(辽宁地区)2018年中考数学总复习 专题突破训练 第20讲 圆的基本性质试题
圆的基本性质(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。
中考数学一轮复习《圆的有关性质》知识要点及专题练习
中考数学一轮复习知识点课标要求专题训练:圆的有关性质(含答案)一、知识要点:1、圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
大于半圆的弧叫做优弧。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能重合的弧叫等弧。
2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆内接四边形的性质:圆内接四边形的对角互补。
5、点和圆的位置关系设⊙O的半径为r,点P到圆心的距离为OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r。
性质:不在同一条直线上的三个点确定一个圆。
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。
二、课标要求:1、理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。
2、掌握垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
第6章第20讲圆的基本性质-中考数学一轮考点复习课件(共6张)
如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C= 140°
.
重难点 圆中的线段最值问题
【例1】如图,⊙O的半径是2,直线l与⊙O相交于A,B两点,M,N是⊙O上的两 个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB的面积的最大值 是 4 2.
1.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB= 2 ,D是线段BC上的一
(2)推论:在同圆或等圆中,两个圆心角,两条弧,两条弦中如果有一组量相等,
那么它所对应的其余各组量都分别 相等
2.圆周角定理及其推论
(1) 圆周角定理:一条弧所对的圆周角等于它所对圆心角的 一半 .
(2)推论:①同弧或等弧所对的圆周角 相等 ;
②半圆(或直径)所对的圆周角是 90°
,90°的圆周角所对的弦是 直径 .
A.235
B.136
C.265
D.166
圆内接四边形
︵
10. 如图,点A,B,C,D,E在⊙O上,且AB为50°,则∠E+∠C= 1⊙O上,O点在∠D的内部,四边形OABC为平行四边 形,则∠OAD+∠OCD= 60° .
点击进入w ord版
练案·限时提分作业
2.如图,在平面直角坐标系中,点A(5,0),点B(-5,0),点C(3,-4),点D为
第一象限上的一个动点,且OD=5.①∠ACB= 90° ;
②若∠AOD=50°,则∠ACD= 25°
.
①定点定长存在共圆;②定线段同侧角度相同存在共圆;③定线段同侧角度有2倍 关系存在共圆;④定线段异侧角度互补存在共圆.
A.57° B.52° C.38° D.26°
︵︵ 6. 如图,AD是⊙O的直径,AB=CD,若∠AOB=40°,则圆周角∠BPC的度数是 (B ) A.40° B.50° C.60° D.70°
大连中考数学压轴题之圆的综合(中考题型整理,突破提升)
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣O),C,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124+;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG ,∵∠BCG=90°,∴CG ⊥x 轴,∴CG ∥AF ,∵∠BAG=90°,∴AG ⊥AB ,∵CE ⊥AB ,∴AG ∥CE ,∴四边形AFCG 为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵1132OA AB ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8. ∴138413OA ==则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.4.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;(2)在(1)的条件下,⊙O半径为5.①若AD为直径,且sinA=45,求BC的长;②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是;(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.【答案】(1)见解析;(2)①BC=6,753或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB=3×34×52=7534.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC=CD,∴∠BOC=∠COD,∴∠BCO=∠DCO=12∠BCD=75°,∴∠BOC=∠DOC=30°,∴∠OBA=45°,∴∠AOB=90°.连接AC,∴∠DAC=12∠BAD=15°.∵∠ADO=∠OAB﹣∠BAD=15°,∴∠DAC=∠ADO,∴OD∥AC,∴S△OAD=S△OCD.过点C作CH⊥OB于H.在Rt△OCH中,CH=12OC=52,∴S四边形ABCD=S△COD+S△BOC+S△AOB﹣S△AOD=S△BOC+S△AOB=1522×5+12×5×5=754.故答案为:753或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.5.等腰Rt △ABC 和⊙O 如图放置,已知AB=BC=1,∠ABC=90°,⊙O 的半径为1,圆心O 与直线AB 的距离为5.(1)若△ABC 以每秒2个单位的速度向右移动,⊙O 不动,则经过多少时间△ABC 的边与圆第一次相切?(2)若两个图形同时向右移动,△ABC 的速度为每秒2个单位,⊙O 的速度为每秒1个单位,则经过多少时间△ABC 的边与圆第一次相切?(3)若两个图形同时向右移动,△ABC 的速度为每秒2个单位,⊙O 的速度为每秒1个单位,同时△ABC 的边长AB 、BC 都以每秒0.5个单位沿BA 、BC 方向增大.△ABC 的边与圆第一次相切时,点B 运动了多少距离?【答案】(152-;(2) 52;(32042- 【解析】 分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC 移至△A′B′C′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F .由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t 秒,根据题意得:CC′=2t ,DD′=t ,则C′D′=CD+DD′-CC′=4+t -2t=4-t ,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B 点移动的距离.详解:(1)假设第一次相切时,△ABC 移至△A′B′C′处,如图1,A′C′与⊙O 切于点E ,连接OE 并延长,交B′C′于F ,设⊙O 与直线l 切于点D ,连接OD ,则OE ⊥A′C′,OD ⊥直线l ,由切线长定理可知C′E=C′D ,设C′D=x ,则C′E=x ,∵△ABC 是等腰直角三角形,∴∠A=∠ACB=45°,∴∠A′C′B′=∠ACB=45°,∴△EFC′是等腰直角三角形,∴C′F=2x ,∠OFD=45°, ∴△OFD 也是等腰直角三角形,∴OD=DF ,∴2x+x=1,则x=2-1,∴CC′=BD -BC-C′D=5-1-(2-1)=5-2,∴点C 运动的时间为522-; 则经过52-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F ,∵CC′=2t ,DD′=t ,∴C′D′=CD+DD′-CC′=4+t -2t=4-t ,由切线长定理得C′E=C′D′=4-t ,由(1)得:4-t=2-1, 解得:t=5-2,答:经过5-2秒△ABC 的边与圆第一次相切;(3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t ,则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t ,由切线长定理得C′E=C′D′=4-1.5t ,由(1)得:4-1.5t=2-1,解得:t=1022-, ∴点B 运动的距离为2×1022-=2042-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.6.如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E .(1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC 是等边三角形,则∠AOC =60°,根据圆周角定理得到∠AEC =30°; (2)根据切线的性质得到OC ⊥l ,则有OC ∥BD ,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.7.如图,四边形ABCD是⊙O的内接四边形,AC为直径,BD AD=,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED与O相切.理由见解析;(2)2=33Sπ-阴影【解析】【分析】(1)连结OD,如图,根据圆周角定理,由BD AD=得到∠BAD=∠ACD,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.8.如图所示,ABC ∆内接于圆O ,CD AB ⊥于D ;(1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且2AD BD ED =+,若3DE =,5OB =,求CF 的长度.【答案】(1)见解析;(2)成立;(3)145【解析】【分析】 (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可; (2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可; (3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可.【详解】(1)证明:∵AB 为直径,∴ACB 90∠=︒, ∵CD AB ⊥于D , ∴ADC 90∠=︒,∴OBC A 90∠∠+=︒,A ACD 90∠∠+=︒,∴OBC ACD ∠∠=;(2)成立,证明:连接OC ,由圆周角定理得:BOC 2A ∠∠=,∵OC OB =,∴()()11OBC 180BOC 1802A 90A 22∠∠∠∠=︒-=︒-=︒-, ∵ADC 90∠=︒,∴ACD 90A ∠∠=︒-,∴OBC ACD ∠∠=;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,∵AE BC ⊥,CD BA ⊥,∴AEC ADC 90∠∠==︒,∴BCD CFE 90∠∠+=︒,BAH DFA 90∠∠+=︒,∵CFE DFA ∠∠=,∴BCD BAH ∠∠=,∵根据圆周角定理得:BAH BCH ∠∠=,∴BCD BAH BCH ∠∠∠==,∴由三角形内角和定理得:CHE CFE ∠∠=, ∴CH CF =,∴EH EF =,同理DF DK =,∵DE 3=,∴HK 2DE 6==,在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==, BC GC =,∴MCK BCK BAK ∠∠∠==,∴CMK 90∠=︒,延长KO 交⊙O 于N ,连接CN 、AN ,则NAK 90CMK ∠∠=︒=,∴CM //AN ,∵NCK ADK 90∠∠==︒,∴CN //AG ,∴四边形CGAN 是平行四边形,∴AG CN 6==,作OT CK ⊥于T ,则T 为CK 的中点,∵O 为KN 的中点, ∴1OT CN 32==,∵OTC 90∠=︒,OC 5=,∴由勾股定理得:CT 4=,∴CK 2CT 8==,作直径HS ,连接KS ,∵HK 6=,HS 10=,∴由勾股定理得:KS 8=, ∴3tan HSK tan HAK 4∠∠==, ∴1tan EAB tan BCD 3∠∠==, 设BD a =,CD 3a =, ∴AD BD 2ED a 6=+=+,11DK AD a 233==+, ∵CD DK CK +=,∴13a a 283++=, 解得:9a 5=, ∴113DK a 235=+=, ∴2614CF CK 2DK 855=-=-=. 【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.9.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1)求证:EF 与⊙O 相切;(2)若AE =6,sin ∠CFD =35,求EB 的长.【答案】(1)见解析(2)32【解析】【分析】()1如图,欲证明EF 与O 相切,只需证得OD EF ⊥.()2通过解直角AEF 可以求得AF 10.=设O 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2===,所以153EB AB AE 622=-=-=. 【详解】(1)如图,连接OD ,OC OD =,OCD ODC ∠∠∴=.AB AC =,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥, ODF AEF 90∠∠∴==,OD EF ∴⊥,OD 是O 的半径,EF ∴与O 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O 的半径为r ,10r r 106-∴=,解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】 本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.10.