高考数学压轴卷试题理新课标

合集下载

金太阳广东省2025届高考压轴卷数学试卷含解析

金太阳广东省2025届高考压轴卷数学试卷含解析

金太阳广东省2025届高考压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤⎥⎝⎦B .59,610⎛⎤⎥⎝⎦C .715,816⎛⎤⎥⎝⎦D .1531,1632⎛⎤⎥⎝⎦ 2.已知向量a ,b ,b =(13,且a 在b 方向上的投影为12,则a b ⋅等于( ) A .2B .1C .12D .03.曲线24x y =在点()2,t 处的切线方程为( ) A .1y x =-B .23y x =-C .3y x =-+D .25y x =-+4.已知复数z =(1+2i )(1+ai )(a ∈R ),若z ∈R ,则实数a =( ) A .12B .12-C .2D .﹣25.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .226.已知函数()3sin ,f x x a x x R =+∈,若()12f -=,则()1f 的值等于( ) A .2B .2-C .1a +D .1a -7.如图所示,为了测量A 、B 两座岛屿间的距离,小船从初始位置C 出发,已知A 在C 的北偏西45︒的方向上,B 在C 的北偏东15︒的方向上,现在船往东开2百海里到达E 处,此时测得B 在E 的北偏西30的方向上,再开回C 处,由C 向西开26百海里到达D 处,测得A 在D 的北偏东22.5︒的方向上,则A 、B 两座岛屿间的距离为( )A .3B .32C .4D .428.函数1()ln 1f x x x =--的图象大致是( )A .B .C .D .9.已知三棱锥D ABC -的体积为2,ABC 是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 中点,则球O 的表面积为( ) A .523πB .403πC .253πD .24π10.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=( )A .52B .4C .2D .13+11.已知集合{}1,2,3,,M n =(*n N ∈),若集合{}12,A a a M =⊆,且对任意的b M ∈,存在{},1,0,1λμ∈-使得i j b a a λμ=+,其中,i j a a A ∈,12i j ≤≤≤,则称集合A 为集合M 的基底.下列集合中能作为集合{}1,2,3,4,5,6M =的基底的是( )A .{}1,5B .{}3,5C .{}2,3D .{}2,412.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( ) A .甲B .乙C .丙D .丁二、填空题:本题共4小题,每小题5分,共20分。

2023-2024高考模拟压轴卷(二) 数学试卷(含答案解析)

2023-2024高考模拟压轴卷(二) 数学试卷(含答案解析)

2024年普通高等学校招生全国统一考试模拟试题数学(二)本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号码、考场号、座位号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点()06,P y 在焦点为F 的抛物线2:2(0)C y px p =>上,若152PF =,则p =( )A.3B.6C.9D.122.电影《孤注一郑》的上映引发了电信诈骗问题的热议,也加大了各个社区反电信诈骗的宣传力度.已知某社区共有居民480人,其中老年人200人,中年人200人,青少年80人,若按年龄进行分层随机抽样,共抽取36人作为代表,则中年人比青少年多( )A.6人B.9人C.12人D.18人3.已知0a b c >>>,则下列说法一定正确的是( )A.a b c >+ B.2a bc <C.2ac b >D.2ab bc b ac+>+4.已知向量()()2,3,1,2a b =-=- ,则a b + 在a b - 方向上的投影向量为( )A.816,1717⎛⎫-⎪⎝⎭ B.1220,1717⎛⎫- ⎪⎝⎭ C.1220,1717⎛⎫- ⎪⎝⎭ D.2020,1717⎛⎫- ⎪⎝⎭5.已知某正六棱柱的体积为()A.18+B.18+C.24+D.24+6.已知甲、乙两地之间的路线图如图所示,其可大致认为是()()cos 03πf x x x =……的图像.某日小明和小红分别从甲、乙两地同时出发沿着路线相向而行,当小明到达乙地时,小红也停止前行.若将小明行走轨迹的点记为(),a b ,小红行走轨迹的点记为(),c d ,且满足3π2ac +=,函数()2g a bd =-,则()g a 的一个单调递减区间为()A.4π0,3⎛⎫ ⎪⎝⎭ B.π5π,33⎛⎫ ⎪⎝⎭ C.4π8π,33⎛⎫⎪⎝⎭D.()2π,3π7.已知椭圆22:1(09,)9x y C m m m+=<<∈Z 的左、右焦点分别为12,F F ,点P 在C 上但不在坐标轴上,且12PF F 是等腰三角形,其中一个内角的余弦值为78,则m =( )A.4B.5C.6D.88.已知函数()()e eln e 1xmf x m x x=++-的定义域为()0,∞+,若()f x 存在零点,则m 的取值范围为()A.1,e∞⎡⎫+⎪⎢⎣⎭B.(]0,eC.10,e⎛⎤ ⎥⎝⎦D.[)e,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1232i,4i z z =+=-,则( )A.12z z +的虚部为-1B.1243z z -是纯虚数C.12z z 在复平面内所对应的点位于第一象限D.214iz z =+10.已知()7270127(43)13(13)(13)x a a x a x a x -=+-+-++- ,则( )A.4945a =B.77141ii a==-∑C.136024622a a a a +++=+D.613135722a a a a +++=-11.设()M x 是定义在*N 上的奇因函数,是指x 的最大奇因数,比如:()()33,63M M ==,()81M =,则( )A.对()()*,212k M k M k ∈-N …B.()()2M k M k =C.()()()1263931M M M +++= D.()126363M +++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}2450,{}A xx x B x x m =-->=>∣∣,若0m =,则()A B ⋂=R ð__________;若A B ⋃=R ,则m 的取值范围为__________.13.某校拟开设“生活中的数学”“音乐中的数学”“逻辑推理论”“彩票中的数学”和“数学建模”5门研究性学习课程,要求每位同学选择其中2门进行研修,记事件A 为甲、乙两人至多有1门相同,且甲必须选择“音乐中的数学”,则()P A =__________.14.定义:对于函数()f x 和数列{}n x ,若()()()10n n n n x x f x f x +-+=',则称数列{}n x 具有“()f x 函数性质”.已知二次函数()f x 图像的最低点为()0,4-,且()()121f x f x x +=++,若数列{}n x 具有“()f x 函数性质”,且首项为1的数列{}n a 满足()()ln 2ln 2n n n a x x =+--,记{}n a 的前n 项和为n S ,则数列52n n S ⎧⎫⎛⎫⋅-⎨⎬⎪⎝⎭⎩⎭的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)公众号《全元高考》,且()2tan tan tan b B a B A B =-+.已知函数()在 ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,其中c =(1)求C ;(2)求a 2+b 2的取值范围.16.(15分)ln x f x x a x ⎛⎫=-⎪⎝⎭.(1)讨论()f x 的最值;(2)若1a =,且()e x k xf x x-…,求k 的取值范围.17.(15分)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ⊥平面ACDE ,过点E 作EF ∥AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ⊥平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD,求AB 的值.18.(17分)某汽车销售公司为了提升公司的业绩,现将最近300个工作日每日的汽车销售情况进行统计,如图所示.(1)求a 的值以及该公司这300个工作日每日汽车销售量的平均数(同一组中的数据用该组区间的中点值作代表);(2)以频率估计概率,若在所有工作日中随机选择4天,记汽车销售量在区间[200,250)内的天数为X ,求X 的分布列及数学期望;公众号《全元高考》公众号《全元高考》(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:抽奖区有,A B 两个盒子,其中A 盒中放有9张金卡、1张银卡,B 盒中放有2张金卡、8张银卡,顾客在不知情的情况下随机选择其中一个盒子进行抽奖,直到抽到金卡则抽奖结束(每次抽出一张卡,然后放回原来的盒中,再进行下次抽奖,中途可更换盒子),卡片结果的排列对应相应的礼品.已知顾客小明每次抽奖选择两个盒子的概率相同,求小明在首次抽奖抽出银卡的条件下,第二次从另外一个盒子中抽奖抽出金卡的概率.19.(17分)已知双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为A ,直线1:2l y x =-与C 的一条渐近线平行,且与C 交于点B ,直线AB 的斜率为13.(1)求C 的方程;(2)已知直线()2:28l y x m m =+≠与C 交于,P Q 两点,问:是否存在满足EA EP EP EQ EA EQ ⋅=⋅=⋅ 的点()00,E x y ?若存在,求2200x y -的值;若不存在,请说明理由.数学(二)一、选择题1.A 【解析】由抛物线的定义可知15622p PF =+=,解得3p =.故选A 项.2.B 【解析】设中年人抽取x 人,青少年抽取y 人,由分层随机抽样可知20080,48036480x ==36y,解得15,6x y ==,故中年人比青少年多9人.故选B 项.3.D 【解析】当3,2,1a b c ===时,a b c =+,且2ac b <,故A ,C 项错误;因为0a b >>,0a c >>,所以2a bc >,故B 项错误;()()()20ab bc b ac b c a b +-+=-->,故D 项正确.故选D项.4.C 【解析】由题意得()()1,1,3,5a b a b +=--=- ,则a b + 在a b - 方向上的投影向量为2()()1220(),1717||a b a b a b a b +⋅-⎛⎫-=- ⎪-⎝⎭,故选C 项.5.D 【解析】设该正六棱柱的底面边长为a ,高为h ,其外接球的半径为R,易知34ππ3R =,则R ==①26h ⋅⋅=②,联立①②,因为h ∈Z ,解得1,4a h ==,所以正六棱柱的表面积212624S ah =⋅+=.故选D 项.6.A 【解析】依题意得cos ,cos cos 3πcos 22a a b a d c ⎛⎫===-=- ⎪⎝⎭,且03π,03π3π,2a a⎧⎪⎨-⎪⎩…………解得03πa ……,则()2cos 2cos2cos 2cos 1222a a a g a a =+=+-,令cos 2at =,则[]1,1t ∈-,因为2221y t t =+-在区间11,2⎛⎫-- ⎪⎝⎭内单调递减,在区间1,12⎛⎫- ⎪⎝⎭内单调递增,所以()g a 在区间4π8π0,,2π,33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭内单调递减.故选A 项.7.B 【解析】依题意得126PF PF +=,设12F F n =,不妨设点P 在第一象限,则112PF F F n ==,则26(06)PF n n =-<<,故222122(6)7cos 28n n n PF F n ∠+--==或()22221(6)7cos 268n n n PF F n n ∠+--==-,解得4n =或2411n =,又2,2n m m ⎛⎫∈+= ⎪⎝⎭Z 9,所以4,5n m ==.故选B 项.8.C 【解析】由题意得0m >,令()0f x =,则()ln ln ee ln e eln x mx x m x +++=+.令()e e x g x x =+,易知()g x 单调递增,所以()()ln ln g x m g x +=,即ln ln x m x +=,即ln ln m x x =-.令()ln h x x x =-,则()1xh x x'-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∞∈+时,()()0,h x h x '<单调递减,又()11h =-,当0x →时,()h x ∞→-,所以ln 1m -…,解得10em <….故选C 项.二、多选题9.BC 【解析】127i z z +=+的虚部为1,故A 项错误;124311i z z -=为纯虚数,故B 项正确;()()1232i 4i 145i z z =+-=+,其在复平面内所对应的点()14,5位于第一象限,故C项正确;24i 14i i iz -==--=,144z +=+,故D 项错误.故选BC 项.10.AC 【解析】依题意得()77(43)[313]x x -=+-,所以4347C 33527a =⨯=⨯=945,故A 项正确;令13x =,得03a =,令0x =,得7704i i a ==∑,所以777143i i a ==-∑,故B 项错误;令23x =,得7012345672a a a a a a a a =-+-+-+-①,又7012345674a a a a a a a a =+++++++②,由①+②可得77135024642222a a a a ++++==+,故C 项正确;同理,由②-①得136135722a a a a +++=-,故D 项错误.故选AC 项.11.ABD 【解析】由题意得()()2M k M k =,故B 项正确;()()()2,2121M k M k k M k k k =-=-……,故A 项正确;516312363632632+++++=⨯=⨯ ,所以()()123636363M M ++++== ,故D 项正确;()()()()1263[1M M M M +++=+ ()()][()()36324M M M M ++++++ ()][()6213631M M =+++++()()()1023121M M M ⎤⎡++=++⎦⎣ ()()][()()33124M M M M ++++++ ()108642030]222222M ==+++++=614136514-=-,故C 项错误.故选ABD 项.三、填空题12.()50,14x x ∞⎧⎫<--⎨⎬⎩⎭… 【解析】集合{1A xx =<-∣或54x ⎫>⎬⎭,所以R A =ð504B x x ⎧⎫=<⎨⎬⎩⎭….若A B ⋃=R ,结合数轴可知1m <-,故m 的取值范围为(,1)∞--.13.925【解析】若甲、乙两人的选课都不相同则共有1243C C 4312=⨯=种;若甲、乙两人的选课有1门相同,则共有2114432C C C 24+=种.故()225512249C C 25P A +==.14.-5112【解析】由题意知()24(0)f x ax a =->,又()()()12121f x f x a x x +-=+=+,所以1a =,则()24f x x =-.由题意得()()2ln 2ln 2ln2n n n n n x a x x x +=+--=-,由()()()10n n n n x x f x f x +-+=',得()()1n n n n f x x x f x +='-,即2214422n n n n n nx x x x x x +-+=-=,又()()2211222,222n n n n nnx x x x x x +++-+=-=,所以()()21212222n n n n x x x x ++++=--,则1122ln 2ln 22n n n nx x x x ++++=--,即12n n a a +=,故{}n a 是以1为首项,2为公比的等比数列,所以12,21n n n n a S -==-.令n n c S =.()552122n n n ⎛⎫⎛⎫-=-⋅- ⎪ ⎪⎝⎭⎝⎭,则()111822n n nc c n -+-=-⋅-,故当8n …时,1n n c c +<,当9n …时,1n n c c +>,故()9min 5112n c c ==-.四、解答题15.解:(1)因为()()tan tan πtan A B C C +=-=-,所以2tan tan tan b B a B C=+,由正弦定理得sin 2tan sin tan tan B BA B C==+()2sin cos 2sin cos sin cos cos sin sin B C B CB C B C B C ==++2sin cos sin B C A因为sin 0,sin 0A B ≠≠,所以2cos 1C =,则1cos 2C =,又()0,πC ∈,所以π3C =.(2)由余弦定理得223a b ab =+-,因为222a b ab +…,所以22222222,22a b a b a b ab a b +++-+-=…即226a b +….当且仅当a b ==.又223a b ab +=+,且0ab >,所以223a b +>.综上,22a b +的取值范围为(]3,6.16.解:(1)由题意得()f x 的定义域为()0,∞+,()11,ax f x a x x-=-='当()0,0,a x ∞∈+…时,()0f x '<,所以()f x 在区间()0,∞+内单调递减,无最值;当0a >时,令()0f x '=,得1x a=,当10,x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,x a ∞⎛⎫∈+⎪⎝⎭时,()()0,f x f x '>单调递增.故当1x a =时,()f x 取得最小值,且最小值为11ln f a a ⎛⎫=+ ⎪⎝⎭,无最大值.综上,当0a …时,()f x 无最值;当0a >时,()f x 的最小值为1ln a +,无最大值.(2)当1a =时,由()e x k xf x x -…,得e ln x k xx x x--…,整理得2e ln x k x x x x +-…,即2ln e x x x x xk +-….令()2ln e x x x x xh x +-=,则()h x '()()()2221ln 1e ln e e x xx x x x x x x +---+-=()()ln 1e x x x x --=,由(1)知,当1a =时,()ln f x x x =-的最小值为()110f =>,即ln 0x x ->恒成立,所以当()0,1x ∈时,()()0,h x h x '>单调递增;当()1,x ∞∈+时,()()0,h x h x '<单调递减.故当1x =时,()h x 取得最大值()21e h =,即2e k …,故k 的取值范围为2,e ∞⎡⎫+⎪⎢⎣⎭.17.(1)证明:连接CE 交AD 于点O ,连接GO .在菱形ACDE 中,CE AD ⊥,因为AB ⊥平面,ACDE CE ⊂平面ACDE ,所以CE AB ⊥,又,,AB AD A AB AD ⋂=⊂平面ABD ,所以CE ⊥平面ABD .因为,G O 分别为,BD AD 的中点,所以1,2GO AB GO =∥AB ,又1,2EF AB EF =∥AB ,所以GO EF ∥,所以四边形GOEF 为平行四边形,所以FG ∥EO ,所以FG ⊥平面ABD .(2)解:在菱形ACDE 中,因为AC AD =,所以ACD 和ADE 都是正三角形,取ED 的中点H ,连接AH ,则AH AC ⊥,又AB ⊥平面ACDE ,所以,AB AC AB AH ⊥⊥,即,,AB AC AH 两两垂直.以A 为坐标原点,,,AB AC AH 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设2(0)AB a a =>,则1(0,2,0),(2,0,0),(,,2C B a D F a G a ⎛- ⎝则()2,2,0,(0,1BC a CD =-=-,30,,2FG ⎛= ⎝ .设平面BCD 的法向量为(),,m x y z =,则220,0,m BC ax y m CD y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ 取1z =,则m ⎫=⎪⎪⎭.记直线FG 与平面BCD 所成角为θ,则||sin |cos ,|||||FG m FG m FG m θ⋅=〈〉===解得1a =,即AB 的值为2.18.解:(1)依题意得(0.0010.0020.00320.006)50 1.a ++++⨯=解得0.004a =.所求平均数为250.1750.15125⨯+⨯+⨯0.21750.32250.22750.05150+⨯+⨯+⨯=.(2)依题意得14,5X B ⎛⎫~ ⎪⎝⎭,则()4425605625P X ⎛⎫=== ⎪⎝⎭,()314142561C 55625P X ⎛⎫==⨯⨯= ⎪⎝⎭()222414962C ,55625P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()33414163C 55625P X ⎛⎫==⨯= ⎪⎝⎭()41145625P X ⎛⎫=== ⎪⎝⎭X 01234P 25662525662596625166251625故()14455E X =⨯=.(3)设“选到A 盒”为事件1A ,“选到B 盒”为事件2A ,,摸到金卡”为事件1B ,,摸到银卡”为事件2B ,因为12,B B 是对立事件,所以()119121*********P B =⨯+⨯=.()()2191.20P B P B =-=由题意得()()1212P A P A ==,所以()()()12122P A B P A B P B ==∣()()()2112111102,9920P B A P A P B ⨯==∣则()()2212819P A B P A B =-=∣∣.故所求的概率89123791091045P =⨯+⨯=.19.解:(1)易知C 的一条渐近线方程为y x =,则a b =.设(),2B t t -,又(),0,0A a a ->,直线AB 的斜率为13,所以213t t a -=+,解得62a t +=,则62,22a a B ++⎛⎫ ⎪⎝⎭,代入222x y a -=中,解得4a =.故C 的方程为2211616x y -=.(2)因为EA EP EP EQ ⋅=⋅ ,所以()0EP EA EQ ⋅-= ,即0EP QA ⋅=,所以PE AQ ⊥,同理可得,AE PQ EQ AP ⊥⊥.设()()1122,,,P x y Q x y ,联立221,16162.x y y x m ⎧-=⎪⎨⎪=+⎩整理得2234160x mx m +++=,由题意知()22Δ1612160m m =-+>,且8m ≠,解得m <-m >8m ≠,所以21212416,33m m x x x x ++=-=.过点A 与2l 垂直的直线的方程为122y x =--,设该直线与C 的右支交于另一点H ,联立221,161612,2x y y x ⎧-=⎪⎪⎨⎪=--⎪⎩整理得238800x x --=,解得203x =或4x =-(舍去).所以2016,33H ⎛⎫- ⎪⎝⎭.因为(1122016,33PH AQ x y x ⎛⎫⋅=---⋅+ ⎪⎝⎭)22121220801644333y x x x x y ⋅=+----(122121220801642333y y x x x x x =+---+()()1212)225(1m x m x m x x -++=--+()()()22128016164802)54233333m m x x m m m m +⎛⎫++--=-⨯-+⋅-+- ⎪⎝⎭222216580168801603333333m m m m m m m -=--+++--=所以PH AQ ⊥,同理可证QH AP ⊥.又AH PQ ⊥,所以H 与E 重合.因为H 在C 上,所以220016x y -=.故存在点E 满足EA EP EP EQ EA EQ ⋅=⋅=⋅ ,且220ij x y -的值为16.。

