等比数列的前n和教学设计
等比数列前n项和的教案
等比数列前n项和教学设计一、教学内容与任务分析《等比数列的前n项和》的内容选自《普通高中课程标准实验教科书》人教A版数学必修五第二章第五节2.5等比数列前n项和,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。
一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”,以及生活中如储蓄、分期付款的应用作准备。
二、学生者分析学生是高中刚入学的学生,有一定的分析问题、解决问题的能力,已经学习了等比数列的概念及通项公式,学习了等差数列前n项和,对于公式推导归纳的过程有了一定的了解。
但等比数列前n项和的公式与等差数列有所差别,而学生的思维虽然活跃,但看问题可能不够严谨全面,公式中的一些注意点往往会被忽视。
三、教学重难点重点:等比数列前n项和的推导及其简单应用。
难点:等比数列前n项和的推导,推导过程中错位相减的思想的掌握四、教学目标1. 知识与技能目标(1)理解等比数列的前n项和公式的推导方法(2)能说出等比数列的前n项和公式并能运用公式解决一些简单问题2. 过程与方法目标(1)通过公式的推导过程,提高建模意识及探究问题、分析与解决问题的能力(2)体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想3. 情感态度价值观目标(1)经历对公式的探索,激发求知欲,大胆尝试、勇于探索、从中获得成功的体验(2)体会数学的应用价值,理论联系实际的辩证思维五、教学过程一、创设情境情境:话说猪八戒自西天取经回到了高老庄,从高员外手里接下了高老庄集团,摇身变成了CEO .可好景不长,便因资金周转不灵而陷入了窘境,急需大量资金投入,于是就找孙悟空帮忙.悟空一口答应:“行!我每天投资100万元,连续一个月(30天),但是有一个条件是:作为回报,从投资的第一天起你必须返还给我1元,第二天返还2元,第三天返还4元……即后一天返还数为前一天的2倍.”八戒听了,心里打起了小算盘:“第一天:支出1元,收入100万;第二天:支出2元,收入100万,第三天:支出4元,收入100万元;……哇,发财了……” 心里越想越美……再看看悟空的表情,心里又嘀咕了:“这猴子老是欺负我,会不会又在耍我?”师:假如你是高老庄集团企划部的高参,请你帮八戒分析一下,按照悟空的投资方式,30天后,八戒能吸纳多少投资?又该返还给悟空多少钱?【学情预设】学生对于情境有较强的兴趣,在讨论后会给出一些答案。
等比数列的前n项和(教学设计)
等比数列的前n项和(第一课时)一.教材分析。
(1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。
二.学情分析。
(1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
(2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。
不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
等比数列的前n项和教案
等比数列的前n 项和(一)公主岭市第三高级中学 数学组 王晓栋一. 教材地位和作用分析在必修五学习数列时,掌握了数列求和的相关知识,对等比数列有了深刻的认识。
本节所学习的等比数列的求和公式是研究等比数列的重要工具。
二. 学情分析学生已经学习了等差数列的相关知识,掌握了等比数列的定义及通项公式,为本节课的学习打下了基础。
三.三维目标1、知识与技能:掌握等比数列的前n 项和公式及公式证明思路;会用等比数列的前n 项和公式解决有关等比数列的一些简单问题。
2、过程与方法:经历等比数列前n 项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题中解决求和问题。
3、情感态度与价值观:会用等比数列的通项公式和前n 项和公式解决有关等比数列一些简单问题;提高分析、解决实际问题的能力。
四. 重点难点1、重点:公式的推导,公示的特点和公示的运用。
2、难点:公式的推导方法和“错位相减法”的灵活运用。
五.教学过程(一)复习引入1. 等比数列的定义:2. 等比数列通项公式:3、古印度国王奖励国际象棋发明者的数学小故事(二)、讲授新课1、等比数列的前n 项和定义2、等比数列的前n 项和公式的推导 (错位相减法)()⎪⎩⎪⎨⎧≠--=--==)1q (q 1q a a q1q 1a )1q (na S n1n11n思考:对于公比不为1的两个公式,都分别什么时候用? (三)、讲解范例例1.求下列等比数列前8项的和.81,41,21)1(.0,2431,27)2(91<==q a a例2、在等比数列{}n a 中,S 3=27,S 6=263,求a n . ◎巩固练习:展板展示(四)、高考链接: (五)、课堂小结 1. 等比数列求和公式; 2. 错位相减法。
(六)、课后作业 (七)、板书设计0,q N n ,2q(n a a 1n n≠∈≥=*-)0,q (a q a a 11n 1n ≠⋅=-)0q ,a (q a a 1mn m n ≠⋅=- § 2.5.1等比数列前n 项和一.定义 二.公式三. 例1 例2。
《等比数列的前n项和》(第一课时)教学设计
《等比数列的前n项和》(第一课时)教学设计一、教学目标1. 知识与技能:掌握等比数列的概念和性质,能够求等比数列的第n项;掌握等比数列的前n项和的计算公式;能够解决一些实际问题,应用等比数列的前n项和的计算公式进行计算。
2. 过程与方法:通过讲解、演示、示例分析等方式引导学生理解等比数列的概念和性质;通过举例和引导,让学生自主发现并掌握等比数列前n项和的计算公式;通过实际问题的引入,培养学生应用数学知识解决问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高数学学习的积极性;通过培养思维能力,提高学生的解决实际问题的能力;建立合作学习的氛围,培养学生的团队协作精神。