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ+=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当2r =时,①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2(1+2,0)是否为⊙C 的“2相关依附点”.(2)若⊙C 上存在“k 相关依附点”点M ,①当r=1,直线QM 与⊙C 相切时,求k 的值.②当3k =时,求r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<. 【解析】【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =计算即可解决问题; ②根据定义求出k 的值即可判断; (2)①如图,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ ,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,因为点Q 早C 外,推出r 的取值范围是12r <; (3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<.【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C 的切线,12222QA k QC ∴=== ②2(12,0)A +在C 上,2212122k +∴==,2A ∴是C 的“2相关依附点”.2(2)①如图2,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQ k CQ ==; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =,∴2MQ NQ DQ k DQ CQ CQ +===,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,点Q 早C 外,r ∴的取值范围是12r <.(3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。
2018年中考一轮基础复习试卷专题二十:圆的有关性质(有答案)
备考2018年中考数学一轮基础复习:专题二十圆的有关性质一、单选题(共15题;共30分)1.(2017•新疆)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A. 12B. 15C. 16D. 182.(2017•云南)如图,B,C是⊙A上的两点,AB的垂直平分线与⊙A交于E,F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A. 30°B. 29°C. 28°D. 20°3.(2017•乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A. 2米B. 2.5米C. 2.4米D. 2.1米4.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A. 2cmB. cmC. 2 cmD. 2 cm5.(2017•锦州)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A. 55°B. 50°C. 45°D. 40°6.(2017•南通)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:① = ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A. 1B. 2C. 3D. 47.(2017•永州)小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A. AB,AC边上的中线的交点B. AB,AC边上的垂直平分线的交点C. AB,AC边上的高所在直线的交点D. ∠BAC与∠ABC的角平分线的交点8.(2017•贺州)如图,在⊙O中,AB是⊙O的直径,AB=10,= = ,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A. 1B. 2C. 3D. 49.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A. 120°B. 135°C. 150°D. 165°10.(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A. 100°B. 110°C. 115°D. 120°11.(2017•烟台)如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A. πB. πC. πD. π12.(2017•贵港)如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A. 45°B. 60°C. 75°D. 85°13.如图,AB是⊙O的直径,= = ,∠COD=34°,则∠AEO的度数是()A. 51°B. 56°C. 68°D. 78°14.(2017•泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B. 2 C. 6 D. 815.(2017•西宁)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B. 2 C. 2 D. 8二、填空题(共6题;共6分)16.(2017•大庆)如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ为正方形.若半圆的半径为,则正方形的边长为________.17.(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5 ,则BC的长为________.18.(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是________.19.(2017•南京)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=________°.20.(2017•广元)已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为________.21.(2017•襄阳)在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为________.三、综合题(共4题;共40分)22.(2017•乐山)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.23.(2017•株洲)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).24.(2017•广东)如图,AB是⊙O的直径,AB=4 ,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当= 时,求劣弧的长度(结果保留π)25.(2017•绵阳)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA= ,AN=2 ,求圆O的直径的长度.答案解析部分一、单选题1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】B11.【答案】B12.【答案】D13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】217.【答案】818.【答案】19.【答案】2720.【答案】14或221.【答案】15°或105°三、综合题22.【答案】(1)解:如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)解:连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°∵AB=4,°.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=(2 )2=8.23.【答案】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F= ∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC= ∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2 ,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG= AB=4,∴CG= =2,∴△BCD的面积= BD•CG= ×2×2=2.24.【答案】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴= ,∴BM2=CM•PM=3a2,∴BM= a,∴tan∠BCM= = ,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长= = π25.【答案】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA= ,∠DFA=∠ACH,∴= .设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN= = = a=2 ,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r= ,∴圆O的直径的长度为2r= .。
专题20 圆的基本性质-备战2022年中考数学题源解密(原卷版)
专题20 圆的基本性质考向 1 圆的基本概念及计算【母题来源】(2021·浙衢州)【母题题文】已知扇形的半径为6,圆心角为150°,则它的面积是( ) A .πB .3πC .5πD .15π【母题来源】(2021·浙江温州)【母题题文】若扇形的圆心角为30°,半径为17,则扇形的弧长为 .【试题分析】以上考题考察了扇形的弧长公式与面积公式; 【命题意图】通过题目的应用,考察考生对这两个公式的掌握程度;【命题方向】在浙江中考中,对圆的基本概念的考察多以选择或者填空题出现,一般都是公式的直接应用,难度不大,准确记忆扇形的面积公式与弧长公式即可解决。
【得分要点】1. 圆的有关概念弦 连接圆上任意两点的线段叫做弦。
直径 经过圆心的弦叫做直径。
弧 圆上任意两点间的部分叫做圆弧,简称弧。
优弧 大于半圆的弧叫做优弧。
劣弧小于半圆的弧叫做劣弧。
2. 圆的有关计算公式常用公式:Lr r n S r n L 213601802===π,π扇形三角形扇形弓形S S S ±=考向2 垂径定理及其推论【母题来源】(2021·浙江湖州)【母题题文】如图,已知AB是⊙O的直径,∠ACD是所对的圆周角,∠ACD=30°.(1)求∠DAB的度数;(2)过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F.若AB=4,求DF的长.【母题来源】(2021·浙江金华)【母题题文】如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.【母题来源】(2021·浙江丽水)【母题题文】如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD=∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα【试题分析】以上考题考察了圆的垂径定理及其推论;【命题意图】通过题目的设置。
中考数学总复习基础知识过关第20课时 圆的有关概念及性质含答案
圆的有关概念及性质课时第20训练知能优化中考回顾AB=OABCDMO.CD=AB则的弦,且⊥已知☉的直径,10 cm,,是☉垂足为18 cm,(2018贵州安顺中考) AC)(的长为cm B.4A.2 cmcm 4D.2 cm cm或或4 cm C.2C 答案.2A=OC.DABOBCOA60°,∠,,在☉连接中,弦若∠与半径相交于点,(2018山东聊城中考)如图ADC=C) 85°,则∠(的度数是.5°B.27 A.25°C.30°D.35°答案D.3BCDOBCD=BOD ) 的度数是在☉上,,(2018山东济宁中考)如图点若∠,(,130°,则∠A.50°B.60°C.80°D.100°答案D.4BCCDA=BCCDOOAAB的长∠上,若30°,则弦⊥)(2018湖北襄阳中考如图,点,,,,2都在半径为的☉) ( 为B.2A.4D.2C.D答案BOAC=OABC.的度数是32°,则∠,,(2018四川南充中考如图是☉的直径,是☉上的一点∠) (D.68° C.64°A.58° B.60°A 答案.6OABCABC=AB的长为若∠30°,则弦为的中点如图,☉的半径为5,,为弦,点(2018山东威海中考))(A. B.5C. D.5答案D模拟预测.1ACO=OABO=BOCABC) ,∠等于如图,点32°,∠,38°,则∠,在☉(上 B.70°A.60°D.140°C.120°D 答案.2ABOOA=AOB=AB ) 120°,则弦,(是☉的长是的弦,半径2,∠如图A.2B.2C. D.3答案B.ABCDOFCFADE,连接并延长交的延长线于点,如图四边形连接内接于☉,上一点是,且,3AC.ABC=BAC=E ) 105°,∠25°,则∠(的度数为若∠D.60° C.55° B.50° A.45°.B 答案.4OABCB=OAC )的长等于60°,☉的半径为如图,☉4,是△则的外接圆,∠(B.6A.4D.8 C.2A 答案.5ABOCDABEAE=CD=BAC=BODO ) 的半径为,于点,且则☉8,∠如图,(是☉的直径,弦∠交..5 AB4..3 4 CD答案B.OAB=AC=BAC. 的度数为,6则∠若☉弦的半径为1,弦, 75°答案15°或.7ABDCOB=DAOB=ABCO的度数,已知∠120°.则∠如图,△是☉98°,∠的内接三角形,点的中点是. 是答案101°.8OOABPAB上在优弧点两点,将三角板的直角顶点放在☉如图,两条直角边分别交☉的圆心上,,于,ABPAPB.APB. 连接且与点,不重合,,则∠为答案45°.9AOAOPPx的坐,两点轴交于,为坐标原点,点,在第一象限☉点,如图,在平面直角坐标系中点与PP. 则点☉的坐标为标为的半径为(6,0),,答案(3,2)BC.DOODACAB.OAC作,如图,已知⊥是☉连接的直径,于点是弦,过点10BCOD=;求证:(1).BAC= 40°,求若∠(2)的度数OAB∵,(证法一)是☉的直径(1)证明OA=OB.∴ACOD,⊥又.BCA=∴ODA=∠90°∠BC.∴OD∥AD=CD.∴BC.∴OD=O∵AB, 的直径)是☉(证法二AB.C=OA=∴∠90°,∵ODACADO=∴C=ADO.⊥∠,即∠∠90°,A=A∴ADOACB.又∠△∠,∽△∴.∴OD=BC.∵ABOA=40°,∠是☉ ((2)解解法一)的直径,∴C=. 90°∠∴×+=.40°)的度数为:2260°(90°∵ABOA=40°,∠是☉ )(解法二的直径,∴C=90°, ∠∴B=. 50°∠∴. 100°的度数为∴.260°的度数为。
