幂函数教案16新必修1
高中数学《幂函数》教案 新人教A版必修1
高中数学《幂函数》教案新人教A版必修1【教学目标】【知识与技能】1.理解幂函数的概念.2.通过具体实例研究幂函数的图象和性质,并初步进行应用.【过程与方法】通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法.【情感、态度价值观】1.进一步渗透数形结合、分类讨论的思想方法.2.体会幂函数的变化规律及蕴含其中的性质.3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中渗透辩证唯物主义的观点.【重点难点】重点:通过六个具体的幂函数认识概念,研究性质,体会图象的变化规律.难点:画六个幂函数的图象并由图象概括幂函数的一般性质.【突破方式】教师引导学生动手作图、媒体演示多个幂函数图象,深化学生对图象的直观认识;观察幂函数图象,归纳幂函数的性质,加强学生对幂函数性质的理解和记忆.【教学策略】【教学顺序】复习引入,归纳定义,研究图象,归纳性质,应用性质.【教学方法与手段】1.采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义和性质,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性.2.利用投影仪及计算机辅助教学.超级链接到课件3.3幂函数(1)(个人独立制作)【教学过程】创设情境前面我们学习了函数定义,研究了函数的一般性质,并且研究了指数函数和对数函数.函数这个大家庭有很多成员,如一次函数、二次函数、反比例函数、指数函数、对数函数等.它们在数学中的都承担着各自的任务,每个成员又都有它们各自鲜活的个性.今天,我们利用研究指数函数、对数函数的研究方法,再来认识一位新成员.请大家看如下问题.(板书:.,,,,,12132 -=====x y x y x y x y x y )抽取这几个解析式结构上的共同特征:我们能够发现它们的右端都是幂的形式,并且底数是自变量x ,幂指数是常数. 也就是说,它们可以写成ax y =的形式,这种形式的函数就是幂函数.(板书课题:幂函数) 探究新知幂函数的定义(形式定义)一般地,形如)(R x y ∈=αα的函数称为幂函数,其中α是常数.自变量x 是幂的底数,换句话说,幂的底数是单变量x ,幂指数是个常数,幂的系数是1,符合上述形式的函数,就是幂函数.请同学们举出一个具体的幂函数.从引例和同学们刚才举的例子中,我们可以发现,幂指数α可以是正数、负数,也可以是0.幂函数与指数函数,对数函数一样,都是基本初等函数. 课堂练习1.指出下列函数中的幂函数..,,,,5xy x y x y x x y xy 51222===+==探究新知按照从特殊到一般的原则,我们先来研究几个具有代表意义的幂函数..,,,,,212132--======x y x y x y x y x y x y请同学们用描点法在平面直角坐标系中画出上述函数的图象.我们在前面的课程中已经研究过了函数y x =与2y x =的性质,它们的图象已经呈现在坐标纸中了,在这里,我们只画出余下四个函数的图象.(时间关系,分四组)根据手里作出的图象,以小组为单位对照函数图象,讨论以下四个问题: 1.描点法画函数图象的步骤;(列表、描点、连线) 2.互相检查函数图象的画法,图象是否一致; 3.讨论在画图象过程中出现的问题;4.探究幂函数图象的变化规律,归纳幂函数的性质.通过刚才观察同学们作图,其中几个同学的图象特别规范,请看. 变化趋势. 首先可以很明显的看到,上述六个幂函数的图象都过同一个定点(1,1).从这些函数的图象我们可以看到,幂函数随着幂指数的取值不同,它们的性质和图象也存在着差异,请同学们根据这个表格,寻找这6个幂函数的共性?定义域不同,但有公共区间(0,+∞).为了更好地观察函数图象特征,总结幂函数的性质,我们把6个幂函数的图象画在同一平面直角坐标系中.(这是幂函数……的图象……)总结性质虽然这6个幂函数图象所分布的象限不同,但是我们还是不难发现它们共同的特征.这6个幂函数在(0,+∞)都有定义,图象都过点(1,1).注意到这6个幂函数在第一象限内的单调性的差异,我们来观察当0>α时的函数图象,(演示几何画板,隐藏0<α时图象)很明显,它们的图象除了过点(1,1)外,还过原点,并且在区间),0[+∞上是增函数.再来观察当0<α时的函数图象,(演示几何画板,显示0<α时图象,隐藏0>α时图象)幂函数在区间),0(+∞上是减函数.在第一象限内,当自变量x 取值从右边趋于0时,图象在y 轴右方无限地靠近y 轴,但不与y 轴相交,当自变量x 取值趋于∞+时,图象在x 轴上方无限地靠近x 轴,但不与x 轴相交.演示画板,改变幂指数的值,观察函数图象的变化趋势,不难发现,所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);当幂指数0>α时,幂函数都过原点,在),0[+∞上是增函数;当幂指数0<α时,在),0(+∞上是减函数,在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴.0>α 0<α在(0,+∞)有定义,图象过点(1,1);在),0[+∞上是增函数 在),0(+∞上是减函数 图象过原点在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴.下面我们应用幂函数的性质来解决问题. 例题解析例1 比较下列两个代数式值的大小:.2,)2)(4(;,)1)(3(;)3(,)2)(2(;4.2,3.2)1(323225.15.123234343----++a a a分析:观察所给的两个代数式,都是幂的形式.又因为幂指数相同,而底数不同,所以想到要利用幂函数的性质解决此类问题.(1)解:考察幂函数43x y =,因为43x y =在(0,+∞)上单调递增,而且2.3<2.4,所以43434.23.2<.以下各题同理可解:.2)2)(4(;)1)(3(;)3()2)(2(323225.15.12323----≤+>+>a a a例2 讨论函数32x y =的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性. 解:要使3232x x y ==有意义,x 可以取任意实数,故函数定义域为R .