-2016年四川省成都市成华区七年级下学期期中数学试卷及解析答案

合集下载

2015-2016第二学期期中七年级数学参考答案

2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。

成都市成华区七年级下期中数学试卷及答案-精选

成都市成华区七年级下期中数学试卷及答案-精选

2015-2016学年四川省成都市成华区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40° B.50°C.100°D.130°2.下列运算中,正确的是()A.x3+x3=2x6 B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x63.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40° B.50°C.60°D.70°8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.若5m=3,5n=2,则52m+n= .13.计算:()2015(﹣)2016=()4031.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.15.已知x+y=5,xy=2,则(x+2)(y+2)= .三、解答题(共13小题,满分105分)16.(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5()∴∠3=∠4()∴DE平分∠BDE()19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= .22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 度.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= ,∠2= .24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l 的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,﹣1其中n为正整数)2015-2016学年四川省成都市成华区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40° B.50°C.100°D.130°【考点】余角和补角.【分析】根据余角的定义,即可解答.【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.【点评】本题考查了余角的定义,解决本题的关键是熟记余角的定义.2.下列运算中,正确的是()A.x3+x3=2x6 B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则和同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、x3+x3=2x3,故此选项错误;B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BC D=180°,∴AB∥CD.故选C.【点评】本题考查了平行线判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.6.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【考点】完全平方公式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40° B.50°C.60°D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【考点】多项式乘多项式.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【点评】考查了多项式乘以多项式的法则.解题此类题目的基本思想是等式的左右两边各个项的系数相等,解题的关键是将等式的左右两边整理成相同的形式.9.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【考点】一元一次方程的应用.【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【考点】函数的图象.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1 .【考点】整式的除法.【专题】计算题;整式.【分析】根据长方形的面积除以长确定出宽即可.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+1【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.12.若5m=3,5n=2,则52m+n= 18 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.13.计算:()2015(﹣)2016=()4031.【考点】幂的乘方与积的乘方.【分析】先用负数的偶次方为正,判断出符号,再用同底数幂的乘法即可.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.【点评】此题是幂的乘方与积的乘方,主要考查了同底数相乘,解本题的关键是熟练掌握同底数幂相乘的法则.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【考点】常量与变量.【专题】推理填空题.【分析】根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则x叫自变量,y叫因变量.15.已知x+y=5,xy=2,则(x+2)(y+2)= 16 .【考点】多项式乘多项式.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【点评】本题主要考查多项式乘多项式及代数式求值,熟练掌握多项式乘多项式的法则是解题的关键.三、解答题(共13小题,满分105分)16.(2016春•成华区期中)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【考点】整式的混合运算—化简求值;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数幂的性质以及零指数幂的性质分别化简求出答案;(2)直接利用积的乘方运算法则结合整式乘除运算法则化简,求出答案;(3)首先利用乘法公式化简进而将已知数据代入求出答案;(4)直接利用平方差公式将原式变形进而求出答案.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.【点评】此题主要考查了实数运算以及整式的混合运算和化简求值,熟练应用乘法公式是解题关键.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【考点】完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求得xy=3,x+y=2,再根据完全平方公式,即可解答.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义)【考点】平行线的性质.【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【考点】函数的图象.【分析】根据函数图象可以解答(1)﹣(4)小题.【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;【点评】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答问题.20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?【考点】平行线的判定与性质.【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理及角平分线的性质即可得出结论.21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= ﹣.【考点】多项式乘多项式.【专题】计算题;整式.【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 30 度.【考点】余角和补角.【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.【点评】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= 68°,∠2= 112°.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10 .【考点】整式的混合运算—化简求值.【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.【点评】此题主要考查了整式的混合运算,正确运用完全平方公式是解题关键.25.若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为9 .【考点】整式的混合运算—化简求值.【专题】新定义.【分析】结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m 的值并代入求解即可.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.【点评】本题考查了整式的混合运算﹣化简求值,解答本题的关键在于结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【考点】平方差公式的几何背景.【专题】计算题;整式.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【考点】动点问题的函数图象.【分析】(1)根据路程=速度×时间,即可解决问题.(2)由图象可知m的值就是△ABC面积,n的值就是运动的总时间,由此即可解决.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=8cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.(2)m=S△ABC=×AB×BC=24,n=(BC+CD+DE+EF+FA)÷2=17.【点评】本题考查动点问题的函数图象、速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,属于中考常考题型.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l 的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,﹣1其中n为正整数)【考点】平行线的性质.【分析】(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解决问题.(2)利用(1)的结论即可解决问题.(3)分两种情形写出结论即可.【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α ①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β ②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.【点评】本题考查平行线的性质,角的和差定义等知识,解题的关键是学会添加常用辅助线,从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.。

四川省2016-2017学年七年级下学期期中测试数学试卷2

四川省2016-2017学年七年级下学期期中测试数学试卷2

四川省2016-2017学年七年级下学期期中测试数学试卷(总分120分,120分钟完卷)一、选择题(本大题8小题,每小题3分,满分24分)1.若x =-3是方程2(x -m )=6的解,则m 的值为( )A .6B .-6C .12D .-122.下列不是二元一次方程的是( )①3m -2n=5 ②11725=+y x ③1272=+xy x ④2x+z=3 ⑤3m+2n ⑥p+7=2 A 、 1个 B 、2个 C 、3个 D 、4个3.若a >b ,则下列不等式一定成立的是 ( )A. a -b <0B. 3a <3b C. -b >-a D. -1+a <-1+b 4.不等式1-2x <5-21x 的负整数解有 ( ) A. 1个B. 2个C. 3个D. 4个 5.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为6. 如下图,平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等?答:( )A. 3gB. 4gC. 5gD. 6g7.8个一样大小的长方形恰好拼成一个大的长方形(如上图),大长方形的宽为 8cm ,则每一个小长方形的面积为 ( )A .8cm 2B .15cm 2C .16cm 2D .20cm 28. 某种导火线的燃烧速度是0.82厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A. 22厘米B. 23厘米C. 24厘米D. 25厘米A B二、填空题( 本大题8小题,每小题3分,满分24分;把答案直接填在题中横线上)9. 当a = 时,代数式1-2a 与a -2的值相等.10. 已知y =kx+b ,当x =0时,y =2; 当x =2时,y =0. 则k= .2b= .11.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是 元.12. 课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.这些学生共有 人.13、满足21≤<-m 的整数解是________________.14.已知03)3(2=++++m y x x ,且y 是负数,则m 的取值范围是 .15. 已知关于x 的方程3k -5x=-9的解是非负数,则k 的取值范围是______________.16、已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围 . 三、解答题(满分72分)17、解方程(组)或不等式(组)(20分)(1)3x -(x -5)=2(2x -1). (2)⎩⎨⎧=+=-②①42651043y x y x (3(4)解不等式组2151232513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩18、 解不等式组,并求出它的整数解的和(8分)19、小迷糊在解方程1332-+-=-a x x 去分母时,方程右边 的-1没有乘以3,从而求得方程的解为x=2,你能帮他正确的求出该方程的解吗?(8分)20、已知方程组⎩⎨⎧=+-=+2212y x m y x 的解x 、y 满足x+y >2,求m 的取范围. (8分)21、如图,宽为50cm 的大长方形图案由10个相同的小长方形拼成,求每块小长方形的长和宽分别是多少?(8分)22、一种圆桌有一个桌面和三个桌腿组成,如果1立方米木料可以做桌面50个,或者做桌腿300条.现有6立方米木料,那么用多少立方米做桌面,多少立方米做桌腿,才能使做出的桌面和桌腿刚好配套?能配成多少张圆桌?(8分)23、超级市场内,一罐柠檬茶和一瓶1公斤橙汁的价钱分别是5元和12元.•如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,问她最多可以买多少罐柠檬茶?(8分)24、某班到毕业时共结余班费1800元,班委会决定拿出不少270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T 恤或一本影集作为纪念品。

