式.②根据题意可知,以B 、E 、P 、Q 为顶点组成的四边形是平行四边形BPEQ 或BQEP ,据此求出点P 的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是 “奇特函数”.(2)①由题意得,.易得直线OB 解析式为,直线CD 解析式为,由解得.∴点E (3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.10.定义[a,b,c]为函数y=a x2+bx c+的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x轴所得的线段长度大于32;③当m<0时,函数在x>14时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y=2m x2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴224144(6)248,22(6)344(6)3b ac ba a-⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y=2m x2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣12mm+,0),当m>0时,1﹣(﹣12mm+)=313222m+>,正确;③当m<0时,函数y=2m x2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴111444xm=->,错误;④当m≠0时,x=1代入解析式y=0,则函数一定经过点(1,0),正确.故选:①②④11.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=a,请用含a的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,AD=BD,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解析】(1)根据外角的性质及角平分线的概念求解;(2)根据圆内按四边形的性质,同弧或等弧所对圆周角的性质分别证明BE、CE为△ABC的内角及外角平分线即可;(3)①连结CF,根据遥望角的性质及同弧所对圆周角的性质证明∠BEC=∠FAD,再由△FDE≌△FDA证明AD=DE,最后由等腰直角三角形的性质求得∠AED的度数;②作AG⊥BE于点G,FM⊥CE于点M,根据相似三角形的判定证明△EGA∽△ADC,由相似三角形的性质及勾股定理求得△ACD边长,进而求得△DEF的面积.【答案】24.解:(1)∵BE平分∠ABC,CE平分∠ACD.∴∠E=∠ECD-∠EBD=12(∠ACD-∠ABC)=12∠A=12a(2)如图,延长BC到点T.∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵AD=BD,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图,连结CF.∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC =∠BAC ,∴∠BFC =2∠BEC ,∵∠BFC =∠BEC +∠FCE ,∴∠BEC =∠FCE ,∵∠FCE =∠FAD ,∴∠BEC =∠FAD ,又∵∠FDE =∠FDA ,FD =FD ,∴△FDE ≌△FDA(AAS), ∴DE =AD ,∵∠AED =∠DAE ,∵AC 是⊙O 的直径∴∠ADC =90°,∴∠AED +∠DAE =90°,∴∠AED =∠DAE =45°. ②如图,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M.∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠FAC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠FAC ,∵∠FED =∠FAD ,∴∠AED -∠FED =∠FAC -∠FAD , ∴∠AEG =∠CAD ,∴∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE :AC =AG:CD ∵在Rt △ABG 中,AG =22AB =42,在Rt △ADE 中,AE =2AD ,∴AD:AC =45,在Rt △ADC 中,AD2+DC2=AC2,∴设AD =4x ,AC =5x ,则有(4x)2+52=(5x)2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC =∠FCE ,∴FC =FE ,∵FM ⊥CE ,∴EM =12CE =356,∴DM =DE -EM =56,∵∠FDM =45° ,∴FM =DM =56,∴S △DEF =12DE ·FM =259.12.若记y =f (x )=221x x+,其中f (1)表示当x =1时y 的值,即f (1)=22111+=12;f (12)表示当x =12时y 的值,即f (12)=22111212512f ==+()()();…;则f (1)+f (2)+f (22111212512f ==+()()())+f (3)+f (13)+…+f (2011)+f (12011)=.【解析】解:∵y =f (x )=221x x+,∴f (1x )=22111x x+()()=211x +,∴f (x )+f (1x)=1, ∴f (1)+f (2)+f (12)+f (3)+f (12)+…+f (2011)+f (12011)=f (1)+[f (2)+f (12)]+[f (3)+f (13)]+…+[f (2011)+f (12011)]=12+1+1+…+1 =12+2010 =201012. 故答案为:201012. 13.定义在区间[m ,n ]上有意义的两个函数f (x )与g (x ),如果对任意x ∈[m ,n ]均有| f (x ) – g (x ) |≤1,则称f (x )与g (x )在[m ,n ]上是接近的,否则称f (x )与g (x )在[m ,n ]上是非接近的,现有两个函数f 1(x ) = log a (x – 3a )与f 2 (x ) = log a ax -1(a > 0,a ≠1),给定区间[a + 2,a + 3].(1)若f 1(x )与f 2 (x )在给定区间[a + 2,a + 3]上都有意义,求a 的取值范围; (2)讨论f 1(x )与f 2 (x )在给定区间[a + 2,a + 3]上是否是接近的? 