2018届中考数学复习 专题31 圆的基本性质试题(a卷,含解析)
专题31 圆的基本性质一、选择题1. ( 山东聊城,9,3分)如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且»»DFBC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC=105°,∠BAC=25°,则∠E 的度数为A 、45°B 、50°C 、55°D 、60° 【答案】B 【逐步提示】第一步先利用圆的内接四边形对角互补的性质求出∠ACD 的度数,第二步利用等弧所对的圆周角相等求出∠DCE ,第三步利用三角形的一个外角等于不相邻两个内角的和求出∠E 的度数.【详细解答】解:因为,四边形ABCD 内接于⊙O ,所以∠ADC=180°-∠ABC=180°-105°=75°,又因为»»DFBC =,所以∠DCE=∠BAC=25°,又因为∠ADC=∠DCE+∠E ,所以∠E=∠ADC-∠DCE=75°-25°=50°,故选择B .【解后反思】本题考查了圆内接四边形及性质,解题的关键是掌握圆内接四边形的性质,并结合三角形内外角关系解决问题.等弧所对的圆周角相等;圆内接四边形对角互补;三角形的一个外角等于不相邻两个内角的和. 【关键词】圆内接四边形及性质 ;圆心角、圆周角定理;与三角形有关的线段、角;;2.( 山东泰安,10,3分)如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O于点F ,则∠BAF 等于( )A .12.5°B .15°C .20°D .22.5° 【答案】B 【逐步提示】本题考查了垂径定理及等边三角形的判定及性质,解题的关键是利用圆的有关性质及平行四边形的AOC B F 第10题图性质判定三角形的形状.连接OB ,由四边形ABCO 是平行四边形,可知AB OC ∥,再由半径相等可得△ABO 为等边三角形,由OF ⊥OC 可得OF ⊥AB ,从而知道∠BOF 的度数,利用同弧所对的圆周角等于圆心角的一半,可以计算出∠BAF 的度数.【详细解答】解:连接OB ,∵四边形ABCO 是平行四边形,∴AB OC ∥,∵OA =OB =OC ,∴AB =OB =OA ,∴△ABO 为等边三角形,∴∠AOB =60°.又∵OF ⊥OC ,∴OF ⊥AB ,∴∠BOF =12∠AOB =30°,∴∠BAF =12∠BOF =15°.故选择B .【解后反思】(1)圆周角定理能有效地把圆心角与圆周角联系起来即在同圆或等圆中圆周角的度数等于同弧或等弧所对的圆心角的一半;(2)圆中任意两条半径和弦组成的三角形都是等腰三角形.此题利用平行四边形对边平行且相等的性质,并结合圆中半径都相等,得到一个等边三角形,从而求得一个60°的角,这是解决问题的关键所在.【关键词】平行四边形的性质;等边三角形;圆心角、圆周角定理.3. ( 山东泰安,17,3分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B =30°,CE 平分∠ACB 交⊙O 于E ,交AB 于点D ,连接AE ,则ADE CDB S S ∆∆:的值等于( )A .1.1.1:2 D .2:3【答案】D 【逐步提示】本题考查了圆的有关性质及相似三角形的判定与性质,解决本题的关键是掌握有关的性质及图形之间的联系.因为可以知道△ADE ∽△CDB ,面积比就等于相似比的平方.所以求出相似比AEBC即可.因为AB 是⊙O AOCB F 第10题图AB第17题图的直径,∠B =30°,可知BC =AB cos30°,再找出AE 与AB 的关系就可以了.因为CE 平分∠ACB ,连接BE 可知△AEB 为等腰直角三角形,AE =AB cos45°.这样就知道了AEBC,问题解决.【详细解答】解:连接BE ,∵AB 为⊙O 的直径,∴∠ACB =∠AEB =90°,在Rt △ABC 中,∠B =30°,∴BC =AB cos30°AB .∵ CE 平分∠ACB ,∴∠ACE =∠BCE =45°,∵∠BCE =∠BAE ,∴∠BAE =45°,∴AE =AB cos45°=AB,∴AB AE BC,∵∠BCE =∠BAE ,∠ADE =∠CDB ,∴△ADE ∽△CDB ,∴ADE CDB S S ∆∆=223= 故答案为D .【解后反思】求两个三角形的面积关系首先判断两个三角形是否相似,如果相似可以用相似三角形的性质:两个相似三角形面积比等于相似比的平方去解决.此题解题的关键是利用直径所对的圆周角是直角得到两个直角三角形,然后通过特殊角的三角形函数值找到线段AE 与BC 的等量关系.【关键词】圆周角定理 ;特殊角的三角函数值;相似三角形的判定;相似三角形的性质4. ( 山东潍坊,9,3分)如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0).与y 轴分别交于点B (0,4)与点C (0,16).则圆心M 到坐标原点O 的距离是( ) A .10 B...【答案】D【逐步提示】本题考查了垂径定理及图形与坐标,解题的关键是作出辅助线,利用勾股定理进行解答.过点M 作MN ⊥BC ,交BC 于点N ,连接OM 、BM ,先利用垂径定理求出BN 的长度,再利用勾股定理求出⊙M 的半径,然后利用勾股定理求OM 的长度.【详细解答】解:过点M 作MN ⊥BC ,交BC 于点N ,连接OM 、BM ,AB第17题图由A(8,0)、B(0,4)、C(0,16)可得:OA=8,BC=16-4=12.∴MN=OA=8,BN=12BC=6∴在Rt△MNB中,BM10==,即⊙M的半径为10.∴ON=10.在Rt△OMN中,OM===故选择D .【解后反思】垂径定理与勾股定理联系密切,解此类题时需注意构造直角三角形,利用勾股定理进行解答.【关键词】垂径定理;勾股定理;平面直角坐标系;5.(山东省烟台市,10,3分)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D.若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()【答案】D【逐步提示】由于不明确等腰三角形的边和腰,所以要分两种情况进行讨论:当BC为底边时,当BC为腰时,分别求出∠BCD的度数,即可求解.在求解过程中要注意:点C在以AB为直径的圆上,所以点D在量角器上对应的度数等于2∠BCD的度数.【详细解答】解:∵∠ACB=90°,∴点C在以AB为直径的圆上.分两种情况进行讨论:当BC为底边时,∠BCD=∠ABC=40°,∴点D在量角器上对应的度数是40°⨯2=80°,当BC为腰时,∠BCD=240180︒-︒=70°,∴点D在量角器上对应的度数是70°⨯2=140°,故选择D .【解后反思】解此题的关键是掌握圆心角、圆周角定理和等腰三角形的定义和性质.1.圆周角定理的推论:圆周角的度数等于它所对弧上的圆心角度数的一半.2.已知顶角求底角的方法:底角=1802-顶角.3.解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,然后利用圆周角定理以及推论求解,特别地,当有直径这一条件时,往往要用到直径所对的圆周角是直角这一性质;或是当有直角时,往往要用到90°的圆周角所对的斜边是直径..4.没有明确等腰三角形的底或腰时,一定要注意分类讨论.分类讨论是一种重数学思想,在研究数学问题时,常常需要通过分类讨论解决问题.分类要依据一个标准,且要做到不重不漏. 【关键词】等腰三角形;圆周角;弧;分类讨论思想;6.(浙江杭州,8,3分)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A .C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E .若∠AOB =3∠ADB ,则( )A .DE =EB B .2DE =EBC .3DE =DOD .DE =OB【答案】D .【逐步提示】本题考查了圆的性质和等腰三角形的性质与判断,解题的关键是充分利用半径相等、等腰三角形的两底角相等及等角对等边等有关性质.由四个选项中都是线段DE 与相关线段的大小比较,且题目中条件为角之间的倍数关系,这样就联想到通过三角形之间的边角关系来探索相关线段的数量关系了:不妨连接OE ,首先由OB =OE ,得到∠B =∠OEB ;再由三角形的外角性质,得到∠AOB =∠B +∠D ,∠OEB =∠EOD +∠D ,加上已知条件∠AOB =3∠ADB ,就不难推导出∠DOE =∠D ,最后由等角对等边,得到DE =EO =OB . 【解析】连接OE ,如下图. ∵OB =OE , ∴∠B =∠OEB .∵∠AOB =∠B +∠D ,∠OEB =∠EOD +∠D ,∠AOB =3∠ADB , ∴∠B =∠OEB =2∠D . ∴∠DOE =∠D . ∴DE =EO =OB . 故选择D .【解后反思】本题是一道探究题,由两个角之间的3倍关系去探索线段DE 与图中相关线段的数量关系.如何充分利用已知条件与图形中隐含的条件,是解题的关键.连接OE 后,就容易利用圆的半径相等,加上等腰三角形的性质与判定定理及三角形的外角性质,得到图中两组相等的角及这两组角的对边也相等的结论,从而就探究出DE 与圆的半径相等的正确结论了.【关键词】圆的性质;等腰三角形的性质和判定;三角形的外角性质第8题图第7题图7.(浙江金华,9,3分)足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在( )A.点CB.点D 或点EC.线段DE (异于端点) 上一点D.线段CD (异于端点) 上一点【答案】C【逐步提示】认真审题确定解题思路,过A . B .D 三点作圆,可以根据圆内角、圆周角及圆外角的性质确定各射点到球门AB 的张角,比较各张角的大小,确定答案.【解析】连接EB .AD .DB .AC .CB ,作过点A .B .D 的圆,可以确定点E 在圆上,点C 在圆外,根据圆周角及圆外角的性质可以确定∠AEB=∠ADB>∠ACB ,所以最好的射点是线段DE (异于端点) 上一点,故选择C.【解后反思】解题的关键在于构造圆,然后根据圆周角、圆内角及圆外角的性质确定各张角的大小,进而得出结论.【关键词】圆周角;“网格”数学题型8.(淅江丽水,10,3分)如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是AC 上一点,BD 交AC 于点E ,若BC=4,AD=45,则AE 的长是A.3B.2C.1D.1.2 【答案】【逐步提示】确定AC=BC ,△CBE ∽△DAE ,根据相似比判断各选项中的数据是否正确.(第9题图)【解析】由题意得AC=BC=4,BD=285,△CBE∽△DAE,所以AE:BE=DE:CE=AD:CB=45:4=15,所以BE˙DE=AE˙CE,若AE=3,则BE=15>285,错误;若AE=2,则BE=10>285,错误;若AE=1,则BE=5,DE=35,CE=4-1=3,此时满足BE˙DE=AE˙CE,故AE=1;若AE=1.2,则BE=6>285,错误,故选择C.【解后反思】根据题意确定图形中各线段间的关系,然后根据已知条件对所给选项进行验证得出正确的结论.【关键词】圆;相似三角形的性质;验证法;;9.(四川达州,7,3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为第7题图A.13B.2 2C.24D.223【答案】C【逐步提示】本题主要考查了圆中有关计算.解题的关键是把∠OBC的正切值转化到直角三角形中求解.解题是:如图,连接CD,则CD是⊙A的直径,且∠OBC=∠ODC,在Rt△OCD中可求得tan∠ODC.【详细解答】解:连接CD,∵∠COD=90°,∴CD是⊙A的直径,∠OBC=∠ODC,在Rt△OCD中,OD=62-22=42,∴tan∠ODC=242=24故选择C.【解后反思】解答这类问题时,往往将坐标系内的点坐标转化为线段的长度,进而化归到直角三角形中,应用三角函数定义求得三角函数值.求锐角三角函数的方法:(1)直接定义法;(2)构造直角三角形;(3)借助三角函数关系求值.【关键词】圆周角定理及推论;三角函数10.(四川乐山,7,3分)如图4,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB= ( ).A.10°B.20°C.30°D.40°图4【答案】B.【逐步提示】欲求∠CAB,在Rt△ABC中,由AB是⊙O的直径得到∠ACB=90°,所以只需知道∠ABC的度数,在⊙O中,∠ABC=∠ADC,这样在等腰三角形ACD中,由∠ACD=40°可得解.【详细解答】解:∵CA=CD,并且∠ACD=40°,∴∠ADC=70°.在⊙O中,∵AB为直径,∠ACB=90°,∵∠ABC 与∠ADC是⊙O中»AC的圆周角,∴∠ABC=∠ADC=70°,∴∠CAB=∠AC B-∠ABC= 90°-70=20°,故选择B.【解后反思】对于圆的有关性质的考查,一般会将圆周角、圆心角,弧、弦、弦心距等量之间的关系合并考查,解题的关键是明确相关性质.本题涉及到的有:①在同圆(或等圆)中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;②直径其所对的圆周角是90°.【关键词】等腰三角形性质;圆周角定理11.