∵f (-x )=3232)(x x =-=f (x ), ∴函数32x y =是偶函数; x1 2 3 4 … y x = 01 1.59 2.08 2.52 …幂函数32x y =在[0,+∞)上单调递增,在(-∞,0)上单调递减.思考与讨论幂函数)(R x y ∈=αα,当,5,,3,1 =α(正奇数)时,函数有哪些性质? (演示画板)定义域为R ,值域为R ,是奇函数,在(-∞,+∞)上是增函数. 当,6,,4,2 =α(正偶数)时,这类幂函数的性质和特点,留做同学们课下讨论. 课堂练习2.幂函数43x y =的单调递增区间是________.答案:[)+∞,0 3.2121211.1,9.0,2.1===-c b a 的大小关系是________.答案a >b >c归纳小结本节课我们学习了幂函数的定义,通过作出6个具有代表意义的幂函数的图象,归纳总结幂函数的共同性质,这也是我们研究函数的一般思想方法. 布置作业作出函数23x y =的图象,根据图象讨论这个函数有哪些性质,并给出证明.通过本节课的学习,相信幂函数已经在大家的头脑中留下十分深刻的印象.最后,让我们在悠扬的音乐声中给大家展示一个数学公式,这是作为基本初等函数的幂函数在高等数学中的应用,用含有阶乘的幂指数是正整数的幂函数形式来表示xe ——泰勒公式.)(!!3!2132R x n x x x x e nx∈++++++=。
高中数学 (幂函数)示范教案 新人教A版必修1
2.3 幂函数整体设计 教学分析幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究y =x,y =x 2,y =x 3,y =x -1,y =x 21等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x 2,y=x -1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 三维目标1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣.2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望.3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力. 重点难点教学重点:从五个具体的幂函数中认识幂函数的概念和性质. 教学难点:根据幂函数的单调性比较两个同指数的指数式的大小. 课时安排 1课时教学过程导入新课 思路11.如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?根据函数的定义可知,这里p 是w 的函数.2.如果正方形的边长为a,那么正方形的面积S=a 2,这里S 是a 的函数.3.如果正方体的边长为a,那么正方体的体积V=a 3,这里V 是a 的函数. 4.如果正方形场地面积为S,那么正方形的边长a=S 21,这里a 是S 的函数.5.如果某人t s 内骑车行进了1 km,那么他骑车的速度v=t -1km/s,这里v 是t 的函数. 以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).思路2.我们前面学习了三类具体的初等函数:二次函数、指数函数和对数函数,这一节课我们再学习一种新的函数——幂函数,教师板书课题:幂函数. 推进新课 新知探究 提出问题问题①:给出下列函数:y=x,y=x 21,y=x 2,y=x -1,y=x 3,考察这些解析式的特点,总结出来,是否为指数函数?问题②:根据①,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢? 问题④:画出y=x,y=x 21,y=x 2,y=x -1,y=x 3五个函数图象,完成下列表格.问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断? 问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示. 讨论结果:①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=x α(x∈R )的函数称为幂函数,其中x 是自变量,α是常数.如y=x 2,y=x 21,y=x 3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数. ③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x 21,y=x 2,y=x 3,y=x -1的图象. 列表:图2-3-1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.⑤第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断.⑥幂函数y=x α的性质.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:1x=1); (2)当α>0时,幂函数的图象都通过原点,并且在\[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).特别地,当α>1时,x∈(0,1),y=x 2的图象都在y=x 图象的下方,形状向下凸,α越大,下凸的程度越大.当0<α<1时,x∈(0,1),y=x 2的图象都在y=x 的图象上方,形状向上凸,α越小,上凸的程度越大.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 应用示例思路1例1判断下列函数哪些是幂函数. ①y=0.2x;②y=x -3;③y=x -2;④y=x 51.活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=x α(x∈R )的函数称为幂函数,变量x 的系数为1,指数α是一个常数,严格按这个标准来判断.解:①y=0.2x的底数是0.2,因此不是幂函数;②y=x -3的底数是变量,指数是常数,因此是幂函数;③y=x -2的底数是变量,指数是常数,因此是幂函数; ④y=x 51的底数是变量,指数是常数,因此是幂函数. 点评:判断函数是否是幂函数要严格按定义来判断. 变式训练判别下列函数中有几个幂函数?