【解析】解:(1)要使f 1 (x )与f 2 (x )有意义,则有a x a a a x a x 31003>⇒⎪⎩⎪⎨⎧≠>>->-且 要使f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上有意义, 等价于真数的最小值大于0 即⎪⎪⎩⎪⎪⎨⎧≠><<⇒>-+>-+1010032031a a a a a a a 且 (2)f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上是接近的⇔| f 1 (x ) – f 2 (x )|≤1 ⇔ax a x a a ---1log )3(log ≤1 ⇔|log a [(x – 3a )(x – a )]|≤1⇔a ≤(x – 2a )2 – a 2≤a1 对于任意x ∈[a + 2,a + 3]恒成立设h (x ) = (x – 2a )2 – a 2,x ∈[a + 2,a + 3]且其对称轴x = 2a < 2在区间[a + 2,a + 3]的左边⎪⎩⎪⎨⎧++⇔⎪⎩⎪⎨⎧⇔)3( 1)2( )( 1)( max min a h a a h a x h a x h a ⎪⎩⎪⎨⎧+-⇔⎪⎩⎪⎨⎧--⇔0192654 69 144 a a a a a a a ⎪⎪⎩⎪⎪⎨⎧+-⇔12579 12579 54 a a a 或 12579 0-<⇔a 当12579 0-<a 时 f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上是接近的 当12579 -< a < 1时,f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上是非接近的. 14.定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠BCP =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线y =3 3x(x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,∠ONP =∠M ,试说明点P 是△MON 的自相似点;当点M 的坐标是( 3,3),点N 的坐标是( 3,0)时,求点P 的坐标;(2)如图3,当点M 的坐标是(3, 3),点N 的坐标是(2,0)时,求△MON 的自相似点的坐≤ ≤ ≤ ≤ ≤ ≤ ≤≥ ≥ ≥ ≥ ≥ ≤标;(3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【解析】解:(1)∵∠ONP =∠M ,∠NOP =∠MON ,∴△NOP ∽△MON ,∴点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MN ON =3,∴∠MON =60°,∵当点M 的坐标是(3,3),点N 的坐标是(3,0),∴∠MNO =90°,∵△NOP ∽△MON ,∴∠NPO =∠MNO =90°,在Rt △OPN 中,OP =ON cos60°=32, ∴OD =OP cos60°=32×12=34,PD =OP ﹒sin60°=32×32=34,{{dbc 5494c .png }} ∴P ⎝ ⎛⎭⎪⎫34,34; (2)作MH ⊥x 轴于H ,如图3所示:∵点M 的坐标是(3,3),点N 的坐标是(2,0), ∴OM =32+(3)2=23,直线OM 的解析式为y =33x ,ON =2,∠MOH =30°, 分两种情况:①如图3所示:∵P 是△MON 的相似点,∴△PON ∽△NOM ,作PQ ⊥x 轴于Q ,∴PO =PN ,OQ =12ON =1, ∵P 的横坐标为1,∴y =33×1=33,{{eb 10936e .png }} ∴P ⎝⎛⎭⎪⎫1,33; ②如图4所示:由勾股定理得:MN =(3)2+12=2,∵P 是△MON 的相似点,∴△PNM ∽△NOM ,∴PN ON =MNMO ,即PN 2=223, 解得:PN =233, 即P 的纵坐标为233,代入y =33得:233=33x , 解得:x =2,∴P ⎝ ⎛⎭⎪⎫2,233; 综上所述:△MON 的自相似点的坐标为⎝ ⎛⎭⎪⎫1,33或⎝ ⎛⎭⎪⎫2,233; (3)存在点M 和点N ,使△MON 无自相似点,M (3,3),N (23,0);理由如下: ∵M (3,3),N (23,0),∴OM =23=ON ,∠MON =60°,∴△MON 是等边三角形,∵点P 在△MON 的内部,∴∠PON ≠∠OMN ,∠PNO ≠∠MON ,∴存在点M 和点N ,使△MON 无自相似点. 15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt △ABC 中,∠C=90°,tanA= 32,求证:△ABC 是“好玩三角形”; (3))如图2,已知菱形ABCD 的边长为a ,∠ABC=2β,点P ,Q 从点A 同时出发,以相同速度分别沿折线AB-BC 和AD-DC 向终点C 运动,记点P 经过的路程为s .①当β=45°时,若△APQ 是“好玩三角形”,试求a s的值; ②当tan β的取值在什么范围内,点P ,Q 在运动过程中,有且只有一个△APQ 能成为“好玩三角形”.请直接写出tan β的取值范围.(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)依据(3)的条件,提出一个关于“在点P ,Q 的运动过程中,tan β的取值范围与△APQ 是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)【解析】解:(1)如图1,①作一条线段AB ,②作线段AB 的中点O ,③作线段OC ,使OC=AB ,④连接AC 、BC ,∴△ABC 是所求作的三角形.(2)如图2,取AC 的中点D ,连接BD∵∠C=90°,tanA=32,∴BC AC =32,∴设BC=3x ,则AC=2x ,∵D 是AC 的中点,∴CD=12AC=x∴BD=22223CD BC x x +=+=2x ,∴AC=BD∴△ABC 是“好玩三角形”;(3)①如图3,当β=45°,点P 在AB 上时,∴∠ABC=2β=90°,∴△APQ 是等腰直角三角形,不可能是“好玩三角形”,当P 在BC 上时,连接AC 交PQ 于点E ,延长AB 交QP 的延长线于点F ,∵PC=CQ ,∴∠CAB=∠ACP ,∠AEF=∠CEP ,∴△AEF ∽△CEP ,∴2AE AF AB BP sCE PC PC a s +===-.∵PE=CE ,∴2AEsPE a s =-.Ⅰ当底边PQ 与它的中线AE 相等时,即AE=PQ 时,2AE sPE a s =-,∴as =34,Ⅱ当腰AP 与它的中线QM 相等,即AP=QM 时,作QN ⊥AP 于N ,如图4∴MN=AN=12MP .∴QN=15MN ,∴tan ∠APQ=153QNMNPN MN ==153,∴tan ∠APE=2AEs PE a s =-=153,∴a s =1510+12。