(四川省自贡市,5,4分)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是A.15° B.25° C.30° D.75°【答案】C【逐步提示】∠B为圆周角,可以考虑将其转移,再利用三角形的内外角关系求解即可.【详细解答】解:∵∠A=45°,∠AMD=75°,∴∠C=30°,∴∠B=30°,故选择C.【解后反思】求角度数问题,通常手段就是转移和分解,本题在第一步是将角分解求出∠C,再利用转移的方法求出∠B.【关键词】三角形的内角和;圆心角、圆周角定理二、填空题1. .(山东青岛,11,3分)如图,AB是⊙O的直径,C , D是⊙O上的两点,若∠BCD = 28° ,则∠ABD= °.【答案】62【逐步提示】∠ABD 和∠ACD 都是弧AD 所对的圆周角,故只要求出∠ACD 的度数即可;根据“直径所对的圆周角是直角”可知∠ACB =90°,进而由∠BCD 的度数可求得∠ACD 的度数,问题得解. 【详细解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠BCD =28°,∴∠ACD =90°-28°=62°,∴∠ABD =62°,故答案为62.【解后反思】与圆周角有关的知识点有:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是圆的直径;同弧(或等弧)所对的圆周角等于圆心角的一半. 【关键词】 圆周角;圆周角定理2. ( 山东省枣庄市,15,4分)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,【答案】【逐步提示】本题考查了有关圆周角的性质,解题的关键是运用直径所对圆周角为直角及同弧所对圆周角相等把∠D 与直角三角形联系起来.连接BC ,利用直径所对圆周角为直角,解Rt △ABC ,然后利用同弧或等弧所对的圆周角相等,即可求得tan D 的值.【详细解答】解:连接BC ,∵AB 为⊙O 直径,∠ACB =90°,又∵AB =2r =6,∴BC =∵BC =BC ,∴∠D =∠A ,∴tan D =tan A =BCAC=,故答案为【解后反思】在圆中解决与角有关的问题时,常用的是弧、弦、圆心角的对应关系和圆周角定理,从而实现圆心角与圆周角、圆周角与圆周角的互换.若如涉及到三角函数,通常利用直径所对圆周角为直角,或构造垂径定理三角形求解.【关键词】 圆心角、圆周角定理;锐角三角函数值的求法DBD3.(重庆A,15,4分)如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC. 若∠AOB=120°,则∠ACB=_______度.【答案】60【逐步提示】∠AOB与∠ACB是同弧(AB)所对的圆心角和圆周角,则∠ACB=12∠AOB.【解析】∵∠AOB=120°,∠AOB所对的弧为AB,AB所对的圆周角为∠ACB,∴∠ACB=12∠AOB=12×120°=60°.故答案为60.【解后反思】在圆中,同弧所对的圆周角是它所对圆心角的一半.【关键词】圆心角、圆周角定理4.(重庆B,15,4分)如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于度.【答案】25【逐步提示】利用直角三角形的两个锐角互余,由∠OAB的度数可求得∠AOB的度数,再根据同弧所对的圆周角与圆心角的关系求解.【解析】∵AB⊥CD,∠OAB=40°,∴∠AOB=50°. ∵∠C与∠AOB分别为AD所对的圆周角和圆心角,∴∠C=12∠AOB=25°. 故答案为25.【解后反思】在圆中,求角的度数时,首先要考虑要求的角是圆周角还是圆心角,再根据圆心角、圆周角的性质定理求解. 在同圆中,同弧所对的圆周角等于它所对的圆心角的一半.【关键词】三角形的内角和;圆心角、圆周角定理5.(四川省巴中市,16,3分)如图,∠A是⊙O的圆周角,∠OBC=550,则∠A= .【答案】350.【逐步提示】本题考查了圆心角、圆周角定理及其推论,解题的关键是理解并能熟练运用圆心角、圆周角定理及其推论,在⊙O中,弧BC所对的圆心角和圆周角分别是∠BOC和∠BAC,在△BOC中,OB=OC,由∠OBC=550,可以求得圆心角∠BOC的度数,从而求得圆周角∠A的度数.【详细解答】解:∵OB=OC,∴∠OCB=∠OBC=550,∴∠BOC=700,∴∠A=12∠BOC=350,故答案为350. 【解后反思】解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解 【关键词】圆心角、圆周角定理;6. ( 四川省成都市,23,4分)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC=13,则AB = .【答案】392. 【逐步提示】本题考查了圆周角定理、相似三角形的判定及性质等相关知识,解题的关键是利用直径所对圆周角为直角及同弧所对圆周角相等,构造相似三角形.延长CO 交⊙O 于点E ,连接AM ,证明△AMC ∽△HBA ,然后利用相似三角形的性质即可求出AB 的值.【详细解答】解:延长CO 交⊙O 于点M ,连接AM .∵CM 是⊙O 的直径,∴∠MAC =90°,∵AH ⊥BC ,∴∠MAC =∠AHB = 90°,又∵∠M =∠B ,∴△AMC ∽△HBA ,∴AC AH =CM AB ,∵CM =2OC =26,即2418=26AB ,∴AB =182624⨯=392. 【解后反思】在有关圆的问题中,有直径通常作直径所对的圆周角,构造直角三角形;有弧、弦中点,通常连弧、弦中点与圆心,应用垂径定理;有切线,连过切点的半径.【关键词】圆心角、圆周角定理 ;相似三角形的判定;相似三角形的性质7. ( 四川南充,15,3分)如图是由两个长方形组成的工件平面图(单位,mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .【答案】50 【逐步提示】本题考查的圆内接四边形,是垂径定理,解题的关键是根据题意画出图形,利用数形结合进行解答. 根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论. 【详细解答】解:设圆心为O,由题意知,点O 在l 上。
中考数学二轮复习专题 圆的基本性质及答案详解
中考数学二轮复习专题圆的基本性质一、单选题1.如图,AB是⊙O的弦,圆心O到弦AB的距离,点C是弧AB中点,点D是优弧AB上的一点,,则弦AB的长为()A.6B.9C.10D.122.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A.πB.πC.2πD.π3.如图,菱形中,,.以A为圆心,长为半径画,点P为菱形内一点,连,,.若,且,则图中阴影部分的面积为()A.B.C.D.4.如图,中,,,,,为,边上的两个动点,且,为中点,则的最小值为()A.B.C.D.5.如图,上有A、B两点,点C为弧AB上一点,点P是外一点,且,,则的度数为()A.B.C.D.6.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A.2B.2.5C.3D.3.57.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A.B.C.D.8.以为中心点的量角器与直角三角板按如图方式摆放,量角器的0刻度线与斜边重合.点为斜边上一点,作射线交弧于点,如果点所对应的读数为,那么的大小为()A.B.C.D.9.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D10.如图,点C,D是劣弧上两点,CD∥AB,∠CAB=45°,若AB=6,CD=2,则所在圆的半径长为()A.B.C.2 D.二、填空题11.如图,点A、B、C在⊙O上,∠ACB+∠AOB=90°,则∠ACB的大小为12.如图,水平放置的圆柱形油桶的截面半径是,油面高为,截面上有油的弓形(阴影部分)的面积为.13.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.14.如图5,AB是半圆O 的直径,E是BC的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.15.如图,AB是的直径,点C,D,E都在上,∠1=55°,则∠2=°16.在中,若,,则的面积的最大值为. 17.已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为.18.如图,网格纸中每个小正方形的边长为1,一段圆弧经过格点,点O为坐标原点.(1)该图中弧所在圆的圆心D的坐标为;.(2)根据(1)中的条件填空:①圆D的半径=(结果保留根号);②点(7,0)在圆D(填“上”、“内”或“外”);③∠ADC的度数为.三、作图题19.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm, CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径四、解答题20.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB 的长.21.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.五、综合题22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=AB时,求⊙O的直径长.23.以的一条边AC为直径的⊙O与BC相交于点D,点D是BC的中点,过点D作⊙O的切线交AB于点E.(1)求证:AB=AC;(2)若BE=1,,求⊙O的半径.24.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE= ,∠C=30°,求的长。
备战中考数学分点透练真题圆的基本性质(解析版)
第二十讲圆的基本性质命题点1 圆周角定理及其推论有关的计算1.(2021•长沙)如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A.27°B.108°C.116°D.128°【答案】B【解答】解:∵∠A=54°,∴∠BOC=2∠A=108°,故选:B.2.(2021•重庆)如图,AB是⊙O的直径,AC,BC是⊙O的弦,若∠A=20°,则∠B的度数为()A.70°B.90°C.40°D.60°【答案】A【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=20°,∴∠B=90°﹣∠A=70°,故选:A.3.(2021•嘉峪关)如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED =()A.48°B.24°C.22°D.21°【答案】D【解答】解:连接OC、OD,∵AB=CD,∠AOB=42°,∴∠AOB=∠COD=42°,∴∠CED=∠COD=21°.故选:D.4.(2021•邵阳)如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为()A.25°B.30°C.35°D.40°【答案】B【解答】解:∵∠BAC与∠BOC所对弧为,由圆周角定理可知:∠BOC=2∠BAC=60°,又∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.故选:B.5.(2021•武汉)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°【答案】B【解答】解:如图,连接AC,CD,DE.∵=,∴ED=EB,∴∠EDB=∠EBD=α,∵==,∴AC=CD=DE,∴∠DCE=∠DEC=∠EDB+∠EBD=2α,∴∠CAD=∠CDA=∠DCE+∠EBD=3α,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∴4α=90°,∴α=22.5°,故选:B.6.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE=.【答案】13°【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.7.(2021•安徽)如图,圆O的半径为1,△ABC内接于圆O.若∠A=60°,∠B=75°,则AB=.【答案】【解答】解:如图,连接OA,OB,在△ABC中,∠BAC=60°,∠ABC=75°,∴∠ACB=180°﹣∠A﹣∠B=45°,∴∠AOB=90°,∵OA=OB,∴△OAB是等腰直角三角形,∴AB=OA=.故答案为:.8.(2021•烟台)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.【答案】【解答】解:如图,连接AO并延长交⊙O于D,由圆周角定理得:∠ACB=∠ADB,由勾股定理得:AD==2,∴sin∠ACB=sin∠ADB===,故答案为:.命题点2 垂径定理及其推论类型一垂径定理及其推论有关的计算9.(2021•丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD=∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα【答案】B【解答】解:∵AB是⊙O的直径,弦CD⊥OA于点E,∴DE=CD,在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=,∴OE==,故选项A不符合题意;∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD•sinα=m•sinα,∴CD=2DE=2m•sinα,故选项B正确,符合题意;∵cosα=,∴OE=OD•cosα=m•cosα,∵AO=DO=m,∴AE=AO﹣OE=m﹣m•cosα,故选项C不符合题意;∵CD=2m•sinα,OE=m•cosα,∴S△COD=CD×OE=×2m•sinα×m•cosα=m2sinα•cosα,故选项D不符合题意;故选:B.10.(2021•营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D 是上任意一点,则∠ADB度数为()A.112°B.124°C.122°D.134°【答案】B【解答】解:作所对的圆周角∠APB,如图,∵C为AB的中点,OA=OB,∴OC⊥AB,OC平分∠AOB,∴∠AOC=∠BOC=56°,∴∠APB=∠AOB=56°,∵∠APB+∠ADB=180°,∴∠ADB=180°﹣56°=124°.