平方根教学案
平方根 教案(教学设计)
平方根【第一课时】【教学目标】1.了解算术平方根的概念,会用根号表示一个数的算术平方根。
2.会求一个正数的算术平方根。
3.了解算术平方根的性质。
【教学重难点】1.算术平方根的概念、性质,会用根号表示一个正数的算术平方根。
2.算术平方根的概念、性质。
【教学过程】一、问题引入1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?学生活动:(1)完成填空:a2=_____;b2=_____;c2=_____;d2=_____;e2=_____;f2=_____。
(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?2.师生互动:集体交流后,说明无理数也需要一种表示方法。
二、讲授新课算术平方根的概念:一般地,如果一个正数的平方等于___,那么,这个正数就叫做___的算术平方根。
记为:“”读做根号。
特别地,0的算术平方根是0。
例1:分别写出下列各数的算术平方根。
(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。
)例2:自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间?学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。
三、小结1.内容总结:算术平方根的定义、表示;2.方法归纳:转化的数学方法:即将陌生的问题转化为熟悉的问题解决。
【第二课时】【教学目标】1.了解平方根的概念,会用根号表示一个数的平方根。
2.会求一个正数的平方根。
3.了解平方根和算术平方根的性质。
4.了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。
【教学重难点】1.了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。
2.平方根和算术平方根的区别。
负数没有平方根,即负数不能进行开平方运算。
【教学过程】一、复习提问1.算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。
算术平方根教学设计10篇
算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。
具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。
熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求的值。
(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的'值。
解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
平方根 教学设计教案
平方根教学设计教案第一章:平方根的概念介绍1.1 平方根的定义平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a 的二次方根。
例如:4的平方根是2,因为2^2 = 4。
1.2 平方根的性质正数的平方根有两个,它们互为相反数。
0的平方根是0。
负数的平方根不存在。
第二章:平方根的计算方法2.1 估算平方根使用平方根表格或计算器来估算一个数的平方根。
例如:估算9的平方根,可以找到接近9的平方数,如49和64,它们的平方根分别是7和8,9的平方根大约在7和8之间。
2.2 精确计算平方根使用平方根的定义和性质来精确计算一个数的平方根。
例如:计算36的平方根,可以找到一个数的平方等于36,即6^2 = 36,36的平方根是6。
第三章:平方根的应用3.1 求解平方根的问题求解形如“求x的平方根”的问题。
例如:求解x^2 = 64的平方根,可以得到x = ±8,因为8^2 = 64且(-8)^2 = 64。
3.2 求解平方根的方程求解形如“求解x^2 = a”的方程的平方根。
例如:求解x^2 = 9的平方根,可以得到x = ±3,因为3^2 = 9且(-3)^2 = 9。
第四章:平方根的性质和运算规则4.1 平方根的性质平方根的性质:如果a和b都是正数,a的平方根和b的平方根的乘积等于(ab)的平方根。
例如:如果a = 2和b = 3,2的平方根和3的平方根的乘积等于(23)的平方根,即2√2 3√3 = √(23)^2 = √36 = 6。
4.2 平方根的运算规则平方根的运算规则:如果a和b都是正数,a的平方根加上b的平方根等于(a+b)的平方根。
例如:如果a = 2和b = 3,2的平方根加上3的平方根等于(2+3)的平方根,即√2 + √3 = √5。
第五章:平方根的综合应用5.1 求解平方根的复合问题求解形如“求解x^2 = a且y^2 = b”的复合问题的平方根。
七年级数学下《平方根》教案
七年级数学下《平方根》教案一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的基本性质,能够进行简单的平方根运算。