2. 教学难点:如何引导学生发现等比数列的前n项和计算公式;如何应用等比数列的前n项和计算公式解决实际问题。
三、教学准备1. 教学工具:黑板、彩色粉笔、PPT;学生课前准备的练习册。
四、教学过程Step 1 引入新知识(15分钟)1. 通过一些日常生活中的场景介绍等比数列,并引导学生思考:(1)你们在购物时是否遇到过折扣问题?是否觉得价格之间存在某种规律?(2)在旅行中,大部分的车票、门票都是按照一定比例的折扣出售的。
你们有没有想过,如果给定了第一项和公比,如何求前n项的和呢?(3)在金字塔的设计中,每一层的砖块数量都是前一层数量的2倍,那么你们有没有想过,如何计算指定层数金字塔的砖块总数呢?2. 引出本节课的内容:等比数列的前n项和的计算方法。
Step 2 等比数列的概念和性质(10分钟)1. 引导学生回顾等差数列的概念,并通过问题引出等比数列的概念。
(1)请大家回顾一下我们之前学的等差数列,能否从中总结出什么规律?(2)为什么等差数列的通项公式能够找到等差数列中任意一项?(3)如果将等差数列进行分割,每一项分割成两部分,两部分的比例保持不变,这样的数列是否存在?2. 让学生通过运算验证等比数列的概念和性质。
等比数列的概念和性质:如果一个数列,从第二项起,每一项与前一项的比值等于同一个非零常数,那么这个数列就是等比数列。
教师资格证面试试讲教案等比数列前n项和
教师资格证面试试讲教案等比数列前n项和教师资格证面试试讲教案是教师面试中非常重要的环节,也是考察教师专业素养和教学能力的关键环节。
试讲教案的编写需要考虑到教学目标、教学策略、教学过程及教学评价等方面的内容。
在这篇文章中,我们将以等比数列前n项和为例,分析试讲教案的编写与教学设计。
一、引入教师应该以一个问题来引入这个话题,比如:我们知道等差数列的前n项和如何计算吗?那么,对于等比数列来说,我们应该怎样计算其前n项和呢?二、归纳总结在引入的基础上,教师可以向学生提问,引导他们通过观察数列的特点,归纳出等比数列前n项和的计算公式。
例如,考虑如下等比数列:1,2,4,8,16,......,如何计算其前n项和?通过观察,我们可以发现每一项与前一项的比值都是相等的,即2/1=4/2=8/4=16/8=2。
因此,我们可以得出等比数列前n项和的计算公式为:Sn=a(1-q^n)/(1-q),其中a为首项,q为公比。
三、巩固练习教师可以设置一些巩固练习题,让学生灵活运用等比数列前n项和的公式。
例如,请计算下列等比数列的前n项和:1) 2,4,8,16,32,......2) 1,3,9,27,81,......四、拓展应用在巩固练习之后,教师可以引导学生用等比数列前n项和的公式解决一些实际问题。
例如,一辆汽车以每小时60公里的速度行驶,求这辆汽车在4小时内行驶的路程。
通过分析可知,该问题是一个等比数列求和的问题,其中首项为60,公比为1。
通过代入公式Sn=a(1-q^n)/(1-q),我们可以计算出这辆汽车在4小时内行驶的总路程为:S4=60(1-1^4)/(1-1)=60(1-1)/(1-1)=60(0)/(0)=0通过运算可知,在4小时内这辆汽车行驶的总路程为0公里。
五、教学反思在教学结束后,教师应该及时进行教学反思,总结这堂课的得失。
教师应该思考自己在教学设计、教学过程和教学评价方面的不足,并提出改进的措施。
等比数列前n项和公式教案
等比数列的前n项和公式一、教材分析《等比数列的前n项和》,是在学生学习了等差数列、等比数列的概念及通项公式,等差数列的前n项和公式的基础上进行的。
是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。
它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.数列内容的新课程设计与时俱进,注重数学过程,渗透数学思想和拓展思维空间。
与旧教材相比新教材让学生体验和理解公式形成的过程。
二、学情分析认识上:从学生的思维特点看,易与等差数列前n项和从公式的形成、特点等方面进行类比,但本节公式的推导与等差数列前n项和的推导有着本质的不同,这对学生的思维是一个突破,还应强调q=1的特殊情况。
能力上:教学对象是高一学生,在课堂教学过程中,应注重过程、激发兴趣、发展学生的个性思维品质和实践能力,还应注意学生缺乏冷静、深刻,易片面、不严谨。
情感态度:注意引导学生自主探究意识、培养学生处理问题时创新和实践能力及思维的严谨性三、教学目标知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.能力与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感与态度价值观:通过对公式推导方法的探索与发现,让学生体验数学学习带来的自信和成功感,提到对数学的兴趣,树立学好数学的信心。
通过分类讨论的思想培养学生思维的严谨性。
通过发散思维的教学,培养学生思维灵活性。
四、教学重点、难点教学重点:等比数列前n项和公式的推导与应用。
教学难点:公式的推导方法和公式的灵活运用。
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.五、学法与教法学法:合作学习:引导学生分组讨论,合作交流,共同探讨解决问题的途径。
等比数列的前n项和公式经典教案
