小学六年级数学教案:圆锥的体积教案

合集下载

《圆锥的体积》教案设计

《圆锥的体积》教案设计

《圆锥的体积》教案设计•相关推荐《圆锥的体积》教案设计(通用13篇)作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。

那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《圆锥的体积》教案设计,希望能够帮助到大家。

《圆锥的体积》教案设计篇1教材分析:圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。

具体来说有这样几个变化:(1)加强了所学知识与现实生活的联系。

教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。

当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。

(2)加强了对图形特征,体积、方法的探索过程。

在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。

实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。

(3)加强了学生在操作中对空间与图形问题的思考。

学情分析:加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。

教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。

如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。

圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。

教学目标:1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。

2、提高学生实际应用的能力。

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。

本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。

为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。

学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。

因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。

但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。

你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

所以对于新的知识教学,他们一定能表现出极大的热情。

教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。

北师大版数学六年级下册《圆锥的体积》教学设计

北师大版数学六年级下册《圆锥的体积》教学设计

北师大版数学六年级下册《圆锥的体积》教学设计一. 教材分析北师大版数学六年级下册《圆锥的体积》是小学数学的重要内容,主要让学生理解圆锥体积的概念,掌握计算圆锥体积的方法,并能够运用圆锥体积解决实际问题。

本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。

二. 学情分析六年级的学生已经掌握了长方体、正方体的体积计算方法,对体积的概念有一定的理解。

但是,对于圆锥体积的计算方法,学生还需要通过实例和操作来进一步理解。

此外,学生对于圆锥体积在实际生活中的应用还需要进一步拓展。

三. 教学目标1.让学生理解圆锥体积的概念,掌握计算圆锥体积的方法。

2.培养学生空间想象能力和抽象思维能力。

3.使学生能够运用圆锥体积解决实际问题。

四. 教学重难点1.圆锥体积的概念。

2.计算圆锥体积的方法。

3.圆锥体积在实际生活中的应用。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等多种教学方法,引导学生通过观察、操作、思考、交流等方式,掌握圆锥体积的概念和计算方法,提高学生解决实际问题的能力。

六. 教学准备1.圆锥体积的相关教学PPT。

2.圆锥体积的实例和操作材料。

3.圆锥体积的练习题。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾长方体、正方体的体积计算方法,为新课的学习做好铺垫。

同时,教师展示一些生活中的圆锥物体,如漏斗、圆锥形的沙堆等,让学生观察并思考这些物体的体积如何计算。

呈现(10分钟)教师通过PPT展示圆锥体积的概念和计算方法,引导学生思考并理解圆锥体积的定义。

同时,教师通过讲解和示范,让学生掌握计算圆锥体积的方法。

操练(10分钟)教师学生进行分组练习,让学生运用圆锥体积的计算方法解决实际问题。

教师给予学生指导,并纠正学生在计算过程中可能出现的错误。

巩固(10分钟)教师通过PPT展示一些圆锥体积的练习题,让学生独立完成并进行讲解。

教师针对学生的回答进行点评,巩固学生对圆锥体积的理解和计算方法。

《圆锥的体积》教学设计(精选5篇)

《圆锥的体积》教学设计(精选5篇)

《圆锥的体积》教学设计(精选5篇)《圆锥的体积》教学设计1一、教学内容:六年制小学数学教材第十二册第25-26页二、教学目标:1、知识技能目标:◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

3、情感态度目标:◆培养学生的合作意识和探究意识;◆使学生获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积方法和推导过程。

教学过程:一、质疑引入1圆锥有什么特征?指名学生回答。

2说一说圆柱体积的计算公式。

(1)已知s、h求v(2)已知r、h求v(3)已知d、h求v3我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书课题:圆锥的体积二、新课(一)教学圆锥体积的计算公式1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体-长方体的体积公式----推导圆柱体公式)2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式〈1〉学生独立操作让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。

先在圆锥里装满水,然后倒入圆柱。

看几次正好把圆柱装满?〈2〉教师教具演示巩固学生的操作效果,cai课件演示a屏幕上出示等底、等高b等底、不等高c等高、不等底实验报告单实验器材实验结果等底不等高的圆锥、圆柱等高不等底的圆锥、圆柱等底等高的圆锥、圆柱〈3〉引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)用字母表示圆锥的体积公式.v锥=1/3sh做一做:填空:等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的(),圆锥的体积是圆柱的体积的()已知圆锥的体积是9立方分米,圆柱的体积是();如果圆柱的体积是12立方分米,那么圆锥的体积是()。