①y=x 31;②y=2x 2;③y=x 32;④y=x 2+x;⑤y=-x 3.解:①③的底数是变量,指数是常数,因此①③是幂函数;②的变量x 2的系数为2,因此不是幂函数;④的变量是和的形式,因此也不是幂函数;⑤的变量x 3的系数为-1,因此不是幂函数.例2求下列幂函数的定义域,并指出其奇偶性、单调性. (1)y=x 32,(2)y=x23 ,(3)y=x -2.活动:学生思考,小组讨论,教师引导,学生展示思维过程,教师评价.根据你的学习经历,回顾求一个函数的定义域的方法,判断函数奇偶性、单调性的方法.判断函数奇偶性、单调性的方法,一般用定义法.解决有关函数求定义域的问题时,可以从以下几个方面来考虑:列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域.解:(1)要使函数y=x 32有意义,只需y=32x 有意义,即x∈R .所以函数y=x 32的定义域是x∈R.又f(-x)=f(x),所以函数y=x 32是偶函数,它在(-∞,0]上是减函数,在[0,+∞)上是增函数.(2)要使函数y=x23-有意义,只需y=231x 有意义,即x∈R +,所以函数y=x23-的定义域是R +,由于函数y=x23-的定义域不关于原点对称,所以函数y=x23-是非奇非偶的函数,它在(0,+∞)上是减函数.(3)要使函数y=x -2有意义,只需y=21x有意义,即x≠0,所以函数y=x -2的定义域是x≠0,又f(-x)=f(x),所以函数y=x -2是偶函数,它在(-∞,0)上是增函数,在(0,+∞)上是减函数. 点评:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域,求函数的定义域的本质是解不等式或不等式组. 例3证明幂函数f(x)=x 在[0,+∞)上是增函数.活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导. 证明函数的单调性一般用定义法,有时利用复合函数的单调性. 证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=21x -x =212121))((x x x x x x ++-=2121x x x x +-,因为x 1-x 2<0,x 1+x 2>0,所以2121x x x x +-<0.所以f(x 1)<f(x 2),即f(x)=x 在[0,+∞)上是增函数.点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x 1)与f(x 2)的符号要一致. 思路2例1函数y =(x 2-2x )21-的定义域是( )A.{x|x≠0或x≠2}B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.(0,2) 分析:函数y =(x 2-2x )21-化为y=xx 212-,要使函数有意义需x 2-2x >0,即x >2或x <0,所以函数的定义域为{x|x >2或x <0}. 答案:B 变式训练函数y =(1-x 2)21的值域是( )A.[0,+∞)B.(0,1]C.(0,1)D.[0,1] 活动:学生独立解题,先思考,然后上黑板板演,教师巡视指导. 函数的值域要根据函数的定义域来求.函数可化为根式形式,偶次方根号的被开方数大于零,转化为等式或不等式来解,可得定义域,这是复合函数求值域问题,利用换元法. 分析:令t =1-x 2,则y =t ,因为函数的定义域是{x|-1≤x≤1},所以0≤t≤1.所以0≤y≤1. 答案:D点评:注意换元法在解题中的应用. 例2 比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2. 活动:学生先思考或回忆,然后讨论交流,教师适时提示点拨. 比较数的大小,常借助于函数的单调性. 对(1)(2)可直接利用幂函数的单调性.对(3)只利用幂函数的单调性是不够的,还要利用指数函数的单调性,事实上,这里0.30.3可作为中间量.解:(1)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x 0.1的单调性,在第一象限内函数单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x -0.2的单调性,在第一象限内函数单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,考察函数y=x 0.3的单调性,在第一象限内函数单调递增,又因为0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,考察函数y=0.3x的单调性,它在定义域内函数单调递减,又因为0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.另外,本题还有图象法,计算结果等方法,留作同学们自己完成. 点评:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性. 知能训练1.下列函数中,是幂函数的是( )A.y=2xB.y=2x 3C.y=x1 D.y=2x2.下列结论正确的是( )A.幂函数的图象一定过原点B.当α<0时,幂函数y=x α是减函数C.当α>0时,幂函数y=x α是增函数D.函数y=x 2既是二次函数,也是幂函数 3.下列函数中,在(-∞,0)是增函数的是( )A.y=x 3B.y=x 2C.y=x1D.y=x 234.已知某幂函数的图象经过点(2,2),则这个函数的解析式为. 答案:1.C 2.D 3.A 4.y=x 21拓展提升分别在同一坐标系中作出下列函数的图象,通过图象说明它们之间的关系.①y=x -1,y =x -2,y=x -3;②y=x21-,y =x31-;③y=x,y=x 2,y=x 3;④y=x 21,y =x 31.活动:学生思考或交流,探讨作图的方法,教师及时提示,必要时,利用几何画板演示. 解:利用描点法,在同一坐标系中画出上述四组函数的图象如图2-3-2、图2-3-3,图2-3-4、图2-3-5.