2.过程与方法:通过观察、思考和探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的好奇心和探究欲,培养他们认真思考、勇于探索的精神。
二、教学内容与过程1.导入:通过回顾正方形的面积,引出平方根的概念。
教师可提出一些问题,如:“如果一个正方形的面积为8平方米,那么它的边长是多少?”引导学生思考并引出平方根的概念。
2.知识讲解:详细讲解平方根的定义、性质和运算方法。
通过实例进行解释,帮助学生深入理解平方根的概念。
同时,强调平方根与算术平方根的区别与联系。
3.探究活动:设计探究活动,让学生自己动手操作,探索平方根的基本性质和运算方法。
探究活动可以包括求一些数的平方根、比较不同数的平方根的大小等。
4.应用实践:设计实际问题,让学生运用所学知识解决,如求一些实际问题中的平方根等。
同时,可以引导学生探索平方根在实际生活中的应用。
5.总结与提升:总结平方根的主要知识点,强调重点和难点。
通过综合性题目,提升学生运用知识解决实际问题的能力。
同时,可以引导学生思考平方根与其他数学知识的联系,为后续学习打下基础。
三、教学方法与手段1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
同时,注重实例教学,通过实例帮助学生理解抽象的数学概念。
2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更好地理解平方根的概念和性质。
同时,鼓励学生动手操作,培养他们的实践能力。
四、教学评价与反馈1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整教学策略。
同时,鼓励学生积极参与课堂活动,发表自己的观点和见解。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。
同时,关注学生的作业完成情况,对有困难的学生进行个别辅导。
平方根教学设计
平方根教学设计平方根教学设计篇一教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。
引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。
注意引导学生发现被开方数与对应的算术平方根之间的关系。
本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。
由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。
因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。
课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。
同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。
在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。
策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。
教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。
2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。
平方根教学设计(教案)
平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。
2. 让学生掌握求一个数的平方根的方法。
教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。
2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。
教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。
2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。
章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。
2. 让学生能够熟练地进行平方根的计算。
教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。
2. 通过例题让学生理解平方根的运算规则,并进行练习。
教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。
2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。
章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。
2. 让学生能够运用平方根解决实际问题。
教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。
2. 通过例题让学生理解平方根的应用,并进行练习。
教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。