六年级下册数学教案--圆锥的体积人教版

六年级下册数学教案--圆锥的体积人教版

六年级下册数学教案圆锥的体积人教版教案:圆锥的体积一、教学内容1. 理解圆锥体积的概念,掌握圆锥体积的计算公式。

2. 学会使用适当的单位进行圆锥体积的测量和计算。

3. 能够应用圆锥体积的知识解决实际问题。

二、教学目标1. 学生能够理解圆锥体积的概念,并掌握圆锥体积的计算公式。

2. 学生能够运用圆锥体积的知识解决实际问题。

3. 学生能够培养观察、思考、合作的能力。

三、教学难点与重点1. 难点:理解圆锥体积的概念,掌握圆锥体积的计算公式。

2. 重点:学生能够运用圆锥体积的知识解决实际问题。

四、教具与学具准备1. 教具:圆锥模型、沙子、量杯。

2. 学具:学生自己的圆锥模型、计算器、练习本。

五、教学过程1. 引入:我们之前学习了圆柱的体积,今天我们要学习的是与圆柱相似的圆锥的体积。

请大家拿出自己的圆锥模型,观察一下圆锥的特点。

2. 讲解:我们来理解一下圆锥体积的概念。

圆锥体积是指圆锥所占空间的大小。

它的计算公式是:圆锥体积 = 底面积× 高× 1/3。

这里的底面积是指圆锥底面的面积,高是指从圆锥顶点到底面的垂直距离。

3. 示范:我来给大家示范一下如何计算圆锥的体积。

假设这个圆锥的底面半径是r,高是h,那么它的体积就是:πr²h × 1/3。

这里用到了圆的面积公式πr²。

4. 练习:请大家拿出自己的圆锥模型,尝试计算一下它的体积。

如果有困难,可以和同学互相帮助。

5. 应用:现在我们来解决一个实际问题。

假设我们有一个圆锥形的花坛,底面半径是3米,高是4米,请大家计算一下这个花坛的体积。

六、板书设计圆锥体积 = 底面积× 高× 1/3七、作业设计1. 题目:计算下面圆锥的体积。

圆锥的底面半径是5米,高是8米。

2. 答案:圆锥体积= πr²h × 1/3= π × 5² × 8 × 1/3= 3.14 × 25 × 8 × 1/3= 3.14 × 200 × 1/3= 628 × 1/3= 209.33(立方米)八、课后反思及拓展延伸通过今天的学习,大家应该对圆锥体积有了更深入的理解。

苏教版六年级数学——“圆锥的体积”教案设计

苏教版六年级数学——“圆锥的体积”教案设计

苏教版六年级数学——“圆锥的体积”教案设计一、教学目标1.能够理解圆锥体积公式的含义,并掌握其推导方法。

2.能够运用圆锥体积公式计算简单圆锥的体积。

3.培养学生的团队协作和创新精神,提高学生的数学思维和解决问题的能力。

二、教学重点1.圆锥的体积公式的推导方法。

2.圆锥的体积公式的运用。

三、教学难点1.圆锥的体积公式的推导方法。

2.圆锥的体积公式的运用。

四、教学过程安排1. 导入环节教师可通过出示图形,让学生感性理解圆锥体积的概念,并引导学生思考如何计算圆锥的体积。

2. 梳理思路通过综合素质课的启发式学习方法,引导学生自主思考如何通过已知条件推导出圆锥的体积公式。

3. 讲授课程教师通过板书或幻灯片展示已知条件和推导过程,让学生理解圆锥体积公式的推导方法,并发现圆锥的体积公式中存在的几何关系和特殊性质。

4. 练习环节教师提供一些简单的圆锥的体积计算题目供学生参与练习,帮助学生巩固所学知识。

5. 实践应用教师组织学生分成小组,设置一道实际问题,让学生结合所学知识,自主解决问题,体现团队协作和创新。

6. 总结通过回顾本节课所学知识,强化知识点的记忆和理解,提高学生对数学知识的掌握能力。

五、教学评估教师采用自我评价和同学互评相结合的方法,对学生的课堂表现和作业完成情况进行评估,评估包括思考能力、口头表达能力、团队协作和创新精神等方面。

六、教学反思通过本节课的教学实践,教师发现学生在圆锥的体积公式的推导方法和应用方面存在较大的困难,需要加强教材的理论讲解和实际操作。

同时,教师还需要注重学生实践能力的培养,提高学生的创新意识和解决问题的能力。

《圆锥的体积》数学教案(优秀9篇)