图2-3-2 图2-3-3图2-3-4 图2-3-5①观察图2-3-2得到:函数y =x -1、y =x -2、y=x -3的图象都过点(1,1),且在第一象限随x 的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x 轴,向上无限接近y 轴,指数越小,向右无限接近x 轴的图象在下方,向上离y 轴越远. ②观察图2-3-3得到: 函数y =x21-、y =x31-的图象都过点(1,1),且在第一象限随x 的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x 轴,向上无限接近y 轴,指数越小,向右无限接近x 轴的图象在下方,向上离y 轴越远. ③观察图2-3-4得到:函数y=x 、y=x 2、y=x 3的图象过点(1,1)、(0,0),且在第一象限随x 的增大而上升,函数在区间[0,+∞)上是单调增函数,指数越大图象下凸越大,在第一象限来看,图象向上离y 轴近,向下离y 轴近.④观察图2-3-5得到:函数y=x 21、y =x 31的图象过点(1,1)、(0,0),且在第一象限随x 的增大而上升,函数在区间[0,+∞)上是单调增函数,指数越大图象上凸越大,在第一象限来看,图象在点(1,1)的左边离y 轴近,在点(1,1)的右边离x 轴近.根据上述规律可以判断函数图象的分布情况. 课堂小结1.幂函数的概念.2.幂函数的性质.3.幂函数的性质的应用. 作业课本P 87习题2.3 1、2、3.设计感想幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数,课本内容较少,但高考内容不少,应适当引申,所以设计了一些课本上没有的题目类型,以扩展同学们的视野,同时由于作图的内容较多,建议抓住关键点作图,要会熟练地运用计算机或计算器作图,强化对知识的理解.习题详解(课本第79页习题2.3) 1.函数y=21x 是幂函数. 2.解析:设幂函数的解析式为f (x )=x α, 因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v=k·r 4; (2)把r=3,v=400代入v=k·r 4中,得k=43400=81400,即v=81400r 4;(3)把r=5代入v=81400r 4,得v=81400×54≈3 086(cm 3/s ),即r=5 cm 时,该气体的流量速率为3 086 cm 3/s.。
必修1教案2.3幂函数
2.3 幂函数(一)教学目标1.知识与技能(1)理解幂函数的概念,会画幂函数y =x ,y =x 2,y =x 3,y =x -1,y =x 21的图象.(2)结合这几个幂函数的图象,理解幂函数图象的变化情况和性质.2.过程与方法(1)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.(2)使学生进一步体会数形结合的思想.3. 情感、态度、价值观(1)通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣.(2)利用计算机,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望.(二)教学重点、难点重点:常见幂函数的概念、图象和性质.难点:幂函数的单调性及比较两个幂值的大小.(三)教学方法采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性.利用实物投影仪及计算机辅助教学.(四)教学过程然后再在多面体屏幕上弹出).师板演.几个函数表达式有什么共同特征?(引入新课,书写课题)师:请同学们举出几个具体的.研究幂函数的图像x-1律,;找出原因吗?)吗?)..备选例题例1 已知221(22)23m y m m xn -=+-+-是幂函数,求m ,n 的值.【解析】由题意得⎪⎪⎩⎪⎪⎨⎧=-≠-=-+0320112222n m m m ,解得⎪⎩⎪⎨⎧=-=233n m , 所以23,3=-=n m .【小结】做本题时,常常忽视m 2 + 2m – 2 = 1且2n – 3 = 0这些条件.表达式y =αx (x ∈R )的要求比较严格,系数为1,底数是x ,α∈R 为常数,如221-==x x y ,y = 1 = x 0为幂函数,而如y = 2x 2,y = (x – 1)3等都不是幂函数.例2 比例下列各组数的大小. (1)8787)91(8---和;(2)(–2)–3和(–2.5)–3; (3)(1.1)–0.1和(1.2)–0.1;(4)533252)9.1()8.3(,)1.4(--和.【解析】(1)8787)81(8-=--,函数87x y =在(0, +∞)上为增函数,又9181>,则8787)91()81(>,从而8787)91(8-<--.(2)幂函数y = x –3在(–∞, 0)和(0, +∞)上为减函数, 又∵–2>–2.5,∴(–2)–3<(–2.5)–3.(3)幂函数y = x –0.1在(0, +∞)上为减函数,又∵1.1<1.2,∴1.1–0.1>1.2–0.1.(4)52)1.4(>521= 1;0<32)8.3(-<321-= 1; 53)9.1(-<0, ∴53)9.1(-<32)8.3(-<52)1.4(.【小结】比较大小题,要综合考虑函数的性质,特别是单调性的应用,更善于用“搭桥”法进行分组,常数0和1是常用的“桥梁”.。
人教版高中必修一《幂函数》教案
人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。
二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。
2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。
3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。
4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。
5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。
四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。
五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。
六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。