2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。
章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。
2. 让学生能够运用平方根的拓展知识解决实际问题。
教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。
2. 通过例题让学生理解平方根的拓展知识,并进行练习。
教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。
浙教版(2024)数学七年级上册《3.1平方根》教案及反思
浙教版(2024)数学七年级上册《平方根》教案及反思一、教学目标:【知识与技能目标】:1.了解平方根的概念,会用符号表示一个数的平方根。
2.掌握平方根的性质。
【过程与方法目标】:1.通过对平方根概念的学习,培养学生的抽象思维能力和逻辑推理能力。
2.通过求一个数的平方根的练习,提高学生的计算能力和解决问题的能力。
【情感价值观目标】:1.让学生在学习过程中体会数学的严谨性和逻辑性,培养学生对数学的兴趣和热爱。
2.通过小组合作学习,培养学生的合作意识和团队精神。
二、教材分析:《平方根》是浙教版(2024)数学七年级上册的内容。
主要讲述了学生学习了有理数、无理数、算术平方根等知识的基础上进行教学的,平方根的学习为后续学习实数、二次根式等知识奠定了基础,同时也为解决实际问题提供了重要的数学工具。
教材首先通过实际问题引入平方根的概念,让学生体会平方根在实际生活中的应用,接着介绍了平方根的性质和表示方法,以及如何求一个数的平方根;最后还安排了一些例题和练习题,帮助学生巩固所学知识。
三、学情分析:七年级的学生已经学习了有理数、无理数和算术平方根等知识,为学习平方根奠定了基础;七年级的学生抽象思维能力和逻辑推理能力还比较弱,需要通过具体的实例和直观的图形来帮助他们理解抽象的数学概念,同时学生在学习过程中可能会出现对平方根概念理解不透彻、计算错误等问题,需要教师及时给予指导和纠正。
四、教学重难点:【教学重点】:1.平方根的概念和性质。
2.求一个数的平方根。
【教学难点】:1.对平方根概念的理解。
2.负数没有平方根的理解。
五、教学方法和策略:【教学方法】:1.讲授法:讲解平方根的概念、性质和求法。
2.演示法:通过实例演示,帮助学生理解平方根的概念和求法。
3.练习法:通过练习题的训练,巩固学生所学知识。
4.小组合作学习法:组织学生进行小组合作学习,培养学生的合作意识和团队精神。
【教学策略】:1.创设情境:通过实际问题创设情境,激发学生的学习兴趣。
《平方根》教案.doc
《平方根》教案.doc一、教学内容本次教学我们探讨数学中的平方根概念及其运算。
主要内容包括:平方根的定义、平方根的性质、平方根的计算和应用。
二、教学目标1.了解平方根的概念及其性质,能根据概念解答有关问题。
2.掌握平方根的计算方法,能计算简单数的平方根。
3.培养学生分析解决问题的思维能力,使他们能够理解平方根在实际生活中的运用。
三、教学重点3.平方根在实际生活中的应用。
四、教学方法1.情境教学法。
通过具体的实例,引导学生理解平方根的概念及其性质。
2.导入问题法。
引导学生思考问题,鼓励他们动手解决问题。
3.讲授法。
采取问题式讲授,将知识点和实例结合起来进行讲解。
4.练习和讨论。
及时引导学生进行练习和思考,通过讨论加深对知识点的理解。
五、教学过程1.导入问题如果一个数的平方等于16,那么这个数是多少?2.引出平方根学完上面的问题,我们会很容易想到,这个数是4。
我们称4是16的平方根。
平方根用符号√表示,可以写成√16 = 4。
同样的,√25 = 5,√36 = 6,√49 = 7,√64 = 8。
请大家发现它们之间的特征。
3.解读平方根(1)平方根是一个数。
因此,√16 = 4,中的4是16的平方根。
注意:平方根不一定是整数。
比如,√2就不是整数。
√4=2,-2 , √36 =6,-6说明:因为正数的平方和负数的平方都相同,所以一个数的平方根可以有两个,一个是正数,一个是负数。
但在数学中只有一个正数的平方根称为该数的正平方根。
所以,√16 = 4,它的负平方根是-4。
但在我们的日常生活中,我们通常说“16 的平方根是4”,不加说明的话,一般指正平方根。
(3)两个数的差的平方根,称作这两个数之间的距离。
任意两个数a和b之间的距离,等于它们之间的差的绝对值,即|a - b|。
这可以从两数间的距离公式中得出:两点(x1,y1)和(x2,y2)之间的距离= √[(x2 - x1)² + (y2 - y1)²](4)奇数的平方一定是奇数,偶数的平方仍然是偶数。
平方根教学设计
平方根教学设计(一)教学设计思想:平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:1.引导学生建立清晰的概念系统,首先在第1课进要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示.对于a表示a的算术平方根的条件是,被开方数a表示非负数,而a本身也表示非负数,因此在教学中不能要求学生死记硬背,要向学生说明规定的合理性.为此,提出算术平方根的一种几何解释,即面积为a的正方形(a为正数),它的边长为a(a也是正数),从而直观、形象地说明了算术平方根约定的合理性.2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.教学目标:知识与技能:1.能说出平方根和算术平方根的概念,会用根号表示一个数的平方根。