故选:B.11.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【答案】B【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.12.(2021•黄冈)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.4【答案】A【解答】解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.13.(2021•广东)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A.B.2C.1D.2【答案】B【解答】解:如图,过点D作DT⊥AB于T.∵AB是直径,∴∠ACB=90°,∴DC⊥BC,∵DB平分∠CBA,DC⊥BC,DT⊥BA,∴DC=DT=1,∵AC=3,∴AD=AC﹣CD=2,∴AD=2DT,∴∠A=30°,∴AB===2,解法二:AD=2DT由此处开始,可以在Rt△ADT中用勾股定理得AT=,再由垂径定理可得AB=2AT得解.故选:B.14.(2021•成都)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.【答案】2【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.类型二垂径定理的实际应用15.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分【答案】A【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=AB=8(厘米),∵OA=10厘米,∴OD===6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.16.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径寸.【答案】26【解答】解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=AB,.则CD=1寸,AC=BC=AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故答案为:26.命题点3 圆内接四边形17.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【答案】D【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.18.(2021•泰安)如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为()A.2﹣2B.3﹣C.4﹣D.2【答案】C【解答】解:延长AD、BC交于E,∵∠BCD=120°,∴∠A=60°,∵∠B=90°,∴∠ADC=90°,∠E=30°,在Rt△ABE中,AE=2AB=4,在Rt△CDE中,DE==,∴AD=AE﹣DE=4﹣,故选:C.19.(2021•苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE =AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【答案】(1)略(2)tan∠DCB=【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.20.(2021秋•越秀区校级期中)已知:在圆O内,弦AD与弦BC交于点G,AD=CB,M,N分别是CB和AD的中点,联结MN,OG.(1)求证:OG⊥MN;(2)联结AC,AM,CN,当CN∥OG时,求证:四边形ACNM为矩形.【答案】(1)略(2)四边形AMNC是矩形.【解答】(1)证明:如图,连接OM,ON,OB,OD.∵M,N分别是CB和AD的中点∴OM⊥CB,ON⊥AD,∵AD=BC,∴BM=DN,在Rt△OMB和Rt△OND中,,∴Rt△OMB≌Rt△OND(HL),∴OM=ON,在Rt△OMG和Rt△ONG中,∴Rt△OMG≌Rt△ONG(HL),∴GM=GN,∵OM=ON,∴OG⊥MN;(2)证明:∵OG⊥MN,CN∥OG,∴CN⊥MN,∴∠MNC=90°,∵GM=GN,∴∠GMN=∠GNM,∵∠GMN+∠GCN=90°,∠GNM+∠GNC=90°,∴∠GCN=∠GNC,∴GC=GN,∵CM=CB,AN=AD,BC=AD,∴CM=AN,∴AG=CG,∴AG=GN=CG=GM,∴四边形AMNC是平行四边形,∵AN=CM,∴四边形AMNC是矩形.。
中考数学一轮复习宝典第1部分 第6章 课题20 圆的基本性质
所用知识点
作直径所对 的圆周角
∠A+∠B=90° AB2=AC2+BC2 圆周角定理的推论,勾股
注:若遇到圆周角等于 90°, 定理 链接练习 1-3 则连接角两边与圆的两交点的 线段(即直径)必过圆心
上一页 返回导航 下一页
解决圆中的无图形问题时,应注意:一条弦对着两条弧,分别为优弧 和劣弧;一条弦所对的圆周角有两类,一类是优弧所对的角,另一类是劣 弧所对的角,且这两类圆周角互补(如图,∠1+∠2=180°) 链接练习 1-2.
上一页 返回导航 下一页
类型二 圆周角定理推论的相关计算 (2019 娄底)如图,C,D 两点在以 AB 为直径的圆上,AB=2,
∠ACD=30°,则 AD= 1 .
由圆周角定理的推论可知,∠ADB=90 °,∠B= ∠ACD=30 °,根据含 30 °角的直角三角形的性质即可求解.
上一页 返回导航 下一页
上一页 返回导航 下一页
(2)填空: ①若 AB=6,当 AD=2DM 时,DE= 2 ; ②连接 OD,OE,当∠A 的度数为 60° 时,四边形 ODME 是菱形.
上一页 返回导航 下一页
圆周角定理及其推论的相关计算
类型一 圆周角定理的相关计算
(2019 贵港)如图,AD 是⊙O 的直径,A︵B=C︵D,若∠AOB=40°,
∠AOC=2∠B
∠AOC=2∠B
∠AOC=2∠B
∠B=∠D
上一页 返回导航 下一页
(1)遇到弦时 辅助线作法
添加弦心距,再连接 过弦的端点的半径
连接圆心和弦的两个 端点,构成等腰三角 形
圆中常用辅助线的作法
图示
关系式
所用知识点
AC=BC 垂径定理,勾股 OB2=OC2+BC2 定理
中考数学总复习考点强化练20圆的有关概念及性质
考点强化练20 圆的有关概念及性质基础达标一、选择题1.(2020广西贵港)如图,点A,B,C均在☉O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°∠A=66°,∴∠COB=132°.∵CO=BO,∴∠OCB=∠OBC=1(180°-132°)=24°,2故选A.2.(2020江苏盐城)如图,AB为☉O的直径,CD是☉O的弦,∠ADC=35°,则∠CAB的度数为() A.35° B.45°C.55°D.65°,∠ABC=∠ADC=35°,∵AB为☉O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=55°,故选C.3.(2020湖北襄阳)如图,点A,B,C,D都在半径为2的☉O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4B.2√2C.√3D.2√3OA⊥BC,∴CH=BH,AA⏜,⏜=AA∴∠AOB=2∠CDA=60°,∴BH=OB·sin∠AOB=√3,∴BC=2BH=2√3,故选D.二、填空题4.如图,☉O的直径AB过弦CD的中点E,若∠C=25°,则∠ADC=.∠C=25°,∴∠A=∠C=25°.∵☉O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°-25°=65°.5.(2020江苏扬州)如图,已知☉O的半径为2,△ABC内接于☉O,∠ACB=135°,则AB=.√2AD,BD,OA,OB,∵☉O的半径为2,△ABC内接于☉O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2√2.三、解答题6.“今有圆材,埋在壁中,不知大小,以锯锯之,深1寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用现在的数学语言可以表述为:如图,CD为☉O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,求直径CD的长.,连接OA,根据垂径定理,得AE=5寸.在Rt△AOE中,设OA=x寸,则OE=(x-1)寸,根据勾股定理有52+(x-1)2=x2,解得x=13,所以直径CD=26寸.〚导学号13814060〛7.(2020浙江湖州)如图,已知AB是☉O的直径,C,D是☉O上的点,OC∥BD,交AD于点E,连接BC. (1)求证:AE=ED;⏜的长.(2)若AB=10,∠CBD=36°,求AAAB是☉O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED.OC⊥AD,∴AA⏜,⏜=AA∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AA ⏜的长=72π×5180=2π.能力提升一、选择题1.(2020贵州安顺)已知☉O 的直径CD=10 cm,AB 是☉O 的弦,AB ⊥CD ,垂足为M ,且AB=8 cm,则AC 的长为( ) A.2√5 cm B.4√5 cmC.2√5 cm 或4√5 cmD.2√3 cm 或4√3 cmAC ,AO ,∵☉O 的直径CD=10cm,AB ⊥CD ,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C 点位置如图1所示时,∵OA=5cm,AM=4cm,CD ⊥AB , ∴OM=√AA 2-AA 2=√52-42=3cm, ∴CM=OC+OM=5+3=8cm,∴AC=√AA 2+AA 2=√42+82=4√5cm;当C 点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5-3=2cm,在Rt △AMC 中,AC=√AA 2+AA 2=√42+22=2√5cm . 故选C.2.(2020湖北咸宁)如图,已知☉O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD=6,则弦AB 的长为( ) A.6 B.8 C.5√2 D.5√3,延长AO交☉O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为☉O的直径,∴∠ABE=90°,∴AB=√AA2-AA2=√102-62=8,故选B.二、填空题3.(2020湖北孝感)已知☉O的半径为10 cm,AB,CD是☉O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是cm.或14当弦AB和CD在圆心同侧时,如图1,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm.②当弦AB和CD在圆心异侧时,如图2,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.三、解答题4.如图,有一座拱桥是圆弧形的,它的跨度为60 m,拱高18 m,当洪水泛滥到跨度只有30 m时,要采取紧急措施.若拱顶离水面只有4 m,即PN=4 m时是否要采取紧急措施?.如图,设弧的圆心为O,由圆的对称性知点P,N,O共线,连接OA,OA',PO,设PO 交AB于点M,该圆的半径为r,由题意得PM=18,AM=30,则(r-18)2+302=r2,解得r=34.当PN=4时,ON=30,所以A'N=16,则A'B'=32>30,故不需要采取紧急措施.〚导学号13814061〛5.(2020湖北宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2-AD2=CB2-CD2,∴(7+x)2-72=42-x2,解得x=1或x=-8(舍去)∴AC=8,BD=√82-72=√15,∴S菱形ABFC=8√15.∴S半圆=1·π·42=8π.2。
中考数学第20讲圆的有关性质复习教案1北师大版