七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。
高一数学必修1《幂函数》教案
高一数学必修1《幂函数》教案教学目标:1. 理解幂函数的定义和性质,掌握画出幂函数的图象的方法。
2. 学会用不等式的方法解决幂函数方程的问题。
教学重点:1. 幂函数的定义和性质。
2. 画出幂函数的图象。
3. 不等式解法。
教学难点:1. 幂函数的图象,如何画出图象。
2. 不等式的解法,如何运用不等式解决幂函数方程的问题。
教学方法:1. 归纳法。
2. 演示法。
3. 分组讨论法。
教学内容:一. 幂函数1. 幂函数的定义:设a为正实数,x为任意实数,幂函数f(x)=$a^x$ 定义为f(x)=$a^x$。
2. 幂函数的性质:(1)当a>1时,幂函数f(x)严格单调递增;当0<a<1时,幂函数f(x)严格单调递减。
(2)当a>1时,幂函数f(x)在x轴的右侧无上界;当0<a<1时,幂函数f(x)在x轴的右侧无下界。
(3)当a=1时,幂函数f(x)为常函数y=1。
3. 幂函数的图象:(1)当a>1时,幂函数f(x)在右侧无上界,并超过x轴,图象接近x轴。
(2)当0<a<1时,幂函数f(x)在右侧无下界,趋近于x轴,图象在x轴上方。
(3)当a=1时,幂函数f(x)图象为直线y=1,在y轴上方。
4. 例题:(1)求幂函数y=$\frac{1}{4}$^x 的增减区间,并画出图象。
(2)求方程$\frac{1}{2x+1}$=8 的解。
二. 不等式的解法1. 不等式的性质:(1)等式两边加(减)同一个数、同一个式子,不等式的方向不变;(2)等式两边同乘(除)一个正数,不等式的方向不变;等式两边同乘(除)一个负数,不等式的方向反转。
2. 不等式的应用:利用不等式的性质,解决幂函数的方程。
3. 例题:求不等式$x^2$+2$\sqrt2x$+1<0 的解。
教学流程:1. 教师介绍幂函数的定义和性质,并简单讲解幂函数的图象。
2. 教师出示幂函数$f(x)=2^x$ 的图象,并让同学对幂函数的图象做出讨论,了解幂函数图象的特点,为下面的探究提供基础。
高中数学 2.3《幂函数》教案 湘教版必修1
教学目标:了解幂函数的概念
教学重点:了解幂函数的概念
教学过程:
1、 概念:形如α
x y =(R ∈α),的函数叫做幂函数
2、 本节课只研究α为有理数的情形
图1 令n m =α,其中Z n m ∈,且1),(=n m ,就1>α,10<<α,0<α时 n m ,分别取奇数、偶数,偶数、奇数,奇数、奇数共九种情形进行分类。
选取以上的图形作为各类的代表
3.除教材上给出的性质外还可补充:
(1)幂函数图象在第一、二、三象限分别相交于点(1,1),(-1,1),(-1,-1),第四象限无图象。
(2)在第一象限,直线
把第一象限分割成四片区域。
两块正方形(或开放正方形)区域(图
二),两块矩形区域(图三)。
当n>0时,图象在两片正方形区域内通过;当n<O时、图象在两片矩形区域内通过。
(3)图象形状:当n>0(n≠1)时,图象为抛物线型,n<O时图象为双曲线型,当n=0或1时,图象为直线型。
(4)n由小往大的变化规律如图四,从-∞O1(左拐90°)+∞。
4、提问思考。
根据以上规律、如何迅速画出幂函数的图象草图呢?应先画函数图象在第一象限内的部分。
要先从右端入手,根据n的值,确定“入场”区域(分三区:n<0,0<n<1,n>1=对号入场,注意纽交点两侧情况。
再根据定义域,奇偶性确定它在第二、第三象限有无图象,若有,由对称性就可以画出了。
课堂练习:
小结:了解幂函数的概念
课后作业:略。
幂函数教案:高中数学必修的章节之一
幂函数教案:高中数学必修的章节之一在高中数学必修的课程中,幂函数是一道重要而又基础的数学知识,更是我们学习其他数学知识的基础。
因此,针对高中数学必修中的幂函数教案,我们需要作出详细的讲解和探究,同时需要结合一些实例和练习来帮助学生更好地理解和掌握这一知识,提高数学素养和解题能力。
一、教学目标1.理解幂函数的定义和性质,知道其图像特征并能用具体实例说明。
2.能变形解决简单的幂函数的运算。
3.能应用指数函数和对数函数的性质,解决幂函数与指数函数、对数函数的联立方程。
二、教学重点1.在数轴上绘制幂函数的图像并分析其特征。
2.掌握幂函数的运算规则,以及幂函数与指数函数、对数函数的联立方程解法。
三、教学难点1.理解并掌握幂函数的定义和性质,知道幂函数的图像特点。
2.掌握幂函数的运算规则,能解决幂函数的简单运算。
3.掌握幂函数和指数函数、对数函数联立方程的解法。
四、教学过程1.幂函数的定义和性质幂函数是形如y=x^a(a为实数)的函数,其中x>0(x=0时,a>0)。
幂函数的图像特征与指数函数相似,是利用对数函数的概念、运算,指数函数的知识,掌握的一个重要的数学工具。
幂函数的图像特征:当a>1时,幂函数y=x^a的图像上升逐渐加速,当a=1时为与x 轴正比例函数y=x,当0<a<1时,幂函数y=x^a的图像上升逐渐减缓,最后趋近于x轴。
当a<0时,幂函数y=x^a的图像下降,且在x轴右侧有垂直渐近线x=0,在x轴左侧有水平渐近线y=0。
2.幂函数的运算规则加减法运算:当幂函数底数相同时,可将其指数相加或相减。
即x^a+x^b=x^(a+b),x^a-x^b=x^(a-b)。
乘法运算:当幂函数底数相同时,可将其指数乘积。
即x^a*x^b=x^(a+b)。
幂函数的运算可以变形为指数函数和对数函数的运算,如x^a=y,可变形为a=logx(y)或者y=x^a,可变形为a=logy(x)。
2016-2017学年新人教A版必修1高中数学 2.3 幂函数教案(精品)
2.3 幂函数
一、教材分析
本节是高中数学新人教版必修1的第二章2.3 幂函数的内容
二、三维目标
1.知识与技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.
3.情感、态度与价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性.
三、教学重点
教学重点:从五个具体的幂函数中认识的概念和性质
四、教学难点
教学难点:从幂函数的图象中概括其性质
五、教学策略
1.学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;
2.教学用具:多媒体
六、教学准备
引入新知
阅读教材P77的具体实例(1)~(5),思考下列问题.