《圆锥的体积》数学教案(优秀9篇)

《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

【教学难点:】探索圆锥体积的计算方法和推导过程。

【教具准备:】1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。

孩子们,请记住这句话吧,你的未来一定会很出色的哦。

今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。

你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。

(板书)2、提出问题,明确方向。

爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。

看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。

师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。

比一比,哪个学习小组的方法多,方法好。

各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。

六年级下册数学教案-2.2圆锥的体积︳西师大版

六年级下册数学教案-2.2圆锥的体积︳西师大版

六年级下册数学教案 2.2 圆锥的体积︳西师大版我今天要为大家带来的是六年级下册数学教案 2.2 圆锥的体积,这一课我们将学习圆锥体积的计算方法。

一、教学内容我们使用的教材是西师大版,本节课主要学习圆锥体积的计算方法。

根据教材,我们知道圆锥的体积是底面积与高的乘积再除以三。

具体来说,圆锥体积的计算公式为:V=1/3πr²h,其中V表示体积,r表示圆锥底面半径,h表示圆锥的高。

二、教学目标通过本节课的学习,我希望学生们能够掌握圆锥体积的计算方法,并能够运用到实际问题中。

三、教学难点与重点本节课的重点是圆锥体积公式的记忆和应用,难点是理解圆锥体积公式的推导过程。

四、教具与学具准备为了帮助学生们更好地理解圆锥体积的计算,我准备了几个实体的圆锥模型,以及一些纸张和彩笔,供学生们画图和计算使用。

五、教学过程我会通过一个实践情景引入:给学生们几个不同大小的圆锥,让他们猜猜这些圆锥的体积是多少。

然后,我会带领学生们通过实际测量和计算,得出每个圆锥的体积,并引导学生发现圆锥体积与底面半径和高之间的关系。

在讲解完公式后,我会给学生们一些例题,让他们通过计算,巩固对圆锥体积公式的理解和记忆。

我会给学生们一些随堂练习,让他们在实践中运用圆锥体积的计算方法。

六、板书设计板书设计主要包括圆锥体积的计算公式,以及一些关键的步骤和概念。

七、作业设计作业主要包括一些计算题和应用题,比如计算给定底面半径和高的圆锥的体积,或者根据给定的体积,求解圆锥的底面半径和高。

八、课后反思及拓展延伸课后,我会反思本节课的教学效果,看看学生们是否掌握了圆锥体积的计算方法,以及他们在实践中是否能够灵活运用。

同时,我也会引导学生进行拓展延伸,比如研究圆锥体积与圆锥形状之间的关系。

重点和难点解析一、实践情景引入二、圆锥体积计算公式的讲解在讲解圆锥体积的计算公式时,我会用简洁明了的语言阐述公式的含义和推导过程。

我会强调圆锥体积是由底面积与高的乘积再除以三得到的,即V=1/3πr²h。

《圆锥的体积》教案6篇

《圆锥的体积》教案6篇

《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。

六年级数学下册圆锥的体积教案(优秀5篇)

六年级数学下册圆锥的体积教案(优秀5篇)

六年级数学下册圆锥的体积教案(优秀5篇)教学重点篇一圆锥体体积计算公式的推导过程.小学数学《圆锥的体积》教案篇二教学目标:1、渗透转化思想,培养学生的自主探索意识。

][2、初步学会用转化的数学思想和方法,解决实际问题的能力3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学准备:主题图、圆柱形物体教学过程:一、复习:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课:1、圆柱体积计算公式的推导:(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。

(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题:(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。

它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。

关于《圆锥的体积》教学设计范文(精选6篇)

关于《圆锥的体积》教学设计范文(精选6篇)

关于《圆锥的体积》教学设计范文(精选6篇)《圆锥的体积》教学设计1一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

难点:理解圆锥体积公式的推导过程。

三、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。

促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。

师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。

下面我们一起来研究圆锥的体积。

并板书课题:圆锥的体积。

(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。

)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。

生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

苏教版六年级数学下册第二单元《圆锥的体积》优秀教案

苏教版六年级数学下册第二单元《圆锥的体积》优秀教案

苏教版六年级数学下册第二单元《圆锥的体积》优秀教案一. 教材分析苏教版六年级数学下册第二单元《圆锥的体积》的优秀教案是根据教材内容进行设计的。

本节课主要让学生掌握圆锥的体积计算公式,并能够运用该公式解决实际问题。

教材通过生动的实例和图示,引导学生探究圆锥体积的计算方法,培养学生的空间想象能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了长方体和正方体的体积计算方法,对体积的概念有一定的了解。