课题:第20讲圆的有关性质考试要求:1.理解圆与圆的有关概念,了解弧、弦、圆心角之间的关系.2.探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征.3.探索如何过一点、两点和不在同一直线上的三点作圆.教学重点与难点:重点:理解圆心角,弧、弦、弦心距及圆周角之间的关系,掌握垂径定理以及它们的逆定理和推论,并能利用它们进行证明和计算.难点:应用垂径定理、圆周角与圆心角的关系定理进行证明和计算.教学过程:一、回眸要点,夯实基础要求:①时间:5分钟;②先独立填空,然后小组内交流纠错、讲解、补充.1.圆的有关概念(1)圆上任意两点间的部分叫弧,______的弧叫优弧,________的弧称为劣弧.(2)______________________的线段叫做弦,经过圆心的弦叫做直径.(3)_________________的角叫做圆心角;顶点在圆上且两边____________的角叫做圆周角. 【老师提醒:①在一个圆中,圆决定圆的半径决定圆的;②直径是圆中的弦,弦不一定是直径.】2.圆的对称性(1)圆是轴对称图形,其对称轴是_____ ;(2)圆是中心对称图形,其对称中心是_________.3.垂径定理及推论垂径定理:垂直于弦的直径_________弦,并且平分____________________.推论:平分弦(不是直径)的直径_____这条弦,并且平分__________________.【老师提醒:(1)垂径定理及其推论实质是指一条直线满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用.(2)圆中常作的辅助线是过圆心作弦的线;(3)垂径定理常用作计算,在半径r、弦a和弦心距d中已知两个可求另外一个.】4.弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,它们所对应的其余各组量也相等.如图所示:AB,CD是⊙O的两条弦,OE,OF为AB,CD的弦心距,根据圆心角,弧,弦和弦心距之间的关系定理填空:(1)如果AB =CD ,那么___________, __________, ______________; (2)如果OE =OF ,那么___________, ___________, ______________; (3)如果AB =CD ,那么__________, ____________, ___________老师提醒:圆不仅是中心对称图形,而且具有旋转 性,即绕圆心旋转任意角度都被与原来的图形重合.注意:①该定理的前提条件是“在同圆或等圆中”;②特别注意一条弦是对应两条弧的. 5.圆周角定理及推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的________,如图,∠ACB =____________;(2)推论:在同圆或等圆中,同弧或等弧所对的圆周角________,直径所对的圆周角是_______,90°的圆周角所对的弦是________,所对的弧是__________.【老师提醒:①在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有 个,它们的关系是 ;②作直经所对的圆周角是圆中常作的辅助线.】 6.确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的 、这个三角形是圆的 .处理方式:先小组合作交流,再小组汇报,生生互动、师生互动,纠错完善,让学生适当举例说明,加强对知识的理解,为题组训练奠定基石.【设计意图】以问题串的方式帮助学生回顾本章的内容,为后面的题组训练打好基础,让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.帮助学生更好的掌握本节知识.二、题组训练,巩固提高 活动内容【题组一】垂径定理及推论例1如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是【 】A .CM =DMB .CB DBOC ABC .∠ACD =∠ADC D .OM =MD处理方式:先小组合作交流,再小组汇报,生生互动、师生互动,纠错完善.让学生明白垂径定理,弦、弧和圆心角的关系,全等三角形的判定和性质. ∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M , ∴M 为CD 的中点,即CM =DM ,选项A 成立; ∵B 为CD 的中点,即CB DB ,选项B 成立;在△ACM 和△ADM 中,∵AM =AM ,∠AMC =∠AMD =90°,CM =DM , ∴△ACM ≌△ADM (SAS ),∴∠ACD =∠ADC ,选项C 成立. 而OM 与MD 不一定相等,选项D 不成立.答案: D. 【跟踪练习】1.如图,在半径为13的⊙O 中,OC 垂直弦AB 于点D ,交⊙O 于点C ,AB =24,则CD 的长是 .2.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 mm .3.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为 cm 2.【题组二】圆周角定理例2 (2012·湖北襄阳)△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是【 】A .80° B.160° C.100° D.80°或100°(友情提示:本题是考查圆周角定理的一个基本题目,利用了分类讨论的数学思想.画出图形后只要掌握住圆周角和圆心角的关系,一般不会出错,但这类题目也是中考命题中高频率的题目.答案:D)处理方式:先小组合作交流,再小组汇报,生生互动、师生互动,纠错完善.让学生根据题意分析图形,由圆周角定理及圆的内接四边四边形性质易发现D 成立.在圆中,一条弦所....对的圆心角只有一个.........,但所对的圆周角有两个且互为补角..................注意运用分类讨论的思想解题.......... 例3 (2012·广东梅州)如图,AC 是⊙O 的直径,弦BD 交AC 于点E .第1题图 第2题图 第3题图8mm(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.处理方式:先小组合作交流,再小组汇报,生生互动、师生互动,纠错完善.让学生理解圆周角定理,对顶角的性质,相似三角形的判定和性质,线段垂直平分线上点的性质.(1)由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠A=∠B,又由对顶角相等,可证得:△ADE∽△BCE.(2)由AD2=AE•AC,可得AE ADAD AC=,又由∠A是公共角,可证得△ADE∽△ACD,又由AC是⊙O的直径,可求得AC⊥BD,由线段垂直平分线上的点到线段两端距离相等的性质可证得CD=CB.(规范学生解题步骤,多媒体出示)证明:(1)∵∠A与∠B都是弧CD所对的圆周角,∴∠A=∠B.又∵∠AED=∠BEC,∴△ADE∽△BCE.(2)∵AD2=AE•AC,∴AE AD AD AC=.又∵∠A=∠A,∴△ADE∽△ACD.∴∠AED=∠ADC.又∵AC是⊙O的直径,∴∠ADC=90°.∴∠AED=90°.∴直径AC⊥BD,∴CD=CB.【设计意图】判定两个三角形相似的常规思路:①先找两对对应角相等;②若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;③若找不到角相等,就判断三边是否对应成比例,否则可考虑相似三角形的“传递性”.本题结合圆周角定理较易证明第1问,在证明等积式成立.......时,可将等积式转化为比例式......,再证明两三角形相似.【跟踪练习】1.如下图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.2.如下图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB =5,则BC 的长等于 .3. 如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C =50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是【 】A .45°B .85°C .90°D .95°处理方式:先小组合作交流,请同学们独立完成上面3题,完成后互相校对你们的结果. 解题后,交流校对,并更正错误. 【答案】:1.50 ° 2.5 3.B 【题组三】综合应用例4 (2012·浙江台州)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =16厘米,则球的半径为 厘米.处理方式:先小组合作交流,再小组汇报,生生互动、师生互动,纠错完善.1:如右图,过球心O 作IG ⊥BC ,分别交BC 、AD 、劣弧EF 于点G 、H 、I ,连接OF .设OH =x ,HI =y ,则依题意,根据垂径定理、勾股定理和矩形的性质,得222+8=(+),2+=16.x x y x y ⎧⎪⎨⎪⎩解得=6,=4.x y ⎧⎨⎩∴球的半径为x +y =10(厘米).2:我的方法比他更简单.如图,过球心O 作IG ⊥BC ,分别交BC 、AD 、劣弧EF 于点G 、H 、I ,连接OF ,则1116822FH EF ==⨯=.设OH =x ,则OG OF ==16x -,则由题意得2228(16)x x +=-,解的6x =.∴球的半径为16x -10=(厘米).处理方式:先小组合作交流,请同学们独立完成让学生自主完成、讨论交流解题思路,并让一名学生在黑板上板演,然后师生评判纠错完善.跟踪练习(2012·枣庄)如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则cos∠OBC 的值为【 】第1题图 第2题图第3题图A.12B.32C.35D.45师:相信同学们能独立完成上面的题目,等待你们的精彩展示哟!【学生活动】认真审题、解答、展示交流.生1:如右图,连接AO、AC,由题意可知AO AC OC===5,即△AOC为等边三角形,∴∠OBC=12∠OAC=12×60° =30°,∴cos∠OBC=32.生2:刚才的方法不错,我的方法更妙.如右图,连接CA并延长交圆与点D,在Rt△OCD中,由C(0,5).∴OC=5 .又CD=10,故∠ODC=30°.∴∠OBC=30°.∴cos∠OBC =32.师:这两位同学添加不同的辅助线,实现了问题的精彩转化,很棒!此时教室里不约而同的响起了掌声.【答案】B处理方式:先小组合作交流,请同学们独立完成让学生自主完成、讨论交流解题思路,并让一名学生在黑板上板演,然后师生评判纠错完善.【设计意图】紧扣近年学业考试中圆的重要考点,利用三个题组训练,对圆心角,弧、弦、弦心距及圆周角之间的关系,垂径定理深入分析和探讨,巩固了知识要点,例题和练习题由学生来做来展示,在很大程度上提高了学生复习的积极性,而且容易发现解题过程中出现的错误,对错误印象比较深刻,对提高几何能力和探究能力有帮助,同时训练学生的思维敏捷性和解题的规范性.三、诱导反思,归纳总结师:(放幻灯片)下面请同学们看着圆的有关概念和性质知识结构图回顾这节课,你有哪些收获?还有哪些困惑?还想进一步研究的问题是什么?想一想,说一说.【学生】本节课我的收获有……我还有一些困惑的地方……通过刚才的过程,你有什么收获?1:处理此类问题时,要将生活问题数学化,利用数学知识解决.2:做题时要勇于探索,比如此题设了未知数,利用列方程(组)的代数方法处理问题.处理方式:学生总结反思自己的所学所得,畅谈收获,拾遗补缺.【设计意图】利用知识结构图的直观作用,让学生积极思考、大胆发言、交流,使学生养成勤于思考、善于总结的良好习惯,听听学生的感悟、体会,以便教师更好的了解学生学习经验的获得情况. 在与同学交流的过程中,增强与他人合作的意识.四、限时训练,当堂达标师:前面同学们合作共进,收获颇丰,是否达到了本课的复习目标呢?请在8分钟内完成!达标检测.(1、2、3、6为必做题,4、5为选做题)1.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于___________.2.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内OB上一点,∠BMO=120°,则⊙C的半径长为【】A.6 B.5 C.3 D.321题图2题图3题图4题图3.如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB 的长为【】A.3cm B.4cm C.6cm D.8cm4.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP 从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是度.5.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.6.如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B 重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB=________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以点A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.处理方式:在学案上自主完成,精力集中、投入专注,象考试一般.【设计意图】必做题,要求学生在8分钟内完成.选取中考题作为课堂检测,规定时间和内容,一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解决问题的能力.更能让学生体验解决中考题的快乐和成功感,每一道小题都各有目的,从不同的侧面考查了这章的知识点,从学生的完成情况来看,效果很好,都能在规定的时间内完成,且准确率较高.选做题,是为学有余力的同学准备的,让不同的学生有不同的发展,以便于对学生进行因材施教分类推进,让优生能吃得饱,学得好,能力最大限度的提高.五、布置作业,课堂延伸A组:复习指导丛书 117页—118页第1、2、10、11题.B组:复习指导丛书 119—120页第10、12题.【设计意图】复习课后分层布置作业,让不同程度的学生有不同的收获;一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解答问题的能力,提高应试能力.板书设计:第20讲圆的有关概念和性质例1 例2 例3 例4学生板演区投影区中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12C.9 D.6【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A2.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A 2B3C.1 D6【答案】C【解析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=2222222,OC=122,所以2△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴222∵CM平分∠ACB,∴2∴2∴2222,∴OC=122,CH=AC﹣222∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=2222=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.321的相反数是()A21B21C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是44 3【答案】C【解析】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.5.