高考专题高考冲刺压轴卷新课标Ⅰ数学(理卷二)

高考专题高考冲刺压轴卷新课标Ⅰ数学(理卷二)

2015年高考冲刺压轴卷·新课标Ⅰ数学(理卷二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回. 注意事项:1.答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第Ⅰ卷一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1.(2015·茂名市第二次高考模拟考试·1)设集合{}1,4,5M =,{}0,3,5N =,则MN =( ).A .{}1,4B .{}0,3C .{}0,1,3,4,5D .{}52.(2015·乌鲁木齐第二次诊断性测验·2)复数ii-12的共轭复数是( ) A .1+iB .-1+iC .1-iD .-1-i3.(2015·安徽省黄山市高中毕业班第二次质量检测·6)下列四个命题:①从匀速传递的产品生产流水线上,质检员每隔10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②将一组数据中的每个数据都加上同一个常数后,方差恒不变;③设随机变量ξ服从正态分布N(o ,1),若P(ξ>1)=p ,则P (一l<ξ<o )=12一p ; ④在回归直线方程y=0.lx+10中,当解释变量x 每增加1个单位时,预报变量y ∧平均增加0.1个单位,其中正确的命题个数是(). A .1个B2个C .3个D .4个4.(2015·合肥市高三第二次教学质量检测·8)如图所示的程序框图的输出结果是().A .7B .8C .9D .105.(2015.安徽省“江淮十校”高三4月联考·7)在等差数列{a n }中a 1=-2015,其前n 项和为S n ,若2S 6-3S 4=24,则S 2015=( )A.-2014B.2014C.2015D.-20156.(2015·河南郑州高三第二次模拟考试·12)已知双曲线)0,0(12222>>=-b a by a x 的两焦点分别是,,21F F 过2F 的直线交双曲线的右支于P ,Q 两点,若||||211F F PF =,且||2||322QF PF =,则双曲线的离心率为().A .57B .34 C .2 D .310 7.(2015·成都第二次诊断性检测·4)设函数()3sin(2)()4f x x x R π=+∈的图象为C ,则下列表述正确的是( ).A.点(2π,0)是C 的一个对称中心 B.直线2x π=是C 的一条对称轴 C.点(8π,0)是C 的一个对称中心D.直线8x π=是C 的一条对称轴8.(2015·重庆市巴蜀中学第二次模拟考试·5)某几何体的三视图如图所示,则该几何体的体积为()(单位3cm ).A .712π B .73π C .22π D .3π9.(2015·益阳市高三四月调研考试·6)已知实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥≥-+≤+-003013x y x y x ,则22x y +的最小值是( )A .32B .92C .5D .910.(2015·杭州市第二次高考科目教学质量检测·6)已知111C B A ABC -是所有棱长均相等的直三棱柱,M 是11C B 的中点,则下列命题正确的是()A .在棱AB 上存在点N ,使MN 与平面ABC 所成的角为45° B .在棱1AA 上存在点N ,使MN 与平面11B BCC 所成的角为45° C .在棱AC 上存在点N ,使MN 与1AB 平行D .在棱BC 上存在点N ,使MN 与1AB 垂直11.(2015·杭州市第二次高考科目教学质量检测·4)设函数y =+b (a >0)的图象如图所示,则函数的图象可能是()12.(2015.银川一中第二次模拟考试·8)下列图象中,有一个是函数3221()(1)1(,0)3f x x ax a x a R a =++-+∈≠的导函数()f x '的图象,则(1)f -=( )A .31B .31-C .37D .31-或35第Ⅱ卷本卷包括必考题和选考题两个部分。

全国甲2022年高考数学压轴卷理(含答案)

全国甲2022年高考数学压轴卷理(含答案)