成都市成华区七年级下期中数学试卷及答案-精编

成都市成华区七年级下期中数学试卷及答案-精编

2015-2016学年四川省成都市成华区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40° B.50° C.100°D.130°2.下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x63.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40° B.50° C.60° D.70°8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.若5m =3,5n =2,则52m+n= .13.计算:()2015(﹣)2016=()4031.14.如图,圆锥的底面半径是2cm ,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是 ,因变量是 .15.已知x+y=5,xy=2,则(x+2)(y+2)= .三、解答题(共13小题,满分105分)16.(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0 (2)计算:(﹣2x 2y )2•3xy÷(﹣6x 2y )(3)先化简,再求值:[(2x+y )2+(2x+y )(y ﹣2x )﹣6y]÷2y ,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.已知:|3﹣xy|+(x+y ﹣2)2=0,求x 2+y 2+4xy 的值. 18.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别在线段AB 、BC 上,AC ∥DE ,DF ∥AE 交BC 于点F ,AE 平分∠BAC .求证:DF 平分∠BDE证明:∵AE 平分∠BAC (已知) ∴∠1=∠2( ) ∵AC ∥DE (已知) ∴∠1=∠3( ) 故∠2=∠3( ) ∵DF ∥AE (已知) ∴∠2=∠5( ) ∴∠3=∠4( )∴DE 平分∠BDE ( )19.图中反映了某地某一天24h 气温的变化情况,请仔细观察分析图象,回答下列问题: (1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降? (4)A 点表示什么?几时的温度与A 点表示的温度相同?20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= .22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 度.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= ,∠2= .24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t (cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l 的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n 为正整数)2015-2016学年四川省成都市成华区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40° B.50° C.100°D.130°【考点】余角和补角.【分析】根据余角的定义,即可解答.【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.【点评】本题考查了余角的定义,解决本题的关键是熟记余角的定义.2.下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则和同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、x3+x3=2x3,故此选项错误;B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BC D=180°,∴AB∥CD.故选C.【点评】本题考查了平行线判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.6.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【考点】完全平方公式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40° B.50° C.60° D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【考点】多项式乘多项式.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【点评】考查了多项式乘以多项式的法则.解题此类题目的基本思想是等式的左右两边各个项的系数相等,解题的关键是将等式的左右两边整理成相同的形式.9.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【考点】一元一次方程的应用.【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【考点】函数的图象.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1 .【考点】整式的除法.【专题】计算题;整式.【分析】根据长方形的面积除以长确定出宽即可.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+1【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.12.若5m=3,5n=2,则52m+n= 18 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.13.计算:()2015(﹣)2016=()4031.【考点】幂的乘方与积的乘方.【分析】先用负数的偶次方为正,判断出符号,再用同底数幂的乘法即可.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.【点评】此题是幂的乘方与积的乘方,主要考查了同底数相乘,解本题的关键是熟练掌握同底数幂相乘的法则.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【考点】常量与变量.【专题】推理填空题.【分析】根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则x叫自变量,y叫因变量.15.已知x+y=5,xy=2,则(x+2)(y+2)= 16 .【考点】多项式乘多项式.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【点评】本题主要考查多项式乘多项式及代数式求值,熟练掌握多项式乘多项式的法则是解题的关键.三、解答题(共13小题,满分105分)16.(2016春•成华区期中)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【考点】整式的混合运算—化简求值;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数幂的性质以及零指数幂的性质分别化简求出答案;(2)直接利用积的乘方运算法则结合整式乘除运算法则化简,求出答案;(3)首先利用乘法公式化简进而将已知数据代入求出答案;(4)直接利用平方差公式将原式变形进而求出答案.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.【点评】此题主要考查了实数运算以及整式的混合运算和化简求值,熟练应用乘法公式是解题关键.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【考点】完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求得xy=3,x+y=2,再根据完全平方公式,即可解答.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义)【考点】平行线的性质.【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【考点】函数的图象.【分析】根据函数图象可以解答(1)﹣(4)小题.【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;【点评】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答问题.20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?【考点】平行线的判定与性质.【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理及角平分线的性质即可得出结论.21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= ﹣.【考点】多项式乘多项式.【专题】计算题;整式.【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 30 度.【考点】余角和补角.【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.【点评】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= 68°,∠2= 112°.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10 .【考点】整式的混合运算—化简求值.【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.【点评】此题主要考查了整式的混合运算,正确运用完全平方公式是解题关键.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为9 .【考点】整式的混合运算—化简求值.【专题】新定义.【分析】结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解即可.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.【点评】本题考查了整式的混合运算﹣化简求值,解答本题的关键在于结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【考点】平方差公式的几何背景.【专题】计算题;整式.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t (cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【考点】动点问题的函数图象.【分析】(1)根据路程=速度×时间,即可解决问题.(2)由图象可知m的值就是△ABC面积,n的值就是运动的总时间,由此即可解决.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=8cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.(2)m=S△ABC=×AB×BC=24,n=(BC+CD+DE+EF+FA)÷2=17.【点评】本题考查动点问题的函数图象、速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,属于中考常考题型.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l 的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n 为正整数)【考点】平行线的性质.【分析】(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解决问题.(2)利用(1)的结论即可解决问题.(3)分两种情形写出结论即可.【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.【点评】本题考查平行线的性质,角的和差定义等知识,解题的关键是学会添加常用辅助线,从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.。