同时,学生也具备了一定的观察、操作和实践能力。

然而,圆锥体积的计算较为抽象,需要学生能够理解和运用数学公式。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.让学生掌握圆锥的体积计算公式。

2.培养学生运用圆锥体积公式解决实际问题的能力。

3.培养学生的空间想象能力和团队合作精神。

四. 教学重难点1.圆锥体积公式的推导和理解。

2.运用圆锥体积公式解决实际问题。

五. 教学方法1.采用直观演示法,通过实物和图示,让学生直观地理解圆锥体积的计算方法。

2.采用探究式学习法,引导学生主动参与课堂讨论,提高学生的思维能力。

3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。

六. 教学准备1.准备圆锥体积的实物模型和图示。

2.准备相关的练习题和实际问题。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用实物和图示,引导学生回顾长方体和正方体的体积计算方法。

然后,提出问题:“圆锥的体积如何计算呢?”激发学生的学习兴趣。

2.呈现(10分钟)呈现圆锥体积的计算公式,并进行解释。

引导学生理解圆锥体积公式的推导过程,通过图示和实例,让学生直观地感受圆锥体积的计算方法。

3.操练(10分钟)学生分组进行实践操作,运用圆锥体积公式计算给定的圆锥体积。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)学生独立完成相关的练习题,巩固圆锥体积的计算方法。

教师选取部分学生的作业进行讲解和分析,指出错误并进行纠正。

苏教版六年级数学上册《圆锥的体积》教案

苏教版六年级数学上册《圆锥的体积》教案

苏教版六年级数学上册《圆锥的体积》教案一. 教材分析苏教版六年级数学上册《圆锥的体积》这一章节,是在学生已经掌握了长方体和正方体的体积计算方法的基础上进行教学的。

本节课的主要内容是引导学生探究圆锥的体积计算方法,并能够运用该方法解决实际问题。

教材通过具体的操作活动,让学生经历探究过程,发现圆锥体积与底面半径和高之间的关系,从而导出圆锥体积的计算公式。

二. 学情分析六年级的学生在认知发展上已经具备了一定的逻辑思维能力和探究能力。

他们在学习长方体和正方体的体积时,已经掌握了用底面积乘高的方法计算体积。

但是,对于圆锥的体积计算,他们可能还存在着一定的困难,需要通过实践活动来进一步理解和掌握。

三. 教学目标1.让学生经历探究圆锥体积的过程,理解圆锥体积的概念,掌握圆锥体积的计算方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的合作交流能力和创新思维能力。

四. 教学重难点1.圆锥体积的概念及其计算方法的探究。

2.圆锥体积公式的运用和实际问题的解决。

五. 教学方法采用问题驱动法、合作探究法、实践操作法等多种教学方法,引导学生主动参与,积极探究,从而达到对圆锥体积的理解和掌握。

六. 教学准备1.圆锥体积的课件和教学素材。

2.圆锥体积的操作活动材料。

3.圆锥体积的实际问题案例。

七. 教学过程1.导入(5分钟)通过复习长方体和正方体的体积计算方法,引导学生思考:圆锥的体积怎么计算呢?2.呈现(10分钟)呈现圆锥体积的计算方法,引导学生观察和思考,发现圆锥体积与底面半径和高之间的关系。

3.操练(15分钟)学生分组进行实践操作,运用圆锥体积的计算方法计算不同底面半径和高圆锥的体积,并交流计算方法。

4.巩固(10分钟)通过解决实际问题,运用圆锥体积的计算方法,巩固学生对圆锥体积的理解和掌握。

5.拓展(10分钟)引导学生思考:圆锥体积的计算方法还可以应用到哪些领域呢?6.小结(5分钟)学生总结本节课所学内容,教师进行点评和补充。

北师大版六年级下册数学《圆锥的体积》教学设计 设计 (1)

北师大版六年级下册数学《圆锥的体积》教学设计 设计 (1)