(全国甲)2022年高考数学压轴卷 理一.选择题(本题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|2x ﹣8<2﹣3x},B ={x|x 2﹣4x+3<0},则A∪B=( ) A .(1,2)B .(2,3)C .(﹣∞,3)D .(1,3)2.设复数z 满足(1+i )z =4i ,则|z|=( ) A .22 B .2C .2D .223.下列函数中,在区间(0,+∞)上单调递增的是( ) A .y =21xB .y =2﹣xC .y =x 21logD .y =x1 4.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A. 0.00873B. 0.01745C. 0.02618D. 0.034915.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的体积为( )A.33B.43C. 2D.836.某程序框图如图所示,该程序运行后输出S 的结果是( )A. 32B.16 C. 2512D. 137607.我国数学家张益唐在“孪生素数”研究方面取得突破,孪生素数也称为孪生质数,就是指两个相差2的素数,例如5和7,在大于3且不超过20的素数中,随机选取2个不同的数,恰好是一组孪生素数的概率为() A.356B.328C.17D.158.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为 A. 1B. 2C. 4D. 59.在()()51231x x -+的展开式中,含3x 项的系数为( )A. -80B. -40C. 40D. 12010.已知实数x ,y 满足约束条件402400x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩,则z =l y x -的最小值为( )A .43B .45C .2D .311.已知双曲线5422y x -=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线MF 的斜率是( ) A .35-B .7115-C .7115 D .3512.已知函数()()()22210,0xax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A. (),e +∞B. ()2e ,+∞C. ()20,eD. ()0,e第II 卷(非选择题)二.填空题(本题共4个小题,每个小题5分,共20分)13.函数f(x)是定义在R 上的奇函数,当10x -<<时,()3xf x =,则()3log 2f =______.14.在新高考改革中,学生可从物理、历史、化学、生物、政治、地理、技术7科中任选3科参加高考,现有甲、乙两名学生先从物理、历史2科中任选1科,再从化学、生物、政治、地理、技术5科中任选2科,则甲、乙两人恰有1门学科相同的选法有 种.15.已知点O (0,0),A (1,2),B (m ,0)(m >0),则cos <OA ,OB >= ,若B 是以OA 为边的矩形的顶点,则m = . 16.数列{a n }是首项10a ≠,公差为d 的等差数列,其前n 和为S n ,存在非零实数t ,对任意*n N ∈有(1)n n nS a n t a =+-⋅恒成立,则t 的值为__________.三、解答题(本题共5个小题,第17-21题没题12分,解答题应写出必要的文字说明或证明过程或演算步骤)17.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2cosC (acosB+bcosA )=c . (1)求C ;(2)若c =7,△ABC 的面积为233,求△ABC 的周长. 18.已知数列{a n }的前n 项和为S n 且S n =2n 2+n ,n∈N *,数列{b n }满足a n =4log 2b n +3,n∈N *. (Ⅰ)求a n 和b n 的通项公式; (Ⅱ)求数列{a n •b n }的前n 项和T n .19.如图,在四棱锥P −ABCD 中,PA⊥底面ABCD ,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4,E 为棱PD 的中点,PF PC λ=(λ为常数,且01λ<<).(1)若直线BF∥平面ACE ,求实数λ的值; (2)当14λ=时,求二面角C −AE −F 的大小.20.已知椭圆C :22221x y a b +=(0a >,0b >)的长轴为双曲线22184x y -=的实轴,且椭圆C过点P (2,1).(1)求椭圆C 的标准方程;(2)点A ,B 是椭圆C 上异于点P 的两个不同的点,直线PA 与PB 的斜率均存在,分别记为1k ,2k ,且1212k k ⋅=-,当坐标原点O 到直线AB 的距离最大时,求直线AB 的方程.21.已知函数f (x )=22+-+x a x •e x(a≥0).(1)讨论函数f (x )的单调性;(2)当b∈[0,1)时,设函数g (x )=2)1(x x b e x +-(x >0)有最小值h (b ),求h (b )的最大值.选考题:共10分,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2=θ2sin 314+,曲线C 2的极坐标方程为ρ=1.若正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(1,6π).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA|2+|PC|2的取值范围. 23.[选修4-5:不等式选讲] 已知函数f (x )=|x ﹣1|.(1)求不等式f (x )+f (2x )≤4的解集M ;(2)记集合M 中的最大元素为m ,若不等式f 2(mx )+f (ax )≤m 在[1,+∞)上有解,求实数a 的取值范围.参考答案1.【答案】 C【解析】解:∵2x﹣8<2﹣3x ,∴x<2,∴A=(﹣∞,2), ∵x 2﹣4x+3<0,∴1<x <3,∴B=(1,3), ∴A∪B=(﹣∞,3). 故选:C . 2.【答案】D【解析】解:由(1+i )z =4i , 得z ===2+2i , 则|z|==2.故选:D . 3. 【答案】A【解析】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数. 故选:A . 4.【答案】B【解析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解.【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈, 故选:B5.【答案】B【解析】根据三视图可得如图所示的几何体,根据椎体的体积公式以及三视图中的数据可求该几何体的体积. 【详解】复原后的几何体为如图所示的三棱锥,其底面为等腰三角形, 该三角形的底边长为2,高为2,棱锥的高为2,故体积为114222323⨯⨯⨯⨯=(). 故选:B . 6.【答案】C【解析】由题意,S 、S 初始值分别为1,0.当k 为小于5的正整数时,用1S k+的值代替S ,1k +代替k ,进入下一步运算.由此列出如下表格S 0 1 112+ 11123++ 1111234+++输出S值k 1 2 34 5因此,最后输出的123412S =+++=故选:C . 7.【答案】D【解析】写出大于3且不超过20的素数,分别计算出随机选取2个不同的数的所有情况和恰好是一组孪生素数的情况,再利用古典概型公式代入求解.【详解】大于3且不超过20的素数为:5,7,11,13,17,19,共6个,随机选取2个不同的数,共有65152⨯=个情况,恰好是一组孪生素数的情况为:5和7,11和13,17和19,共3个,所以概率为31155P ==. 故选:D8.【答案】A【解析】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为1d r -=.9.【答案】C【解析】针对()512x -部分,通项为155(2)(2)r r r r rr T C x C x +=-=-,∴()()51231x x -+中3x项为2?33?335512840C x C x x -=,故选:C10.【答案】B【解析】解:由约束条件作出可行域如图,联立,解得A(),z=的几何意义为可行域内的动点与定点P连线的斜率,由图可知,,可知z=的最小值为.故选:B.11.【答案】A【解析】解:如图所示,设线段MF的中点为H,连接OH,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=|MF|=(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF 中,tanα==,∴直线MF 的斜率是﹣.故选:A . 12.【答案】B 分析:【解析】解答:当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B.13.【答案】12-【解析】】因为3log 2(0,1)∈,所以3log 2(1,0)-∈-由()f x 为奇函数得:()()31log 233311log 2log 2log 322f f f ⎛⎫=--=-=-=- ⎪⎝⎭. 故答案为:12-14.【答案】180【解析】】根据题意,按物理、历史2科中有或没有相同学科分2种情况讨论,由加法原理计算可得答案.解:根据题意,分2种情况讨论: ①物理、历史2科中有相同学科.则有C =60种选法; ②物理、历史2科中没有相同学科.则有C=120种选法.所以甲、乙两人恰有1门学科相同的选法有60+120=180种; 故答案为:180.15.【答案】,5解:根据题意,点O (0,0),A (1,2),B (m ,0), 则=(1,2),=(m ,0),则||=,||=m ,•=m ,故cos <,>==, 若B 是以OA 为边的矩形的顶点,而与不垂直,则必有⊥,又由=(m ﹣1,﹣2),则有•=(m ﹣1)+2×(﹣2)=0,解可得m =5,故答案为:,5.16.【答案】1或12【解析】当1n =时,()1n n n S a n t a =+-⋅恒成立,当2n ≥时: 当数列的公差0d =时,()1n n n S a n t a =+-⋅即()1111na a n t a =+-⋅, 据此可得()()1111n a n t a -=-⋅⋅,则1t =,当数列的公差0d ≠时,由题意有:()1n n n S a n t a =+-⋅,()1112n n n S a n t a ---=+-⋅, 两式作差可得:()()1112n n n n n a a a n ta n ta --=-+---,整理可得:()()()1111n n n n t a a t a ---⋅⋅-=-,即:()111n ta n d t-=-⋅-,① 则1n ta n d t=⋅-,② ②-①整理可得:11n n ta a d d t--==-恒成立, 由于0d ≠,故11tt =-,据此可得:12t =, 综上可得:t 的值为1或12. 17.【答案】【解析】解:(1)由已知2cosC (acosB+bcosA )=c , 正弦定理得:2cosC (sinAcosB+cosAsinB )=sinC , 即2cosC•sinC=sinC , ∵0<C <π,sinC≠0, ∴cosC=, ∴C=.(2)由c =,C =,△ABC 的面积为=absin=,∴ab=6,又由余弦定理c 2=b 2+a 2﹣2abcosC ,可得:7=b 2+a 2﹣ab =(a+b )2﹣3ab =(a+b )2﹣18, 可得:(a+b )2=25,解得:a+b =5, ∴△AB C 的周长a+b+c =5+.18.【答案】【解析】解:(Ⅰ)数列{a n }的前n 项和为S n 且S n =2n 2+n ,n∈N *, 则:a n =S n ﹣S n ﹣1(n≥2), =2n 2+n ﹣2(n ﹣1)2﹣(n ﹣1) =4n ﹣1,当n =1时,a 1=3符合通项公式, 所以:a n =4n ﹣1.由于:数列{b n }满足a n =4log 2b n +3,n∈N *.则:4n ﹣1=4log 2b n +3, 所以:,(Ⅱ)由(Ⅰ)得:设c n =,则:T n =c 1+c 2+…+c n =3•20+7•21+…+(4n ﹣1)2n ﹣1①②①﹣②得:﹣(4n ﹣1)2n ﹣1,整理得:.19.【答案】 (1)12λ= (2)2π 【解析】(1)因为PA ⊥底面ABCD ,AB ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥. 由题意可知,AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系O xyz -,则()0,0,0A ,()2,0,0B ,()2,2,0C ,()0,4,0D ,()002P ,,,()0,2,1E , 所以()2,2,0AC =,()0,2,1AE =,()2,0,2BP =-,()2,2,2PC =-, 则()2,2,2PF PC λλλλ==-,所以()22,2,22BF BP PF λλλ=+=--. 设平面ACE 的一个法向量为(),,m x y z =.由00AC m AE m ⎧⋅=⎨⋅=⎩得:220,20.x y y z +=⎧⎨+=⎩不妨令1x =,得()1,1,2m =-.因为BF ∥平面ACE ,所以222440BF m λλλ⋅=--+-=,解得12λ=.(2)由(1)知()0,0,2AP =,()2,2,2PF λλλ=-,()0,2,1AE =,平面ACE 的一个法向量为()1,1,2m =-,所以()1132,2,22,,222AF AP PF λλλ⎛⎫=+=-= ⎪⎝⎭.设平面AEF 的一个法向量为()000,,n x y z =.由0,0,AE n AF n ⎧⋅=⎨⋅=⎩得0000020,1130.222y z x y z +=⎧⎪⎨++=⎪⎩令01y =,得()5,1,2n =-, 所以cos ,0m nm n m n ⋅==.所以m n ⊥,所以二面角C AE F --的大小为2π.20.【答案】(1)22182x y +=(2)6350x y --=【解析】(1)由题意可得22242,411,a a b⎧=⎪⎨+=⎪⎩解方程组可求出2,a b ,从而可求出椭圆方程, (2)①当直线AB 的斜率存在时,设其方程为y kx t =+,()11,A x y ,()22,B x y ,将直线方程代入椭圆方程中消去y ,利用根与系数的关系,然后由1212k k ⋅=-列方程可求出213k t +=-,则直线AB 的方程为213k y kx +=-,从而可得其过定点,②当直线AB 的斜率不存在时,设()00,A x y ,则()00,B x y -,由1212k k ⋅=-可求出,A B 两点的坐标,从而可求出直线AB 过的定点,进而可求出直线方程 【详解】(1)由题意,知222411,a a b⎧=⎪⎨+=⎪⎩解得22a b ⎧=⎪⎨=⎪⎩, 所以椭圆C 的标准方程为22182x y +=.(2)①当直线AB 的斜率存在时,设其方程为y kx t =+,()11,A x y ,()22,B x y .联立2248,,x y y kx t ⎧+=⎨=+⎩得()222418480k x ktx t +++-=.由韦达定理,得12221228,4148,41kt x x k t x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩所以122221222,418.41t y y k t k y y k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为()()()()()22221212121222212121211411241122224416164421424y y y y t k y y t t k t kk k x x x x x x t kt k t k t k -++------+--⋅=⋅====---++++-+++-12=-,所以3210t k ++=,即213k t +=-,所以直线AB 的方程为213k y kx +=-,即(32)(31)0x k y --+=,由320310x y -=⎧⎨+=⎩,得2313x y ⎧=⎪⎪⎨⎪=-⎪⎩故直线AB 恒过点21,33M ⎛⎫-⎪⎝⎭. ②当直线AB 的斜率不存在时,设()00,A x y ,则()00,B x y -,所以()()20000122000011121224222y y y x k k x x x x ----+⋅=⋅===-----,解得023x =,所以此时直线AB 也过点21,33M ⎛⎫-⎪⎝⎭.因为点21,33M ⎛⎫- ⎪⎝⎭在椭圆C 的内部, 所以当直线AB 垂直于OM 时,坐标原点O 到直线AB 的距离最大, 此时直线AB 的方程为6350x y --=.21.【答案】【解析】解:(1)函数f (x )的定义域为(﹣∞,﹣2)∪(﹣2,+∞), 且f′(x )=e x[+]=e x•,令x 2+ax+a =0,则△=a 2﹣4a , ①当0≤a≤4时,△≤0,x 2+ax+a≥0,即f′(x )≥0且不恒为零,故f (x )的单调递增区间为(﹣∞,﹣2)和(﹣2,+∞), ②当a >4时,△>0,方程x 2+ax+a =0的两根为x 1=,x 2=,由于x 1﹣(﹣2)=<0,x 2﹣(﹣2)=>0,(或令φ(x )=x 2+ax+a ,φ(﹣2)=4﹣a <0) 故x 1<﹣2<x 2,因此当x∈(﹣∞,x 1)时,f′(x )>0,f (x )单调递增, 当x∈(x 1,﹣2)时,f′(x )<0,f (x )单调递减, 当x∈(﹣2,x 2)时,f′(x )<0,f (x )单调递减, 当x ∈(x 2,+∞)时,f′(x )>0,f (x )单调递增,综上,当0≤a≤4时,f (x )的单调递增区间为(﹣∞,﹣2)和(﹣2,+∞); 当a >4时,f (x )在(﹣∞,)单调递增,在(,﹣2)单调递减,在(﹣2,)单调递减,在(,+∞)单调递增.(2)由g′(x )==,设k(x)=e x+b(x>0),由(1)知,a=0时,f(x)=e x在(0,+∞)单调递增,故k(x)在区间(0,+∞)单调递增,由于k(2)=b≥0,k(0)=﹣1+b<0,故在(0,2]上存在唯一x0,使k(x0)=0,﹣b=,又当x∈(0,x0)时,k(x)<0,即g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,k(x)>0,即g′(x)>0,g(x)单调递增,故x∈(0,+∞)时,h(b)=g(x0)===,x0∈(0,2],又设m(x)=,x∈(0,2],故m′(x)==>0,所以m(x)在(0,2]上单调递增,故m(x)≤m(2)=,即h(b)的最大值为.22.【答案】【解析】解:(1)点A的极坐标为(1,),根据转换为直角坐标为(),点B的极坐标为(1,),根据转换为直角坐标为(),点C的极坐标为(),根据转换为直角坐标为(),点D的极坐标为(1,),根据转换为直角坐标为(),(2)曲线C1的极坐标方程为ρ2=,根据转换为直角坐标方程为,设P(2cosθ,sinθ),则|PA|2+|PC|2=.23.【答案】【解析】解:(1)由题意可知,f(x)+f(2x)=|x﹣1|+|2x﹣1|≤4,当x≥1时,原不等式可化为3x﹣2≤4,解答x≤2,所以1≤x≤2;当<x<1时,原不等式可化为1﹣x+2x1≤4,解得x≤4,所以<x<1;当x≤时,原不等式可化为1﹣x+1﹣2x≤4,解得x≥﹣,所以﹣≤x≤.综上,不等式的解集M={x|﹣≤x≤2}.(2)由题意,m=2,在不等式等价为|2x﹣1|2+|ax﹣1|≤2,因为x≥1,所以|ax﹣1|≤2﹣(4x2﹣4x+1)=﹣4x2+4x+1,所以4x2﹣4x﹣1≤ax﹣1≤﹣4x2+4x+1,要使不等式在[1,+∞)上有解,则(4x﹣4)min≤a≤,所以0≤a≤2,即实数a的取值范围是[0,2].。

高考最有可能考的50题(30道选择题+20道压轴题)数学理

高考最有可能考的50题(30道选择题+20道压轴题)数学理

高考最有可能考的50题 (数学理课标版)(30道选择题+20道压轴题)一.选择题(30道)1.若集合{|23},M x x =-<<2{|1,}N y y x x R ==+∈,则集合M N = A. (2,)-+∞ B. (2,3)- C. [1,3) D. R2.已知集合{}1A x x =>,{}B x x m =<,且A B =R ,那么m 的值可以是A .1-B .0C .1D .2 3.复数17i i+的共轭复数是a+bi (a,b ∈R ),i 是虚数单位,则ab 的值是A 、-7B 、-6C 、7D 、64.已知i 是虚数单位,m .n ∈R ,且i 1i m n +=+,则i im n m n +=-(A )1- (B )1 (C )i - (D )i5.已知命题11:242xp ≤≤,命题15:[,2]2q x x+∈--,则下列说法正确的是A .p 是q 的充要条件B .p 是q 的充分不必要条件C .p 是q 的必要不充分条件D .p 是q 的既不充分也不必要条件6.下面四个条件中,使b a >成立的充分而不必要的条件是 A.1+>b a B.1->b a C.22b a > D.33b a >7.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的(A) 必要而不充分条件 (B) 既不充分也不必要条件 (C) 充要条件 (D) 充分而不必要条件8.执行右边的程序框图,若输出的S 是127,则条件①可以为 (A )5n ≤(B )6n ≤ (C )7n ≤(D )8n ≤9.阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞10.要得到函数sin(2)4yx π=+的图象,只要将函数sin 2y x=的图象( )A .向左平移4π单位B .向右平移4π单位C .向右平移8π单位D .向左平移8π单位11.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( )A .332- B .332±C .1-D .1±12.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( )A .2 B. D .2-13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( ) A .30︒ B .60︒ C .90︒ D .120︒14.如图,O 为△ABC 的外心,BAC ,AC ,AB ∠==24为钝角,M 是边BC 的中点,则AO AM ∙的值( ) A..12 C .6 D .515.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )16.如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( ) A. π23 B. π3 C.π32 D. π2第21题图17. A ax ax xA ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( ) A ),1[)1,(+∞⋃--∞ B [-1,1] C ),1[]1,(+∞⋃--∞ D (-1,1]18.已知正项等比数列{}n a 满足:1232a a a +=,若存在两项n m a a ,,使得14a a a n m =,则nm 41+的最小值为( )A .23 B .35 C .625 D .不存在19.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排 方法的种数为 ( )A .10B .20C .30D .4020.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有 ( ) .6 .8 .12 .16A B C D21.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++= ( ) A .33 B .72 C .84 D .18922.若等比数列}{n a 的前n 项和23-⋅=nn a S ,则=2aA.4B.12C.24D.3623.已知1F 、2F 分别是双曲线22221(0,0)x y aba b -=>>的左、右焦点,P 为双曲线上的一点,若1290F PF ∠=︒,且12F PF ∆的三边长成等差数列,则双曲线的离心率是( ). A.2 B.3 C.4 D.524.长为)1(<l l 的线段AB 的两个端点在抛物线x y =2上滑动,则线段AB 中点M 到y 轴距离的最小值是 A .2l B .22lC .4l D .42l25.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A. 2 B. 3 C. 4 D.626.函数f(x)=tan x +xtan 1,x }2002|{ππ<<<<-∈x x x 或的大致图象为( )A B C D27.设()f x 在区间(,)-∞+∞可导,其导数为'()f x ,给出下列四组条件( ) ①()p f x :是奇函数,':()q f x 是偶函数②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③B .①②④ C.①③④ D.②③④28.若a 满足4lg =+x x ,b 满足410=+xx ,函数⎪⎩⎪⎨⎧>≤+++=0,20,2)()(2x x x b a x x f ,则关于x 的方程x x f =)(的解的个数是( ) A .1 B .2 C .3 D. 429.已知函数f (x )是R 上的偶函数,且满足f (x+1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2007.5)的值为( ) A .0.5 B .1.5 C .-1.5 D .130.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围( ) A. 9(,2]4-- B.[1,0]- C.(,2]-∞- D.9(,)4-+∞二.填空题(8道)31.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射 疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射 了疫苗的鸡的数量平均为 万只。