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA =27°,则∠B的大小是()A.27°B.34°C.36°D.54°【答案】C【解析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.6.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15【答案】D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数. 【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答. 9.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根【答案】C【解析】解:由题意可知4的算术平方根是2,4的立方根是3434<2, 8的算术平方根是22, 2<22<3,8的立方根是2,故根据数轴可知, 故选C10.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A .55B .60C .65D .70【答案】C【解析】连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题. 【详解】解:如图,连接AE,∵AB是直径,∴∠AEB=90°,即AE⊥BC,∵EB=EC,∴AB=AC,∴∠C=∠B,∵∠BAC=50°,∴∠C=12(180°-50°)=65°,故选:C.【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.二、填空题(本题包括8个小题)11.如图,以AB为直径的半圆沿弦BC折叠后,AB与BC相交于点D.若13CD BD=,则∠B=________°.【答案】18°【解析】由折叠的性质可得∠ABC=∠CBD,根据在同圆和等圆中,相等的圆周角所对的弧相等可得=AC CD,再由13CD BD=和半圆的弧度为180°可得AC的度数×5=180°,即可求得AC的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.【详解】解:由折叠的性质可得∠ABC=∠CBD , ∴=AC CD , ∵13CD BD =, ∴AC 的度数+ CD 的度数+ BD 的度数=180°, 即AC 的度数×5=180°, ∴AC 的度数为36°, ∴∠B=18°. 故答案为:18. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系. 12.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____. 【答案】45a ≤<【解析】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1, ∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解, ∴a 的范围为45a ≤<, 故答案为45a ≤<. 【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键. 13.|-3|=_________; 【答案】1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案. 解答:解:|-1|=1. 故答案为1.14_____.【答案】24【解析】直接利用二次根式的性质化简求出答案. 【详解】111284822===,故答案为24. 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键. 15.已知x 1,x 2是方程x 2-3x-1=0的两根,则1211x x +=______. 【答案】﹣1.【解析】试题解析:∵1x ,2x 是方程2310x x --=的两根,∴123x x +=、121x x =-,∴1211x x +=1212x x x x +=31- =﹣1.故答案为﹣1.16.已知:如图,△ABC 的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为_____.【答案】1【解析】设四边形BCED 的面积为x ,则S △ADE =12﹣x ,由题意知DE ∥BC 且DE=12BC ,从而得2ADE ABCS DE SBC ⎛⎫= ⎪⎝⎭,据此建立关于x 的方程,解之可得.【详解】设四边形BCED 的面积为x ,则S △ADE =12﹣x ,∵点D 、E 分别是边AB 、AC 的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,且DE=12BC , ∴△ADE ∽△ABC ,则2ADEABCS DES BC⎛⎫= ⎪⎝⎭=14,即121124x-=,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.17.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.【答案】8【解析】如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC =,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.18.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.【答案】1【解析】把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【详解】∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.三、解答题(本题包括8个小题)19.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.【答案】吉普车的速度为30千米/时.【解析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x 的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.20.某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?【答案】1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{5328x y +=+= 解得0.4{0.2x y ==答:每台大小收割机每小时分别收割0.4公顷和0.2公顷. 【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系21.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【答案】(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x 只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x ﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x (x >10)只,因此得到自变量x 的取值范围,然后根据已知条件可以得到y 与x 的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x 只,则30﹣0.1(x ﹣10)=16,解得:x=1. 答:一次至少买1只,才能以最低价购买; (3)当10<x≤1时,y=[30﹣0.1(x ﹣10)﹣13]x=,当x >1时,y=(16﹣13)x=4x ; 综上所述:;(3)y==,①当10<x≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y 随x 的增大而减小,即当卖的只数越多时,利润变小. 且当x=46时,y 1=303.4,当x=1时,y 3=3.∴y 1>y 3. 即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.22.小马虎做一道数学题,“已知两个多项式24A x x =-,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案. 【答案】(1)-3; (2)“A -C”的正确答案为-7x 2-2x+2. 【解析】(1)根据整式加减法则可求出二次项系数;(2)表示出多项式A ,然后根据A C +的结果求出多项式C ,计算A C -即可求出答案. 【详解】(1)由题意得2:4A x x =-,2234B x x =+-, ∴A+2B=(4+)2x +2x -8,2228A B x x +=+-, ∴4+=1,=-3,即系数为-3.(2)A+C=262x x --,且A=234x x --,∴C=4222x x --,∴A -C=2722x x --+。
中考数学一轮复习宝典第1部分 第6章 课题20 圆的基本性质
第六章 圆 课题20 圆的基本性质1.(2019郑州一中模拟)如图所示,在Rt △ABC 中,∠A =25°,∠ACB =90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则∠DCE 的度数为( C )A .30°B .25°C .40°D .50°第1题图第2题图2.(2019开封一模)如图,⊙O 的半径为4,将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O ,则折痕AB 的长为( A )A .4 3B .6C .2 3D .33.(2019聊城)如图,BC 是半圆O 的直径,D ,E 是BC ︵上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( C )A .35°B .38°C .40°D .42°第3题图第4题图4.(2019河南模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,连接OD ,AC .若∠CAO =70°,则∠BOD 的度数为( B )A .110°B .140°C .145°D .150°5.(2019广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为( C )A .2 5B .4C .213D .4.8第5题图第6题图6.(2019河南模拟)如图,在平面直角坐标系中,⊙P 过O (0,0),A (3,0),B (0,-4)三点,C 是OA ︵上的点(点O 除外),连接OC ,BC ,则sin ∠OCB 等于( A )A .45B .43C .34D .357.(2019天水)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( C )A .20°B .25°C .30°D .35°第7题图第8题图8.(2019连云港)如图,点A ,B ,C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为 6 .9.(2019鸡西)如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上且∠ADC =30°,则∠AOB 的度数为 60° .第9题图第10题图10.(2019株洲)如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 20 度.11.(2019河南模拟)如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,且BD ∥OC ,求证:AC ︵=CD ︵.证明:∵OB =OD ,∴∠D =∠B .∵BD ∥OC ,∴∠D =∠COD ,∠AOC =∠B . ∴∠AOC =∠COD .∴AC ︵=CD ︵.12.(2019南阳模拟)如图,在△ACE 中,AC =CE ,⊙O 经过点A ,C ,且与边AE ,CE 分别交于点D ,F ,B 是劣弧AC 上的一点,且BC ︵=DF ︵,连接AB ,BC ,CD .求证:△CDE ≌△ABC .证明:连接DF .∵AC =CE ,∴∠CAE =∠E .∵四边形ACFD 内接于⊙O ,∴∠CAE =∠DFE .∴∠DFE =∠E .∴DF =DE .∵BC ︵=DF ︵,∴∠BAC =∠DCE .∵四边形ABCD 内接于⊙O ,∴∠B =∠CDE .∴△ABC ≌△CDE ,即△CDE ≌△ABC .13.(2019襄阳)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是( A )A .AP =2OPB .CD =2OPC .OB ⊥ACD .AC 平分OB第13题图第14题图14.(2018咸宁)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( B )A .6B .8C .52D .5315.(2018枣庄)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( C )A .15B .2 5C .215D .8第15题图第16题图16.(2019东营)如图,AC 是⊙O 的弦,AC =5,B 是⊙O 上的一个动点,且∠ABC =45°,若M ,N 分别是AC ,BC 的中点,则MN 的最大值是522. 17.(2019绵阳)如图,AB 是⊙O 的直径,C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.(1)证明:∵C 是BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB ,∴BC ︵=BF ︵.∴CD ︵=BF ︵.∴CD =BF .又∠BFG =∠CDG ,∠BGF =∠CGD ,∴△BFG ≌△CDG .(2)解:连接OF .设⊙O 的半径为r . 在Rt △ADB 中,BD 2=AB 2-AD 2,即BD 2=(2r )2-22.在Rt △OEF 中,OF 2=OE 2+EF 2,即EF 2=r 2-(r -2)2.∵CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵.∴BD =CF .∴BD 2=CF 2=(2EF )2=4EF 2,即(2r )2-22=4,解得r =1(舍去)或r =3.∴EF 2=32-(3-2)2=8.∴BF 2=EF 2+BE 2=8+22=12.∴BF =2 3.18.(2019郑外模拟)已知⊙O 的半径为5,P 为圆O 内一点,且OP =3,则过点P 的所有弦中,弦长是整数的共有( A )A .4条B .3条C .2条D .1条19.(2019广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 26 寸.。