等比数列的前n项和公式【学习目标】1.掌握等比数列的前n项和公式及推导公式的思想方法和过程,能够熟练应用等比数列的前n项和公式解决相关问题,提高应用求解能力.2.通过对等比数列的前n项和公式的推导与应用,使学生掌握错位相减法、方程思想、划归思想等数学思想和方法.3.激情参与,惜时高效,感受数学思维的严谨性.1.“我1.2.Ⅱ.1.2.3.等比通项公式a=n1.设A.C2AC.-31D.331、答案 D解析由8a2+a5=0得8a1q+a1q4=0,∴q=-2,则==-11.【我的疑惑】知识要点归纳:1.等比数列前n项和公式:(1)公式:S n==(q≠1).(q=1).(2)注意:应用该公式时,一定不要忽略q=1的情况.2.若{a n}是等比数列,且公比q≠1,则前n项和S n=(1-q n)=A(q n-1).其中A=.3.推导等比数列前n项和的方法叫法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.4.等比数列{a n}的前n项和为S n,当公比q≠1时,S n==;当q=1时,S n=.5.等比数列前n项和的性质:(1)连续m项的和(如S m、S2m-S m、S3m-S2m),仍构成数列.(注意:q≠-1或m为奇数)(2)S m+n=S m+q m S n(q为数列{a n}的公比).二、典型范例Ⅰ.质疑探究——质疑解惑、合作探究探究点等比数列的前n项和公式问题1:怎么求等比数列{}n a的前n项和n S?写出公式的推导过程。
S n问题2当=故当(1)(2(3)由(4)是数列求和的一种重要方法。
问题探究一错位相减法求和问题教材中推导等比数列前n项和的方法叫错位相减法.这种求和方法是我们应该掌握的重要方法之一,这种方法的适用范围可以拓展到一个等差数列{a n}与一个等比数列{b n}对应项之积构成的新数列求和.下面是利用错位相减法求数列{}前n项和的步骤和过程,请你补充完整.设S n=+++…+,∴S n=,∴S n-S n=,即S n==∴S n==2-.例1 在等比数列{a n }中,S 3=,S 6=,求a n . 解 由已知S 6≠2S 3,则q ≠1,又S 3=,S 6=, 即①,a 1(1-q 6)1-q =632.②))②÷①得1+q 3=9,∴q =2.可求得a 1=,因此a n =a 1q n -1=2n -2.问题探究二 等比数列前n 项和S n 与函数的关系问题 当公比q =1时,因为a 1≠0,所以S n =na 1,是n 的正比例函数(常数项为0的一次函数).当q =1时,数列S 1,S 2,S 3,…,S n ,…的图象是正比例函数y =a 1x 图象上一些孤立的点.A =,的一个指问题1 证明 =S m +(a =S m +q m S ∴S m +n =S m 1A .48 C .50 2A .C .3.设S n A .11 C .-4.设等比数列{a n }的公比q =2,前n 项和为S n ,则等于( )A .2B .4 C.D.5.已知{a n }是等比数列,a 2=2,a 5=,则a 1a 2+a 2a 3+…+a n a n +1等于 ( )A .16(1-4-n ) B .16(1-2-n )C.(1-4-n )D.(1-2-n )6.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A. B. C.D.二、填空题7.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为________.8.设等比数列{a n}的前n项和为S n,若a1=1,S6=4S3,则a4=________.9.若等比数列{a n}中,a1=1,a n=-512,前n项和为S n=-341,则n的值是________.三、解答题10.设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.11.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.12.已知等比数列{a n}中,a1=2,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)记13(1)(2)1A.332A.1.1C.103.已知{aA.和5C.4.程和是A.C.5.数列{a n n1n+1n6A.3×44B.3×44+1C.45D.45+16.某企业在今年年初贷款a万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还()A.万元B.万元C.万元D.万元二、填空题7.等比数列{a n}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.8.等比数列{a n}中,前n项和为S n,S3=2,S6=6,则a10+a11+a12=________.9.某工厂月生产总值的平均增长率为q,则该工厂的年平均增长率为________.三、解答题10.在等比数列{a n}中,已知S30=13S10,S10+S30=140,求S20的值.11.利用等比数列前n项和公式证明a n+a n-1b+a n-2b2+…+b n=,其中n∈N*a,b是不为0的常数,且a≠b.12.已知{a n}是以a为首项,q为公比的等比数列,S n为它的前n项和.(1)当S1,S3,S4成等差数列时,求q的值;(2)当S m,S n,S l成等差数列时,求证:对任意自然数k,a m+k,a n+k,a l+k也成等差数列.四、探究与拓展1312≈1.1)过关测试1.D7.8.310.解当a1S n当a1S n11.6312.(1)a n(2)S n13.(1)a课后练习。
《等比数列前n项和》说课稿(精选10篇)
《等比数列前n项和》说课稿(精选10篇)因为an = a1q^(n-1)这次为您整理了《等比数列前n项和》说课稿(精选10篇),在大家参照的同时,也可以分享一下给您最好的朋友。
《等比数列前n项和》说课稿篇一一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。
等比数列的前n 项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到。
具有一定的探究性。
二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。
在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。