(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论
答:1、(1)乘以1 (2)求平方(3)求立方
(4)求算术平方根(5)求-1次方
=,其中x是自变量,α是常数.
2、上述的问题涉及到的函数,都是形如:y xα
七、教学环节
材料四:总结常见幂函数的某些共同性质
八、板书设计
第二章基本初等函数(I)
2.3 幂函数
九、教学反思
通过本堂课的学习,同学们能够独立完成相关习题。
高中数学幂函数的教案
高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。
二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。
三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。
四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。
2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。
3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。
4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。
五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。
六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。
七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。
八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。
九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。
十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。
十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。
以上是高中数学幂函数的教案范本,仅供参考。
祝教学顺利!。
人教版高中数学必修一《幂函数》教案
2.3 幂函数一、教学目标:知识与能力1、通过实例,了解幂函数的概念;2、会画简单幂函数的图象,并能根据图象得出这些函数的性质;3、能应用幂函数的图像和性质解决有关简单问题。
过程与方法培养学生数形结合能力,合作交流能力,以及应用数学的能力。
情感态度与价值观让学生感受到数学来源于生活,应用于生活,并认识到现代信息技术在人们认识世界过程中的作用,激发学生的学习动力。
二、重点难点重点:从五个具体的幂函数中认识幂函数的一些性质难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难.三、教学方法通过让学生作图,观察、思考、交流、讨论、发现幂函数的性质.。
四、教学过程(一)实例观察,引入新课(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P = W元P是W的函数(y=x)(2)如果正方形的边长为a,那么正方形的面积S=a2S是a的函数(y=x2)(3)如果立方体的边长为a,那么立方体的体积V =a3S是a的函数(y=x3)(4)如果一个正方形场地的面积为S,那么正方形的边长a=12S a是S的函数(y=12 x)(5)如果某人t s内骑车行进1 km,那么他骑车的平均速度v=t-1 V是t的函数(y=x-1)问题一:以上问题中的函数具有什么共同特征?学生反应:底数都是自变量,指数都是常数.【设计意图】引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征.(二)类比联想,探究新知1.幂函数的定义;一般地,函数y=xɑ叫做幂函数(power function) ,其中x为自变量,ɑ为常数。
注意:幂函数的解析式必须是y=xɑ的形式,其特征可归纳为“系数为1,只有1项”.【设计意图】加深学生对幂函数定义和呈现形式的理解.2.幂函数的图像与简单性质同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)不妨也找出典型的函数作为代表:y=x y=x2y=x3 y=12x y=x-1让学生自主动手,用计算器在同一坐标系中画出这5个函数的图像问题三:所有图像都过第几象限,所有图像都不过第几象限,为什么?学生反应:都过第一象限,而都不过第四象限,因为当x>0时所有幂函数都有意义,且函数值都为正.问题四:第一象限内函数图像的变化趋势与指数有什么关系,为什么?学生反应:当指数为正时是增函数,指数为负时是减函数.为什么却讲不清楚.教师讲解:指数为正分为正分数和正整数,正无理数我们高中不做研究,当是正整数时很显然递增,当是正分数时,可以化成根式,很显然当被开方数为正时,被开方数越大,整个根式值越大。
高中数学必修1 《幂函数》教学设计
《幂函数》教学设计一、教学内容课题出处:必修1第二章《幂函数》教学内容简介:在学生系统地学习过一次函数、二次函数、反比例函数、指数函数、对数函数的基础上,进一步学习一种新的函数——幂函数。
通过学生已知的一些基本函数的图像和性质归纳出幂函数的图像特点,使学生掌握幂函数的概念、图象和性质。
二、学生分析1.学生的认知起点:学生在初中学过了二次函数2xy=的对称轴、开口方向y=,知道了2x及顶点坐标,也学过了一次函数、反比例函数、指数函数与对数函数,知道了它们的图象和性质;对函数的基本性质和研究方法有了一定的了解,用函数图象的性质解决一些数学问题也有了一定的基础。
这为学习幂函数作好了方法上的准备,使学生对幂函数图像及性质的学习应感到不会太难。
2.学生的学习兴趣:本节课主要通过学生的研究性学习自己归纳出幂函数的图像及性质,学生在研究性学习过程中学会了学习方法,增强了学习兴趣。
他们自己通过观察图象变化与幂函数指数变化的关系而归纳总结出相应的幂函数的性质,在这一过程中,学生获取的不仅仅是幂函数的性质这一简单结论。
更重要的是他们在这一过程中加深了对定义域、值域、奇偶性、单调性的理解,掌握了从这几个方面研究函数性质的方法。
因此学生的学习兴趣比较浓。
3.学生的学习障碍:学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,组织学生对这两类函数的表达式进行辨析。
学生对“既约分数“的概念还不清楚,因此在讲到分数指数的时候应该说明什么叫“既约分数“。
由于幂函数的图像形状差别比较大,不容易找出其中的规律,因此老师在让学生观察幂函数图像的时候可以适当的给予提示,比如:当指数大于0时图像有什么特点,当指数小于0时图像有什么特点,哪些象限肯定有图像,哪些象限肯定没有图像?当学生自己归纳幂函数性质有困难时,老师可以适当的给予提示,再由学生总结出幂函数的性质。
三、教学思路1. 通过实例引出幂函数的概念。
2. 画出几种典型的幂函数的图像,如x y =,2x y =,3x y =,1-=x y ,21x y =。
数学必修1幂函数教案1(20201103182333)
,1,
2 四个值,则相应于曲
34
线 C1、 C2、C3、C4的解析式中的指数 依次可取( )
43
43
34
34
O
( A) ,1,, 2 (B) 2,1,, (C) 2,1,, (D ) ,1,, 2
34
34
43
43
5、小结 :
通过本节的学习,你对幂函数有什么认识?你能概括一下吗?