2025年新高考数学名校选填压轴好题汇编03(学生版)

2025年新高考数学名校选填压轴好题汇编03(学生版)

2025年新高考数学名校选填压轴好题汇编031.(江西省智学联盟体2024-2025学年高三上学期9月质量检测数学试卷)命题“∃x ∈0,+∞ ,使a x ≤log a x (a >0且a ≠1)成立”是假命题,则实数a 的取值范围是()A.a >e12B.a >e1eC.1<a <e12D.1<a <e1e2.(江西省抚州市部分学校2025届高三上学期一轮复习联考(一)数学试题)设a =ln1.02,b =sin0.02,c =151,则a ,b ,c 大小关系为()A.c <b <aB.c <a <bC.a <b <cD.a <c <b3.(江西省抚州市部分学校2025届高三上学期一轮复习联考(一)数学试题)已知函数f (x )=sin ωx +θ ω>0,|θ|<π2 ,f (0)=32,函数f (x )在区间-2π3,π6 上单调递增,在区间0,5π6 上恰有1个零点,则ω的取值范围是()A.45,2B.45,54C.45,1D.54,24.(江西省抚州市部分学校2025届高三上学期一轮复习联考(一)数学试题)已知定义域为R 的函数f (x ),对任意x ,y ∈R ,都有f (2x )+f (2y )=-f (x +y )f (x -y ),且f (2)=2,则()A.f (0)=0B.f (x )为偶函数C.f (x +1)为奇函数D.2024i =1f (i )=05.(浙江省金华第一中学2024-2025学年高三上学期9月月考数学试题)设A ,B ,C 三点在棱长为2的正方体的表面上,则AB ⋅AC的最小值为()A.-94B.-2C.-32D.-436.(浙江省金华第一中学2024-2025学年高三上学期9月月考数学试题)已知数列a n 满足a n +1<a n +1<2a n +2,a 1=1,S n 是a n 的前n 项和.若S m =2024,则正整数m 的所有可能取值的个数为()A.48B.50C.52D.547.(河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题)设函数f x =0,x =34π+k πω-tan ωx -π4,x ≠34π+k πωω>0,k ∈Z ,若函数f x 在区间-π8,3π8上有且仅有1个零点,则ω的取值范围为()A.23,2B.0,23C.23,103D.0,28.(河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题)已知f (x )=e x -1-e 1-x2-ax ,x ≤1x +3x +1,x >1,a ∈R 在R 上单调递增,则a 的取值范围是()A.-2,1B.-2,-1C.-∞,1D.-2,+∞9.(河北省邢台市邢襄联盟2024-2025学年高三上学期9月联考数学试题)已知函数f (x )=2cos ωx +1(ω>0)在区间(0,π)上有且仅有3个零点,则ω的取值范围是()A.83,103B.83,103C.73,113D.73,11310.(河北省邢台市邢襄联盟2024-2025学年高三上学期9月联考数学试题)若a ≠0,函数f x =sin π6x -π6ax 2+bx +c ,且f x ≥0在0,8 上恒成立,则下列结论正确的是()A.a >0B.b <0C.c >0D.b +c >011.(河北省邯郸市2024-2025学年高三上学期第一次调研考试数学试题)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线C 上,过点P 作两条渐近线的垂线,垂足分别为D ,E ,若PF 1 ⋅PF 2 =0,且3|PD ||PE |=S △PF 1F 2,则双曲线C 的离心率为()A.233B.2C.3D.212.(山西省忻州市2024-2025学年高三上学期9月月考数学试题)已知a >0,设函数f x =e 2x +2-a x -ln x -ln a ,若f x ≥0在0,+∞ 上恒成立,则a 的取值范围是()A.0,1eB.0,1C.0,eD.0,2e13.(山西省忻州市2024-2025学年高三上学期9月月考数学试题)已知数列a n 满足a n +1a n +an +1a n +2=2,且a 2=a 12a 1+1,a 3=17,则3a 100=()A.165B.167C.169D.17114.(山西省运城市2024-2025学年高三上学期开学摸底调研数学试题)若cos α-π6 =13,则sin 2α+π6=()A.429B.79C.-429D.-7915.(山西省晋城市2024-2025学年高三上学期9月月考数学试题)若a =log 4256,b =0.125-79,c =6log 32,则()A.a >b >cB.b >a >cC.c >a >bD.c >b >a16.(山西省大同市2024-2025学年高三上学期开学质量检测联考数学试题)已知x 1,x 2是函数f (x )=12ax 2-2x +ln x 的两个极值点,若不等式m >f x 1 +f x 2 +x 1x 2恒成立,则实数m 的取值范围是()A.(-3,+∞)B.[-2,+∞)C.(2,+∞)D.[e ,+∞)17.(吉林省实验中学2024-2025学年高三上学期开学学业诊断考试数学试题)已知f x =4x -1+(x -1)2+a 有唯一的零点,则实数a 的值为()A.0B.-1C.-2D.-318.(吉林省实验中学2024-2025学年高三上学期开学学业诊断考试数学试题)设函数f (x )=(x -a )sin ax ,若存在x 0使得x 0既是f (x )的零点,也是f (x )的极值点,则a 的可能取值为()A.0B.πC.πD.π219.(多选题)(江西省智学联盟体2024-2025学年高三上学期9月质量检测数学试卷)若数列a n 满足1a n +1-1a n=d (n ∈N ∗,d 为常数),则称数列a n 为“调和数列”.已知数列b n 为“调和数列”,下列说法正确的是()A.若∑20i =1b i =20,则b 10+b 11=b 10b 11B.若b n =2n +1c n ,且c 1=3,c 2=15,则b n =12n -1C.若b n 中各项均为正数,则b n +1≤b n +b n +22D.若b 1=1,b 2=12,则∑n +1i =2[b i ⋅ln (i -1)]≤n 2-n420.(多选题)(浙江省金华第一中学2024-2025学年高三上学期9月月考数学试题)设a >1,n 为大于1的正整数,函数的定义域为R ,f x -f y =a yf x -y ,f 1 ≠0,则()A.f 0 =0B.f x 是奇函数C.f x 是增函数D.f n +1f 1>a n +n 21.(多选题)(河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题)以下不等式成立的是()A.当x ∈0,1 时,e x +ln x >x -1x+2 B.当x ∈1,+∞ 时,e x +ln x >x -1x+2C.当x ∈0,π2时,e x sin x >x D.当x ∈π2,π时,e x sin x >x 22.(多选题)(河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题)设正项等比数列a n 的公比为q ,前n 项和为S n ,前n 项积为T n ,则下列选项正确的是()A.S 9=S 4+q 4S 5C.若a 1a 9=4,则当a 24+a 26取得最小值时,a 1=2D.若(a n +1)n >T 2n ,则a 1<123.(多选题)(河北省邢台市邢襄联盟2024-2025学年高三上学期9月联考数学试题)已知f 3x +1 为奇函数,且对任意x ∈R ,都有f x +2 =f 4-x ,f 3 =1,则()A.f 7 =-1B.f 5 =0C.f 11 =-1D.f 23 =024.(多选题)(河北省邢台市邢襄联盟2024-2025学年高三上学期9月联考数学试题)已知函数f (x )=x 2-x +2x 2+1⋅x 2-2x +2,则下列结论正确的是()A.f (x )的最小值为1B.f (x )的最大值为2C.f (x )在(1,+∞)上单调递减D.f (x )的图象是轴对称图形25.(多选题)(河北省邯郸市2024-2025学年高三上学期第一次调研考试数学试题)已知实数a ,b 是方程x 2-k -3 x +k =0的两个根,且a >1,b >1,则()A.ab 的最小值为9B.a 2+b 2的最小值为18C.3a -1+1b -1的最小值为3 D.a +4b 的最小值为1226.(多选题)(河北省邯郸市2024-2025学年高三上学期第一次调研考试数学试题)已知函数f (x )满足:f 1 =14,4f x f y =f x +y +f x -y x ,y ∈R ,则()A.f 0 =12B.f (x )为奇函数C.f (x )为周期函数D.f 2 =-1427.(多选题)(山西省忻州市2024-2025学年高三上学期9月月考数学试题)已知函数f x 的定义域为R ,设g x =f x +2 -1,若g x 和f x +1 均为奇函数,则()A.f 2 =1B.f x 为奇函数C.fx 的一个周期为4D.2024k =1f (k )=202428.(多选题)(山西省运城市2024-2025学年高三上学期开学摸底调研数学试题)到两个定点的距离之积为大于零的常数的点的轨迹称为卡西尼卵形线.设F 1-c ,0 和F 2c ,0 且c >0,动点M 满足MF 1 ⋅MF 2 =a 2a >0 ,动点M 的轨迹显然是卡西尼卵形线,记该卡西尼卵形线为曲线C ,则下列描述正确的是()A.曲线C 的方程是x 2+y 2 2-2c 2x 2-y 2 =a 4-c 4B.曲线C 关于坐标轴对称C.曲线C 与x 轴没有交点D.△MF 1F 2的面积不大于1a 229.(多选题)(山西省晋城市2024-2025学年高三上学期9月月考数学试题)对任意x ,y ∈R ,函数f x ,g x 都满足f x +f y +g x -2g y =e x +y ,则()A.f x 是增函数B.f x 是奇函数C.g x 的最小值是g 0D.y =2f x -g x 为增函数30.(多选题)(山西省大同市2024-2025学年高三上学期开学质量检测联考数学试题)记数列a n 的前n 项和为S n ,若存在实数t ,使得对任意的n ∈N *,都有S n <t ,则称数列a n 为“和有界数列”,下列说法正确的是()A.若a n 是等差数列,且公差d =0,则a n 是“和有界数列”B.若a n 是等差数列,且a n 是“和有界数列”,则公差d =0C.若a n 是等比数列,且公比q <1,则a n 是“和有界数列”D.若a n 是等比数列,且a n 是“和有界数列”,则a n 的公比q <131.(多选题)(山西省大同市2024-2025学年高三上学期开学质量检测联考数学试题)已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是棱AB ,A 1B 1的中点,动点P 满足AP =λAB +μAD,其中λ,μ∈(0,1],则下列命题正确的是()A.若λ=2μ,则平面AB 1P ⊥平面DEFB.若λ=μ,则D 1P 与A 1C 1所成角的取值范围为π4,π2C.若λ=μ-12,则PD 1∥平面A 1C 1E D.若λ+μ=32,则线段PF 长度的最小值为6232.(多选题)(吉林省实验中学2024-2025学年高三上学期开学学业诊断考试数学试题)已知x 1是函数f x =x 3+mx +n m <0 的极值点,若f x 2 =f x 1 x 1≠x 2 ,则下列结论正确的是()A.f x 的对称中心为0,nB.f -x 1 >f x 1C.2x 1+x 2=0D.x 1+x 2>033.(多选题)(吉林省实验中学2024-2025学年高三上学期开学学业诊断考试数学试题)已知抛物线C :y 2=2px (p >0)的焦点为F ,C 上一点P 到F 和到y 轴的距离分别为12和10,且点P 位于第一象限,以线段PF 为直径的圆记为Ω,则下列说法正确的是()A.p =4B.C 的准线方程为y =-2C.圆Ω的标准方程为(x -6)2+(y -25)2=36D.若过点(0,25),且与直线OP (O 为坐标原点)平行的直线l 与圆Ω相交于A ,B 两点,则|AB |=4534.(江西省智学联盟体2024-2025学年高三上学期9月质量检测数学试卷)四棱锥P -ABCD 的底面ABCD为平行四边形,点E、F、G分别在侧棱P A、PB、PC上,且满足PE=14P A,PF=23PB,PG=12PC.若平面EFG与侧棱PD交于点H,则PH=PD.35.(江西省抚州市部分学校2025届高三上学期一轮复习联考(一)数学试题)方程cos3πx=x2的根的个数是.36.(浙江省金华第一中学2024-2025学年高三上学期9月月考数学试题)已知四面体ABCD各顶点都在半径为3的球面上,平面ABC⊥平面BCD,直线AD与BC所成的角为90°,则该四面体体积的最大值为.37.(河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题)已知函数f x =sinπ-ωxcosωx-3sin2ωx(ω>0)的最小正周期为π,则f(x)在区间-2024π,2024π上所有零点之和为.38.(河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题)若定义在-∞,0∪0,+∞上的函数f(x)满足:对任意的x,y∈-∞,0∪0,+∞,都有:fxy=f x +f1y ,当x,y>0时,还满足:x-yf1x-f1y>0,则不等式f x ≤x -1的解集为.39.(河北省邢台市邢襄联盟2024-2025学年高三上学期9月联考数学试题)1796年,年仅19岁的高斯发现了正十七边形的尺规作图法.要用尺规作出正十七边形,就要将圆十七等分.高斯墓碑上刻着如图所示的图案.设将圆十七等分后每等份圆弧所对的圆心角为α,则16k=111+tan2kα2=.40.(河北省邢台市邢襄联盟2024-2025学年高三上学期9月联考数学试题)已知a>0,且x=0是函数f x =x2ln x+a的极大值点,则a的取值范围为.41.(河北省邯郸市2024-2025学年高三上学期第一次调研考试数学试题)已知有穷递增数列a n的各项均为正整数n≥3,所有项的和为S,所有项的积为T,若T=4S,则该数列可能为.(填写一个数列即可)42.(河北省邯郸市2024-2025学年高三上学期第一次调研考试数学试题)若过点0,0的直线是曲线y=x2+1x>0和曲线y=ln x-a+a的公切线,则a=.43.(山西省忻州市2024-2025学年高三上学期9月月考数学试题)设a,b是正实数,若椭圆ax2+by2=1与直线x+y=1交于点A,B,点M为AB的中点,直线OM(O为原点)的斜率为2,又OA⊥OB,则椭圆的方程为.44.(山西省运城市2024-2025学年高三上学期开学摸底调研数学试题)若曲线y=x+ae x有两条过坐标原点的切线,则a的取值范围是.45.(山西省晋城市2024-2025学年高三上学期9月月考数学试题)若函数f(x)=sin6x+cos6x+3 8sin4x-m在0,π4上有两个零点,则m的取值范围是.46.(山西省大同市2024-2025学年高三上学期开学质量检测联考数学试题)已知定义在(0,+∞)的函数满足对任意的正数x,y都有f(x)+f(y)=f(xy),若2f13+f15 =-2,则f(2025)=.47.(山西省大同市2024-2025学年高三上学期开学质量检测联考数学试题)已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是抛物线C:y2=2x上三个不同的点,它们的横坐标x1,x2,x3成等差数列,F是C的焦点,若P2F= 2,则y1y3的取值范围是.48.(吉林省实验中学2024-2025学年高三上学期开学学业诊断考试数学试题)给如图所示的1~9号方格进行涂色,规则是:任选一个格子开始涂色,之后每次随机选一个未涂色且与上次所涂方格不相邻(即没有公共边)的格子进行涂色,当5号格子被涂色后停止涂色,记此时已被涂色的格子数为X,则P X=3=.。

