问题8:弹簧弹力的特点
弹簧问题(动力学)
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
高考物理 绳子、弹簧和杆产生的弹力特点
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
高中物理重要方法典型模型突破14-模型专题(6)-弹簧模型(解析版)
专题十四 模型专题(6) 弹簧模型【重点模型解读】弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考查了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考查了对于一些重要方法和思想的运用。
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.4.典型实例:图示或释义 规律或方法与弹簧相关的平衡问题弹簧类平衡问题常常以单一问题出现,涉及的知识主要是胡克定律、物体的平衡条件,求解时要注意弹力的大小与方向总是与弹簧的形变相对应,因此审题时应从弹簧的形变分析入手,找出形变量x 与物体空间位置变化的对应关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来列式求解与弹簧相关的动力学问题 (1)弹簧(或橡皮筋)恢复形变需要时间,在瞬时问题中,其弹力的大小往往可以看成不变,即弹力不能突变。
而细线(或接触面)是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,即弹力可突变,一般题目中所给细线和接触面在没有特殊说明时,均可按此模型处理(2)对于连接体的加速问题往往先使用整体法求得其加速度,再用隔离法求得受力少的物体的加速度,并利用加速度的关系求解相应量与弹簧相关的功能问题弹簧连接体是考查功能关系问题的经典模型,求解这类问题的关键是认真分析系统的物理过程和功能转化情况,再由动能定理、机械能守恒定律或功能关系列式,同时注意以下两点:①弹簧的弹性势能与弹簧的规格和形变程度有关,对同一根弹簧而言,无论是处于伸长状态还是压缩状态,只要形变量相同,则其储存的弹性势能就相同;②弹性势能公式E p =12kx 2在高考中不作要求(除非题中给出该公式),与弹簧相关的功能问题一般利用动能定理或能量守恒定律求解 【典例讲练突破】【例1】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2【解析】此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C【拓展】此题若求m l移动的距离又当如何求解?【练1】如图所示,A、B两物体静止在粗糙水平面上,其间用一根轻弹簧相连,弹簧的长度大于原长。
高考物理弹簧模型知识点
2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
弹力弹簧的伸缩与力的关系
弹力弹簧的伸缩与力的关系弹簧是一种常见的机械构件,在众多应用领域中发挥着重要作用。
弹簧的特点之一就是具有弹性,即可以在受力后发生形变,但在去除外力之后又能恢复原状。
这种特性使得弹簧在工程中用于各种各样的装置和机械系统中。
弹力弹簧的伸缩与力的关系是一个重要的物理学问题,不仅影响到弹簧的设计和应用,而且也对我们理解力的性质和行为有着深远的意义。
弹簧的伸缩与力的关系可以通过胡克定律来描述。
胡克定律是一个描述弹簧弹性变形的基本原理,它表明当弹簧受力时,其伸长或缩短的距离与作用在其上的力成正比。
胡克定律可以用数学公式表示为:F=kx,其中F代表作用在弹簧上的力,k代表弹簧的弹性系数,x代表弹簧的伸长或缩短距离。
根据胡克定律,我们可以得出以下结论:当施加在一个弹簧上的力越大,弹簧的伸长或缩短距离也就越大。
这意味着弹簧的伸缩与作用在其上的力是成正比的关系。
比如,当我们用手指轻轻按压一根弹簧,只产生轻微的力时,弹簧的变形也会很小。
而当我们用更大的力按压时,弹簧的变形也会更加明显。
这种正比关系使得弹簧成为了一个灵活可控的元件,在设计和制造过程中具有广泛的应用。
除了胡克定律,弹簧的伸缩还受到其他因素的影响,比如弹簧的形状、材料和尺寸等。
弹簧的形状可以分为压缩弹簧和拉伸弹簧两种。
压缩弹簧是指当受力时,其长度会缩短;拉伸弹簧则是指当受力时,其长度会伸长。
不同形状的弹簧对应着不同的力学特性和应用场景。
材料也是影响弹簧性能的重要因素之一,常见的弹簧材料包括钢、合金和塑料等。
不同材料的弹簧具有不同的弹性模量和刚度,从而会对弹簧的伸缩行为产生影响。
此外,弹簧的尺寸也会对其伸缩与力的关系产生显著影响。
一般来说,弹簧的长度和直径越大,就意味着它的弹性变形能力越大。
弹力弹簧的伸缩与力的关系不仅仅局限于弹簧本身,还与外界力的作用方式和变化规律有关。
比如,当施加在弹簧上的力是一个恒定的值时,弹簧会以一定的速率伸长或缩短,直到达到一个平衡位置。
经典物理模型--绳子、弹簧和杆产生的弹力特点