6、作业:
C3 C4
(1) 必做题:课本 P82 A 组第 10 题
(2) 课外探究:利用计算机探索一般幂函数 y x 的图象随 的变化规律.
【板书设计】
幂函数
一、定义 投
三、例题及练习
影
二、幂函数的图象与性质
区
O
[ 探究 ] 通过对以上五个函数图象的观察和填表,你能类比出一
般的幂函数的性质吗? 3、例题讲解:
例:比较大小:
(1)1.51.5 ,1.71.5
1
1
(2) 1.1 2 与 0.9 2
C1 C2
4、练习: 如图所示,曲线 C1、 C2、C3、C4 为幂函数 y x 在
第一象限内的图象,已知
取
4
3 ,
数学必修 1 幂函数 教案
【三维目标】
1、知识与技能:
1
(1) 理解幂函数的概念,会画幂函数 y x , y x 2 , y x 3 , y x 1 , y x 2 的图
象.
(2) 结合常见的幂函数图象,理解幂函数图象的变化情况和性质,并能进行简单的
应用.
2、过程与方法 :
(1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力 .
(2) 函数 y x, y x3 , y x 1 是奇函数,函数 y x2 是偶函数;
高中数学2.3幂函数教案新人教版必修1
高中数学幂函数教课设计新人教版必修1教课目的:1.经过实例,认识幂函数的观点.12.详细联合函数y x, y x2 , y x3 , y x 2 , y x 1的图象,认识幂函数的变化状况.3.在归纳五个幂函数的基天性质时,应注意指引学生类比前方研究一般的函数、指数函数、对函数等过程中的思想方法,对研究这些函数的思路作出指导.教课要点:从五个详细的幂函数中认识幂函数的一些性质.教课难点:画五个幂函数的图象并由图象归纳其性质是教课中可能碰到的困难.一、新课导入先看五个详细的问题:( 1)假如张红购置了每千克 1 元的蔬菜 w千克,那么她需要支付p=w 元,这里 p 是 w 的函数;( 2)假如正方形的边长为a,那么正方形的面积S a 2,这里S是 a 的函数;( 3)假如立方体的边长为a,求立方体的体积V a 3,这里V是a的函数;1( 4)假如一个正方形场所的面积为S ,那么这个正方形的边长 a S 2,这里 a 是S的函数;( 5)假如某人t s 内骑车进行了1km,那么他骑车的均匀速度v t 1km/s,这里 v 是 t 的函数.议论:以上五个问题中的函数拥有什么共同特点?它们拥有的共同特点:幂的底数是自变量,指数是常数.从上述函数中,我们察看到,它们都是形如二、师生互动,新课解说:1、幂函数的定义y x的函数.一般地,函数 y x (a R) 叫做幂函数(power function ),此中 x 是自变量,是常数.对于幂函数 y x ,我们只议论1,2,3, 1, 1时的情况.22、幂函数的图象1在同向来角坐标系内作出幂函数y x ;y x 2; y x2; y x 1; y x 3的图象.察看以上函数的图象的特点,归纳出幂函数的性质.y x y x 2 y x 31y x 1 y x 2定义域R R R [ 0, ) { x | x 0}值域R [ 0, ) R [ 0, ) { y | y 0}奇偶性奇偶奇非奇非偶奇单一性增增增公共点(1,1 )3、幂函数的性质1).五个详细的幂函数的性质1x 2 x3 x 1( 1)函数y x ;y x 2; y ; y 和 y 的图象都经过点(1, 1);( 2)函数y x ;y x3 ; y x 1 是奇函数,函数y x 2 是偶函数;1( 3)在区间(0, ) 上,函数y x ,y x2, y x3和 y x2是增函数,函数y x 1是减函数;( 4)在第一象限内,函数y x 1 的图象向上与y 轴无穷凑近,向右与x 轴无穷凑近.2).一般的幂函数的性质( 1)全部的幂函数y x 在( 0, +∞)都有定义,而且图象都过点(1, 1);( 2)0时,幂函数的图象经过原点,而且在区间[ 0, ) 上是增函数;>1 时,图象向上,凑近y 轴;0< <1,图景向上,凑近x 轴;=1 是条直线。
必修一幂函数(教案)
幂 函 数一般地,形如)R a (x y a ∈=的函数称为幂函数,其中a 为常数。
幂函数中,当121321a -=,,,,时性质如下表所示:函数 特征 性质 y=x y x =2y x =3y x=12y x =-1 定义域 R R R [0,+∞) {|}x x ≠0值域 R [0,+∞)R [0,+∞){|}y y ≠0x ∈+∞[)0,增 x ∈+∞()0,增 单调性 增 x ∈-∞(],0减 增 增 x ∈-∞(),0减所过定点(1,1) (0,0)(1,1) (0,0)(1,1) (0,0)(1,1) (0,0)(1,1)结合以上特征,得幂函数的性质如下:(1)所有的幂函数在()0,+∞都有定义,并且图象都通过点(1,1); (2)当a 为奇数时,幂函数为奇函数;当a 为偶数时,幂函数为偶函数;(3)如果a>0,则幂函数的图象通过原点,并且在区间)0[∞+,上是增函数; (4)如果a<0,则幂函数在区间()0,+∞上是减函数诊断练习:1. 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于 2.函数y =(x 2-2x )21-的定义域是3.函数y =52x 的单调递减区间为 4.函数y =221m mx --在第二象限内单调递增,则m 的最大负整数是_______ _.范例分析:例1比较下列各组数的大小:(1)1.531,1.731,1; (2)(-2)32-,(-107)32,1.134-;(3)3.832-,3.952,(-1.8)53; (4)31.4,51.5.