在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。
并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。
三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。
过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。
体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。
情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。
四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。
五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。
等比数列的前n项和教学设计
等比数列的前n项和教学设计等比数列的前n项和教学设计篇1一、教材分析:等比数列的前n项和是高中数学必修五其次章第3.3节的内容。
它是“等差数列的前n项和”与“等比数列”内容的连续。
这局部内容授课时间2课时,本节课作为第一课时,重在讨论等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分提醒公式的构造特征和内在联系。
意在培育学生类比分析、分类争论、归纳推理、演绎推理等数学思想。
在高考中占有重要地位。
二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1.学问与技能:理解等比数列的前n项和公式的推导方法;把握等比数列的前n项和公式并能运用公式解决一些简洁问题。
2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的力量,培育学生从特别到一般的思维方法,渗透方程思想、分类争论思想及转化思想,优化思维品质。
3.情感与态度:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、构造的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习供应了学问根底,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进展,它需要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究力量和用数学语言沟通的力量还有待提高。
四、教法学法分析通过创设问题情境,组织学生争论,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。
强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传奇,波斯国王下令要奖赏国际象棋的创造者,创造者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。
等比数列的前n项和教学设计
等比数列的前n项和教学设计一、教学目标1、知识与技能目标学生能够理解等比数列前 n 项和公式的推导过程,熟练掌握等比数列前 n 项和公式,并能运用公式解决相关问题。
2、过程与方法目标通过引导学生自主探究、合作交流,培养学生的逻辑推理能力、数学运算能力和创新思维能力。
3、情感态度与价值观目标让学生在学习过程中体验数学的乐趣,激发学生学习数学的兴趣,增强学生的自信心和成就感。
二、教学重难点1、教学重点等比数列前 n 项和公式的推导及应用。
2、教学难点等比数列前 n 项和公式的推导过程中错位相减法的理解和运用。
三、教学方法讲授法、讨论法、探究法相结合四、教学过程1、导入新课同学们,咱们先来玩一个小游戏。
假设你是一个老板,有一个员工跟你说:“老板,我这个月工资能不能这样算呀,第一天给我 1 块钱,第二天给我 2 块钱,第三天给我 4 块钱,以此类推,每天都是前一天的两倍,一直到这个月的最后一天。
”那同学们,你们帮老板算一算,如果一个月按 30 天算,这个老板要给这个员工多少钱呢?这其实就是一个等比数列求和的问题,今天咱们就一起来研究等比数列的前 n 项和。
2、探究等比数列前 n 项和公式咱们先来看一个简单的等比数列:1,2,4,8,16,…… ,它的公比是 2。
设这个等比数列的前 n 项和为\(S_{n}\),那\(S_{n} = 1 + 2 + 4 + 8 +\cdots + 2^{n 1}\)①咱们在等式两边同时乘以公比 2,得到\(2S_{n} = 2 + 4 + 8 +\cdots + 2^{n}\)②然后用②式减去①式,可得:\\begin{align}2S_{n} S_{n}&=2 + 4 + 8 +\cdots + 2^{n} (1 + 2 + 4 +8 +\cdots + 2^{n 1})\\S_{n}&=2^{n} 1\end{align}\这就是等比数列的前 n 项和公式:当公比\(q \neq 1\)时,\(S_{n} =\frac{a_{1}(1 q^{n})}{1 q}\);当\(q = 1\)时,\(S_{n} = na_{1}\)。
等比数列的前n项和教案
等比数列的前n项和教案等比数列的前n项和教案1教学准备教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练1、某种细菌在培养过程中,每20分钟__一次一个__为两个,经过3小时,这种细菌由1个可繁殖成A、511B、512C、1023D、10242、若一工厂的生产总值的月平均增长率为p,则年平均增长率为A、B、C、D、二、典型例题例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的`利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?评析:此例来自一种常见的存款叫做零存整取。