2.知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。
3a的平方根。
过程与方法:1.通过对比体会平方根、算术平方根的联系和区别;2.在学习开平方运算求一个数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系.情感态度价值观:进一步感受到所学数学知识之间的内在联系.教学重难点:重点:平方根和算术平方根的概念和求法.难点:弄清平方根与算术平方根的意义教学方法:探究学习课时安排2课时教学用具多媒体教学过程:第一课时一、引入我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如个面积为50 平方米的正方形展厅,它的边长应是多少?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根.二、大家谈谈(1)计算:42,(-4)2;23()5,23()5-;(10)2,(-10)202(2)如果x2=16,则x等于多少?因为42=16所以x=4;又因为(-4)2=16,所以x=-4.4或-4的平方都等于16,可以表示为(±4)2=16.因为4或-4的平方都等于16,我们把4及-4叫做16的平方根.一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根).就是说,如果x2=a,那么x就叫做a的平方根.比如100的平方根是10与-10.因为(±10)2=100,所以10与-10是100的平方根.你能说出49,144的平方根吗?三、一起探究1.当一个正数和一个负数互为相反数时,它们的平方有什么关系?2.正数有平方根吗?如果有,有几个?它们的有什么关系?3.0有平方根吗?如果有,它是什么数?4.负数有平方根吗?学生独自思考,通过具体实例弄懂上述问题,然后总结出:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
平方根教学设计(教案)
平方根教学设计(教案)第一章:平方根的引入1.1 平方根的概念解释平方根的定义通过实际例子说明平方根的概念1.2 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质第二章:平方根的计算方法2.1 手算法介绍手算法计算平方根的方法通过实际例子演示手算法计算平方根的过程2.2 计算器法介绍如何使用计算器计算平方根通过实际例子演示计算器法计算平方根的过程第三章:平方根的应用3.1 实际问题解决通过实际问题引入平方根的应用引导学生运用平方根的性质和计算方法解决问题3.2 平方根在科学和工程中的应用介绍平方根在科学和工程中的常见应用通过实际例子展示平方根在科学和工程中的重要性第四章:平方根的性质和判定4.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质4.2 平方根的判定介绍如何判定一个数的平方根通过实际例子演示如何判定一个数的平方根第五章:平方根的综合练习5.1 练习题提供一些有关平方根的练习题引导学生通过运用平方根的性质和计算方法来解决练习题5.2 应用题提供一些有关平方根应用的题目引导学生通过运用平方根的性质和计算方法来解决应用题第六章:平方根的图像6.1 平方根的图像特点解释平方根函数的图像特点通过图形展示平方根函数的图像特点6.2 利用图像求解平方根介绍如何利用平方根函数的图像来求解平方根通过实际例子演示如何利用图像求解平方根第七章:平方根的性质和定理7.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质7.2 平方根的定理介绍与平方根相关的定理,如平方根的乘积等于原数的乘积等通过实际例子来展示平方根的定理第八章:平方根在代数中的应用8.1 平方根在解方程中的应用介绍平方根在解方程中的应用通过实际例子演示如何利用平方根来解方程8.2 平方根在证明中的应用介绍平方根在证明中的应用通过实际例子演示如何利用平方根来证明代数式第九章:平方根在实际生活中的应用9.1 平方根在几何中的应用介绍平方根在几何中的应用,如求解三角形的面积等通过实际例子展示平方根在几何中的应用9.2 平方根在其他领域中的应用介绍平方根在其他领域中的应用,如物理学、经济学等通过实际例子展示平方根在其他领域中的应用第十章:平方根的综合练习与拓展10.1 综合练习题提供一些有关平方根的综合练习题引导学生通过运用平方根的性质、计算方法和图像来解决练习题10.2 拓展题目提供一些有关平方根的拓展题目引导学生通过运用平方根的知识来解决拓展题目,提高学生的思维能力重点和难点解析六、平方根的图像:理解平方根函数的图像特点对于学生来说是一个难点,因为它涉及到函数图像的直观理解和数学概念的结合。
北师版八上算术平方根说课稿6篇