中考常见的定义新运算题型

中考常见的定义新运算题型

中考常见的定义新运算题型新定义“新定义” 问题,主要是指在问题中定义了初中数学中没有学过的一些新概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.一、定义新运算1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(-x,-y),如g(2,3)=(-2,-3).2.规定用符号[m]表示一个实数m的整数部分,例如:[4/3]=0,[3.14]=3.3.现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a +b.4.对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.5.对非负实数x “四舍五入”到个位的值记为<x>,即当n为非负整数时,若n-1/2≤x<n+./2,则<x>=n,如<0.46>=0,<3.67>=4.6.对于实数a、b,定义一种运算“?”为:a?b=a2+ab﹣2.7.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.【典型例题】——定义新运算001.(13定西)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x 的值是.【解析】解:∵a★b=a2﹣3a+b,∴x★2= x2-3x+2=6,即x2-3x-4=0,解得:x1=4,x2=-1,则实数x的值是-1或4.故答案为:-1或4.【总结】根据新定义,表示出x★2,即可建立等量关系求出x的值.。

定义新运算

定义新运算

一、 定义新运算(1) 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

(2) 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

(3) 关键问题:正确理解定义的运算符号的意义。

(4) 注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二、 定义新运算分类(1) 直接运算型(2) 反解未知数型(3) 观察规律型(4) 其他类型综合(1) 正确理解新运算的规律。

(2) 把不熟悉的新运算变化成我们熟悉的运算。

(3) 新运算也要遵守运算规律。

重难点知识结构定义新运算【例 1】 对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:x ◆y = 22x y x y++,3x y x y x y ⨯⊗=+÷ .如:1◆2= 212122⨯++⨯,1212123⨯⊗=+÷. 由此计算:..0.36◆141__________.2⎛⎫⊗= ⎪⎝⎭【巩固】 对于任意两个数,x y ,定义新运算,运算,规则如下:x ◆y = 2x y x ⨯-÷,2x y x y ⊕=+÷ .按此规则计算:3.6◆2=__________,..0.12◆()7.5 4.8_______.⊕=【例 1】 如果a 、b 、c 是3个整数,则它们满足加法交换律和结合律,即⑴a b b a +=+;⑵()()a b c a b c ++=++。