存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。
计算本利和就是本例所用的有穷等差数列求和的方法。
用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]例2:某人从1999到20__年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20__年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20__年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。
《等比数列的前n项和》教学设计
《等比数列的前n项和》教学设计一、教学目标1.了解等比数列的定义和性质,掌握等比数列的通项公式。
2.学习等比数列的前n项和的公式,能够利用公式进行问题解答。
3.发展学生的独立思考和解决问题的能力。
二、教学重点难点2.理解等比数列前n项和公式的推导过程。
3.在实际问题中运用前n项和公式解决问题。
三、教学方法和教学手段1.板书法通过讲解和举例子,用板书的形式呈现出等比数列的定义、公式、性质和求和公式等内容。
2.讲解法通过课堂讲解,介绍等比数列的概念、性质和求和公式。
3.练习法通过练习题的形式加深对等比数列概念的理解,并培养学生的解决问题的能力。
四、教学过程1.导入呈现一些等比数列的学习资料和实例,激发学生的学习兴趣,并让学生感受等比数列的美妙,如:a.我们都知道,在自然界中,一些生命的进程也是由等比数列演变而来的,如:兔子的繁殖、细菌的繁殖和人口的增长等。
b.电视上的音乐选秀节目《中国好声音》的播出,让每个人都知道了等比数列的数学原理。
c.讲述一些数学竞赛中的例题,并思考比赛难度是怎样的,这对学生在学习过程中很有帮助。
2.等比数列的基本概念a.等比数列的定义:一个数列称为等比数列,当且仅当该数列中任意两个相邻的项的比值相等。
①等比数列中,如果每一项都不为零,则比值是一个常数q(公比)。
②第一个项一般为a1,第二个项是a1q,第三个项是a1q²,第n项为a1qn-1。
an = a1qn-1假设等比数列的第一项是a1,公比是q,前n项和是Sn,则:S = a1 (1-qn) / (1-q)4.教学实例解:由公式可知,其中a1=3,q=2= 3 (1-32) / -1 = 3 × 31 = 93所以,前5项的和是93。
b.例2:有一个等比数列,第一项是2,第二项是4,求前8项的和。
因为等比数列中每一项是相邻两项的积,所以公比是q=a2/a1=2五、小结通过本课的学习,学生应该了解等比数列的定义和基本性质,掌握等比数列的通项公式和前n项和公式的应用方法,提高其解决问题的能力。
等比数列的前n项和公式教案
等比数列的前n项和公式经典教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的前n项和的定义。
2. 通过探究等比数列前n项和的公式,培养学生的逻辑思维能力和归纳总结能力。
3. 能够运用等比数列前n项和公式解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 等比数列的概念及其性质。
2. 等比数列的前n项和的定义。
3. 等比数列前n项和公式的探究。
4. 等比数列前n项和公式的应用。
三、教学重点与难点:1. 教学重点:等比数列前n项和公式的推导过程,以及公式的应用。
2. 教学难点:等比数列前n项和公式的理解和运用。
四、教学方法:1. 采用问题驱动法,引导学生自主探究等比数列前n项和公式。
2. 利用多媒体辅助教学,直观展示等比数列前n项和的图形,帮助学生理解。
3. 实例分析法,让学生通过解决实际问题,掌握等比数列前n项和公式的应用。
五、教学过程:1. 引入:回顾等差数列的前n项和公式,引导学生思考等比数列的前n项和能否也有类似的公式。
2. 等比数列的概念复习:回顾等比数列的定义及其性质。
3. 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义。
4. 探究等比数列前n项和公式:引导学生分组讨论,归纳总结等比数列前n项和公式。
5. 公式验证与应用:利用多媒体展示等比数列前n项和的图形,帮助学生理解公式。
并通过实例分析,让学生掌握公式的应用。
6. 总结与评价:对本节课的内容进行总结,对学生的学习情况进行评价。
7. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估:1. 课堂提问:通过提问了解学生对等比数列概念和前n项和公式的理解程度。
2. 小组讨论:观察学生在小组讨论中的参与程度和思考过程,评估他们的合作能力。
3. 练习题解答:收集学生的练习题答案,评估他们对等比数列前n 项和公式的掌握情况。
七、教学拓展:1. 等比数列的极限:引导学生思考等比数列前n项和的极限值,为后续学习数列极限奠定基础。
(完整版)等比数列的前N项和优秀教案.docx
等比数列的前n 项和一.教材分析1.在教材中的地位和作用在《数列》一章中,《等比数列的前n 项和》是一项重要的基础内容,从知识体系来看,它不仅是《等差数列的前 n 项和》与《等比数列》的顺延,也是前面所学函数的延续,实质是一种特殊的函数。
而且还为后继深入学习提供了知识基础,同时错位相减法是一种重要的数学思想方法,是求解一类混合数列前 n 项和的重要方法,因此,本节具有承上启下的作用。
等比数列的前 n 项和公式的推导过程中蕴涵了基本的数学思想方法,如分类讨论、错位相减等在数列求和问题中时常出现。
在实际问题中也有广泛的应用,如储蓄、分期付款的有关计算。
2.教材编排与课时安排提出问题——解决问题——等比数列的前n 项和公式推导——强化公式应用(例题与练习)二.教学目标知识目标:理解并掌握等比数列前n 项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。