北师版八上算术平方根说课稿6篇北师版八上算术平方根说课稿6篇作为一位杰出的老师,时常要开展说课稿准备工作,编写说课稿是提高业务素质的有效途径。
下面是小编为大家整理的北师版八上算术平方根说课稿,如果大家喜欢可以分享给身边的朋友。
北师版八上算术平方根说课稿1教学目标(一)知识目标:1.了解算术平方根的概念,会用根号表示一个正数的算术平方根。
2.了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根。
3.了解算术平方根的性质。
(二)能力目标:1.加强概念形成的教学,提高学生的思维水平。
2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神。
(三)情感态度价值观:1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。
2.训练学生动脑,动口和动手的能力。
2学情分析了解算术平方根的概念,会用根号表示一个正数的算术平方根;了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根。
加强概念形成的教学,提高学生的思维水平;.鼓励学生进行探索和交流,培养他们的创新意识和合作精神。
让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。
3重点难点1.重点:算术平方根的概念.性质,会用根号表示一个正数的算术平方根。
2.难点:算术平方根的概念.性质。
4教学过程4.1第一学时教学活动活动1【导入】一.情境导入情境导入1.从身边小事儿说起,请同学们欣赏本课导图,并回答问题。
学校为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长应为多少2.学校要举行美术作品比赛,小鸥很高兴,她想裁出一块面积为25分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?(谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?)活动2【讲授】合作探究1.完成下表:正方形的面积191636边长这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.(通过解决这个问题,我们就引出了算术平方根的概念.)正数3的平方等于9,我们把正数3叫做9的算术平方根.正数4的平方等于16,我们把正数4叫做16的算术平方根.说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?揭示课题2.什么是算术平方根呢?(出示算术平方根的定义)请大家把算术平方根概念理解着读两遍.(生读)3.学习68页的例1(1)其中第1题示范写法,第2.3题在示范的基础上学生说出答案,并且从这3道题中总结出规律。
平方根教案
平方根教案【篇一:平方根与立方根(教案)】平方根1教学目的:1、使学生理解数的平方根的概念,能运用根号表示一个数的平方根;2、掌握用平方运算求某些数的平方根的方法;教学重点和难点:重点:平方根的概念及求某些数的平方根的方法;难点:平方根的概念;关键:对符号“”意义的理解。
学法指导:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
教法指导:1、针对八年级学生的认知特点,体现“以学生发展为本”的教育理念,发展学生的个性特长,让学生学会学习。
本堂课主要采用引探式和启发式的教学方法,教师引导为辅,学生自主思考解决问题为主。
2、数学概念的学习比较抽象、枯燥,用多媒体辅助教学,增加课堂的趣味性,提高学生的学习积极性。
教学过程:一、引入新课:我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的。
例如已知正方形一边长是4厘米,那么它的一条对角线的长是多少厘米?解决这个问题就要运用一种新的运算方法,这种运算叫做开方。
这节课我们就要学习开方运算和平方根。
可以先预练1—20的平方计算。
二、新课学习: 1、知识设疑:(1)计算:4; (-4);(0.8); (-0.8)(2)如果已知一个数的平方等于162、知识形成:知识点一:我们可以设这个数为x,则x=16,问题归结为求x。
这个问题可以通过乘方运算来解决。
因为4=16所以x=4;又因为(-4)=16,所以x=-4。
4或-4的平方都等于16,22222222因为4或-4的平方都等于16,我们把4及-4叫做16的平方根。
概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。
就是说,如果x=a,那么x就叫做a的平方根。
如:23与-23都是529的平方根。
问:(1)16,49,100,1 100都是正数,它们有几个平方根?平方根之间有什么关系? (2)0的平方根是什么?概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
平方根 精品课教案
1.探索:
学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为 。
接下来教师可以再深入地引导此问题:
如果正方形的面积分别是1.9.16.36. ,那么正方形的边长分别是多少呢?