2016七年级下数学期中试卷及答案

2016七年级下数学期中试卷及答案

2016-2017 学年度第二学期期中考试七年级数学试卷一、选择题(此题有10 小题,每题 4 分,共 40 分)1、下边四个图形中∠ 1 与∠ 2 是对顶角的是()A .B .C .D .2、方程组 的解为()A .B .C .D .3、在①+y=1 ;② 3x ﹣ 2y=1;③ 5xy=1 ;④+y=1 四个式子中,不是二元一次方程的有()A .1 个B .2个C .3 个D .4个4、以下图,图中∠1 与∠2 是同位角的是()221221 11(1)(2)(3)(4)A 、1 个B 、2 个C 、3 个D 、4 个5.以下运动属于平移的是()A .冷水加热过程中吝啬泡上涨成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风漂浮的树叶在空中的运动6、如图 1,以下能判断 AB ∥ CD 的条件有 ()个 .(1) B BCD 180 ; (2) 12A D;31(3)34 ;(4)B5.245A . 1B . 2C . 3BCED.4图 17、以下语句是真命题的有 ()①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线相互平行. A .2 个B .3 个C .4 个D .5 个8、如图2,把一个长方形纸片沿EF折叠后,点D 、 C分别落在D ′、 C ′的地点,若∠EFB=65°,则∠ AED′=()A 、 50°B、 55° C 、 60°D、 65°9、如3,直l// l,∠ A=125°,∠ B=85°,∠ 1+∠ 2=()12A.30°B. 35°C. 36°D. 40°10、如4,两个全等的直角三角形重叠在一同,将此中的一个三角形沿着点 B 到 C 的方向平移到△ DEF 的地点, AB=10 , DO=4 ,平移距离 6,暗影部分面()A.42B.96C.84D.48二、填空(本有 6 小, 11 10 分,其余每 4 分,共 30 分)图 411、 125 的立方根是,的平方根是,假如=3,那么 a=,的是,2的小数部分是 _______12、命“ 角相等”的,13、( 1)点 P 在第二象限内, P 到 x 的距离是4,到 y 的距离是 3,那么点 P 的坐 _______;(2)若,.14、如5,一艘船在 A 遇后向相距 50海里位于 B 的救生船警.用方向和距离描绘遇船相于救生船的地点图 515、∠ A 的两与∠ B 的两相互平行,且∠ A 比∠ B 的 2 倍少 15°,∠ A 的度数 _______16、在平面直角坐系 xOy 中,于点P( x, y),我把点P′( -y+1, x+1)叫做点P 的陪伴点.已知点 A 1的陪伴点 A2,点 A2的陪伴点 A 3,点 A 3的陪伴点A4,⋯,挨次获得点A1,A 2,A3,⋯,A n,⋯.若点 A1的坐(3, 1),点 A3的坐,点 A 2014的坐 _________三、解答(本有 10 小,共 80 分)17、(本有 6 小,每小 3 分,共18 分)(一)算:( 1)92327(2)23382(31)( 6)(3) 2(2- 2)+ 3(3+1).3(二)解方程: ( 1) 9x 2=16. ( 2)( x 4) 2=4( 3)18、(本小 5 分)把以下各数分 填入相 的会合里:38 , 3 ,- 3.14159 ,,22,32 ,7 ,3780,- 0. 02 , 1.414,7 ,⋯(每两个相 的 2 中 挨次多 1 个 1).(1)正有理数会合: { ⋯}; (2) 无理数会合: {⋯};19、(本小6 分)王霞和爸爸、 到人民公园游玩,A音乐台回 到BE牡丹园家后,她利用平面直角坐 系画出了公园的景区地 ,如 所示.但是她忘 了在 中 出原点和x .y. 只知道游 园D 的坐 ( 2,- 2),你帮她画出坐 系,并写出其余各景点的坐.湖心亭孔桥望春亭 FC(2,-2)D游玩园20、(本小5 分)已知 2 是 x 的立方根,且(y-2z+5 ) 2+=0,求 的 .21、(本小8 分)如 ,直 AB 、 CD 、 EF 订交于点 O .( 1)写出∠ COE 的 角;( 2)分 写出∠ COE 和∠ BOE 的 角;( 3)假如∠ BOD=60° , ABEF ,求∠ DOF 和∠ FOC 的度数.22、(本小4 分)某公路 定行 汽 速度不得超 80 千米 / ,当 生交通事故 ,交通警察往常根据刹 后 滑 的距离估 的行 速度,所用的 公式是,此中 v 表示 速( 位:千米 / ),d 表示刹 后 滑 的距离( 位:米),f 表示摩擦系数.在一次交通事故中, 量d=32米, f=2 . 你判断一下,闯事汽 当 能否高出了 定的速度?23、(本小11 分)达成以下推理 明:( 1)如 ,已知∠1= ∠ 2,∠ B=∠C ,可推出 AB ∥ CD .原因以下:因 ∠ 1=∠ 2(已知),且∠ 1=∠ 4()因此∠ 2=∠ 4(等量代 )因此 CE ∥ BF ()因此∠=∠ 3()又由于∠ B=∠ C(已知)因此∠ 3=∠ B(等量代换)因此AB∥ CD ()(2)如图,已知∠ B+∠ BCD=180°,∠ B=∠ D .求证:∠ E=∠DFE .证明:∵∠ B+∠ BCD=180°(已知),∴ AB∥ CD()∴∠B=()又∵∠ B=∠ D (已知),∴∠= ∠(等量代换)∴AD∥ BE()∴∠ E=∠ DFE ()24、(本小题 6 分)如图,长方形 OABC 中, O 为平面直角坐标系的原点,点A 、C 的坐标分别为 A( 3, 0), C( 0, 2),点B 在第一象限.( 1)写出点B的坐标;( 2)若过点 C 的直线交长方形的OA边于点D,且把长方形OABC的周长分红2: 3 的两部分,求点 D 的坐标;( 3)假如将(2)中的线段CD向下平移 3 个单位长度,获得对应线段C′D′,在平面直角坐标系中画出△ CD′C′,并求出它的面积.25、(本小题 6 分)如图,已知∠1+ ∠ 2=180 °,∠ B=∠ 3,你能判断∠ C 与∠ AED 的大小关系吗?并说明原因 .26(本小题11 分)如图,在平面直角坐标系中,点 A ,B 的坐标分别为(﹣1, 0),(3, 0),现同时将点A, B 分别向上平移 2 个单位,再向右平移 1 个单位,分别获得点A, B 的对应点C, D,连结AC ,BD, CD .得平行四边形ABDC(1)直接写出点 C, D 的坐标;(2)若在 y 轴上存在点 M ,连结 MA , MB ,使 S△MAB =S 平行四边形ABDC,求出点M 的坐标.(3)若点 P 在直线 BD 上运动,连结 PC, PO.请画出图形,直接写出∠CPO 、∠ DCP 、∠ BOP 的数目关系.2016-2017 学年度第二学期期中联考数学科评分标准一、(本大共10 小,每小 4 分,共 40 分)号12345678910答案C D B C B C A A A D 二、填空(本大共 6 小, 11 10 分,其余每小 4 分,共30 分)11. -5、± 3、 9、2、2 -112.两个角是角.两个角相等13.( 1)( -3 ,4).( 2) 7.16014 .南偏西 15°, 50海里15. 15°或 115°. (答出一种状况2分) 16.( -3,1)、(0,4 )三、解答(本大共11 小,共80 分)17(18 分) ( 一 ) (1)2327( 2)23382(31) 9(6)解:原式= 3-6- (- 3)⋯ 2解:原式=322232⋯⋯2= 0 ⋯⋯⋯⋯⋯⋯⋯⋯ 3=⋯3 32⋯⋯⋯ 31 (3)2(2-2)+3( 3+).3解:原式= 2 2 2 3 1⋯⋯2=22 2⋯⋯⋯⋯⋯⋯⋯⋯3(二)( 1) 9x2=16.(2)(x4)2=4解:2,⋯⋯ 1﹣或﹣﹣⋯⋯1x=x 4=2x4= 2 x=±,⋯⋯3x═6 或 x=2⋯⋯3(求出一根 2 分)( 3),(x+3)3=27,⋯⋯1x+3=3,⋯⋯2 x=0.⋯⋯318(本小5分)解: (1) 正有理数会合: { 38,22, 1.414 ,⋯ }⋯⋯3分7(2) 无理数会合: {3 2 ,7,⋯}.⋯⋯5分19(本小6分)解:( 1)正确画出直角坐系;⋯⋯ 1 分( 2)各点的坐 A(0,4),B ( -3 , 2), C( 2, -1 ), E(3, 3), F( 0,0);⋯⋯6分20(本小5分)解:∵ 2 是 x 的立方根,∴x=8,⋯⋯ 1∵( y 2z+5)2+=0,∴,解得:,⋯⋯3∴==3.⋯⋯521(本小8 分)解:( 1)∠ COF和∠ EOD⋯⋯ 2(2)∠ COE和∠ BOE的角分∠ DOF和∠ AOF.⋯⋯ 4(3)∵ AB⊥ EF∴∠ AOF=∠ BOF=90°∴∠ DOF=∠ BOF-∠ BOD=90° -60 °=30°⋯⋯ 6又∵∠ AOC=∠ BOD=60°∴∠ FOC=∠ AOF+∠ AOC=90° +60°=150°.⋯⋯ 822(本小 4 分)解:把d=32, f=2 代入 v=16,v=16=128( km/h)⋯⋯ 2∵ 128> 80,⋯⋯3∴闯事汽当的速度高出了定的速度.⋯⋯423.( 11 分)(1)如,已知∠1=∠ 2,∠ B=∠ C,可推出 AB∥ CD.原因以下:因∠ 1=∠ 2(已知),且∠ 1=∠ 4(角相等)⋯⋯1因此∠ 2=∠ 4(等量代)因此 CE∥ BF(同位角相等,两直平行)⋯⋯2因此∠ C =∠3(两直平行,同位角相等)⋯⋯4又因∠ B=∠ C(已知)因此∠ 3=∠ B(等量代)因此 AB∥ CD(内角相等,两直平行)⋯⋯5( 2)在括号内填写原因.如,已知∠B+∠ BCD=180°,∠ B=∠ D.求:∠ E=∠ DFE.明:∵∠ B+∠BCD=180°(已知),∴ AB∥ CD (同旁内角互,两直平行)⋯⋯ 1∴∠ B=∠ DCE(两直平行,同位角相等)⋯⋯ 3又∵∠ B=∠ D(已知),∴∠ DCE=∠ D (等量代)⋯⋯ 4∴ AD∥ BE(内角相等,两直平行)⋯⋯ 5∴∠ E=∠ DFE(两直平行,内角相等)⋯⋯ 6 24.( 6 分)解:( 1)点 B 的坐( 3, 2);⋯⋯ 1(2)方形 OABC周 =2×( 2+3) =10,∵ 方形 OABC的周分红 2: 3 的两部分,∴两个部分的周分 4,6,∵ OC+OA=5<6∴ OC+OD=4∵OC=2,∴ OD=2,∴点 D 的坐( 2, 0);⋯⋯ 4(3)如所示,△ CD′ C′即所求作的三角形,⋯⋯ 5 CC′ =3,点 D′到 CC′的距离 2,因此,△ CD′ C′的面 = × 3×2=3.⋯⋯ 625( 6 分)解:∠ C与∠ AED相等,⋯⋯ 1原因:明:∵∠ 1+∠2=180°,∠ 1+∠ DFE=180°,∴∠ 2=∠ DFE⋯⋯2∴AB∥ EF∴∠ 3=∠ ADE⋯⋯3又∠ B=∠ 3∴∠ B=∠ ADE∴DE∥ BC⋯⋯ 5∴∠ C=∠ AED⋯⋯ 626、(本小 11 分)解:( 1) C( 0, 2), D(4, 2);⋯⋯ 2(2)∵ AB=4,CO=2,∴S 平行四边形ABOC=AB? CO=4×2=8,M坐( 0, m),∴×4× |m|=8 ,解得 m=± 4∴M点的坐( 0, 4)或( 0, 4);⋯⋯ 5(求出一点 2 分)( 3)当点 P 在 BD上,如 1,∠ DCP+∠ BOP=∠CPO;⋯⋯ 7当点 P 在段 BD的延上,如2,,∠BOP∠ DCP=∠ CPO;⋯⋯ 9同理可适当点P 在段 DB的延上,∠DCP∠ BOP=∠ CPO.⋯⋯ 11( 每种状况正确画出形 1 分 )。