能力目标:通过启发、引导、分析、类比、归纳,并通过严谨科学的解题思想和解题方法的训练,提高学生的数学素养。
情感目标:通过解决生产实际和社会生活中的实际问题了解社会、认识社会,形成科学的世界观和价值观。
三.教学重点与难点:教学重点:公式的推导、公式的特点和公式的应用。
教学难点:公式的推导方法(“错位相减” )和公式的灵活运用。
四.教学过程:(一)、复习回顾:(1)等比数列及等比数列通项公式。
复习回顾例题1:a n为等比数列,请完成下表除s n外的所有项a1a2a3a4⋯⋯q a n s n127⋯⋯11⋯⋯22241 3⋯⋯3答案如下:a1a2a3a4⋯⋯qa n s n133227⋯⋯33n11111⋯⋯11222232422n3111⋯⋯1133233n2(2)回等差数列前n 和公式的推程,是用什么方法推的。
(二)、情境入:国象棋起源于古代印度 .相国王要国象棋的明者 .个故事大家听?“ 在第一个格子里放上 1 麦粒,第二个格子里放上 2 麦粒,第三个格子里放上 4 麦粒,以此推 .每一个格子里放的麦粒都是前一个格子里放的麦粒的 2 倍.直到第 64 个格子 .我足的麦粒以上述要求 .” 就是国象棋明者向国王提出的要求。
《等比数列的前n项和》教学设计
《等比数列的前n项和》教学设计教学目标:1. 了解等比数列的概念和性质,能够确定等比数列的通项公式和公比。
2. 掌握等比数列前n项和的公式及其推导过程。
3. 能够应用等比数列前n项和公式解决实际问题。
教学重点:1. 如何将等比数列前n项和转化为等差数列的前n项和进行计算。
教学方法:1. 讲述法:通过课堂讲解介绍等比数列的定义、通项公式、性质以及前n项和公式的推导过程。
教学过程:一、引入新知识1. 显示一张祖冲之求和问题的图片,让学生回顾一下求和的方法。
2. 让学生思考如果是一定比例递增的数列,求和该怎么做?二、概念定义2. 让学生手写一些等比数列的例子,帮助学生理解等比数列的概念。
三、性质介绍1. 介绍等比数列的性质,包括公比小于1时,数列趋近于0;公比大于1时,数列趋近于无穷大等。
2. 让学生进行思考,如果公比等于1呢?1. 活动一等比数列前n项和公式的推导过程可以通过数列的每一项乘上公比的方式进行计算。
如果将等比数列中每一项乘上公比之后再减去原来的数列,得到的差值实际上就是一个等差数列。
举一个例子,比如,5 + 10 + 20 + 40 + 80两个数列的差值就是:(10-5) + (20-10) + (40-20) + (80-40) + (160-80) = 155也就是说,原数列的前五项和为155。
让学生手写一些等比数列的例子,并通过上述的推导方式计算出其前n项和。
五、实际应用举一个实际应用的例子:假设有一笔本金为1000元,年利率为5%的定期存款,存3年后的本息和是多少?通过等比数列前n项和公式,可以先计算出每年的本息和并累加得到最终结果。
最后,让学生根据其掌握程度,进行练习,巩固所学知识。
教学反思:此次教学设计主要介绍等比数列的前n项和及其应用,目的是让学生了解等比数列的性质和特点,以及如何应用等比数列前n项和公式解决实际问题。
教师应该关注学生的实际掌握情况,根据学生的不同情况,进行巩固训练。
《等比数列前n项和》说课稿(优秀10篇)
《等比数列前n项和》说课稿(优秀10篇)教学程序设计篇一1、导言:本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?这样引入课题有以下三点好处:(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。
(2)故事内容紧扣本节课教学内容的主题与重点。
(3)有利于知识的迁移,使学生明确知识的现实应用性。
2、讲授新课:本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。
等比数列的前n项和公式的推导是本节课的难点。
依据如下:(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。
比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。
从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法,错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:方法二:由等比数列的定义得:运用连比定理后两种方法可以启发引导学生自行完成。
这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
等比数列的前n项和公式(教案)
等比数列的前n项和公式(教案)一. 教学目标1.知识与技能:使学生掌握等比数列前n项和公式及归纳、猜想、证明法,理解错位相消法,并能灵活运用公式2.过程与方法:通过公式的推导过程,培养学生类比、归纳、猜想、分析、综合等方面的能力,善于运用特殊与一般、分类与整合、方程的数学思想思考和解题,提升学生的逻辑思维能力3.情感态度与价值观:通过公式的探索发现过程,学生亲历结论的“再创造”过程,体验成功与快乐,感悟数学美通过分类讨论的教学和猜想之后还需证明培养学生思维的严谨性通过发散思维的教学,培养学生思维的批判性、灵活性。
二、重点和难点1.重点:等比数列前n项和公式、推导及应用2.难点:等比数列前n项和公式推导思路的获得三、授课对象:职高一年级学生,这些学生数学基础较差,自我约束较差,主动性、积极性不强,同时还缺乏学习兴趣,但是他们喜欢动手,观察能力强,对现实生活的实际例子还是很感兴趣,更对趣味性的东西好奇。
四、教学方法:启发诱导和任务驱动法,通过提问、讨论、探究等方法引导学生,从而达到教学目标。
五、时间安排:本节课我讲从七个方面来阐述:复习(2分钟)、情景问题引入(5分钟)、公式推到(12分钟)、例题讲解(15分钟)、课堂练习(6分钟)、课堂小结(3分钟)、交流心得(2分钟)。