五年级奥数题及答案:定义新运算(高等难度)

五年级奥数题及答案:定义新运算(高等难度)

五年级奥数题及答案:定义新运算(高等难度) 结合目前学生的学习进度,查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题定义新运算(高等难度),可以帮助到你们!一分耕耘一分收获!奥数习题万变不离其宗,相信大家平时多动脑、多练习、多积累,掌握学习方法与技巧,通过自己的努力,一定能够取得优异的成绩! 定义新运算:(高等难度)规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)&times;(B○5+ A△3)=96,且A、B均为大于0的自然数A&times;B的所有取值有( )个。

共5种;分类讨论,由于题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。

对于B也有类似,两者合起来共有3&times;3=9种不同的组合,我们分别讨论。

1) 当A&lt;3,B&lt;3,则(5+B)&times;(5+A)=96=6&times;16=8&times;12,无解;2) 当3&le;A&lt;5,B&lt;3时,则有(5+B)&times;(5+3)=96,显然无解;3) 当A&ge;5,B&lt;3时,则有(A+B)&times;(5+3)=96,则A+B=12.所以有A=10,B=2,此时乘积为20或者A=11,B=1,此时乘积为11。

4) 当A&lt;3,3&le;B&lt;5,有(5+3)&times;(5+A)=96,无解;5) 当3&le;A&lt;5,3&le;B&lt;5,有(5+3)&times;(5+3)=96,无解;6) 当A&ge;5,3&le;B&lt;5,有(A+3)&times;(5+3)=27,则A=9.此时B=3后者B=4。

七年级定义新运算例题及答案

七年级定义新运算例题及答案

七年级定义新运算例题及答案在初中数学中,我们通常会学习从一些特定的数学概念以及运算法则来定义新的运算方式。

在七年级数学学习中,我们也要学习一些新的运算方式。

下面就让我们一起来看看七年级定义新运算例题及答案。

一、集合的新运算在七年级数学中,我们学习了集合的概念和有关的运算法则,并学会了两个关于集合的基本运算:并集和交集。

此外,我们还要学习新的运算:补集和差集。

1. 补集对于一个集合A,它在另一个集合B中的补集就是B中不包含A元素的所有元素所组成的集合。

用符号表示的话,可以表示成B-A。

例如,集合A={1,2,3},集合B={2,3,4,5},则B-A={4,5}。

2. 差集对于两个集合A和B,它们的差集就是属于A但不属于B的元素所组成的集合。

用符号表示的话,可以表示成A-B或A\B。

例如,集合A={1,2,3},集合B={2,3,4,5},则A-B={1}或A\B={1}。

二、有理数的新运算在七年级数学中,我们学习了有理数的概念和有关的运算法则,并学会了加法、减法、乘法和除法运算。

此外,我们还要学习新的运算:相反数和绝对值。

1. 相反数对于一个有理数a,它的相反数是一个数-b,它们的和等于0。

用符号表示的话,可以表示成b=-a。

例如,2的相反数是-2,-1的相反数是1。

2. 绝对值对于一个有理数a,它的绝对值表示a到0的距离。

用符号表示的话,可以表示成|a|。

例如,|-3|=3,|2|=2。

三、平方根的新运算在七年级数学中,我们还要学习平方根的概念和有关的运算法则。

我们已知的运算有两种:平方和开方运算。

在这里,我们要再学一种运算:非负实数的平方根。

1. 非负实数的平方根对于一个非负实数a,它的平方根是一个数x,它的平方等于a。

用符号表示的话,可以表示成x=√a。

例如,√4=2,√9=3。

以上就是七年级定义新运算例题及答案的内容。

虽然这些运算看起来很简单,但是在实际运用中还是需要我们去理解和掌握。

只有深入了解这些新的运算方式,才能更好地理解数学中更复杂的知识点。

五年级:定义新运算

五年级:定义新运算

专题一:定义新运算姓名“定义新运算”是针对已有的常规运算而言的。

例如常见的加、减、乘、除运算,有一定的运算定义,一定的运算符号,一定的运算法则,这些是约定俗成的四则运算。

而新运算的定义,是题目规定的,只在对应题目里有效,相同的符号,在不同的题目里可能有不同的定义。

新定义的运算往往由已学过的四则运算,按照一定的顺序组合而成。

解答这类习题的关键是,认真观察、分析,明确“新运算”的定义,再根据运算定义,找准要计算的习题中的数据与定义中的字母的对应关系,严格遵照定义规定代入数值,完成计算。