高考专题高考冲刺压轴卷新课标Ⅱ数学(理卷二).docx

高考专题高考冲刺压轴卷新课标Ⅱ数学(理卷二).docx

2015年高考冲刺压轴卷·新课标Ⅱ数学(理卷二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B 铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.)1.(2015·黑龙江省哈尔滨第六中学第三次模拟·1)已知集合}03|{2<-=x x x A ,},1{a B =,且B A I 有4个子集,则实数a 的取值范围是( )A.)3,0(B. )3,1()1,0(YC.)1,0(D.),3()1,(+∞-∞Y2.(2015·大连市第二次模拟·2)已知复数z 的共轭复数为z ,若|z |=4,则z ·z =( )(A )4 (B )2 (C )16 (D )±23.(2015·新疆乌鲁木齐第二次模拟·3)若角α的终边过点P (-3,-4),则cos )2(απ-的值为( )A .2524-B .257-C .257D .2524 4.(2015·云南昆明市第二次模拟·5)5.(2015·广西南宁市第二次模拟·6)已知实数,x y 满足102100y x y x y m -≥⎧⎪--≥⎨⎪+-≤⎩,若x y -的最小值为2-,则实数m 的值为( ).A .0B .2C .4D .86.(2015·东北四市联考质检二·6)阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是 ( ) A .6n =B .6n <C .6n ≤D .8n ≤ 7.(2015·东北三校联合第二次模拟·5)8. (2015·黑龙江省哈尔滨第三中学第二次模拟·4)9.(2015·吉林省长春市质检三·4)已知ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b c bc =+-,4bc =,则ABC ∆的面积为( )A .12B .1C 3D .210.(2015·海南省5月高考模拟考试·3)若函数)0,0(1)(>>-=b a e bx f ax 的图象在x=0处的切线与圆x 2+y 2=1相切,则a+b 的最大值是( )A. 4B. 2C. 2D.2 11.(2015·黑龙江省哈尔滨第六中学第三次模拟·9)如图,一个空间几何体的正视图、侧360︒ 的菱形,俯视图为正方形,那么这个几何体的表面积为( )A. 338 D. 412.(2015·大连市第二次模拟·12)对(0,)2x π∀∈ ,下列四个命题:①sin tan 2x x x +>;②2sin tan x x x ⋅>;③8sin tan 3x x x +>;④2sin tan 2x x x >g ,则正确命题的序号是( )(A )①、② (B )① 、 ③ (C )③、④ (D )②、④第II 卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.(2015·新疆乌鲁木齐第二次模拟·13)二项式5mx x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数为10,则实数m 等于_______.(用数字填写答案)14.(2015·云南昆明市第二次模拟·14)15.(2015·广西南宁市第二次模拟·14)已知函数22,0(),0x f x x bx c x ->⎧=⎨-++≤⎩,若满足(0)2,(1)1f f =--=,则函数()()g x f x x =+的零点个数为 .16.(2015·黑龙江省哈尔滨第三中学第二次模拟·14)三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.(2015·吉林省长春市质检三·17)(本小题满分12分)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足2221n n n S a S =-2()n ≥. (1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:当2n ≥时,1231113...232n S S S S n ++++<.18. (2015·海南省5月高考模拟考试·18) (本小题满分12分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(1)求证:AB DE ⊥;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EF EA;若不存在,说明理由.19.(2015·黑龙江省哈尔滨第六中学第三次模拟·18)(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在050-为优秀,各类人群可正常活动.市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的空气质量指数频率分布直方图,如图.(1) 求a 的值;(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(3) 如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为ξ,求ξ的分布列和数学期望.20.(2015·大连市第二次模拟·20)(本小题满分12分)如图,已知椭圆C 中心在原点,焦点在x 轴上,12,F F 分别为左右焦点,椭圆的短轴长为2,过2F 的直线与椭圆C 交于,A B 两点,三角形12F BF 1)a > .(Ⅰ)求椭圆C 的方程(用a 表示);(Ⅱ)求三角形1F AB 面积的最大值.21.(2015·广西南宁市第三次模拟·21)(请考生在第22、23、24题中任选一题做答,如果多做,按所做的第一题计分,做答时请写清题号.)22.(本小题满分10)选修4—1:几何证明选讲(2015·新疆乌鲁木齐第二次模拟·22)如图AB 是半圆的直径,C 是圆上一点,CH AB ⊥于点H ,CD 是圆的切线,F 是AC 上一点,DF DC =,延长DF 交AB 于E .(Ⅰ)求证:DE ∥CH ;(Ⅱ)求证:22AD DF AE AB -=g23.(2015·云南昆明市第二次模拟·23)24.(2015·广西南宁市第二次模拟·24)已知函数()||f x x a =-(1)若()f x m ≤的解集为{|15}x x -≤≤,求实数,a m 的值;(2)当2a =且02t ≤≤时,解关于x 的不等式()(2)f x t f x +≥+.2015年高考冲刺压轴卷·新课标Ⅱ数学(理卷二)参考答案与解析1.B【命题立意】本题旨在考查集合,不等式。

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

2021届全国卷Ⅲ高考压轴数学(理)试题及答案

2021届全国卷Ⅲ高考压轴数学(理)试题及答案

2021新课标Ⅲ高考压轴卷数学(理)第I 卷(选择题)一.选择题:本大题12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符号题目要求的1.已知集合{2,1,0,1}A =--,{|1}B x x =>-,则AB =() A .{2,1}-- B .{0,1}C .{1,0,1}-D .{2,1,0,1}-- 2.已知,,a b c ∈R ,则“a b >”的一个充分而不必要条件是()A .22a b >B .33a b >C .22a b >D .22ac bc > 3.已知复数812ai z i +=-为纯虚数,则a =() A .2 B .4 C .-16 D .-44.若实数x ,y 满足约束条件10,10,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则221z x y =++的最小值为()A .12B .1C .32 D.12+ 5.下列函数中,是偶函数且值域为[0,)+∞的是()A .2()1f x x =-B .12()f x x = C .2()log f x x = D .()||f x x =6.数列{}n a 是各项均为正数的等比数列,23a 是3a 与4a 的等差中项,则{}n a 的公比等于()A .2B .32C .3 D7.下列结论正确的是()A .若0a b >>,则ac bc >B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若0a b >>,0c >,则a c a b c b+>+D .若0a >,0b >,1a b +=,则()2log 2ab >-8.祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是:如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等,此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行且相距为()02h h <<的平面截该几何体,则截面面积为()A .4πB .24h πC .()22h π-D .()24h π-9.已知向量a ,b 满足3a b +=,0a b ⋅=,若(1)()c a b λλλ=+-∈R ,且c a c b ⋅=⋅,则c 的最大值为()A .3B .2C .12D .32 10.()()522x y x y --的展开式中的33x y 系数为()A .200-B .120-C .120D .200 11.如图,已知双曲线()222210x y b a a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若12AF F △的内切圆半径为4b ,则双曲线的离心率为()A .53B .54C .43D .3212.已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是()A .0,2e ⎛⎫ ⎪⎝⎭ B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭ 第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.已知等差数列{}n a 的前n 项和为n S ,651S =,822a =,则3a =______.14.在ABC 中,60BAC ∠=︒,3BC =,D 是BC 上的点,AD 平分BAC ∠,若2AD =,则ABC 的面积为__________.15.已知圆C 的圆心坐标是(0,)m ,若直线230x y -+=与圆C 相切于点(2,1)A --,则圆C 的标准方程为___________.16.在四棱锥S ABCD -中,//AB CD ,122AD AB BC CD ====,5SA =,7SB SD ==,则三棱锥S ABD -外接球的表面积为______.三、解答题(共70分.解答题写出文字说明、证明过程或演算步骤.地17-21为必做题,每个试题都必须作答.第22、23题为选做题,考生按要求作答)(一)必做题17.已知公差不为0的等差数列{}n a 满足11a =,且1a ,2a ,5a 成等比数列.。