六、教学用具:利用多媒体,动画式地展示,让学生有一种新奇感,从而激发学生的学习兴趣。
七、教学过程问题情境:自从八戒来到了高老庄,渐渐地开起了公司,并且生意红火,可最近出现资金周转不灵的现象,于是就向师兄悟空借钱,悟空很仗义,一口就答应了,并且在一个月(30天)里,第一天借1万元,第二天2万元,……以后的每天比前一天多借1万元。
不过有一个条件:要求八戒在这一个月的30天里,第一天还给八戒1分钱,第二天2分,……以后每天还的钱是前一天的两倍,直到第30天,大家两不相欠。
你认为八戒这钱能借吗?请大家讨论并猜想。
现在我们就来验证你们的想法是否正确。
等比数列的前n项和教案
《等比数列的前n 项和》教案钱万毅一.教学目标知识与技能目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列的前n 项和公式并能运用公式解决一些简单问题。
过程与方法目标:通过公式的推导过程,提高学生构造数列的意识及探究、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想。
情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
二.重点难点教学重点:公式的推导、公式的特点和公式的运用;教学难点:公式的推导方法及公式应用的条件。
三.教学方法利用多媒体辅助教学,采用启发---探讨---建构教学相结合。
四.教具准备教学课件,多媒体五.教学过程(一) 创设情境,提出问题国际象棋起源于古代印度,据传,国王要奖赏国际象棋的发明者,问他有什么要求,发明者说:“请在棋盘的第1个格子里放上1颗麦粒,在第2个格子里放上2颗麦粒,在第3个格子里放上4颗麦粒,在第4个格子里放上8颗麦粒,依次类推,每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.”这是一个什么数学问题?国王能满足他的要求吗?(二).师生互动,探究问题思考1:设23636412222s =++++那么642s 的表达式如何?思考2:64s 与642s 的表达式中有许多相同项,你有什么办法消去这些相同项?所得结论如何?思考3:上述算法实际上解决了求等比数列1,2,4,8…,12n -,…前64项的和,利用这个算法,1+2+4+8 + …+12n -等于什么?思考4:上述算法叫做错位相减法 .一般地,设等比数列{n a }的公比为q,前n 项和为n s ,利用错位相减法如何求n s ?所得结果如何?思考5: 1(1)1n n a q S q-=- 就是等比数列的前n 项和公式,这个公式的使用条件是什么 ?思考6:当q =1时,如何求n s ?思考7:当公比q ≠1时,结合等比数列通项公式,n s 可变形为什么?(三).例题讲解,形成技能例1 求下列等比数列的前8项的和1 、 2、例2 在等比数列{}n a 中,求满足下列条件的量(1)132,n a a s ==求(2)112,5,.2n n q n a a s ===求和; (3)11,512,341.n n a a s q n ==-=-求和。
等比数列的前N项和教案
等比数列的前n 项和一、学习目标1. 认识错位相减法推导等比数列的前n 项和,2.能运用等比数列的前n 项和公式对等比数列求和。
二、情境导入:国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗? “请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求。
假定千粒麦子的质量为40 g ,按目前世界小麦年度产量约6亿吨计.你认为国王能不能满足他的要求。
怎样计算?请列出算式。
探讨1:S=1+2+22+23+…+2 63,①注意观察每一项的特征,有何联系?探讨2:如果我们把每一项都乘以2,就变成了它的后一项2S=2+22+23+…+263+264,②经过比较、研究,学生发现:(1)(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到 : 这个数很大,超过了 1.84×1019,假定千粒麦子的质量为40 g ,那么麦粒的总质量超过了7 000亿吨.而目前世界年度小麦产量约6亿吨,因此,国王不能实现他的诺言。
国王不假思索地给国际象棋发明者一个承诺,导致了一个很不幸的后果的发生,这都是他不具备基本的数学知识所造成的结果,.而避免这个不幸的事情发生,正是我们这节课所要探究的知识.三、推进新课等比数列前n 项公式的推导:1.错位相减法,11212111--+++++=n n n q a q a q a q a a S ①=nqS n n q a q a q a q a q a 11131211+++++- ② ①-②得:()n n q a a S q 111-=-646421s =-当1≠q 时,得到()q q a S n n --=111 当q =1,S n =na 1.等比数列前n 项和公式:()⎪⎩⎪⎨⎧--=--=q q a a q q a na S n n n 111111 注意:1.公比为1的情况2.已知 1,,,,n n a q n a s 中的任意三项,可以求其他两项 (知三求二)回到国际象棋的问题.我们由等比数列的求和公式,可以计算出S64,约等于1.84乘10的19次方,1000粒麦粒重量约为40克,那么这些麦粒的总质量就是7300多亿吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:等比数列的前n 项和(第一课时)一 教学目标:1.知识与技能目标:1)掌握等比数列求和公式,并能用之解决简单的问题。
2)通过对公式的推导,对学生渗透方程思想、分类讨论思想以及等价转化思想。
2过程与方法目标:通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。
3.情感与态度目标:通过公式的推导与简单应用,激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。