注意:①新定义运算中,括号的作用不变;②新定义运算都有自己的特点,不一定满足加法、乘法所满足的运算定律。

1、如果3*2=3+33=36;2*3=2+22+222=246;1*4=1+11+111+1111=1234.那么4*5等于多少?2、对于数a,b定义运算“▽”为:a▽b=(a+3)×(b-5),求5▽(6▽7)等于多少?3、对于数x,y,定义两种运算“*”及“△”如下:x*y=6×x+5×y,x△y=3×x×y,求(2*3)△4等于多少?4、规定a△b=a+(a+1)+(a+2)+…+(a+b-1),(a,b均为自然数,b>a)。

如果x△10=65,求x。

5、对自然数a,b,规定a※b=3a+2b-2。

求11※10。

6、对自然数a,b,规定a△b=a÷b×2+3。

⑴求702△6的值;⑵若256△x=19,求x的值。

7、对自然数a,b,规定a※b=a+b-1。

⑴计算:(7※8)※6;⑵已知:(5※x)※x=85,求x。

8、对于自然数a,b,规定a﹡b=a×b-a-b+1。

已知(2﹡a)﹡2=0,求a。

9、若“+”,“-”,“×”,“÷”,“()”的意义与通常相同,而式子中的数字却不是原来的数字,试问下面的4个算式:⑴8×7=8;⑵7×7×7=6;⑶(7+8+3)×9=39;⑷3×3=3,应该是我们通常的哪4个算式?。

六年级下册数学试题 - 专题7列式计算和定义新运算 全国通用 有答案

六年级下册数学试题 - 专题7列式计算和定义新运算  全国通用 有答案

7.列式计算和定义新运算知识要点梳理一、列式计算 1.文字式题的意义用语言文字表达,由数学术语和数字编成的数学题目,叫文字式题。

解答文字式题时,通常要列综合算式进行计算。

因此,解答文字式题的关键是正确列出算式。

2.文字式题的叙述形式(1)根据四则运算的意义叙述的题。

如“两个加数的和是65,一个加数是25.8,求另一个加数是多少?”;“9个2.25是多少?”等。

(2)根据算式各部分名称叙述的题。

如“除数是57,被除数是4.5,商是多少?” (3)根据算式直读法叙述的题。

如“1112减去34,差是多少?”;“45除以9等于多少?”(4)根据两数问的多少、倍数关系叙述的题。

如“比60多108的数是多少?”;“48的9倍是 多少?”(5)进行综合叙述的题。

如“6.72除以48与0.5的积,商是多少?” 3.解答文字式题的一般步骤(1)反复读题,弄清题意,找出题中所叙述的条件和问题。

(2)分析题目中有哪几种运算,确定先算什么,再算什么,最后算什么。

(3)根据题意列出算式。

(需要先求和或差时,必须添上小括号) (4)按照四则混合运算的顺序细心计算,并求出得数。

(5)进行检测。

(不必写出答句) 二、定义新运算解决定义新运算此类题目的方法是认真审题,读懂题意,这些新运算符号本身并不重要,重要的是寻找这些符号在特定条件下所规定的某种运算顺序,然后按照新定义的运算规则,把已知的数代人,转化成基本的运算。

考点精讲分析典例精讲考点1 文字型列式计算【例1】(1)0.15除以38的商加上5,再乘以14,积是多少?(2)一个数的58比0.4的倒数多3.5,求这个数。

【精析】(1)此题考查学生对运算顺序的把握,先除后加再乘,就可以算出结果。

(2)此题考查学生付运算顺序的把握,要分析题中的运算关系,先找出可以算的部分,再利用运算各部分量之间关系进行逆推。

【答案】(1)(0.15÷38+5)×14 =(25+5)×14=275×14=2720 (2)(1÷0.4+3.5)÷58=(52+72)÷58 =6÷58=485【归纳总结】解决此类题关键是能够准确的判断运算顺序,本题可以通过“商加上”和“再乘”等字眼得出先除后加再乘的顺序,列综合算式时需要括号时要依次添上小括号,中括号和大括号,最后的脱式计算要细心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档