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(力),绳的拉力沿着绳的向并指向绳的收缩向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的向不一定沿着杆的向;②轻杆不能伸长或压缩;③轻杆受到的弹力的式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其向与弹簧形变的向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如?分析与解答:为研究便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平向,而是由于小球下一时刻做单摆运动沿圆弧的切线向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
关于高级高中物理弹簧弹力问题归类总结归纳
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于图图 3-7-1图 3-7-3地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.图图图【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B A F m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的图形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k=,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mgF =.]【答案】022gx 32mg 图图 3-7-8说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
专题 受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。
高考二轮物理复习专题:弹簧问题(附答案)
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
1.轻弹簧弹力大小特点,弹簧测力计原理
1、轻弹簧的弹力大小特点、测力计一知能掌握(一)轻弹簧的弹力特点1.弹簧弹力的大小可根据胡克定律计算(在弹性限度内)。
胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
即F=kx,说明:①其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度);②弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关。
2.轻弹簧各个部分受到的力大小是相同的,两端所受的弹力一定等大反向。
不论轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的弹力大小是相同的。
轻弹簧两端所受的弹力一定等大反向。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值证明如下:以轻弹簧为对象,设两端受到的弹力分别为F1、F2,根据牛顿第二定律,F1+F2=ma,由于m=0,因此F1+F2=0,即F1、F2一定等大反向。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
3.压缩和拉伸相同量时,弹力大小相等方向相反。
弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
(二)弹簧测力计的原理在弹性限度内,弹力的大小与弹簧的形变量(伸长或压缩)成正比,弹力的增量与弹簧形变量的增量也成正比,即、,利用弹簧的这一性质可制成弹簧秤,且弹簧秤的刻度是均匀的,弹簧具有测量功能。
(三)静止的轻弹簧平衡时两种可能的形变在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防漏解。
二探索提升题型一对轻弹簧的理解【典例1】(2004全国理综)四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
弹簧类问题解题关键——分析弹簧的形变及变化
弹簧类问题解题关键——分析弹簧的形变及变化摘要:弹簧类问题是高中物理常见的一类题型,许多学生解决这类问题感到困难。
本文就弹簧类问题解题的关键做进一步的总结和归纳,以期能对学生和教师有一定的帮助。
关键词:弹簧;高中物理;解题作者简介:袁启林,任教于江苏省苏州新区第一中学,中学物理高级教师,多次担任高三物理教学,具有丰富的教学经验,对学法和教法有一定的研究。
弹簧与物体相连组成的系统运动问题(称为弹簧类问题)是高中物理中常见的一类题型,由于弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,而且这类问题的过程隐蔽性很强,解决这类问题要求有较强的分析综合能力,所以弹簧类问题也就成为高考中的重、难、热点。
从力的角度看,弹簧上的弹力与形变量有关;从能量的角度看,弹簧是个储能元件,储存的弹性势能也与形变量有关。
因此,分析弹簧的形变及变化也就成为解决弹簧类问题的关键。
例1:如图1所示,将金属块用压缩轻弹簧卡在一个矩形箱中,在箱的上顶板和下底板上安有压力传感器,箱可以沿竖直轨道运动,当箱以a=2m/s2的加速度做竖直向上的匀减速直线运动时,上顶板的传感器显示的压力为6.0N,下底板的传感器显示的压力为10.0N,取g=10m/s2(1)若上顶板的传感器的示数是下底板传感器示数的一半,试判断箱的运动情况。