教材全解2016人教版七年级数学下册期中检测题及答案解析

教材全解2016人教版七年级数学下册期中检测题及答案解析

期中检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共30分)1. 下列说法正确的是( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④2是有理数.A.①②B.①③C.①②③D.①②③④2.若点)3,(x A 与点),2(y B 关于x 轴对称,则( )A. x = -2, y =-3B.x =2, y =3C.x =-2, y =3D. x =2, y =-3 3. (2015·山东潍坊中考)在|-2|,02,12 ,这四个数中,最大的数是( )A.|-2|B.C.D. 4. (2015·河北中考)在数轴上标注了四段范围,如图,则表示的点落在( )第4题图A.段①B.段②C.段③D.段④5. 若点P (a ,b )在第四象限,则点Q (-a ,b -1)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知点P 在第三象限,且到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为( • )A.(3,5)B.(-5,3)C.(3,-5)D.(-5,-3)7. (2015•湖北襄阳中考)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( A.60°B.50° 第7题图C.40°D.30° 8.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2b -︱a -b ︱等 于( )A.aB.-aC.2b +aD.2b -a9. 估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间10. 在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2),将△ABC 向左平移5个单位长度后,点A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)二、填空题(每小题3分,共24分)11. (2015·江苏苏州中考)如图,直线a ∥b ,∠1=125°,则∠2的度数为_________°.(2015·海南中考)如图,矩形ABCD 中,12. AB =3,BC =4,则图中四个小矩形的周长之和为________.13.若),(b a A 在第二、四象限的夹角平分线上,则a 与b 的关系是_________.14. 81的平方根是__________,1.44的算术平方根是__________.15. 若0<a <1,则点M (a -1,a )在第_________象限.16. 如果将电影票上“8排5号”简记为,那么“11排11号”可表示为 ;表示的含义是 .17. 将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .18. (2013·贵州遵义中考)已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b , 1-b ),则a b 的值为__________.三、解答题(共66分)19.(6分)计算下列各题:(1)327-+2)3(--31-;(2)33364631125.041027-++---. 20.(10分)(2015·山东聊城中考节选)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A是(3,1).将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标.21.(10分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积.第11题图第12题图22.(10分)如图, AB ∥CD ,分别探讨下面四个图形中∠APC 与∠PAB ,∠PCD 的关系,请你从所得的关系中任意选取一个加以说明.第22题图23.(10分) 已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值. 24.(10分)如图,若∠ADE =∠ABC ,BE ⊥AC 于E ,MN ⊥AC 于N ,试判断∠1与∠2的关系,并说明理由.25.(10分) 某市有A ,B ,C ,D 四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.第24题图 第25题图期中检测题参考答案1.A 解析:负数的绝对值是正数,正数的绝对值是正数,0的绝对值是0,所以0是绝对值最小的有理数,所以①正确;负数的相反数是正数,0的相反数是0,正数的相反数是负数,所以相反数大于本身的数是负数,所以②正确;数轴上原点两侧与原点距离相等的两点表示的数互为相反数,所以③不正确;2是开方开不尽的数的方根,是无理数,所以④不正确,故选A.2.D 解析:关于x 轴对称的两个点横坐标相等,纵坐标互为相反数.3. A 解析:∵ |-2|=2,=1,= ,1<∴<<∣-2∣,∴ 最大的数是|-2|.4. C 解析: ∵ 8=22,414.12≈,∴ 22828.2≈, ∴ 8介于2.8与2.9之间,故选项C 正确.5. C 解析:∵ 点P (a ,b )在第四象限,∴ a >0,b <0,∴ -a <0,b -1<0,∴ 点Q (-a ,b -1)在第三象限.故选C .6.D 解析:因为在第三象限,所以到x 轴的距离为3,说明纵坐标为-3,到y 轴的距离为5,说明横坐标为-5,即点P 的坐标为(-5,-3).7. D 解析:如图,根据矩形直尺的对边平行得到∠3=∠2=60,根据三角形的外角性质得到1330603030∠=∠-=-=.8.B 解析: 因为b a ,分别在原点的右边和左边,所以a 0,0<>b , 所以2b -︱a -b ︱=a b a b b a b -=+--=---)(,故选B.9.B 解析:∵ 2=4<6<9=3,∴3<6+1<4,故选B .第7题答图10.B 解析: ∵ △ABC 向左平移5个单位长度,A (4,5),4-5=-1,∴ 点A 1的坐标为(-1,5),故选B .11. 55 解析:如图,∵ 直线a ∥b ,∠1=125°,∴ ∠3=∠1=125°,∴ ∠2=180°-∠3=180°-125°=55°. 第11题答图12. 14 解析:将四个小矩形的所有上边平移至AD ,所有下边平移至BC ,所有左边平移至AB ,所有右边平移至CD ,则图中四个小矩形的周长之和=2(AB +BC )=2×(3+4)=14.13.互为相反数 解析:二、四象限夹角平分线上的点的横、纵坐标绝对值相等,•符号相反.14.9± 2.115. 二 解析:∵ 0<a <1,∴ -1<a -1<0,∴ 点M (a -1,a )在第二象限.故答案为二.16.(11,11) 6排2号17.(0,0) 解析:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1-1=0,纵坐标是2-2=0,即对应点的坐标是(0,0).18. 25 解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴ a b =25.19.解:(1)327-+2)3(--31-=.11--33-=+)((2)33364631125.041027-++---=.411-415.021-0-3-=++ 20. 解:△A 1B 1C 1的位置如图所示,点B 1的坐标为(-2,-1).第20题答图 第22题答图21.解:梯形.因为AB 长为2,CD 长为5, AB 与CD 之间的距离为4,所以S 梯形ABCD = (25)42+⨯=14. 22.解:(1)∠BAP +∠APC +∠PCD =360°;(2)∠APC =∠BAP +∠PCD ;(3)∠BAP =∠APC +∠PCD ;(4)∠PCD =∠APC +∠BAP .如(2), 如图,可作PE ∥AB ,因为AB ∥CD ,所以PE ∥AB ∥CD ,所以∠BAP =∠APE ,∠EPC =∠PCD .所以∠APE +∠EPC =∠BAP +∠PCD ,即∠APC =∠BAP +∠PCD .23.解: 因为a 31-,0≥︱8b -3︱,0≥且a 31-和︱8b -3︱互为相反数, 所以a 31-,0=︱8b -3︱,0= 所以,83,31==b a 所以()2-ab -27=64-27=37.24. 解:∠1与∠2相等.理由如下:∵∠ADE=∠ABC,∴DE∥BC,∴∠1=∠EBC.∵BE⊥AC于E,MN⊥AC于N,∴BE∥MN,∴∠EBC=∠2;∴∠1=∠2.25. 解:答案不唯一.若建立如图所示的直角坐标系,则A,B,C,D的坐标分别为:A(10,9);B(6,-1);C(-2,7.5);D(0,0).第25题答图。

【优先推荐】成都市成华区七年级下期中数学试卷及答案【精品】

【优先推荐】成都市成华区七年级下期中数学试卷及答案【精品】

2015-2016学年四川省成都市成华区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40° B.50° C.100°D.130°2.下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x63.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40° B.50° C.60° D.70°8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.若5m=3,5n=2,则52m+n= .13.计算:()2015(﹣)2016=()4031.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.15.已知x+y=5,xy=2,则(x+2)(y+2)= .三、解答题(共13小题,满分105分)16.(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5()∴∠3=∠4()∴DE平分∠BDE()19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= .22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 度.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= ,∠2= .24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)2015-2016学年四川省成都市成华区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40° B.50° C.100°D.130°【考点】余角和补角.【分析】根据余角的定义,即可解答.【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.【点评】本题考查了余角的定义,解决本题的关键是熟记余角的定义.2.下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则和同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、x3+x3=2x3,故此选项错误;B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x ﹣3y)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BCD=180°,∴AB∥CD.故选C.【点评】本题考查了平行线判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.6.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【考点】完全平方公式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40° B.50° C.60° D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【考点】多项式乘多项式.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【点评】考查了多项式乘以多项式的法则.解题此类题目的基本思想是等式的左右两边各个项的系数相等,解题的关键是将等式的左右两边整理成相同的形式.9.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【考点】一元一次方程的应用.【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【考点】函数的图象.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1 .【考点】整式的除法.【专题】计算题;整式.【分析】根据长方形的面积除以长确定出宽即可.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+1【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.12.若5m=3,5n=2,则52m+n= 18 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.13.计算:()2015(﹣)2016=()4031.【考点】幂的乘方与积的乘方.【分析】先用负数的偶次方为正,判断出符号,再用同底数幂的乘法即可.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.【点评】此题是幂的乘方与积的乘方,主要考查了同底数相乘,解本题的关键是熟练掌握同底数幂相乘的法则.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【考点】常量与变量.【专题】推理填空题.【分析】根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则x叫自变量,y叫因变量.15.已知x+y=5,xy=2,则(x+2)(y+2)= 16 .【考点】多项式乘多项式.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【点评】本题主要考查多项式乘多项式及代数式求值,熟练掌握多项式乘多项式的法则是解题的关键.三、解答题(共13小题,满分105分)16.(2016春•成华区期中)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【考点】整式的混合运算—化简求值;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数幂的性质以及零指数幂的性质分别化简求出答案;(2)直接利用积的乘方运算法则结合整式乘除运算法则化简,求出答案;(3)首先利用乘法公式化简进而将已知数据代入求出答案;(4)直接利用平方差公式将原式变形进而求出答案.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.【点评】此题主要考查了实数运算以及整式的混合运算和化简求值,熟练应用乘法公式是解题关键.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【考点】完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求得xy=3,x+y=2,再根据完全平方公式,即可解答.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义)【考点】平行线的性质.【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【考点】函数的图象.【分析】根据函数图象可以解答(1)﹣(4)小题.【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;【点评】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答问题.20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?【考点】平行线的判定与性质.【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理及角平分线的性质即可得出结论.21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= ﹣.【考点】多项式乘多项式.【专题】计算题;整式.【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 30 度.【考点】余角和补角.【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.【点评】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= 68°,∠2= 112°.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10 .【考点】整式的混合运算—化简求值.【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.【点评】此题主要考查了整式的混合运算,正确运用完全平方公式是解题关键.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为9 .【考点】整式的混合运算—化简求值.【专题】新定义.【分析】结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解即可.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.【点评】本题考查了整式的混合运算﹣化简求值,解答本题的关键在于结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【考点】平方差公式的几何背景.【专题】计算题;整式.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【考点】动点问题的函数图象.【分析】(1)根据路程=速度×时间,即可解决问题.(2)由图象可知m的值就是△ABC面积,n的值就是运动的总时间,由此即可解决.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=8cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.(2)m=S△ABC=×AB×BC=24,n=(BC+CD+DE+EF+FA)÷2=17.【点评】本题考查动点问题的函数图象、速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,属于中考常考题型.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)【考点】平行线的性质.【分析】(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解决问题.(2)利用(1)的结论即可解决问题.(3)分两种情形写出结论即可.【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.【点评】本题考查平行线的性质,角的和差定义等知识,解题的关键是学会添加常用辅助线,从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.。