学生会求出边长分别是1.3.4.6. ,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
二、过程与方法:
1.通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
2.通过折纸认识第一个无理数 ,并通过估计它的大小认识无限不循环小数的特点。通过学习平方根,进一步建立数感和符号感,发展抽象思维。
3.通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力。
平方根
【教学目标】
一、知识与技能:
1.通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;
2.会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。
3.了解平方根的概念,会用根号表示正数的平方根;了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根。
设大正方形的边长为 ,则 ,由算术平方根的意义可知 ,
所以大正方形的边长为 。
二、讨论 的大小:
由上面的实验我们认识了 ,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论 的大小。
因为 ,所以 ,即
……
如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。 =1.41421356……
平方根数学备课教案5篇
平方根数学备课教案5篇平方根数学备课教案【5篇】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
下面给大家分享平方根数学备课教案,欢迎阅读!平方根数学备课教案精选篇1人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根(1)教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
教学难点根据算术平方根的概念正确求出非负数的算术平方根。
知识重点算术平方根的概念。
教学过程(师生活动)设计理念情境导入同学们,20__年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度:(米/秒).、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题(问题略),然后提出问题:你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
初中数学《平方根》教案
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。
一个正数有两个实平方根,它们互为相反数,负数没有平方根。
下面就是小编给大家带来的初中数学《平方根》教案,希望能帮助到大家!数学《平方根》教案一一、教学目标1.理解一个数平方根和算术平方根的意义;2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;3.通过本节的训练,提高学生的逻辑思维能力;4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.二、教学重点和难点教学重点:平方根和算术平方根的概念及求法.教学难点:平方根与算术平方根联系与区别.三、教学方法讲练结合.四、教学手段幻灯片.五、教学过程(一)提问1.已知一正方形面积为50平方米,那么它的边长应为多少?2.已知一个数的平方等于1000,那么这个数是多少?3.一只容积为立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空1.( )2=9;2.( )2 =;3.5.( )2=学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.由练习引出平方根的概念.(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).用数学语言表达即为:若x2=a,则x叫做a的平方根.由练习知:±3是9的平方根;±是的平方根;0的平方根是0;±是的平方根.由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:( )2=-4学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).(三)平方根性质1.一个正数有两个平方根,它们互为相反数.有一个平方根,它是0本身.3.负数没有平方根.(四)开平方求一个数a的平方根的运算,叫做开平方的运算.由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
小学数学教学案例学习数的平方与平方根
小学数学教学案例学习数的平方与平方根在小学数学教学中,学习数的平方与平方根是一个非常重要的内容。
通过案例学习的方式,可以帮助学生更好地理解和掌握这一知识点,提高他们的数学思维能力和解题能力。
本文将通过几个具体的案例,介绍如何在小学数学教学中进行数的平方与平方根的学习。
案例一:小明和小亮的足球比赛在小学三年级的一个数学课上,老师为了帮助学生理解平方的概念,设置了一个足球比赛的案例。
小明和小亮在离开学校之后约定在公园进行足球比赛,他们各自需要准备一块相同大小的草坪作为比赛场地。
小明将草坪的边长定为5米,而小亮将草坪的边长定为7米。
请问,这两块草坪的面积分别是多少?通过这个案例,学生们可以通过计算正方形的面积来求解。
老师可以让学生按照公式“面积=边长×边长”来计算得出结果。
通过比较两个草坪面积的大小,引导学生认识到数的平方概念,并理解平方与面积的关系。
案例二:小华的球队排名在小学五年级的数学课上,小华的班级举行了一次足球比赛,共有8支球队参加。