(2)要使上顶板传感器的示数为零,箱沿竖直方向的运动可能是怎样的?解析:(1)设金属块的质量为m,F下-F上-mg=ma,将a=-2m/s2代入求出m=0.5kg。
由于上顶板仍有压力,说明弹簧长度没变,弹簧的形变量不变,弹簧弹力仍为10N,此时上顶板受压力为5N,则F′下-F′上-mg=ma1,求出a1=0,故箱静止或沿竖直方向匀速运动。
(2)若上顶板恰无压力,则F′′下-mg=ma2,解得a2=10m/s2,因此只要满足a≥10m/s2且方向向上即可使上顶板传感器示数为零。
点评:这道题粗看起来无从下手,因为感觉弹簧的弹力不能确定。
弹簧弹力问题概述
弹簧弹力问题概述弹簧类问题专题练习轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.一、弹簧弹力及做功与弹性势能等特点:(1)弹力的大小与形变量大小成正比(胡克定律)(2)方向具有双向性(3)是一种渐变弹力(当外界条件发生变化的瞬间,弹力保持不变)(4)弹力做功在数值上等于弹性势能的变化,可以用弹力平均力求功。
(5)弹性势能的大小与形变量大小有关。
二、处理弹簧问题的一般方法(1)弹簧的弹力是一种由形变而决定大小和方向的力,当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题解题时,一般应从弹簧的形变分析入手,先确定弹簧原长位置,再确定其初状态位置,末态位置,找出各个位置对应的形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动的位移及运动状态的变化.尤其是坚直弹簧问题涉及重力势能的变化,可以通过弹簧形变量的变化确物体高度的变化。
(2)因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.(3)在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理、功能关系、能量转化和守恒定律求解。
一、弹簧读数问题1.如图所示,弹簧秤、绳和滑轮的重力及摩擦力均可不计,物体重量都为G。
在甲、乙、丙三种情况下,弹簧的读数分别是F1、F2、F3,则A.F3>F1=F2B.F1=F2=F3C.F3=F1>F2D.F1>F2=F32.实验室常用的弹簧秤如图1甲所示,连接有挂钩的拉杆与弹簧相连,并固定在外壳一端O上,外壳上固定一个圆环,可以认为弹簧秤的总质量主要集中在外壳(重力为G)上,弹簧和拉杆的质量忽略不计,现将该弹簧秤以两种方式固定于地面上,如图乙、丙所示,分别用恒力F0竖直向上拉弹簧秤, 静止时弹簧秤的读数为A.乙图读数F0-G,丙图读数F0+GB.乙图读数F0-G,丙图读数F0C.乙图读数F0,丙图读数F0-GD.乙图读数F0+G,丙图读数F0-G3、如图所示,轻杆AB=14.10 cm,AC=10 cm,当B端挂1 N重物时,BC水平;当B 端挂2 N重物时,AB水平.求:(1)这两种情况下弹簧的拉力分别为多少? (2)弹簧的原长是多少?(3)弹簧的劲度系数k 为多少? 答案 (1)1 N 3.46 N (2)7.03 cm(3)33 N/m (4.如图1所示,L 1、L 2是径度系数均为k 的轻质弹簧,A 、B 两只钩码均重G ,则静止时两弹簧伸长量之和为 ( )A .3G/kB .2G/kC .G/kD .G/2k9.(2002广东物理7)图中a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态。
高中物理弹簧问题考点总结
25
25x0
返回导航页
二轮物理 第二部分 核心素养提升
返回导航页
4、弹力做功与动量能量的综合问题: 弹力是变力,求弹力的冲量和弹力做功时,不能直接
用冲量和功的定义式,一般用动量定理和动能定理。 如果弹簧被作为系统内的一个物体时,弹簧的弹力对
系统内物体不做功,不影响系统的机械能。 在弹力做功的过程中弹力是个变力,并与动量能量联
BCD
返回导航页
二轮物理 第二部分 核心素养提升
返回导航页
谢谢观看!
二轮物理 第二部分 核心素养提升
返回导航页
物理弹簧模型
二轮物理 第二部分 核心素养提升
返回导航页
弹簧是一个理想模型,涉及它的知识点有:胡克定 律、弹力做功与弹性势能的变化
F kx W弹EP初-EP末
二轮物理 第二部分 核心素养提升
返回导航页
问题类型有:弹簧的瞬时问题、平衡问题、非平衡问题、弹 力做功与动量能量的综合问题
二轮物理 第二部分 核心素养提升
(2019·安徽省淮北市二模)如图甲所示,水平地面上轻弹簧左端固定, 右端通过滑块压缩 0.4 m 锁定,t=0 时解除锁定释放滑块。计算机通过滑块上的 速度传感器描绘出滑块的速度图象如图乙所示。其中 Oab 段为曲线,bc 段为直 线,倾斜直线 Od 是 t=0 时的速度图线的切线,已知滑块质量 m=2.0 kg,取 g =10 m/s2,则下列说法正确的是( C )
封闭气体的体积减小h+x0
(1)求系统静止时,封闭气体的压强 p1 及弹簧的压缩量 x0 。2*105Pa、5cm
200
(2)若缓慢降低缸内气体温度,为使弹簧恰好恢复原长,则缸内气体的温度需降低至多少?