成都市成华区七年级下期中数学试卷及答案-推荐

成都市成华区七年级下期中数学试卷及答案-推荐

2015-2016学年四川省成都市成华区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40°B.50° C.100°D.130°2.下列运算中,正确的是()A.x3+x3=2x6 B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x63.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50° C.60° D.70°8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.若5m=3,5n=2,则52m+n= .13.计算:()2015(﹣)2016=()4031.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.15.已知x+y=5,xy=2,则(x+2)(y+2)= .三、解答题(共13小题,满分105分)16.(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5()∴∠3=∠4()∴DE平分∠BDE()19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= .22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 度.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= ,∠2= .24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t (cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l 的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n 为正整数)2015-2016学年四川省成都市成华区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40°B.50° C.100°D.130°【考点】余角和补角.【分析】根据余角的定义,即可解答.【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.【点评】本题考查了余角的定义,解决本题的关键是熟记余角的定义.2.下列运算中,正确的是()A.x3+x3=2x6 B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则和同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、x3+x3=2x3,故此选项错误;B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BC D=180°,∴AB∥CD.故选C.【点评】本题考查了平行线判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.6.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【考点】完全平方公式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50° C.60° D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【考点】多项式乘多项式.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【点评】考查了多项式乘以多项式的法则.解题此类题目的基本思想是等式的左右两边各个项的系数相等,解题的关键是将等式的左右两边整理成相同的形式.9.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【考点】一元一次方程的应用.【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【考点】函数的图象.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1 .【考点】整式的除法.【专题】计算题;整式.【分析】根据长方形的面积除以长确定出宽即可.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+1【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.12.若5m=3,5n=2,则52m+n= 18 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32• 2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.13.计算:()2015(﹣)2016=()4031.【考点】幂的乘方与积的乘方.【分析】先用负数的偶次方为正,判断出符号,再用同底数幂的乘法即可.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.【点评】此题是幂的乘方与积的乘方,主要考查了同底数相乘,解本题的关键是熟练掌握同底数幂相乘的法则.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【考点】常量与变量.【专题】推理填空题.【分析】根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则x叫自变量,y叫因变量.15.已知x+y=5,xy=2,则(x+2)(y+2)= 16 .【考点】多项式乘多项式.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【点评】本题主要考查多项式乘多项式及代数式求值,熟练掌握多项式乘多项式的法则是解题的关键.三、解答题(共13小题,满分105分)16.(2016春•成华区期中)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【考点】整式的混合运算—化简求值;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数幂的性质以及零指数幂的性质分别化简求出答案;(2)直接利用积的乘方运算法则结合整式乘除运算法则化简,求出答案;(3)首先利用乘法公式化简进而将已知数据代入求出答案;(4)直接利用平方差公式将原式变形进而求出答案.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.【点评】此题主要考查了实数运算以及整式的混合运算和化简求值,熟练应用乘法公式是解题关键.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【考点】完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求得xy=3,x+y=2,再根据完全平方公式,即可解答.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义)【考点】平行线的性质.【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【考点】函数的图象.【分析】根据函数图象可以解答(1)﹣(4)小题.【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;【点评】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答问题.20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?【考点】平行线的判定与性质.【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理及角平分线的性质即可得出结论.21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= ﹣.【考点】多项式乘多项式.【专题】计算题;整式.【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 30 度.【考点】余角和补角.【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.【点评】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= 68°,∠2= 112°.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10 .【考点】整式的混合运算—化简求值.【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.【点评】此题主要考查了整式的混合运算,正确运用完全平方公式是解题关键.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为9 .【考点】整式的混合运算—化简求值.【专题】新定义.【分析】结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解即可.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.【点评】本题考查了整式的混合运算﹣化简求值,解答本题的关键在于结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【考点】平方差公式的几何背景.【专题】计算题;整式.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t (cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【考点】动点问题的函数图象.【分析】(1)根据路程=速度×时间,即可解决问题.(2)由图象可知m的值就是△ABC面积,n的值就是运动的总时间,由此即可解决.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=8cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.(2)m=S△ABC=×AB×BC=24,n=(BC+CD+DE+EF+FA)÷2=17.【点评】本题考查动点问题的函数图象、速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,属于中考常考题型.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l 的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n 为正整数)【考点】平行线的性质.【分析】(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解决问题.(2)利用(1)的结论即可解决问题.(3)分两种情形写出结论即可.【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α ①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β ②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.【点评】本题考查平行线的性质,角的和差定义等知识,解题的关键是学会添加常用辅助线,从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.。

2016初一数学下册期中考试试题与答案

2016初一数学下册期中考试试题与答案

2016年七年级数学下册期中测试卷 、选择题•(每空3分,共18分) 1. 如图,直线AB CD 相交于点O,若 / 1+Z 2=120° ,则/BOC 等于() A.120 ° B.140 ° C.150 ° 2. 如图,把一块含有45°角的直角三角板的两个顶点放 在直尺的对边上,如果/ 1=20。

,那么/2等于() A. 30° B.25 ° C.20 ° D.15 ° 3. 如图,若在中国象棋盘上建立平面直角坐标系 “帅”位于点(-1 , -2), “马”位于点(2, -2),则 位于点( ) A. (-1 , 1) B . (-2 , -1 ) C . (-3 , 1) D -2 ) 4. 下列现象属于平移的是( ) A 冷水加热过程中小气泡上升成为大气泡B 急刹车时汽车在地面上的滑动 C.投篮时的篮球运动 D .随风飘动的树叶在空中的运 动 5. 下列各数中,是无理数的为( ) A. 3 9 B. 3.14 C. 4 D. 22 7 6. 若 a 2=9, 3 b =-2,则 a+b=()A. -5B. -11C. -5 或-11D. 5 或 11、填空.(每小题3分,共27分)7. 把命题“平行于同一条直线的两条直线平行”改成如果……那么形8. 一大门的栏杆如右图所示,BA 丄AE,若CD// AE 则/ABC+/ BCD=___ . 9. 如右图,有下列判断:①/ A 与/ 1是同位角;②/ A 与/ B 是同旁内角;③/4与/ 1是内错角;④/1与/3是同位 角。

其中正确的是 _____________ (填序号). 丿10. 在数轴上,-2对应的点为A,点B 与点A 的距离为J 7,则点B 表示的数为 __________ .11. ____________________________________ 绝对值小于 V ?的所有整数有 ____________________________________________C D 名姓 C_ D12. A、B两点的坐标分别为(1, 0)、(0, 2),若将线段AB平移至AB ,点AB 的坐标分别为(2, a )、( b , 3),贝U a+b= _________________ .13. 第二象限内的点P(x,y),满足丨x 丨=9,y 2=4,则点P 的坐标是 _______ .14. 若 x 3m-3-2y n-1 =5 是二元一次方程,则 M= __________15. 平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年 年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日,请你 写出本世纪内你喜欢的一个平方根节: ________ 年 _____ 月 ____ 日.(题中所举例 子除外)三、解答题.16.解方程组(8分)2x y 52x 3y 4 x y 1 3x 2y 617. (6分)如右图,先填空后证明.已知:/ 1 + Z 2=180° 求证:a // b证明:T /仁/ 3 (/ 1 + Z 2=180° (••• / 3+Z 2=180°(a //b (请你再写出一种证明方法• 18. (7分)在平面直角坐标系中,△ ABC 三个顶点的位置如图(每个小正方 形的边长均为1) . (1)请画出△ ABC 沿x 轴向平移3个单位长度,再沿y 轴 向上平移2个单位长度后的厶A B' C (其中A'、B'、C 分别是A 、B 、 C的对应点,不写画法) (2) 直接写出A'、B'、C 三点的坐标:A ( _______ , ____ );B ' ( ________ , _____ );C ( ______ , ____ )。

2016年四川省成都市成华区七年级(下)期中数学试卷与参考答案PDF

2016年四川省成都市成华区七年级(下)期中数学试卷与参考答案PDF

2015-2016学年四川省成都市成华区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100° D.130°2.(3分)下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6D.(x2)3=x63.(3分)将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.(3分)下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.(3分)如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.(3分)若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.(3分)如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°8.(3分)若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.(3分)一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.(3分)某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.(3分)若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.(3分)若5m=3,5n=2,则52m+n=.13.(3分)计算:()2015(﹣)2016=()4031.14.(3分)如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.15.(3分)已知x+y=5,xy=2,则(x+2)(y+2)=.三、解答题(共13小题,满分105分)16.(24分)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.(6分)已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.18.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()19.(8分)图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?20.(10分)如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD ∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?21.(4分)若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=.22.(4分)若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=度.23.(4分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=,∠2=.24.(4分)已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.(4分)若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(10分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.(10分)已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A 的路径运动,记△ABP的面积为y(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.(10分)如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N 分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PA M=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN 的平分线交于点P2,…,∠P nAM的平分线与∠P n﹣1BN的平分线交于点P n,则﹣1∠AP1B=,∠AP n B=.(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P nAM的平分线与∠P n﹣1BN的平分线交于点P n,请直接﹣1写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)2015-2016学年四川省成都市成华区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100° D.130°【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.(3分)下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6D.(x2)3=x6【解答】解:A、x3+x3=2x3,故此选项错误;B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.3.(3分)将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.4.(3分)下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.5.(3分)如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BCD=180°,∴AB∥CD.故选C.6.(3分)若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B7.(3分)如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.8.(3分)若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.9.(3分)一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.10.(3分)某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+112.(3分)若5m=3,5n=2,则52m+n=18.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.13.(3分)计算:()2015(﹣)2016=()4031.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.14.(3分)如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.15.(3分)已知x+y=5,xy=2,则(x+2)(y+2)=16.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.三、解答题(共13小题,满分105分)16.(24分)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.17.(6分)已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.18.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义)【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.19.(8分)图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;20.(10分)如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD ∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.21.(4分)若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=﹣.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣22.(4分)若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=30度.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.23.(4分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=68°,∠2=112°.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C 分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.24.(4分)已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.25.(4分)若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为9.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.26.(10分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b227.(10分)已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A 的路径运动,记△ABP的面积为y(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=4cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.=×AB×BC=24,(2)m=S△ABCn=(BC+CD+DE+EF+FA)÷2=17.28.(10分)如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BNAM的平分线与∠P n﹣1BN的平分线交于点P n,则的平分线交于点P2,…,∠P n﹣1∠AP1B=,∠AP n B=.(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l 1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接分线交于点P2,…,∠P n﹣1写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α ①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β ②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