例2已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且 2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.例3幂函数273235()(1)t t f x t t x+-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.反馈练习:1.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .2.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.3.幂函数的图象过点(2,14), 则它的单调递增区间是 .4.设x ∈(0, 1),幂函数y =ax 的图象在y =x 的上方,则a 的取值范围是 .5.函数y =34x -在区间上 是减函数.6.一个幂函数y =f (x )的图象过点(3, 427),另一个幂函数y =g (x )的图象过点(-8, -2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x )< g (x )的解集.巩固练习1.用“<”或”>”连结下列各式:0.60.32 0.50.32 0.50.34, 0.40.8- 0.40.6-. 2.函数1322(1)(4)y x x --=-+-的定义域是3.942--=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 4.已知3532x x >,x 的取值范围为5.若幂函数ay x =的图象在0<x<1时位于直线y=x 的下方,则实数a 的取值范围是6.若幂函数()f x 与函数g(x)的图像关于直线y=x 对称,且函数g(x)的图象经过,则()f x 的表达式为7. 函数2()3x f x x +=+的对称中心是 ,在区间 是 函数(填“增、减”)8.比较下列各组中两个值的大小33221.3 1.30.30.35533(1)1.5 1.6(2)0.60.7(3)3.5 5.3(4)0.18.15----与与与与09.若3131)23()2(---<+a a ,求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3幂函数
教学目标:
知识与技能:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。
过程与方法:能够类比研究一般函数、指数函数的过程与方法,来研究幂函数的图象和性质。
情感、态度、价值观:体会幂函数的变化规律及蕴含其中的对称性。
教学重点:从五个具体幂函数中认识幂函数的一些性质。
教学难点:画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律。
教学过程:
一.温故知新
复习指数函数、对数函数的定义
形如)1,0(≠>=a a a y x 的函数称指数函数;
形如)1,0(log ≠>=a a x y a 的函数称指数函数。
提问:之前还学过哪些函数?
生答:一次函数、二次函数、反比例函数、正比例函数。
将这些函数的特殊形式写出:12,,-===x y x y x y
提问:这些是指数函数吗?若不是说出它们与指数函数的相同点与不同点。
生答:相同点:幂的形式。
不同点:自变量x 的位置。
引出上述三个函数的一般形式αx y =,从而引出课题-------幂函数
二.幂函数定义
1.幂函数的定义:一般地,形如)(R x y ∈=αα的函数叫称为幂函数(power function), 其中x 是自变量,α是常数。
概念辨析:
在下列函数中哪些是幂函数?
(1)x y 2= (2)x x y -=3 (3)2)2(-=x y (4)41x
y = 同桌讨论,给出观点
例1:已知幂函数y=f(x)的图像过点(4,2),试求出这个函数的解析式。
解:设αx y =,又过(4,2),所以212124x y =⇒=⇒=αα
三.探究幂函数图象与性质
可通过研究几个常见幂函数的图象与性质------在同一坐标系中画出
2
1312,,,,x y x y x y x y x y =====-函数的图象,然后观察图象,归纳特征。
学生活动:在事先发给他们的作图纸上通过描点法画
图。
教师巡视并辅导。
师生一起校对所画图象的正确性,并根据图象编成
幂函数操,(帮助学生记图的同时,也提高学生学习的
兴趣)。
要求学生通过观察图形,完成性质表格的填写
师:引导学生观察图象,归纳概括幂函数的性质及图象变化规律。
生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,展示各自的结论进行交流评析。
教师帮助归纳总结
幂函数性质归纳:
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点()1,1。
(2)0α>时,幂函数的图象通过原点,并且在区间[0,)+∞上是增函数。
特别地,当0〈1α<时,幂函数的图象下凸;当1α>时,幂函数的图象上凸;
(3)0α<时,幂函数的图象在区间()0,+∞上是减函数。
在第一象限内,当x 从右边趋向
原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴 。
四.探究与发现
探究题:如图所示,是幂函数y x α=在第一象限内的图象,已知α分别取123,,1,
232
-四个值,则相应图象依次为: 。
提问:你们是否发现什么规律?(学生讨论,给出猜测)
利用几何画板探索幂函数y x α
=图象随α的变化规律
五.小结
1.幂函数的概念
2.五种常见的图象分别为α=3,2,1,(1/2),-1 3.性质:定义域
值域
单调性(α>0和α<0两种情况)
奇偶性
公共点
体现思想:数形结合从特殊到一般。