二 教学重点:等比数列项前n 和公式的推导与简单应用。
三 教学难点:等比数列n 项和公式的推导。
四 教学方法:启发引导,探索发现(多媒体辅助教学)。
五 教学过程:1.创设情境,导入新课:1)复习旧知,铺垫新知:(1)等比数列定义及通项公式;(2)等比数列的项之间有何特点?说明:如此设计目的是在于引导学生发现等比数列各项特点:从第二项起每一项比前一项多乘以q ,从而为“错位相减法”求等比数列前n 和埋下伏笔。
2)问题情境,引出课题:从前,一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多一万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠。
穷人听后觉得挺划算,但怕上当受骗,所以很为难。
请在座的同学思考一下,帮穷人出个主意.注:师生合作分别给出两个和式:①学生会求,对②学生知道是等比数列项前n 和的问题但却感到不会解!问1:能不能用等差数列求和方法去求?(不行)问2:怎么办?(用追问的方式引出课题)2.师生互动,新课探究:① 30321S 30 ++++=②T 29283230222221++++++=如何求和:注:(给学生时间让他们观察、思考)如果学生想不出来,师做必要启发:1)等式右边各项有什么特点?(等比数列30项和)2)公比是多少?(2)即:从第二项起每一项比前一项多乘以2.3)因此,如果两边……(教师语速放慢,看学生反应状况,再往下提示:把等式两边同乘以公比2)从而有:3029432302222222++++++=T师:如何求30T?(此处给学生充分的观察思考的时间,师不忙给出结论,让他们自己得出求解的方法:作差)注:①学生解出30T,并与30S比较(到底能不能向富人借钱)。
这种求和的方法叫错位相减法。
②此处先不忙介绍“错位相减法”的要点,只让学生有个大致印象,后面还有应用,体现从特殊到一般、学生自主探究教材的新教材理念。
如何求等比数列}{na的前n项和nS:112111-++++=nnqaqaqaaS注:①学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究,并请学生上台板演。
②将112111-++++=nnqaqaqaaS 两边同时乘以公比q后会得到nnqaqaqaqaqS131211++++= ,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前n 项和的关键所在,让学生先思考,再讨论,最后师用多媒体予以突出强调,加深印象!③两等式作差得到)1()1(1nnqaSq-=-时,肯定会有学生直接得到qqaSnn--=1)1(1,师不忙揭露错误,等一会用练习反馈这个易错知识点,从而掌握公式的本质!练习1. 用等比数列求和公式求和:)5100(555)23333)11009329相加个++=++++=SS29283230222221++++++=T29283230222221++++++=T注:此组练习目的:① 熟悉等比数列求和公式的直接应用。
② ?,1公式还能用吗时公比=q从而得到:等比数列}{n a 前n 项和n S 公式应为:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q q q a q na S n n . ③ 通过纠错的方式给出公式比平铺直叙方式得出公式的效果要好得多,学生通过:自己推导出公式(不完整)──公式应用──得出矛盾──完整公式的过程,很好地解决了本节课重、难点。
练习2.求和: 1) .}{,192,2,6,}{)21n n n n S n a a q a a 项和前求中等比数列===注:①练习1)中数列的项数的确定是很容易失误的地方,学生误解为是19项。
从而强调求和公式n S 中的“n ”指的是项数.另外,还要指出等比数列求和公式中的公比q 的指数是“n ”,而等比数列通项公式11-=n n q a a 的公比q 的指数是“1-n ”.②练习2)的目的在于引出等比数列求和的第二个公式形式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ,根据所给条件选择哪个求和公式进行求解。
很多学生会根据条件先求出n ,再带到求和公式中去求n S ,而直接用n S 的另一个公式去求,可使计算过程简化,从而自然引出这个知识点.③ 求和公式中共有五个量:n n a n q a S ,,,,1,可用方程(组)思想:知三求二.211)211(1212121120192--⨯=++++ {}.,214,23133a S a a n 求中,已知等比数列==适合题意。
此时正好有时候,解:当,214,13213321=++====a a a S a a a q .6236,2141)1(2311113121===⎪⎪⎩⎪⎪⎨⎧=--=≠a a a q q a q a q 或,综上得得解之,时,依题意有当注:在不知道公比是否为1的情况下,利用等比数列求和公式求和时一定要,这是学生容易忽视的问题.对于问题:还可以这样考虑:)221(2128++++=)2(212930-+=T123030-=∴T问:从这种证法中,大家受何启发?你能用这种方法证明等比数列的前n项和公式吗?注:此处给时间给学生思考、证明(并投影强调步骤).注:通过教师的提问和幻灯片的顺序播放,进一步巩固本节课的内容,并把整节课的内容形成一个整体。
七作业第30页第8题偶数题(基础题),第10题(应用提高题);课后探索:等比数列前n项和nS的其它证明方法。
八29283230222221++++++=T29283230222221++++++=T11212111--+++++=nnnqaqaqaqaaS)(2121111-+++++=n qaqaqaaqa )(111--+=nnqaSqannqaaSq11)1(-=-∴⎪⎪⎩⎪⎪⎨⎧=≠--=∴111)1(11qnaqqqaSnn。