四川省2016-2017学年七年级(下册)期中数学试卷

四川省2016-2017学年七年级(下册)期中数学试卷

四川省2016-2017学年七年级下学期期中数学试卷一、选择(每题3分,共30分)1.的相反数是( )[来源:学科网]A.5 B.﹣5 C.±5 D.252.下列运算正确的是( )A.B.|﹣3|=3 C.D.3.若点P(x,5)在第二象限内,则x应是( )A.正数B.负数C.非负数D.有理数4.若y轴上的点P到x轴的距离为3,则点P的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)5.在下列各数:301415926、、0.2、、、、中无理数的个数是( ) A.2 B.3 C.4 D.56.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)7.如图,若a∥b,∠1=115°,则∠2=( )A.55°B.60°C.65°D.75°8.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为( )A.(9,0)B.(﹣1,0)C.(3,﹣1)D.(﹣3,﹣1)9.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有( )A.0个B.1个C.2个D.3个10.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A.∠1+∠2 B.180°﹣∠1+∠2 C.∠2﹣∠1 D.180°﹣∠2+∠1二、填空(每空4分,共24分)11.的立方根是__________.12.在平面直角坐标系中,点(﹣2,﹣1)在第__________象限.13.将点(0,1)向下平移2个单位后,所得点的坐标为__________.14.如图,a∥b,∠2=105°,则∠1的度数为__________.15.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=__________度.16.若某数的平方根为a+3和2a﹣15,则a=__________.三、作图17.如图,已知三角形ABC,请根据下列提示作图:(1)向上平移2个单位长度.(2)再向右移3个单位长度.四、解答题(60分)18.看图填空,并在括号内说明理由:∵BD平分∠ABC(已知)∴__________=__________(__________)又∠1=∠D(已知)∴__________=__________(__________)∴__________∥__________(__________)∴∠ABC+__________=180°(__________)又∠ABC=55°(已知)∴∠BCD=__________.19.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.20.计算:(1)(﹣)(2)(﹣2)3×+×()2﹣.21.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.22.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;[来源:学科网ZXXK](2)求∠BCA的度数.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.四川省2016-2017学年七年级下学期期中数学试卷一、选择(每题3分,共30分)1.的相反数是( )A.5 B.﹣5 C.±5 D.25考点:实数的性质.分析:一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.解答:解:∵=5,而5的相反数是﹣5,∴的相反数是5.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列运算正确的是( )A.B.|﹣3|=3 C.D.[来源:学科网]考点:实数的运算.专题:计算题.分析:A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.解答:解:A、C、=2,故选项错误;B、|﹣3|=3,故选项正确;D、9不能开三次方,故选项错误.故选B.点评:此题主要考查了实数的运算,注意,正数的算术平方根是正数.3.若点P(x,5)在第二象限内,则x应是( )A.正数B.负数C.非负数D.有理数考点:点的坐标.分析:在第二象限时,横坐标<0,纵坐标>0,因而就可得到x<0,即可得解.[来源:Z+xx+]解答:解:∵点P(x,5)在第二象限,∴x<0,即x为负数.故选B.[来源:学科网ZXXK]点评:解决本题解决的关键是熟记在各象限内点的坐标的符号,第一象限点的坐标符号为(+,+),第二象限点的坐标符号为(﹣,+),第三象限点的坐标符号为(﹣,﹣),第四象限点的坐标符号为(+,﹣).4.若y轴上的点P到x轴的距离为3,则点P的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)考点:点的坐标.分析:由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.解答:解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).[来源:学科网ZXXK]故选:D.点评:此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.5.在下列各数:301415926、、0.2、、、、中无理数的个数是( ) A.2 B.3 C.4 D.5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:、是无理数.故选:A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)考点:坐标与图形性质.分析:因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.解答:解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.[来源:]故选:C.点评:本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.7.如图,若a∥b,∠1=115°,则∠2=( )A.55°B.60°C.65°D.75°考点:平行线的性质.分析:由a∥b,∠1=115°,根据两直线平行,同旁内角互补,即可求得∠2的度数.解答:解:∵a∥b,∴∠1+∠2=180°,∵∠1=115°,∴∠2=65°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同旁内角互补定理的应用是解此题的关键.8.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为( )A.(9,0)B.(﹣1,0)C.(3,﹣1)D.(﹣3,﹣1)考点:坐标与图形变化-平移.专题:常规题型.分析:根据对应点A、A′找出平移规律,然后设点B的坐标为(x,y),根据平移规律列式求解即可.解答:解:∵点A(﹣2,1)的对应点为A′(3,1),∴3﹣(﹣2)=3+2=5,∴平移规律是横坐标向右平移5个单位,纵坐标不变,设点B的坐标为(x,y),则x+5=4,y=0,解得x=﹣1,y=0,所以点B的坐标为(﹣1,0).故选B.点评:本题考查了平移变换与坐标与图形的变化,根据已知对应点A、A′找出平移规律是解题的关键,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有( )A.0个B.1个C.2个D.3个考点:同位角、内错角、同旁内角;对顶角、邻补角;点到直线的距离.分析:正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.解答:解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.[来源:Z&xx&]故选:B.点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.10.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A.∠1+∠2 B.180°﹣∠1+∠2 C.∠2﹣∠1 D.180°﹣∠2+∠1考点:平行线的性质.分析:先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°﹣∠2,再把两式相加即可得出结论.解答:解:∵AB∥CD,∴∠BCD=∠1①.∵CD∥EF,∴∠DCE=180°﹣∠2②,∴∠BCE=∠BCD+∠DCE=180°﹣∠2+∠1.故选D.点评:本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.二、填空(每空4分,共24分)11.的立方根是2.考点:立方根;算术平方根.专题:计算题.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.解答:解:∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故答案为:2.[来源:学|科|网Z|X|X|K]点评:本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.12.在平面直角坐标系中,点(﹣2,﹣1)在第三象限.考点:点的坐标.分析:根据点的横纵坐标的符号都为负号可得所在象限.解答:解:∵点的横纵坐标均为负数,∴点(﹣2,﹣1)在第三象限.故答案为三.点评:考查点的坐标的相关知识;用到的知识点为:横纵坐标均为负数的点在第三象限.13.将点(0,1)向下平移2个单位后,所得点的坐标为(0,﹣1).考点:坐标与图形变化-平移.分析:把所给点的横坐标不变,纵坐标减2即得到所求点的坐标.解答:解:由题意平移后,所求点的横坐标不变;纵坐标为1﹣2=﹣1;∴将点(0,1)向下平移2个单位后,所得点的坐标为(0,﹣1).故答案填:(0,﹣1).点评:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是2015届中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,a∥b,∠2=105°,则∠1的度数为75°.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:∠1的同位角与∠2是邻补角的关系,根据平行线的性质可得∠1与∠2互补.解答:解:∵a∥b,∴∠1=∠3.∵∠2=105°,∴∠3=75°.∴∠1=75°.点评:此题考查了平行线的性质和邻补角互补,属基础题.15.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=54度.考点:平行线的性质;角平分线的定义.专题:计算题.分析:两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.解答:解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.点评:本题应用的知识点为:两直线平行,内错角相等;同旁内角互补.16.若某数的平方根为a+3和2a﹣15,则a=4.考点:平方根.分析:根据一个正数有两个平方根,这两个平方根互为相反数得出a+3+2a﹣15=0,求出即可.解答:解:∵某数的平方根为a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4,故答案为:4.点评:本题考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、作图17.如图,已知三角形ABC,请根据下列提示作图:(1)向上平移2个单位长度.(2)再向右移3个单位长度.考点:作图-平移变换.分析:(1)首先确定A、B、C三点向上平移2个单位长度所得的对应点A′、B′、C′,然后在顺次连接即可;(2)首先确定A′、B′、C′向右移3个单位长度所得对应点A1、B1、C1,再顺次连接即可.解答:解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:△A1B1C1即为所求.点评:此题主要考查了作图﹣﹣平移变换,关键是正确找出平移后关键点的位置.四、解答题(60分)18.看图填空,并在括号内说明理由:∵BD平分∠ABC(已知)∴∠1=∠2(角平分线定义)又∠1=∠D(已知)∴∠2=∠D(等量代换)∴AB∥CD(内错角相等两直线平行)∴∠ABC+∠BCD=180°(两直线平行同旁内角互补)又∠ABC=55°(已知)∴∠BCD=125°.考点:平行线的判定与性质.专题:推理填空题.分析:由BD为角平分线,利用角平分线定义得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与CD平行,利用两直线平行同旁内角互补即可求出所求角的度数.解答:解:∵BD平分∠ABC(已知)∴∠1=∠2(角平分线定义)又∠1=∠D(已知)∴∠2=∠D(等量代换)∴AB∥CD(内错角相等两直线平行)∴∠ABC+∠BCD=180°(两直线平行同旁内角互补)又∠ABC=55°(已知)∴∠BCD=125°.故答案为:∠1;∠2;角平分线定义;∠2;∠D;等量代换;AB;CD;内错角相等两直线平行;∠BCD;两直线平行同旁内角互补;125°.点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.19.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.考点:立方根;平方根.分析:(1)开平方求出(x﹣1)的值,继而求出x的值;(2)将x3的系数化为1,开立方求出x的值.解答:解:(1)开平方得:x﹣1=±2,解得:x1=3,x2=﹣1;(2)系数化为1得,x3=﹣27,开立方得:x=﹣3.点评:本题考查了立方根及平方根的知识,属于基础题,掌握开平方及开立方运算的法则是关键.20.计算:(1)(﹣)(2)(﹣2)3×+×()2﹣.考点:实数的运算.分析:(1)先把括号中的每一项分别同相乘,再把结果相减即可;(2)分别根据数的乘方及开方法则计算出各数,再算乘法,最后算加减即可.解答:解:(1)原式=1﹣7[来源:学_科_网]=﹣6;(2)原式=(﹣8)×4﹣4×﹣3=﹣32﹣1﹣3=﹣36.点评:本题考查的是实数的运算,熟记数的乘方及开方法则是解答此题的关键.21.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.考点:实数.分析:根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、0、负实数.进行填空.解答:解:=5,=2.①有理数集合{﹣7,0.32,,0,}②无理数集合{,,π,0.1010010001…}③负实数集合{﹣7}.故答案是:﹣7,0.32,,0,;,,π,0.1010010001…;﹣7.点评:本题考查了实数的分类.注意0既不是正实数,也不是负实数.22.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;(2)求∠BCA的度数.考点:平行线的判定与性质.分析:(1)由CD⊥AB,FE⊥AB,则CD∥EF,则∠2=∠BCD,从而证得BC∥DG,即∠B=∠ADG;(2)由CD∥EF,则∠3=∠BCG.解答:(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG;(2)解:∵DG∥BC,∴∠3=∠BCG,∵∠3=80°,∴∠BCA=80°.点评:本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.考点:平行线的判定与性质.分析:推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.解答:解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.点评:本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.考点:坐标与图形变化-平移;三角形的面积.分析:(1)根据平移规律,直接得出点C,D的坐标,根据:四边形ABDC的面积=AB×OC 求解;(2)存在.设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标.解答:解:(1)依题意,得C(0,2),D(4,2),∴S四边形ABDC=AB×OC=4×2=8;(2)在y轴上是否存在一点P,使S△PAB=S四边形ABDC.理由如下:设点P到AB的距离为h,S△PAB=×AB×h=2h,由S△PAB=S四边形ABDC,得2h=8,解得h=4,∴P(0,4)或(0,﹣4).点评:本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系及三角形、平行四边形的面积公式,解题的关键是理解平移的规律.。