2023高考压轴卷——数学(理)(全国乙卷)含解析

2023高考压轴卷——数学(理)(全国乙卷)含解析

KS5U2023全国乙卷高考压轴卷数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1282x A x ⎧⎫=<<⎨⎬⎩⎭∣,{}1,0,1,2B =-,则A B = ()A.{}2 B.{}1,0- C.{}0,1,2 D.{}1,0,1,2-2.设命题:p x ∀∈R ,e 1x x ≥+,则p ⌝是()A.x ∀∈R ,e 1≤+x x B.x ∀∈R ,e 1x x <+C.x ∃∈R ,e 1≤+x x D.x ∃∈R ,e 1x x <+3.已知复数z 满足()1i 2i z -=-,则复数z 的虚部为()A.12B.1i 2C.32D.3i 24.已知△ABC 中,D 为BC 边上一点,且13BD BC =,则AD =()A.1233AC AB +B.2133AC AB +C.1344AC AB +D.3144AC AB +5.已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()A.6B.3π3C.D.π36.如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A.4B.2C.D.7.已知30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩则x +2y 的最大值为()A.2B.3C.5D.68.函数()4ee x xf x +-=-(e 是自然对数的底数)的图象关于()A.直线e x =-对称B.点(e,0)-对称C.直线2x =-对称D.点(2,0)-对称9.已知数列{}n a 的前n 项和122n n S +=-,若()*5,p q p q +=∈N ,则p q a a =()A.8B.16C.32D.6410.已知点(),P x y 到点()1F 和点)2F 的距离之和为4,则xy ()A.有最大值1B.有最大值4C.有最小值1D.有最小值4-11.如图,在正方体1111ABCD A B C D -中,点M ,N 分别是1A D ,1D B 的中点,则下述结论中正确的个数为()①MN ∥平面ABCD ;②平面1A ND ⊥平面1D MB ;③直线MN 与11B D 所成的角为45︒;④直线1D B 与平面1A ND 所成的角为45︒.A.1B.2C.3D.412.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数()f x ,存在点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数.若函数()()e ln xf x x a x =-为“不动点”函数,则实数a 的取值范围是()A.(],0-∞ B.1,e⎛⎤-∞ ⎥⎝⎦C.(],1-∞ D.(],e -∞二、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()2sin 0,08f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象关于点,22π⎛⎫⎪⎝⎭中心对称,其最小正周期为T ,且322T ππ<<,则ω的值为______.14.已知点()1,0A ,()2,2B ,C 为y 轴上一点,若π4BAC ∠=,则⋅= AB AC ______.15.3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为3D 线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm .16.在数列{}n a 中,11a =,()()*212nn n a a n ++-=∈N .记n S 是数列{}n a 的前n 项和,则4n S =______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,()sin 2cos cos 02B C B C π⎛⎫+++= ⎪⎝⎭,(1)求证:B C =;(2)若3cos 5A =,ABC ∆的外接圆面积为254π,求ABC ∆的周长.18.研究表明,温度的突然变化会引起机体产生呼吸道上皮组织的生理不良反应,从而导致呼吸系统疾病的发生或恶化.某中学数学建模社团成员欲研究昼夜温差大小与该校高三学生患感冒人数多少之间的关系,他们记录了某周连续六天的温差,并到校医务室查阅了这六天中每天高三学生新增患感冒而就诊的人数,得到资料如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x(℃)47891412新增就诊人数y(位)1y2y3y4y5y6y参考数据:6213160iiy==∑,()216256iiy y=-=∑.(1)已知第一天新增患感冒而就诊的学生中有7位女生,从第一天新增的患感冒而就诊的学生中随机抽取3位,若抽取的3人中至少有一位男生的概率为1724,求1y的值;(2)已知两个变量x与y之间的样本相关系数1516r=,请用最小二乘法求出y关于x的经验回归方程ˆˆˆy bx a=+,据此估计昼夜温差为15℃时,该校新增患感冒的学生数(结果保留整数).参考公式:()()()121ni iiniix x y ybx x==--=-∑∑,()()ni ix x y yr--=∑.19.如图,△ABC是正三角形,在等腰梯形ABEF中,//AB EF,12AF EF BE AB===.平面ABC⊥平面ABEF,M,N分别是AF,CE的中点,4CE=.(1)证明://MN平面ABC;(2)求二面角--M AB N的余弦值.20.已知函数()ln e 2e e xf x a x x a =+-+.(1)当e a =时,求曲线() y f x =在点()()1,1f 处的切线方程;(2)若a 为整数,当1x ≥时,()0f x ≥,求a 的最小值.21.已知椭圆()2222:10+x y C a b a b=>>的左焦点为F ,右顶点为A ,离心率为12,M 为椭圆C 上一动点,FAM△面积的最大值为332.(1)求椭圆C 的标准方程;(2)过点M 的直线:1l y kx =+与椭圆C 的另一个交点为N ,P 为线段MN 的中点,射线OP 与椭圆交于点D .点Q 为直线OP 上一动点,且2OP OQ OD ⋅=,求证:点Q 在定直线上.(二)选考题:共10分.请考生在22~23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),()2,4为曲线C 上一点的坐标.(1)将曲线C 的参数方程化为普通方程;(2)过点O 任意作两条相互垂直的射线分别与曲线C 交于点A ,B ,以直线OA 的斜率k 为参数,求线段AB 的中点M 的轨迹的参数方程,并化为普通方程.[选修4—5:不等式选讲](10分)23.已知函数()21f x x a x =++-.(1)当1a =时,求()f x 的最小值;(2)若0a >,0b >时,对任意[]1,2x ∈使得不等式()21f x x b >-+恒成立,证明:2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.【KS5U 答案1】C【分析】由指数函数的单调性得{}13A x x =-<<,后由交集定义可得KS5U 答案.【KS5U 解析】13128222132x x x -<<⇔<<⇔<-<<,则{}13A x x =-<<,又{}1,0,1,2B =-,则A B = {}0,1,2.故选:C【KS5U 答案2】D【分析】先仔细审题,抓住题目中的关键信息之后再动,原题让我们选择一个全称命题的否定,任意和存在是一对,要注意互相变化,大于等于的否定是小于.【KS5U 解析】x ∀∈R ,e 1x x ≥+的否定是x ∃∈R ,e 1x x <+.故选:D 【KS5U 答案3】A【分析】根据复数的除法运算可求得31i 22z =+,即可求得结果.【KS5U 解析】由()1i 2i z -=-可得()()()()222i 1i 2i 22i i i 31i 1i 1i 1i 1i 22z -+-+--====+--+-,所以复数z 的虚部为12.故选:A 【KS5U 答案4】A【分析】利用向量的线性运算即可求得.【KS5U 解析】在△ABC 中,BC AC AB=-.因为13BD BC =,所以()1133B AC AB D BC ==- .所以()112333AD AB BD AB A A C AB C AB =++-==+.故选:A 【KS5U 答案5】B【分析】由侧面展开图求得母线长后求得圆锥的高,再由体积公式计算.【KS5U 解析】设圆锥母线长为l ,高为h ,底面半径为1r =,则由2π1πl ⨯=得2l =,所以h ==所以2211ππ1π333V r h ==⨯=.故选:B .【KS5U 答案6】B【分析】由平均数相等求出m ,再求方差.【KS5U 解析】由80290392180290329189055m ⨯+⨯++++⨯+⨯++++==可得,8m =,即甲同学成绩的方差为()22221211225+++=,故选:B 【KS5U 答案7】C【分析】作出可行域,根据简单线性规划求解即可.【KS5U 解析】作出可行域如图:由2z x y =+可得:122zy x =-+,平移直线12y x =-经过点A 时,z 有最大值,由3010x y x y +-=⎧⎨-+=⎩解得(1,2)A ,max 145z =+=.故选:C【KS5U 答案8】D【分析】根据对称性进行检验.【KS5U 解析】由题意()()2e 2e 42e 42e 2e eee e x x x xf x -----+--++--=-=-,它与()f x 之间没有恒等关系,相加也不为0,AB 均错,而44(4)4(4)e e e e ()x x x x f x f x --+----+--=-=-=-,所以()f x 的图象关于点(2,0)-对称.故选:D .【KS5U 答案9】C【分析】当1n =时,由122n n S +=-可得1a ,当2n ≥时,1n n n a S S -=-,验证1a 是否适合可得通项公式,代入通项公式求解可得结果.【KS5U 解析】解:当1n =时,211222a S ==-=,当2n ≥时,()1122222n n n n n n a S S +-=-=---=,12a = ,符合上式,∴数列{}n a 的通项公式为:2n n a =,5222232p q q p q p a a +=⋅===,故选:C.【KS5U 答案10】A【分析】根据题意,求出点P 的轨迹方程,利用三角换元法即可求解.【KS5U 解析】因为点(),P x y 到点()1F 和点)2F 的距离之和为4,所以点P 的轨迹是以()1F ,)2F 为焦点的椭圆,且长轴长24a =,焦距21c b ==,所以点P 的轨迹方程为2214x y +=,设(2cos ,sin ),(02π)P θθθ≤≤,则[]2cos sin sin21,1xy θθθ==∈-,所以xy 有最大值1,故选:A.【KS5U 答案11】C【分析】建立空间直角坐标系,利用法向量的性质,结合空间向量夹角公式逐一判断即可.【KS5U 解析】建立如下图所示的空间直角坐标系,设该正方体的棱长为2,111(0,0,0),(2,0,2),(2,2,0),(0,0,2),(2,2,2),(1,0,1),(1,1,1)D A B D B M N ,由正方体的性质可知:1D D ⊥平面ABCD ,则平面ABCD 的法向量为1(0,0,2)DD =,(0,1,0)MN =,因为10D D MN ⋅= ,所以1D D MN ⊥ ,而MN ⊄平面ABCD ,因此MN ∥平面ABCD ,故①对;设平面1A ND 的法向量为(,,)m x y z = ,(1,1,1)DN =,1(2,0,2)DA = ,所以有1100(1,0,1)2200m DN m DN x y z m x z m DA m DA ⎧⎧⊥⋅=++=⎧⎪⎪⇒⇒⇒=-⎨⎨⎨+=⊥⋅=⎩⎪⎪⎩⎩,同理可求出平面1D MB 的法向量(1,0,1)n =,因为110m n ⋅=-= ,所以m n ⊥,因此平面1A ND ⊥平面1D MB ,故②正确;因为(0,1,0)MN =,11(2,2,0)B D =-- ,所以11cos ,2MN B D 〈〉=-,因为异面直线所成的角范围为(0,90] ,所以直线MN 与11B D 所成的角为45︒,故③正确;设直线1D B 与平面1A ND 所成的角为θ,因为1(2,2,2)D B =- ,平面1A ND 的法向量为(1,0,1)m =-,所以11162sin cos ,32D B m D B m D B mθ⋅=〈〉===≠⋅ ,所以直线1D B 与平面1A ND 所成的角不是45︒,因此④错误,一共有3个结论正确,故选:C 【KS5U 答案12】B【分析】根据题意列出关于0x 和a 的等式,然后分离参数,转化为两个函数有交点.【KS5U 解析】由题意得若函数()()e ln xf x x a x =-为不动点函数则满足()()00000e ln x f x x a x x =-=,即00ln 1x ae x =+,即00ln 1x x a e +=设()ln 1xx g x e+=,()()()()()21ln 1ln 1ln 1x x xx x x e e x x g x e e ''--+⋅-+'==设()()2111ln 1,0h x x h x x x x'=--=--<,所以()h x 在()0+∞,单调递减,且()10h =()0,1x ∈,()()0,0h x g x '>>所以()g x 在()01,上单调递增,()()()1,,0,0x h x g x ∞+<'∈<,所以()g x 在()1,+∞上单调递减,所以()1max ln111g x e e+==当()10,,ln 10,0,xx x e e ⎛⎫∈+<> ⎪⎝⎭则()0g x <,当()1,,ln 10,0,xx x e e⎛⎫∈+∞+>> ⎪⎝⎭则()0g x >所以()g x的图像为:要想00ln 1x x a e +=成立,则y a =与()g x 有交点,所以()max1a g x e≤=,故选:B 【KS5U 答案13】54【KS5U 解析】根据题意,()2sin cos 28242A A f x A x x ππωω⎛⎫⎛⎫=+=-++ ⎪ ⎪⎝⎭⎝⎭,因为图象关于点,22π⎛⎫⎪⎝⎭中心对称,分析可得22A =,所以4A =()2cos 224f x x πω⎛⎫=-++ ⎪⎝⎭,()2242k k πππωπ⨯+=+∈Z ,所以()14k k ω=+∈Z ,又因为最小正周期为T ,且322T ππ<<,所以可得23222πππω<<,则223ω<<,所以ω的值为1.【KS5U 答案14】5【分析】设(0,)C y ,利用余弦定理求C 点坐标,然后利用数量积的坐标表示求解即可.【KS5U 解析】设(0,)C y,所以AB ==AC ==,BC ==,因为π4BAC ∠=,所以由余弦定理得222π2cos 4BC AB AC AB AC =+-,即224851y y y -+=++3y =,所以(0,3)C ,所以(1,2)AB =,(1,3)AC =- ,所以1(1)235AB AC ⋅=⨯-+⨯= ,故KS5U 答案为:5【KS5U 答案15】【分析】由已知,根据题意,以最细处所在的直线为x 轴,其垂直平分线为y 轴建立平面直角坐标系,设出双曲线方程,并根据离心率表示出,a b 之间的关系,由题意底直径为6cm ,所以双曲线过点()3,m ,下底直径为9cm ,高为9cm ,所以双曲线过点9,92m ⎛⎫- ⎪⎝⎭,代入双曲线方程即可求解方程从而得到喉部(最细处)的直径.【KS5U 解析】由已知,以最细处所在的直线为x 轴,其垂直平分线为y 轴建立平面直角坐标系,设双曲线方程为()222210,0x y a b a b -=>>,由已知可得,c e a ==,且222c a b =+,所以224a b =,所以双曲线方程为222214x y a a-=,底直径为6cm ,所以双曲线过点()3,m ,下底直径为9cm ,高为9cm ,所以双曲线过点9,92m ⎛⎫-⎪⎝⎭,代入双曲线方程得:()222222914819414m a a m aa ⎧-=⎪⎪⎨⎪--=⎪⎩,解得:2m a =⎧⎪⎨=⎪⎩,所以喉部(最细处)的直径为cm.故KS5U答案为:【KS5U 答案16】242n n+【分析】根据当n 为奇数时,22n n a a +-=,当n 为偶数时,22n n a a ++=,分组求和即可.【KS5U 解析】由题知,11a =,2(1)2nn n a a ++-=,当n 为奇数时,22n n a a +-=,所以奇数项构成等差数列,首项为1,公差为2,当n 为偶数时,22n n a a ++=,所以2468......2a a a a =++==,所以4135412464(......)(......)n n n S a a a a a a a a -=+++++++++22(21)1222422n n n n n n -=⨯+⨯+⨯=+故KS5U 答案为:242n n+【KS5U 答案17】(1)见证明;(2)4.【分析】(1)由()sin 2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,利用诱导公式、两角和与差的正弦公式化简可得sin()0B C -=,从而可得结论;(2)利用圆的面积公式可求得三角形外接圆半径52R =,利用同角三角函数的关系与正弦定理可得2sin 4a R A ==,结合(1),利用余弦定理列方程求得b c ==,从而可得结果.【KS5U 解析】(1)∵sin()2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,∴sin()2sin cos 0B C B C +-=,∴sin cos cos sin 2sin cos 0B C B C B C +-=,∴cos sin sin cos 0B C B C -=,∴sin()0B C -=.∴在ABC ∆中,B C =,(2)设ABC ∆的外接圆半径为R ,由已知得2254R ππ=,∴52R =,∵3cos 5A =,0A π<<,∴4sin 5A =,∴2sin 4a R A ==,∵BC =,∴b c =,由2222cos a b c bc A =+-⋅得2261625b b =-,解得b =,∴4a b c ++=,∴ABC ∆的周长为4.【KS5U 答案18】(1)110y =,(2)33人【分析】(1)根据题意由1373C 1C y -求解;(2)根据样本相关系数1516r =,求得()()61i i i x x y y =--∑,再利用公式求得ˆˆ,b a 即可.【小问1KS5U 解析】解:∵1373C 171C 24y -=,∴()()11176571224y y y ⨯⨯=--,∴()()111127201098y y y --==⨯⨯,∴110y =.【小问2KS5U 解析】∵6154i i x ==∑,∴9=x ,∴()62164i i x x =-=∑.∵()()()()6611581616iiiii x x y y x x y y r =----==⨯∑∑,∴()()61815i i i x x y y =--=⨯∑,∴()()()12181515ˆ648niii ni i x x y y bx x ==--⨯===-∑∑.又∵()6666222221111266256iii i i i i i y y yy y y y y ====-=-⋅+=-=∑∑∑∑,解得22y =.∴1541ˆˆ22988ay bx =-=-⨯=,∴4115ˆ88yx =+,当15x =时,4115ˆ153388y=+⨯≈,∴可以估计,昼夜温差为15℃时,该校新增患感冒的学生数为33人.【KS5U 答案19】【分析】(1)取CF 的中点D ,连接DM ,DN ,证明平面//MND 平面ABC ,原题即得证;(2)取AB 的中点O ,连接OC ,OE .求出122AF EF EB AB ====,取EF 的中点P ,连接OP ,以O 为原点,OP ,OB ,OC 所在直线分别为x ,y ,z 轴,建立直角坐标系如图所示.利用向量法求解.【小问1KS5U 解析】解:取CF 的中点D ,连接DM ,DN ,∵M ,N 分别是AF ,CE 的中点,∴//DM AC ,//DN EF ,又∵DM ⊄平面ABC ,AC ⊂平面ABC ,∴//DM 平面ABC .又//EF AB ,∴//DN AB ,同理可得,//DN 平面ABC .∵DM ⊂平面MND ,DN ⊂平面MND ,DM DN D = ,∴平面//MND 平面ABC .∵MN ⊂平面MND ,∴//MN 平面ABC.【小问2KS5U 解析】取AB 的中点O ,连接OC ,OE .由已知得//,OA EF OA EF =,∴OAFE 是平行四边形,∴//,//OE AF OE AF .∵△ABC 是正三角形,∴OC AB ⊥,∵平面ABC⊥平面ABEF ,平面ABC ⋂平面ABEF AB =,∴OC ⊥平面ABEF ,又OE ⊂平面ABEF ,∴OC OE ⊥.设12AF EF EB AB a ====,OC =.在Rt COE 中,由222OC OE CE +=,解得2a =,即122AF EF EB AB ====,取EF 的中点P ,连接OP ,则OP AB ⊥,以O 为原点,OP ,OB ,OC 所在直线分别为x ,y ,z 轴,建立直角坐标系如图所示.则()0,2,0A -,(0,0,C,)E,31,22N ⎛ ⎝,()0,2,0OA =-,1,22ON ⎛= ⎝ ,由已知易得,平面ABM的一个法向量为(0,0,OC = ,设平面ABN 的法向量为(),,n x y z = ,则0,0,OA n ON n ⎧⋅=⎪⎨⋅=⎪⎩ 即20,310,22y x y z -=⎧+=⎩取2x =,则平面ABN 的一个法向量为()2,0,1n =-,∴cos ,5OC n OC n OC n ⋅==-,∵二面角--M AB N 为锐角,∴二面角--M AB N 的余弦值为55.【KS5U 答案20】(1)2e e y =-,(2)2【分析】(1)根据导数的几何意义求出切线的斜率及切点即可求解KS5U 答案;(2)根据导函数分子部分的最小值与零比较分类讨论,分别分e a ≥、2a =、1a ≤讨论即可.【小问1KS5U 解析】当e a =时,()2eln e 2e e xf x x =+-+,所以2(1)e e f =-,又因为()ee 2e xf x x=+-,其中0x >,则在点(1,(1))f 处的切线斜率(1)0k f '==,所以切线方程为2e e y =-【小问2KS5U 解析】由题知(e 2e)()x a x f x x+-'=,其中1x ≥,设()(e 2e)x g x a x =+-,则()(1)e 2e x g x x '=+-,可知()g x '为[1,)+∞上的增函数,则()(1)0g x g ''≥=,所以()g x 为[1,)+∞上的增函数,则min ()(1)e g x g a ==-.①当e 0a -≥,即e a ≥时,()0g x ≥,即()0f x '≥,所以()f x 为[1,)+∞上的增函数,则()(1)e e>0f x f a ≥=-,由于a 为整数,可知3a ≥时,()0f x ≥恒成立,符合题意.②当2a =时,()2ln e 2e 2e xf x x x =+-+,()2(e 2e)xg x x =+-,则()g x 的最小值为min ()(1)2e<0g x g ==-,又2(2)22(e 2e)>0g =+-,由于()g x 为[1,)+∞上的增函数,则存在0(1,2)x ∈使得0()0g x =(即02e 2e x x =-),当01x x <<时,()0g x <,即()0f x '<,()f x 为减函数;当0x x >时,()0g x >,即()0f x '>,()f x 为增函数,则00000001()()2ln e 2e 2e=2(ln e 2e)x f x f x x x x x x ==+-+--+极小值,其中0(1,2)x ∈,令1()ln e 2e(1<<2)u x x x x x =--+,则22211e 1()e=<2)x x u x x x x x-++'=+-,当12x <<时,()0u x '<,()u x 在(1,2)上单调递减,则1()(2)ln 202u x u >=->,即0()()0f x f x =>极小值.所以2a =也符合题意.③当1a ≤时,min ()(1)e<0g x g a ==-,由于()g x 为(1,)+∞上的增函数,则存在实数1m >,且(1,)x m ∈,使得()0g x <,即()0f x '<,故()f x 为(1,)m 上的减函数,则当(1,)x m ∈时,()(1)(1)e 0f x f a <=-≤,故1a ≤不符合题意,舍去.综上所述,a 的最小值为2.【KS5U 答案21】【分析】(1)按照题目所给的条件即可求解;(2)作图,联立方程,将M ,N ,P ,Q ,D 的坐标用斜率k 表示出来,(3)按照向量数量积的运算规则即可.【小问1KS5U 解析】设椭圆的半焦距为c ,由椭圆的几何性质知,当点M 位于椭圆的短轴端点时,FAM △的面积取得最大值,此时1()2FAMSa cb =+,1()22a cb ∴+=,()a c b ∴+=.由离心率12c a =得2a c =,b ∴=,解得1c =,2a =,b =,∴椭圆C 的标准方程为22143x y +=;【小问2KS5U解析】由题意作下图:设()11,M x y ,()22,N x y .由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2234880k x kx ++-=.∵点(0,1)在这个椭圆内部,所以0∆>,122843k x x k +=-+,122843x x k =-+,()212122286224343k y y k x x k k ∴+=++=-+=++,∴点P 的坐标为2243,4343k k k ⎛⎫- ⎪++⎝⎭当0k ≠时,直线OP 的斜率为34k -,∴直线OP 的方程为34y x k =-,即43kx y =-,将直线OP 的方程代入椭圆方程得22943Dy k =+,2221643D k x k =+,设点4,3k Q y y ⎛⎫-⎪⎝⎭,由2OP OQ OD ⋅= 得22222443169433434343k kk y y k k k k ⎛⎫-⋅-+⋅=+ ⎪++++⎝⎭,化简得()222216916943343k k y k k ++⋅=++,化简得3y =,∴点Q 在直线3y =上,当直线l 的斜率0k =时,此时(0,1)P,D ,由2OP OQ OD ⋅=得(0,3)Q ,也满足条件,∴点Q 在直线3y =上;综上,椭圆C 的标准方程为22143x y +=,点Q 在直线3y =上.【KS5U 答案22】(1)2x y =,(2)221x y =-【分析】(1)根据曲线C 的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),消去参数t 求解;(2)设OA 的斜率为k ,方程为y kx =,则OB 的方程为:1=-y x k,分别与抛物线方程联立,求得A ,B 的坐标,再利用中点坐标求解.【小问1KS5U 解析】解:因为曲线C 的参数方程为222x pt y pt =⎧⎨=⎩(t 为参数),消去参数t 可得:22x py =,将点()2,4代入可得12p =,所以曲线C 的普通方程为:2x y =;【小问2KS5U 解析】由已知得:OA ,OB 的斜率存在且不为0,设OA 的斜率为k ,方程为y kx =,则OB 的方程为:1=-y x k ,联立方程2,,y kx x y =⎧⎨=⎩可得:()2,A k k ,同理可得:211,B k k ⎛⎫- ⎪⎝⎭,设(),M x y ,所以2211,211,2x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩所以22214222x k y k=+-=-,所以221x y =-即为点M 轨迹的普通方程.【KS5U 答案23】【分析】(1)分段求解()f x 的最小值和范围,即可求得结果;(2)转化()21f x x b >-+为233a b x x +>-+,结合二次函数在区间上的最值,利用不等式,即可证明.【小问1KS5U 解析】当1a =时,()121f x x x =++-,当1x ≤-,()31f x x =-+,()min ()14f x f =-=;当11x -<<,()3f x x =-+,()()2,4f x ∈;当1x ≥,()31f x x =-,()min ()12f x f ==;∴当1a =时,()f x 的最小值为2.【小问2KS5U 解析】0a >,0b >,当12x ≤≤时,2211x a x x b ++->-+可化为233a b x x +>-+,令()233h x x x =-+,[]1,2x ∈,()()()max 121h x h h ===,∴1a b +>∴22222111()122222a b a b a b a b a b +⎛⎫⎛⎫+++=++++≥+++ ⎪ ⎪⎝⎭⎝⎭,当且仅当a b =时取得等号;又当1a b +>时,2()122a b a b ++++2>,故2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.。