北师大版六年级下册数学《圆锥的体积》教学设计设计(1)一. 教材分析《圆锥的体积》是北师大版六年级下册数学的一节内容。

本节课的主要内容是引导学生探索并理解圆锥的体积公式,即圆锥的体积等于底面积乘以高除以3。

通过学习本节课,学生将对圆锥的体积有一个清晰的认识,并能运用体积公式解决一些实际问题。

二. 学情分析六年级的学生已经掌握了平行四边形、梯形等图形的面积计算方法,对体积的概念和计算方法也有了一定的了解。

但是,对于圆锥的体积公式,他们可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

三. 教学目标1.让学生掌握圆锥的体积公式,并能运用体积公式解决一些实际问题。

2.培养学生观察、操作、思考的能力,提高学生的数学思维能力。

3.培养学生合作学习的精神,提高学生的团队协作能力。

四. 教学重难点1.圆锥的体积公式的理解和运用。

2.引导学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

五. 教学方法1.情境教学法:通过创设情境,引导学生观察、操作、思考,激发学生的学习兴趣。

2.合作学习法:学生进行小组合作学习,培养学生的团队协作能力。

3.探究学习法:引导学生自主探究,培养学生的独立思考能力。

六. 教学准备1.课件:制作圆锥体积的公式的课件,用于引导学生观察、操作、思考。

2.学具:准备一些圆锥形状的实物,用于学生观察和操作。

3.黑板:用于板书重要的知识点和公式。

七. 教学过程1.导入(5分钟)利用课件展示一些圆锥形状的实物,引导学生观察并思考:这些实物的体积如何计算?引出圆锥的体积公式。

2.呈现(10分钟)呈现圆锥的体积公式:圆锥的体积等于底面积乘以高除以3。

引导学生理解公式中的各个要素,如底面积、高等。

3.操练(10分钟)学生进行小组合作学习,让学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生运用圆锥的体积公式解决一些实际问题,如计算一些圆锥形状物体的体积。

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。

”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。

五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。

让学生观察一下,得出:这两个容器等底等高。

(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。

用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。

2、圆柱体积的与和它()的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

学生练习,教师总结。

四、巩固练习:求下面各圆锥的体积,只列算式。

(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。

第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

小学数学教案圆锥体积

小学数学教案圆锥体积

小学数学教案圆锥体积小学数学教案圆锥体积小学数学教案圆锥体积1 【教学内容】九年义务教育六年制小学数学第十二册第42-43页。

【教学目的】1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2、培养学生初步的空间观念、逻辑思维才能、动手操作才能。

3、向学生浸透知识间"互相转化"的辩证唯物思想,在联络实际中对学生进展学习目的方面的思想教育。

【教学重点】圆锥的体积计算。

【教学难点】圆锥的体积公式推导。

【教学关键】圆锥的体积是与它等底等高的圆柱体积的三分之一。

【教具准备】简易多媒体、等底等高的圆柱和圆锥空心实物各一个。

【学具准备】三种空心圆锥和圆柱实物各一个【教学过程】一、复习1、圆柱的体积公式是什么?用字母怎样表示?2、求以下各圆柱的体积。

〔口答〕〔1〕底面积是5平方厘米,高是6厘米。

〔2〕底面半径4分米,高是10分米。

〔3〕底面直径2米,高是3米。

师:刚刚我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

〔板书:圆锥的体积〕二、新课教学师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

生:圆锥的底面是圆形的。

生:从圆锥的顶点到底面圆心的间隔是圆锥的高。

师:你能上来指出这个圆锥的高吗?师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师:你们看到过哪些物体是圆锥形状的?(略)师:对。

在生活中有很多圆锥形的物体。

师:刚刚我们已经认识了圆锥。

如今我们再来研究圆锥的体积。

请同学们拿出一对等底等高圆锥和圆柱。

想一想用什么方法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进展实验。

下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。

如今我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。

本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。

圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。

圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。

通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。

鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

四、学情分析:学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学教案:圆锥的体积教案
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、
4、5)下载1下载2下载3下载4下载5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的.
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
(二)教学例1
1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?
学生独立计算,集体订正.
板书:
答:这个零件的体积是76立方厘米.
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积.
(2)已知圆锥的底面直径和高,求体积.
(3)已知圆锥的底面周长和高,求体积.
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(三)教学例2
1、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
思考:这道题已知什么?求什么?
要求小麦的重量,必须先求什么?
要求小麦的体积应怎么办?
这道题应先求什么?再求什么?最后求什么?
2、学生独立解答,集体订正.
板书:(1)麦堆底面积:
=3.144
=12.56(平方米)
(2)麦堆的体积:
12.561.2
=15.072(立方米)
(3)小麦的重量:
73515.072
=11077.92
11078(千克)
答:这堆小麦大约重11078千克.
3、教学如何测量麦堆的底面直径和高.
(1)启发学生根据自己的生活经验来讨论、谈想法.
(2)教师补充介绍.
a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.
b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得.。

相关文档
最新文档