成华区初中七下数学试卷

成华区初中七下数学试卷

1. 下列各数中,既是正数又是整数的是()A. -3B. 0C. 1.5D. 32. 下列各数中,有最小正整数解的是()A. 2x + 1 = 7B. 3x - 2 = 9C. 4x + 3 = 12D. 5x - 4 = 153. 下列各数中,有最小正整数解的是()A. 2x + 3 = 7B. 3x + 2 = 7C. 4x + 1 = 7D. 5x + 4 = 74. 下列各数中,有最小正整数解的是()A. 2x - 3 = 7B. 3x - 2 = 7C. 4x - 1 = 7D. 5x - 4 = 75. 下列各数中,有最小正整数解的是()A. 2x + 1 = 7B. 3x + 2 = 7D. 5x + 4 = 76. 下列各数中,有最小正整数解的是()A. 2x - 1 = 7B. 3x - 2 = 7C. 4x - 3 = 7D. 5x - 4 = 77. 下列各数中,有最小正整数解的是()A. 2x + 1 = 7B. 3x + 2 = 7C. 4x + 3 = 7D. 5x + 4 = 78. 下列各数中,有最小正整数解的是()A. 2x - 3 = 7B. 3x - 2 = 7C. 4x - 1 = 7D. 5x - 4 = 79. 下列各数中,有最小正整数解的是()A. 2x + 1 = 7B. 3x + 2 = 7C. 4x + 3 = 7D. 5x + 4 = 710. 下列各数中,有最小正整数解的是()B. 3x - 2 = 7C. 4x - 3 = 7D. 5x - 4 = 7二、填空题(每题5分,共50分)11. 一个数加上5等于9,这个数是______。

12. 一个数减去3等于5,这个数是______。

13. 一个数乘以2等于10,这个数是______。

14. 一个数除以3等于4,这个数是______。

15. 一个数的平方是36,这个数是______。

16. 一个数的立方是27,这个数是______。

【推荐】四川省成都市北师大版七年级下册期中测试及答案(数学)

【推荐】四川省成都市北师大版七年级下册期中测试及答案(数学)

1BACD EFGH七年级(下)数学期中测试姓名 成绩 一、 选择题(每小题3分,共24分)1、在代数式22221,5,,3,1,35xx x x x x +--+π中是整式的有( )(A )3个 (B )4个 (C )5个 (D ) 6个2、下列计算正确的是( ) (A )842a a a=⋅ (B )4)2(22+=+x x (C )66c c c =÷ (D )6234)2(b b =3、下列算式能用平方差公式计算的是( )(A ))2)(2(a b b a -+ (B ))121)(121(--+x x (C ))3)(3(y x y x +-- (D )))((y x y x +--- 4、下列各划线数据中,近似数的个数有( )①2004年印度洋海啸死亡22.5万人; ②刘翔110米栏的世界纪绿是12秒91; ③小明每天要喝500g 鲜牛奶; ④声音的传播速度是340m/s (A )4个 (B )3个 (C )2个 (D )1个5、如图,能推断AB//CD 的是( ) (A )35∠=∠ (B )123∠=∠+∠ (C )24∠=∠ (D )∠ADC +∠4+∠5=180。

6、要使2425x mx ++成为一个完全平方式,则m 的值是( )(A )10(B )10±(C )20 (D )20±7、∠A 的余角与∠A 的补角互为补角,那么2∠A 是( ) (A )直角 (B )锐角 (C )钝角 (D )以上三种都有可能8、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来方向上平行行驶,则这两次拐弯的角度应为( )(A )第一次向右拐38°,第二次向左拐142° (B )第一次向左拐38°,第二次向右拐38° (C )第一次向左拐38°,第二次向左拐142° (D )第一次向右拐38°,第二次向右拐40° 二、填空题(17、20题每题2分、其余题每空1分,共37分)11、代数式c b a 4354π的次数是 ,系数是 。

四川省成都市七年级下学期数学期中考试试卷

四川省成都市七年级下学期数学期中考试试卷

四川省成都市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共27分)1. (2分)如图,直线a,b被直线c所截,已知已知a∥b,∠1=40°,则∠2的度数为()A . 40°B . 50°C . 140°D . 160°2. (2分)下列图形中,能由∠1+∠2=180°得到AB∥CD的是()A .B .C .D .3. (5分)(2015·丽水) 如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A . 3种B . 6种C . 8种D . 12种4. (2分)的值为()A . 2B . -2C . ±2D . 不存在5. (2分)在实数π,2,0,3.14,﹣,tan45°,3.1415926,, 1.010010001…(每两个1之间0的个数依次加1)中,无理数的个数是()A . 2个B . 3个C . 4个D . 5个6. (2分)(2019·红塔模拟) 下列运算正确的是()A .B .C .D .7. (2分)(2018·莘县模拟) 在坐标平面内,点P(4﹣2a,a﹣4)在第三象限.则a的取值范围是()A . a>2B . a<4C . 2<a<4D . 2≤a≤48. (2分) (2019七下·凉州期中) 已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A . (1,2)B . (2,9)C . (5,3)D . (–9,–4)9. (2分)一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的平方根()。A . a+2B . a2+2C .D .10. (2分)如图,∠1与∠2是A . 内错角B . 同位角C . 同旁内角D . 以上都不对11. (2分) (2017七下·博兴期末) 下列命题中:①立方根等于它本身的数有﹣1,0,1;② =2;③负数没有立方根;④内错角相等;⑤过一点有且只有一条直线和已知直线平行.正确的有()A . 1个B . 2个C . 3个D . 4个12. (2分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()A . 3B . 2C . 0D . -1二、填空题 (共8题;共8分)13. (1分) (2018七上·前郭期末) 如图,射线OA表示北偏西36°,且∠AOB=154°,则射线OB表示的方向是________.14. (1分)若5+ 的整数部分为a,小数部分为b,则a=________,b=________.15. (1分)(2017·河南模拟) 如图,已知AD平分∠CAB,DE∥AC,∠1=30°,则∠2=________°.16. (1分)(2017·海陵模拟) 计算: =________.17. (1分)写出命题“等边三角形有一个角等于60°”的逆命题________.18. (1分)将点P (-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是________。

成华区七年级数学试卷答案

成华区七年级数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. √2答案:A解析:有理数是可以表示为两个整数之比的数,√9 = 3,是有理数。

2. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 < b - 2C. a × 2 < b × 2D. a ÷ 2 < b ÷ 2答案:B解析:根据不等式的性质,当两边同时减去相同的数时,不等号的方向不变。

3. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11B. 1, 4, 7, 10C. 3, 6, 9, 12D. 5, 10, 15, 20答案:C解析:等差数列的特征是相邻两项之差相等,C选项中相邻两项之差均为3。

4. 下列函数中,自变量x的取值范围是()A. y = √(x - 1)B. y = x² - 1C. y = 1/xD. y = 2x + 3答案:A解析:A选项中,√(x - 1)要求x - 1 ≥ 0,即x ≥ 1;B选项中,x² - 1对x没有限制;C选项中,1/x要求x ≠ 0;D选项中,2x + 3对x没有限制。

5. 如果x² - 5x + 6 = 0,那么x的值为()A. 2B. 3C. 2或3D. -2或-3答案:C解析:这是一个一元二次方程,可以通过因式分解或求根公式求解。

因式分解得(x - 2)(x - 3) = 0,所以x = 2或x = 3。

6. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 梯形答案:B解析:轴对称图形是指图形沿某条直线折叠后,两边完全重合。

等腰三角形沿底边的中线折叠,两边完全重合。

7. 如果a、b、c是等差数列,且a + b + c = 12,那么a² + b² + c²的值为()A. 36B. 48C. 60D. 72答案:C解析:由等差数列的性质,a + b + c = 3a,所以a = 4。