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

贵州省黔东南州2025届高考压轴卷数学试卷含解析

贵州省黔东南州2025届高考压轴卷数学试卷含解析

贵州省黔东南州2025届高考压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形2.若直线y =kx +1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为坐标原点),则k 的值为( ) A . 3B .2 C . 33D . 223.已知定义在[)0,+∞上的函数()f x 满足1()(2)2f x f x =+,且当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为n a (*n N ∈),且数列{}n a 的前n 项的和为n S .若对于任意正整数n 不等式()129n k S n +≥-恒成立,则实数k 的取值范围为( )A .[)0,+∞B .1,32⎡⎫+∞⎪⎢⎣⎭C .3,64⎡⎫+∞⎪⎢⎣⎭D .7,64⎡⎫+∞⎪⎢⎣⎭4.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( ) A .4B .3C .2D .15.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A 5-1B 3-1C 31+D 51+ 6.已知向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为120°,则3a b -=( ) A 11B 37C .10D 437.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.复数21iz i+=-,i 是虚数单位,则下列结论正确的是 A .5z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限9.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-210.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .()722+πB .()1022+πC .()1042+πD .()1142+π11.一个几何体的三视图如图所示,则该几何体的表面积为( )A .24π+B .24π-C .242π-D .243π-12.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()322213f x x bx a c ac x =+++- 1+有极值点,则B 的范围是( )A .0,3π⎛⎫⎪⎝⎭ B .0,3π⎛⎤⎥⎝⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .,3π⎛⎫π⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。

2023高考数学新高考1卷压轴题

2023高考数学新高考1卷压轴题

2023高考数学新高考1卷压轴题2023年的高考数学试卷中,出现了一道备受关注的压轴题。

这道题目不仅考察了学生对数学知识的掌握,还要求学生具备一定的逻辑思维和解决问题的能力。

下面我们一起来看看这道题目的内容和解答过程。

题目如下:已知函数f(x)满足f(x+1)=2f(x)-1,且f(0)=1,求f(2023)的值。

解答过程:首先,我们根据题目中给出的条件,可以得到f(1)=2f(0)-1=2-1=1。

接着,我们可以继续计算f(2)、f(3)、f(4)等等。

通过观察我们可以发现,f(x)的值似乎与x的值没有直接的关系。

但是,我们可以尝试将f(x)的表达式进行变换,以便更好地理解和计算。

我们将f(x)的表达式进行变换,令g(x)=f(x)-1,那么原来的等式可以变为g(x+1)=2g(x)。

接下来,我们来计算g(0)、g(1)、g(2)等等。

根据题目中给出的条件,我们可以得到g(0)=f(0)-1=1-1=0。

接着,我们可以继续计算g(1)、g(2)、g(3)等等。

通过观察我们可以发现,g(x)的值似乎与x的值有一定的关系。

我们可以猜测g(x)的表达式可能是一个等比数列。

我们来验证一下我们的猜测。

假设g(x)=a*r^x,其中a为首项,r为公比。

根据题目中给出的条件,我们可以得到g(0)=a*r^0=0,即a=0。

所以,g(x)=0*r^x=0。

因此,我们可以得出结论,f(x)=g(x)+1=0+1=1。

所以,f(2023)=1。

通过以上的解答过程,我们可以看出这道题目考察了学生对函数的理解和运用,以及对等比数列的掌握。

同时,这道题目也要求学生具备一定的逻辑思维和解决问题的能力。

在解答这道题目的过程中,我们可以看到数学知识的灵活运用和逻辑推理的重要性。

通过对题目的分析和变换,我们可以找到解题的突破口,从而得出正确的答案。

这道题目的出现,不仅考察了学生的数学能力,也对学生的思维能力和解决问题的能力提出了更高的要求。

2025届黑龙江省哈尔滨市第九中学高考压轴卷数学试卷含解析

2025届黑龙江省哈尔滨市第九中学高考压轴卷数学试卷含解析

2025届黑龙江省哈尔滨市第九中学高考压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知抛物线24y x =的焦点为F ,P 为抛物线上一点,(1,1)A ,当PAF ∆周长最小时,PF 所在直线的斜率为( ) A .43-B .34-C .34D .432.设i 是虚数单位,复数1ii+=( ) A .1i -+B .-1i -C .1i +D .1i -3.若平面向量,,a b c ,满足||2,||4,4,||3a b a b c a b ==⋅=-+=,则||c b -的最大值为( )A .523+B .523-C .2133+D .2133-4.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .2595.如图,设P 为ABC ∆内一点,且1134AP AB AC =+,则ABP ∆与ABC ∆的面积之比为A .14 B .13 C .23D .166.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( )A .20B .30C .50D .607.i 是虚数单位,复数1z i =-在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭9.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .10.已知非零向量a ,b 满足()2a b a -⊥,()2b a b -⊥,则a 与b 的夹角为( ) A .6πB .4π C .3π D .2π 11. “2a =”是“直线210ax y +-=与(1)20x a y +-+=互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度 二、填空题:本题共4小题,每小题5分,共20分。

吴淞中学2025届高考压轴卷数学试卷含解析

吴淞中学2025届高考压轴卷数学试卷含解析

吴淞中学2025届高考压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设a ,b 是非零向量,若对于任意的R λ∈,都有a b a b λ-≤-成立,则 A .//a bB .a b ⊥C .()-⊥a b aD .()-⊥a b b2.将函数()cos f x x =的图象先向右平移56π个单位长度,在把所得函数图象的横坐标变为原来的1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3(,)22ππ上没有零点,则ω的取值范围是( ) A .228(0,][,]939 B .2(0,]9C .28(0,][,1]99D .(0,1]3.设12,x x 为()()3sin cos 0f x x x ωωω=->的两个零点,且12x x -的最小值为1,则ω=( ) A .πB .2πC .3π D .4π 4.已知,m n 为两条不重合直线,,αβ为两个不重合平面,下列条件中,αβ⊥的充分条件是( ) A .m ∥n m n ,,αβ⊂⊂ B .m ∥n m n ,,αβ⊥⊥ C .m n m ,⊥∥,n α∥βD .m n m ,⊥n ,αβ⊥⊥5.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x yxy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③B .②④C .①②③D .②③④6.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-57.已知函数()22018tan 1xx m f x x x m =+++()0,1m m >≠,若()13f =,则()1f -等于( )A .-3B .-1C .3D .08.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅9.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是( )A .16,e e ⎛⎫ ⎪⎝⎭B .741,e e ⎡⎫⎪⎢⎣⎭C .74160,,e e e ⎡⎫⎛⎤⎪⎢ ⎥⎝⎦⎣⎭ D .746,e e ⎡⎫⎪⎢⎣⎭10.已知数列{}n a 为等差数列,且16112a a a π++=,则()39sin a a +=的值为( ) A .32B .32-C .12D .12-11.等差数列{}n a 的前n 项和为n S ,若13a =,535S =,则数列{}n a 的公差为( ) A .-2B .2C .4D .712.羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29C .13D .49二、填空题:本题共4小题,每小题5分,共20分。