绳子、弹簧和杆产生的弹力特点
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F合=mgsin θ,所以a=gsin θ。
高中物理 弹簧问题
高中物理弹簧问题弹簧问题是物理学中常见的问题之一。
轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。
无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
轻弹簧的性质有三点:1、在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零;3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。
在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。
在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。
在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。
除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。
在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。
在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。
对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。
在物体做变加速运动时,加速度等于零时速度达到最大值,速度等于零时加速度达到最大值。
弹簧弹力的特点
弹簧弹力的特点
弹簧弹力是指弹簧在受到外力作用后,产生的恢复力。
弹簧弹力的特点主要有以下几个方面:
1. 线性弹性:弹簧弹力与弹簧的形变量成正比,即弹簧的形变越大,弹力也越大。
这种关系称为线性弹性,是弹簧弹力的基本特点。
2. 可逆性:弹簧弹力是一种可逆的力,即当外力作用消失时,弹簧会恢复原状,弹力也会消失。
这种特点使得弹簧在很多机械装置中得到广泛应用。
3. 稳定性:弹簧弹力的大小和方向只与弹簧的形变量有关,与外力的大小和方向无关。
因此,弹簧弹力具有稳定性,可以在一定范围内保持相对稳定的弹力。
4. 非常规性:弹簧弹力的大小和方向与外力的大小和方向不一定成正比或反比,而是由弹簧的材料、形状、尺寸等因素决定。
因此,弹簧弹力具有非常规性,需要通过实验或计算来确定。
在中心扩展下,弹簧弹力的应用范围非常广泛。
例如,弹簧可以用于减震、缓冲、支撑、传递力量等方面。
在汽车、火车、飞机等交通工具中,弹簧被广泛应用于悬挂系统、减震器、制动器等部位,起到减少震动、保护车身、提高行驶稳定性等作用。
在机械制造中,弹簧也被广泛应用于机械传动、弹簧夹紧、弹簧卡紧等方面,起到
传递力量、固定零件、保护机械等作用。
在生活中,弹簧也被应用于各种家具、玩具、文具等产品中,起到支撑、缓冲、调节等作用。
弹簧弹力是一种非常重要的力学特性,具有线性弹性、可逆性、稳定性和非常规性等特点。
在各个领域中得到广泛应用,为人们的生产和生活带来了很多便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页,共 1 页 问题8:弹簧弹力的特点
班级__________ 座号_____ 姓名__________ 分数__________
一、知识清单
1. 弹簧弹力的特点——轻质弹簧两端受力,且所受弹力大小相等,弹力指的是其任意一端受到的力。
故求弹力大小时,可对弹簧某一端连接物体受力分析,然后根据平衡条件或牛顿第二定律计算。
2. 弹簧弹力大小的两种计算方法:
(1)根据力的平衡条件或牛顿第二定律进行求解.
对弹簧某一端连接的物体(或系统)进行受力分析,若物体处于平衡状态,则根据平衡条件求解;若物体处于变速运动状态,则根据牛顿第二定律进行求解。
(2)根据胡克定律进行求解.在已知弹簧劲度系数k 和形变量x 的情况下,可用F=kx 求解。
【名师点拨】题目往往要综合这两种方法,联立求解某些物理量。
二、经典习题
3. (2004全国二)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有(
)
A .l 2>l 1
B .l 4>l 3
C .l 1>l 3
D .l 2=l 4
4. (2013浙江省乐清市模拟)如图所示的装置中,弹簧的原长和劲度系数都相等,小球的质量均相同,弹簧和细线的质量均不计,一切摩擦忽略不计。
平衡时各弹簧的长度分别为L 1、L 2、L 3,其大小关系是( )
A .L 1 = L 2 = L 3
B .L 1= L 2 < L 3
C .L 1= L 3 > L 2
D .L 3>L 1>L 2
5. (2016重庆万州区期中考试)如图,两个弹簧的质量不计,劲度系数分别为k 1、k 2,它们一
端固定在质量为m 的物体上,另一端分别固定在Q 、P 上,当物体平衡时上面的弹簧处于原长
状态。
若把固定的物体换为质量为2m 的物体(弹簧的长度不变,且弹簧均在弹性限度内),当
物体再次平衡时,物体比第一次平衡时的位置下降了x ,则x 为( ) A.12mg k k + B.1212()k k mg k k + C.122mg k k + D.12122()
k k mg k k +。