四川省成都七中实验学校2015-2016学年七年级数学下学期期中试题-北师大版

四川省成都七中实验学校2015-2016学年七年级数学下学期期中试题-北师大版

四川省成都七中实验学校2015-2016学年七年级数学下学期期中试题-北师大版四川省成都七中实验学校2015-2016学年七年级数学下学期期中试题A 卷(满分100分)一、选择题(每小题3分,共30分) 1、下列计算正确是( ) A .nn naa a32=+B .nn naa a32=⋅ C .()624xa = D .()()235xy xy xy =÷2、下列各组长度的三条线段能组成三角形的是( ) A.1cm ,2cm ,3cm B .1cm ,1cm ,2cm C.1cm ,2cm ,2cm D .1cm ,5cm ,7cm3、纳米是一种长度单位,1纳米=109-米,已知某种植物花粉的直径约为3500纳米,那么用科学记数法表示该种花粉直径为( )A .3.5×104米 B .3.5×104-米 C .3.5×105-米D .3.5×106-米4、计算)1)(32(-+x x 的结果是( ) A.322-+x xB.322--x xC.322+-x xD.322--x x5、如图,点E 在BC 的延长线上,下列条件中,不能判定AB//CD 的是( )A.∠1=∠2B.∠3=∠4C.∠A=∠DCED.∠D+∠DBA=180°6、下列乘法中,不能运用平方差公式进行运算的是( )A.()()a x a x -+B.()()x a a x +-+C.()()b x b x ---D.()()b a b a --+ 7、等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为( )A.7cmB.3cmC.7cm 或3cmD.5cm8、如图,下列条件不能证明△ABC ≌△DCB 的是( ) A .AB=DC ,AC=DB B .∠A=∠D ,∠ABC=∠DCBC .BO=CO ,∠A=∠D D .AB=DB ,AC=DC9、下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行(2)同旁内角互补(3)相等的角是对顶角(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离(5)经过直线外一点,有且只有一条直线与已知直线平行A.2个 B.3个 C.4个 D.5个(第5题图)(第8题图)10、如图,△ABC中,0α=∠A,延长BC到D,∠ABC与∠ACD的平分线相交于点1A,BCA1∠与CDA1∠的平分线相交于点2A,依此类推,BCAn1-∠与CDAn1-∠的平分线相交于点nA,则n A∠的度数为()A.0⎪⎭⎫⎝⎛nα B.02⎪⎭⎫⎝⎛nα C.02⎪⎭⎫⎝⎛nαD.012⎪⎭⎫⎝⎛+nα二、填空题(每小题3分,共15分)11、计算:=-223)2(zxy.12、如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF= 度.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14、如果多项式kxx++82是一个完全平方式,则k的值(第12题图) (第13题图)(第15题图)(第10题图)是 .15、如图,△ABC 中, BF 、CF 分别平分∠ABC 和∠ACB ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②∠DFB=∠EFC ;③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的是 .(填序号,错选、漏选不得分)三、计算与求值(每小题6分,共24分)16、(1)(121122332201641)()()()-⨯+---- (2)()()()33232--+-+-x x x()()xy xy y x y x33692234-÷+-(4)先化简,再求值[()()xyx y y y x 8422-+-+]()x 2-÷.其中1,2-==y x .四、解答题(共31分) 17、(5分)解关于x 的方程:()()()62222=+--+x x x18、(6分)已知:4=-b a ,1-=ab ,求:()2b a +和226b ab a+-的值.19、(4+6=10分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.(第19题图)20、(4+3+3=10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(直接写出结论,不需要证明)(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.B 卷(50分)一、填空题(4分,共20分) 21、已知:23=m,59=n,则1233+-n m = .22、若()()bax x x -+-22的积中不含x 的二次项和一次项,则a= ,b= .23、若0132=+-a a,则=+221aa.24、已知等腰△ABC 中一腰上的高与另一腰的夹角为30°,则△ABC 的底角度数为 度. 25、已知△ABC 的面积为1,把它的各边延长一倍得到111C B A ∆;再把111C B A ∆的各边延长两倍得到222C B A ∆;再把222C B A ∆的各边延长三倍得到333C B A ∆,则333C B A ∆的面积为 . 二、解答题(每小题10分,共30分)(第25题图)26、(5+5=10分)(1)已知△ABC 三边长是a 、b 、c ,化简代数式:c a b a c b b a c c b a --+---+---+ (2)已知0132=-+x x ,求:20155523+++x x x的值.27、(3+3+4=10分)先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式842++y y 的最小值.解:()4244484222++=+++=++y y y y y∵()022≥+y ∴()4422≥++y∴842++y y的最小值是4.(1)求代数式42++m m的最小值; (2)求代数式xx242+-的最大值;(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设AB=x (m ),请问:当x 取何值时,花园的面积最大?最大面积是多少2m ?(3+3+4=10分)如图(1),在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF 平分(第27题图)∠CAB ,交CD 于点E ,交CB 于点F . (1)求证:∠CEF=∠CFE ;(2)若,AB AD 41=,CB CF 31=,△ABC 、△CEF 、△ADE 的面积分别为ABCS∆、CEFS∆、ADES∆,且24=∆ABCS,则=-∆∆ADE CEFS S;(3)将图(1)中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,如图(2)所示,试猜想:BE ′与CF 有怎样的数量关系?并证明你的结论.成都七中实验学校初2015级七年级(下)数学期中考试 参考答案 A 卷1-10 B C D A B D B D A C11、4624z y x 12、74 13、090 14、16 15、16、2116 131282+-x xyx yx -+-2323842-=+-y x17、21-=x 18、()122=+b a 24622=+-b ab a19、CDF ABE ∆≅∆ CDA ABC ∆≅∆20、(1)D B BPD ∠+∠=∠ (2)BQD D B BPD ∠+∠+∠=∠ (3)∠A+∠B+∠C+∠D+∠E=0180B 卷21、524 22、2,4 23、7 24、30或60 25、492126、c a 22- 2017 27、42++m m的最小值为415,xx242+-的最大值为5,x 为5时,最大为502m 28、(2)=-∆∆ADE CEFS S 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年四川省成都市成华区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100° D.130°2.(3分)下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6D.(x2)3=x63.(3分)将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.(3分)下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.(3分)如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.(3分)若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.(3分)如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°8.(3分)若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.(3分)一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.(3分)某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(共5小题,每小题3分,满分15分)11.(3分)若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.(3分)若5m=3,5n=2,则52m+n=.13.(3分)计算:()2015(﹣)2016=()4031.14.(3分)如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.15.(3分)已知x+y=5,xy=2,则(x+2)(y+2)=.三、解答题(共13小题,满分105分)16.(24分)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.(6分)已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.18.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()19.(8分)图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?20.(10分)如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD ∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?21.(4分)若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=.22.(4分)若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=度.23.(4分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=,∠2=.24.(4分)已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.(4分)若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(10分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.(10分)已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A 的路径运动,记△ABP的面积为y(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.(10分)如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N 分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN 的平分线交于点P2,…,∠P nAM的平分线与∠P n﹣1BN的平分线交于点P n,则﹣1∠AP1B=,∠AP n B=.(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P nAM的平分线与∠P n﹣1BN的平分线交于点P n,请直接﹣1写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)2015-2016学年四川省成都市成华区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果一个角是50°,那么它的余角的度数是( )A .40°B .50°C .100°D .130°【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A .2.(3分)下列运算中,正确的是( )A .x 3+x 3=2x 6B .x 2•x 3=x 6C .x 18÷x 3=x 6D .(x 2)3=x 6【解答】解:A 、x 3+x 3=2x 3,故此选项错误;B 、x 2•x 3=x 5,故此选项错误;C 、x 18÷x 3=x 15,故此选项错误;D 、(x 2)3=x 6,正确.故选:D .3.(3分)将0.00000573用科学记数法表示为( )A .0.573×10﹣5B .5.73×10﹣5C .5.73×10﹣6D .0.573×10﹣6【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C .4.(3分)下列各式中,能用平方差公式进行计算的是( )A .(﹣x ﹣y )(x +y )B .(2x ﹣y )(y ﹣2x )C .(1﹣x )(﹣1﹣x )D .(3x +y )(x ﹣3y )【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x )(﹣1﹣x ), 故选C .5.(3分)如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BCD=180°,∴AB∥CD.故选C.6.(3分)若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B7.(3分)如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.8.(3分)若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.9.(3分)一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.10.(3分)某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+112.(3分)若5m=3,5n=2,则52m+n=18.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.13.(3分)计算:()2015(﹣)2016=()4031.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.14.(3分)如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.15.(3分)已知x+y=5,xy=2,则(x+2)(y+2)=16.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.三、解答题(共13小题,满分105分)16.(24分)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.17.(6分)已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.18.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义)【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.19.(8分)图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;20.(10分)如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD ∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.21.(4分)若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=﹣.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣22.(4分)若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=30度.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.23.(4分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=68°,∠2=112°.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C 分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.24.(4分)已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.25.(4分)若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为9.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.26.(10分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b227.(10分)已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A 的路径运动,记△ABP的面积为y(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=4cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.=×AB×BC=24,(2)m=S△ABCn=(BC+CD+DE+EF+FA)÷2=17.28.(10分)如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BNAM的平分线与∠P n﹣1BN的平分线交于点P n,则的平分线交于点P2,…,∠P n﹣1∠AP1B=,∠AP n B=.(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接分线交于点P 2,…,∠P n﹣1写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α ①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β ②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。

相关文档
最新文档