高考数学试卷压轴

高考数学试卷压轴

一、选择题(每小题5分,共50分)1. 设函数f(x) = x^3 - 3x + 1,若存在实数a,使得f(a) = 0,则f'(a)的值为()A. 3a^2 - 3B. 3a^2 + 3C. 3a^2 - 6aD. 3a^2 + 6a2. 在平面直角坐标系中,点A(1,2),点B(-1,0),点C(m,n)在直线y=2x+1上,则m和n的值分别为()A. 0,1B. 1,2C. -1,0D. 0,-13. 已知数列{an}满足an = an-1 + 2an-2,且a1 = 1,a2 = 2,则数列{an}的前n项和Sn的通项公式为()A. Sn = n(n+1)B. Sn = n(n+2)C. Sn = n(n+3)D. Sn = n(n+4)4. 若复数z满足|z-1| = |z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在5. 已知函数f(x) = x^3 - 6x^2 + 9x - 1,若f'(x) = 0的根为x1,x2,x3,则f(x)的极大值点为()A. x1,x2B. x1,x3C. x2,x3D. x1,x2,x36. 在等差数列{an}中,a1 = 1,公差d = 2,若an > 0,则数列{an}的前n项和Sn的最大值为()A. n(n+1)B. n(n+2)C. n(n+3)D. n(n+4)7. 设函数f(x) = x^2 - 4x + 4,若存在实数a,使得f(a) = 0,则f'(a)的值为()A. 2a - 4B. 2a + 4C. 4a - 2D. 4a + 28. 在平面直角坐标系中,点A(1,2),点B(-1,0),点C(m,n)在直线y=2x+1上,则m和n的值分别为()A. 0,1B. 1,2C. -1,0D. 0,-19. 已知数列{an}满足an = an-1 + 2an-2,且a1 = 1,a2 = 2,则数列{an}的前n项和Sn的通项公式为()A. Sn = n(n+1)B. Sn = n(n+2)C. Sn = n(n+3)D. Sn = n(n+4)10. 若复数z满足|z-1| = |z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在二、填空题(每小题5分,共25分)11. 已知函数f(x) = x^3 - 3x + 1,若存在实数a,使得f(a) = 0,则f'(a)的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2320A x x x =-+=,{}log 42x B x ==,则A B =U ( )A .{}2,1,2-B .{}1,2C .{}2,2-D .{}22.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是( )A .3-B .3-或1 C.3或1-D .13.下面的茎叶图表示的是某城市一台自动售货机的销售额情况(单位:元),图中的数字7表示的意义是这台自动售货机的销售额为( )A .7元B .37元C .27元D .2337元4.设等差数列}{n a 的前n 项和为n S ,若2a 、4a 是方程022=--x x 的两个实数根,则5S 的值是( )1 23 4028 02337 12448 238A .25B .5C . 25-D .5-5.函数()sin()f x A x ωϕ=+的图象如图所示,其中0>A ,0>ω,2πϕ<.则下列关于函数()f x 的说法中正确的是( )A .对称轴方程是2()3x k k ππ=+∈ZB .6πϕ-=C .最小正周期是πD .在区间35,26ππ⎛⎫-- ⎪⎝⎭上单调递减 6.设,a b 是平面α内两条不同的直线,l 是平面α外的一条直线,则“l a ⊥,l b ⊥”是“l α⊥”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件7.若函数321(02)3x y x x =-+<<的图象上任意点处切线的倾斜角为α,则α的最小值是( )A .4π B .6πC .56π D .34π8.已知1F 、2F 分别为椭圆C :22143x y +=的左、右焦点,点P 为椭圆C 上的动点,则12PF F △的重心G 的轨迹方程为( )A .221(0)3627x y y +=≠ B .2241(0)9x y y +=≠C .22931(0)4x y y +=≠ D .2241(0)3y x y +=≠9.已知某程序框图如图所示,则该程序运行后,输出的结果为( ) A .0.6 B .0.8 C .0.5 D .0.210.设集合{}2),(≤+=y x y x A ,{}2(,)B x y A y x =∈≤,从集合A 中随机地取出一个元素(,)P x y ,则(,)P x y B ∈的 概率是( )A .121B .2417 C .32 D .65 11.过双曲线)0(152222>=--a ay a x 右焦点F 作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点, 则双曲线离心率的取值范围为( )A . )5,2(B .5,10)C .)2,1(D .(5,52)12.在平行四边形ABCD 中,O=∠60BAD ,AD =2AB ,若P 是平面ABCD 内一点,且满足=++y x (,x y ∈R ),则当点P 在以A 为圆心,BD 33为半径的圆上时,实数y x ,应满足关系式为( ) A .12422=++xy y x B .12422=-+xy y xC .12422=-+xy y xD .12422=++xy y x第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.若nx a x )(2-展开式中二项式系数之和是1024,常数项为45,则实数a 的值是 . 14.设数列{}n a 的前n 项和为n S ,已知数列{}n S 是首项和公比都是3的等比数列, 则{}n a 的通项公式n a =______________.一个口袋内有n (3n >)个大小相同的球,其中有3个红球和(3)n -个白球.已知从口袋中随机取出一个球是红球的概率是p . (I )当35p =时,不放回地从口袋中随机取出3个球,求取到白球的个数ξ的期望E ξ; (II )若6p ∈N ,有放回地从口袋中连续地取四次球(每次只取一个球),在四次摸球中恰好取到两次红球的概率大于827,求p 和n . 18.(本小题满分12分)已知A B C 、、是ABC △的三个内角,且满足2sin sin sin B A C =+,设B 的最大值为0B .(Ⅰ)求0B 的大小; (Ⅱ)当034B B =时,求cos cos A C -的值. 19.(本小题满分12分)如图,在斜三棱柱111C B A ABC -中,点O 、E 分别是11C A 、1AA 的中点,⊥AO 平面111C B A .已知ο90=∠BCA ,21===BC AC AA .(Ⅰ)证明://OE 平面11C AB ; (Ⅱ)求异面直线1AB 与C A 1所成的角;(Ⅲ)求11C A 与平面11B AA 所成角的正弦值.20.(本小题满分12分)如图,已知抛物线C :px y 22=和⊙M :1)4(22=+-y x ,过抛物线C 上一点)1)(,(000≥y y x H 作两条直线与⊙M 相切于A 、B 两点,分别交抛物线为E 、F 两点,圆心点M 到抛物线准线的距离为417. (Ⅰ)求抛物线C 的方程;(Ⅱ)当AHB ∠的角平分线垂直x 轴时, 求直线EF 的斜率;(Ⅲ)若直线AB 在y 轴上的截距为t ,求t 的最小值.21.(本小题满分12分)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立, 求实数b 的取值范围;(Ⅲ)当20e y x <<<且e x ≠时,试比较xyx y ln 1ln 1--与的大小. 请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.ABCO1A 1C 1B E22.(本小题满分10分)选修4-1:几何证明选讲已知AB 为半圆O 的直径,4AB =,C 为半圆上一点,过点C 作半圆的切线CD ,过点A 作AD CD ⊥于D 交圆于点E ,1DE =.(Ⅰ)求证:AC 平分BAD ∠; (Ⅱ)求BC 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的正半轴重合,且长度单位相同.直线l 的极坐标方程为:)4sin(210πθρ-=,点(2cos ,2sin 2)P αα+,参数[]0,2απ∈.(Ⅰ)求点P 轨迹的直角坐标方程;(Ⅱ)求点P 到直线l 距离的最大值. 24.(本小题满分10分)选修4-5:不等式选讲已知函数a a x x f +-=2)(.(Ⅰ)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题1.B ; 2.D ;3.C ;4.A ;5.D ;6.C ;7.D ;8.C ;9.A ;10.B ;11.B ; 12.D . 二、填空题13. 1±;14.13,(1)23.(2)n n n -=⎧⎨•≥⎩;15.29π ;16.(0,)e . 三、解答题17.解:(I )法一:333555p n n =⇒=⇒=,所以5个球中有2个白球 白球的个数ξ可取0,1,2. ······················· 1分3211233232333555133(0),(1),(2)10510C C C C C p p p C C C ξξξ=========.······ 4分 1336012105105E ξ=⨯+⨯+⨯=. ····················· 6分 法二:白球个数ξ服从参数为5,2,3N M n ===的超几何分布,则236()55nM E N ξ⨯=== ……………………6分 (II )由题设知,22248(1)27C p p ->, ··················· 8分 因为(1)0p p ->所以不等式可化为2(1)9p p ->, 解不等式得,1233p <<,即264p <<. ················ 10分 又因为6p N ∈,所以63p =,即12p =, 所以12p =,所以312n =,所以6n =. ················· 12分18.解:(Ⅰ)由题设及正弦定理知,2b a c =+,即2a cb +=. 由余弦定理知,2222222cos 22a c a c a c b B ac ac+⎛⎫+- ⎪+-⎝⎭== ·········· 2分223()23(2)21882a c ac ac ac ac ac +--=≥=. ················· 4分因为cos y x =在(0,)π上单调递减,所以B 的最大值为03B π=. ······· 6分 (Ⅱ)解:设cos cos A C x -=,······················ ① ···································· 8分由(Ⅰ)及题设知sin sin A C +=··················· ②由①2+②2得,222cos()2A C x -+=+. ················· 10分又因为4A CB πππ+=-=-,所以x =cos cos A C -= ················· 12分 19.解法一:(Ⅰ)证明:∵点O 、E 分别是11C A 、1AA 的中点, ∴1//AC OE ,又∵⊄EO 平面11C AB ,⊂1AC 平面11C AB ,∴//OE 平面11C AB . ··························· 4分 (Ⅱ)∵⊥AO 平面111C B A ,∴11C B AO ⊥,又∵1111C B C A ⊥,且O AO C A =I 11,∴⊥11C B 平面11A C CA ,∴111C B C A ⊥. ················· 6分 又∵AC AA =1, ∴四边形11A C CA 为菱形,∴11AC C A ⊥,且1111B C AC C =I ∴⊥C A 1平面11C AB ,∴C A AB 11⊥,即异面直线1AB 与C A 1所成的角为ο90. ·········· 8分 (Ⅲ) 设点1C 到平面11B AA 的距离为d ,∵111111B AA C C B A A V V --=, 即⋅=⋅⋅⋅⋅3121311111AO C B C A S △11B AA d ⋅. ··············· 10分又∵在△11B AA 中,22111==AB B A ,∴S △11B AA 7=.∴7212=d ,∴11C A与平面11B AA 所成角的正弦值721. ········ 12分解法二:如图建系xyz O -,(0,03)A ,113(0,1,0),(0,,)22A E --,1(0,1,0)C ,1(2,1,0)B ,(0,2,3)C .………………2分(Ⅰ)∵=OE )23,21,0(-,)3,1,0(1-=AC ,∴,即1//AC OE ,又∵⊄EO 平面11C AB ,⊂1AC 平面11C AB ,∴//OE 平面11C AB . ····· 6分 (Ⅱ)∵)3,1,2(1-=AB ,)3,3,0(1=C A ,∴⋅1AB 01=C A ,即∴C A AB 11⊥, ∴异面直线1AB 与C A 1所成的角为ο90. ·················· 8分 (Ⅲ)设11C A 与平面11B AA 所成角为θ,∵)0,2,0(11=C A ,设平面11B AA 的一个法向量是(,,)x y z =n不妨令1x =,可得3(1,=-n , ·················· 10分 ∴1121sin cos ,7723AC θ=<>==⋅n u u u u r, ABO A 1C 1Exyz∴11C A 与平面11B AA 所成角的正弦值721. ··············· 12分20.解:(Ⅰ)∵点M 到抛物线准线的距离为=+24p 417, ∴21=p ,即抛物线C 的方程为x y =2. ················ 2分 (Ⅱ)法一:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴HE HF k k =-, 设11(,)E x y ,22(,)F x y , ∴1212H H H H y y y y x x x x --=---,∴ 12222212H H H H y y y y y y y y --=---, ∴1224H y y y +=-=-. ······················· 5分212122212121114EF y y y y k x x y y y y --====---+. ················· 7分 法二:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴ο60=∠AHB ,可得3=HA k ,3-=HB k ,∴直线HA 的方程为2343+-=x y ,联立方程组⎩⎨⎧=+-=xy x y 22343,得023432=+--y y ,∵23E y +=∴363-=E y ,33413-=E x . ··················· 5分 同理可得363--=F y ,33413+=F x ,∴41-=EF k . ········ 7分 (Ⅲ)法一:设),(),,(2211y x B y x A ,∵411-=x y k MA ,∴114y x k HA -=,可得,直线HA 的方程为0154)4(111=-+--x y y x x ,同理,直线HB 的方程为0154)4(222=-+--x y y x x ,∴0154)4(101201=-+--x y y y x ,0154)4(202202=-+--x y y y x , ··················9分 ∴直线AB 的方程为02200(4)4150y x y y y --+-=, 令0=x ,可得)1(154000≥-=y y y t , ∵t 关于0y 的函数在[1,)+∞单调递增,∴11min -=t . ··························· 12分 法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+. 以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+, · ① ⊙M 方程:1)4(22=+-y x . ····················· ② ①-②得:直线AB 的方程为2242(24)(4)(2)714x m m y m m m m -----=-+. ···· 9分 当0x =时,直线AB 在y 轴上的截距154t m m =-(1)m ≥, ∵t 关于m 的函数在[1,)+∞单调递增,∴11min -=t ····························· 12分21.解:(Ⅰ)xax x a x f 11)(-=-=',当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减,∴)(x f 在),0(+∞上没有极值点;当0>a 时,()0f x '<得10x a <<,()0f x '>得1x a>, ∴)(x f 在(10,)a 上递减,在(1),a+∞上递增,即)(x f 在a x 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点, 当0>a 时,)(x f 在),0(+∞上有一个极值点. ················ 3分 (Ⅱ)∵函数)(x f 在1=x 处取得极值,∴1=a ,∴b x x x bx x f ≥-+⇔-≥ln 112)(, ···················· 5分 令x x x x g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增, ∴22min 11)()(e e g x g -==,即211b e≤-. ················· 7分 (Ⅲ)证明:)1ln()1ln()1ln()1ln(+>+⇔++>-y e x e y x e yx y x , ··········· 8分 令)1ln()(+=x e x g x,则只要证明)(x g 在),1(+∞-e 上单调递增, 又∵)1(ln 11)1ln()(2+⎥⎦⎤⎢⎣⎡+-+='x x x e x g x , 显然函数11)1ln()(+-+=x x x h 在),1(+∞-e 上单调递增. ········ 10分 ∴011)(>->ex h ,即0)(>'x g , ∴)(x g 在),1(+∞-e 上单调递增,即)1ln()1ln(+>+y e x e yx , ∴当1->>e y x 时,有)1ln()1ln(++>-y x e y x . ··············· 12分 22.解:(Ⅰ)连结AC ,因为OA OC =,所以OAC OCA ∠=∠, 2分 因为CD 为半圆的切线,所以OC CD ⊥,又因为AD CD ⊥,所以OC ∥AD ,所以OCA CAD ∠=∠,OAC CAD ∠=∠,所以AC 平分BAD ∠. ····· 4分 (Ⅱ)由(Ⅰ)知BC CE =, ······················ 6分 连结CE ,因为ABCE 四点共圆,B CED ∠=∠,所以cos cos B CED =∠, · 8分 所以DE CB CE AB=,所以2BC =. ··················· 10分 23.解:(Ⅰ)2cos ,2sin 2.x y αα=⎧⎨=+⎩ 且参数[]0,2απ∈,所以点P 的轨迹方程为22(2)4x y +-=. ··············· 3分(Ⅱ)因为)4sin(210πθρ-=,所以)104πθ-=,所以sin cos 10ρθρθ-=,所以直线l 的直角坐标方程为100x y -+=. ·· 6分法一:由(Ⅰ) 点P 的轨迹方程为22(2)4x y +-=,圆心为(0,2),半径为2. d ==P 到直线l距离的最大值2. ·· 10分法二:)44d πα==++,当74πα=,max 2d =,即点P 到直线l距离的最大值2. ········ 10分24.解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =. ················ 5分 (Ⅱ)由(Ⅰ)知()211f x x =-+,令()()()n f n f n ϕ=+-, 则()124, 211212124, 22124, n 2n n n n n n n ϕ⎧-≤-⎪⎪⎪=-+++=-<≤⎨⎪⎪+>⎪⎩∴()n ϕ的最小值为4,故实数m 的取值范围是[)4,+∞. ········· 10分。

相关文档
最新文档