每支球队比赛后都会得到一定的积分,积分越高,排名越靠前。
小华将这些球队的积分按从高到低排列如下:9,16,25,36,4,1,49,64。
请问,排名第三的球队积分是多少?通过这个案例,可以引导学生使用平方根的概念来解决问题。
老师可以让学生理解,排名第三的球队积分与平方根的关系。
通过学生们的计算,他们可以发现积分的平方根正好是球队的排名。
这样,学生们不仅能获得正确答案,还能从中理解平方根的概念和运用。
案例三:小杰与正方形纸片在小学四年级的数学课上,小杰遇到了一个问题。
他拿了一个正方形的纸片,将它从中间对折,然后从中间再次对折,重复了两次后,他发现得到了一个很小的正方形纸片。
他想知道这个小正方形纸片的边长是多少。
通过这个案例,可以引导学生运用数的平方根的概念来解决问题。
老师可以让学生思考小正方形纸片的边长与折叠次数的关系。
通过学生们的讨论,他们可以得出结论:每次对折相当于边长缩小一半,经过两次对折后,小正方形纸片的边长是原正方形纸片边长的平方根的一半。
小学四年级数学上册教案认识平方数与平方根的计算
小学四年级数学上册教案认识平方数与平方根的计算认识平方数与平方根的计算教学目标:1. 了解什么是平方数和平方根。
2. 掌握平方数和平方根的计算方法。
3. 能够在实际问题中应用平方数和平方根的概念。
教学重点:1. 平方数的概念和计算方法。
2. 平方根的概念和计算方法。
教学难点:1. 平方根的计算方法。
2. 平方数和平方根的应用。
教学准备:教师准备:教案、黑板、粉笔、教具、练习册。
学生准备:练习册、作业笔。
教学过程:一、导入(5分钟)教师可以通过出示一些图像或物品的数量,让学生回忆并说出相应的平方数。
例如:展示4个苹果、9只小鸟等。
二、展示与讲解(15分钟)在黑板上,教师写出几个平方数,如:1²=1,2²=4,3²=9,4²=16等,并解释平方数的定义:一个数的平方等于该数乘以自己。
接着,教师讲解平方根的概念,即平方数的算术平方根。
教师提问学生:“9的平方根是多少?”学生回答“3”,教师解释3是9的算术平方根。
三、实际操作(20分钟)教师出示一些示例题让学生操作计算平方数和平方根,并在黑板上进行逐步的解答。
示例题1:计算下面的平方数1. 5²=252. 8²=643. 11²=121示例题2:计算下面的平方根1. √9=32. √16=43. √25=5四、练习与巩固(25分钟)学生打开练习册,在其中完成一些练习题,巩固所学的平方数和平方根的计算方法。
练习题1:填入空白1. 4²=162. 9²=813. 7²=49练习题2:计算下面的平方根1. √36=62. √49=73. √64=8五、拓展应用(20分钟)教师提供一些实际生活中与平方数和平方根相关的问题,并引导学生思考如何运用所学知识解决问题。
问题1:一个正方形花坛的边长是6米,那么它的面积是多少平方米?答案:面积=边长²=6²=36平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七 年级 下 学期 数学 学科教学案系列 编号 712 班级: 姓名:
算术平方根教学案
【学习目标】了解数的算术平方根的概念,理解开平方的运算是乘方运算的逆运
算;
【重 点】1.了解数的算术平方根的概念
2.会求某些非负数的平方根,会用根号表示一个数的开平方。
【难 a 是非负数;
一、预习导学
1、你还记得1~20之间整数的平方吗?(要求能熟记)
2.学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252
dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长
应取多少d m ?如果面积分别为92dm 、162dm 、362dm 、254
2dm 呢?说说,你是怎样算出来的?如果这块画布的面积是212dm 呢?
二.探究活动
活动一:自主探索:学生独立看书,自学教材
总结:一般地,如果一个正数x 的平方为a ,即2x a ,那么正数..x 叫做a 的
____________a ,其中a 叫做___________.
另外:0的算术平方根是_____
活动二
例1求下列各数的算术平方根
(1) 100 ⑵49
64⑶ 0.0001 ⑷ 0 ⑸1
2
4
活动三:
存在面积为2的正方形吗?
能否用两个面积为1dm2的小正方形拼成一个面积为2 dm2的大正方形?
活动四
思考:-4有算术平方根吗?
例题2:
3
有意义,则x的取值范围是()
A. 2
x≠ B. 2
x≥ C. 2
x> D. 2
x≤
三、学习体会
对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?
四、巩固提升
1、非负数a的算术平方根表示为___,225的算术平方根是____,0的算术平
方根是____
2、____,_____
===
3、_____, 0.64
-的算术平方根____
4、若x是49的算术平方根,则x=()
A. 7
B. -7
C. 49
D.-49
5、9的算术平方根是_____________ (-3)2的算术平方根是___________
9的值为____________ 9的算术平方根是__________
2
(-的值为__________ 2)3
(-的算术平方根是_______。
)3
67
=,则x的算术平方根是()
7、一个自然数的算术平方根为a,那么与这个自然数相邻的下一个自然数的
算术平方根是_______
五、能力拓展
8、小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3 :2,她不知道能否裁得出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。
”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
9、比较下列各组数的大小
(1)8与10(2)65与8
(3)
21
5-
与0.5 (4)
21
5-
与1六、课后反思。