2024年中考数学一轮复习考点精析与真题精练—圆的基本性质
2024年中考数学一轮复习考点精析与真题精练—圆的基本性质→➊考点精析←一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r ,母线长为l ,则这个扇形的半径为l ,扇形的弧长为2πr ,圆锥的侧面积为S 圆锥侧=12ππ2l r rl ⋅=.圆锥的表面积:S 圆锥表=S 圆锥侧+S 圆锥底=πrl +πr 2=πr ·(l +r ).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.→➋真题精讲←题型一圆周角和圆心角1.(2023·云南·统考中考真题)如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.2.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B 【分析】根据圆周角定理求得60AOB ∠=︒,然后根据扇形面积公式进行计算即可求解.【详解】解:∵ AB AB =,30ACB ∠=︒,∴60AOB ∠=︒,∴260π66π360S =⨯=.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.3.(2023·四川自贡·统考中考真题)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=︒,则ABC ∠的度数是()A.41︒B.45︒C.49︒D.59︒【答案】C【分析】由CD 是O 的直径,得出90DBC ∠=︒,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=︒,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=︒,∵ AD AD =,∴41ABD ACD ∠=∠=︒,∴904149ABC DBC DBA ∠=∠-∠=︒-︒=︒,故选:C.【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.4.(2023·四川宜宾·统考中考真题)如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ∠=︒,则AOB ∠等于()A.140︒B.120︒C.110︒D.70︒【答案】A 【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为 AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠, 35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A.【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5.(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于O ,BC AD ∥,AC BD ⊥.若120AOD ∠=︒,AD =CAO ∠的度数与BC 的长分别为()A.10°,1C.15°,1【答案】C 【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,122AE AD ==,进而可得122CD CF CD ====,最后问题可求解.【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥,∴CBD ADB ∠=∠,∵CBD CAD ∠=∠,∴CAD ADB ∠=∠,∵AC BD ⊥,∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,3AD =∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,1322AE AD ==∴15CAO CAD OAD ∠=∠-∠=︒,1cos30AE OA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒,∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒-∠-∠=︒,∴1222,22CD OC CF CD ====∴21BC CF ==;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.6.(2023·山东枣庄·统考中考真题)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒【答案】A 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A.【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.7.(2023·浙江杭州·统考中考真题)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=()A.23︒B.24︒C.25︒D.26︒【答案】D 【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ ADB 所对的圆周角12701352ACB ∠=︒=︒,又 19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒-∠-∠=︒,故选:D.【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.(2023·四川广安·统考中考真题)如图,ABC 内接于O ,圆的半径为7,60BAC ∠=︒,则弦BC 的长度为___________.【答案】73【分析】连接,OB OC ,过点O 作OD BC ⊥于点D ,先根据圆周角定理可得2120BOC BAC ∠=∠=︒,再根据等腰三角形的三线合一可得60BOD ∠=︒,2BC BD =,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接,OB OC ,过点O 作OD BC ⊥于点D ,60BAC ∠=︒ ,2120BOC BAC ∴∠=∠=︒,,OB OC OD BC =⊥Q ,1602BOD BOC ∴∠=∠=︒,2BC BD =,∵圆的半径为7,7OB ∴=,7sin 6032BD OB ∴=⋅︒=,23BC BD ∴==故答案为:73【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.9.(2023·甘肃武威·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.10.(2023·上海·统考中考真题)如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【详解】(1)解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.(2)解:如图,过点C 作CE AB ⊥于点E ,O 的半径为5,5OB ∴=,12OC OB =,31522BC OB ∴==,4cos 5ABC ∠=,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,2292CE BC BE =-=,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.题型二切线定理11.(2023·四川眉山·统考中考真题)如图,AB 切O 于点B ,连接OA 交O 于点C ,BD OA ∥交O 于点D ,连接CD ,若25OCD ∠=︒,则A ∠的度数为()A.25︒B.35︒C.40︒D.45︒【答案】C【分析】如图,连接OB ,证明90∠=︒ABO ,25CDB ∠=︒,可得250BOC BDC ∠=∠=︒,从而可得40A ∠=︒.【详解】解:如图,连接OB ,∵AB 切O 于点B ,∴90∠=︒ABO ,∵BD OA ∥,25OCD ∠=︒,∴25CDB ∠=︒,∴250BOC BDC ∠=∠=︒,∴40A ∠=︒;故选:C.【点睛】本题考查的是切线的性质,圆周角定理的应用,三角形的内角和定理的应用,掌握基本图形的性质是解本题的关键.12.(2023·重庆·统考中考真题)如图,AB 为O 的直径,直线CD 与O 相切于点C ,连接AC ,若50ACD ∠=︒,则BAC ∠的度数为()A.30︒B.40︒C.50︒D.60︒【答案】B 【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B.【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.13.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=︒,则D ∠的度数是___________.【答案】65︒【分析】连接,CO BO ,根据切线的性质得出90ACO ABO ∠=∠=︒,根据四边形内角和得出130COB ∠=︒,根据圆周角定理即可求解.【详解】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.【点睛】本题考查了切线的性质,圆周角定理,求得130COB ∠=︒是解题的关键.14.(2023·湖南·统考中考真题)如图,AD 是O 的直径,AB 是O 的弦,BC 与O 相切于点B ,连接OB ,若65ABC ∠=︒,则BOD ∠的大小为__________.【答案】50︒【分析】证明90OBC ∠=︒,可得906525OBD ∠=︒-︒=︒,结合OB OA =,证明25A OBA ∠=∠=︒,再利用三角形的外角的性质可得答案.【详解】解:∵BC 与O 相切于点B ,∴90OBC ∠=︒,∵65ABC ∠=︒,∴906525OBD ∠=︒-︒=︒,∵OB OA =,∴25A OBA ∠=∠=︒,∴22550BOD ∠=⨯︒=︒,故答案为:50︒【点睛】本题考查的是圆的切线的性质,等腰三角形的性质,三角形的外角的性质,熟记基本图形的性质是解本题的关键.15.(2023·山东滨州·统考中考真题)如图,,PA PB 分别与O 相切于,A B 两点,且56APB ∠=︒.若点C 是O 上异于点,A B 的一点,则ACB ∠的大小为___________.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∴360909056124AOB ∠=︒-︒-︒-︒=︒∵ AB AB =,∴1622ACB AOB ∠=∠=︒,当点C '在 AB 上时,∵四边形AC BC '是圆内接四边形,∴180118C C '∠=︒-∠=︒,故答案为:62︒或118︒.【点睛】本题考查了切线的性质,圆周角定理,多边形内角和,熟练掌握切线的性质与圆周角定理是解题的关键.16.(2023·四川·统考中考真题)如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F ,设t PE =+,则t 的取值范围是_____.【答案】4t ≤≤+【分析】利用切线的性质以及等腰直角三角形的性质求得2CD DH ==,再求得t PE PQ EQ =+=,分两种情况讨论,画出图形,利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D 、G ,连接OG OD 、,延长DO 交CB 于点H ,由90OGC ODC OGH ∠=∠=∠=︒,∵45ACB ∠=︒,∴45OHC ∠=︒,∴OH ==∴2CD DH ==,如图,延长EP 交CB 于点Q ,同理2PQ PF =,∵2t PE PF =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,连接OP ,∵D 、E 都是切点,∴90ODE DEP OPE ∠=∠=∠=︒,∴四边形ODEP 是矩形,∵OD OP =,∴四边形ODEP 是正方形,∴t 的最大值为224EQ CE CD DE ==+=+;如图,同理,t 的最小值为22EQ CE CD DE ==-=;综上,t 的取值范围是4t ≤≤.故答案为:4t ≤≤.【点睛】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得t EQ =是解题的关键.17.(2023·浙江绍兴·统考中考真题)如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD =根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【详解】(1)解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴225CD OD OC =-=.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =532CE =,∴253CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.18.(2023·湖南张家界·统考中考真题)如图,O 是ABC 的外接圆,AD 是O 的直径,F 是AD 延长线上一点,连接CD CF ,,且DCF CAD ∠=∠.(1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.【答案】(1)详见解析(2)907【分析】(1)根据直径所对的圆周角是直角,余角的性质即可求得结论;(2)根据已知条件可知FCD FAC ∽,再根据正切的定义和相似三角形的性质得到线段的关系即可求得线段FD 的长度.【详解】(1)证明:连接OC ,∵AD 是O 的直径,∴90ACD ∠=︒,∴90ADC CAD ∠+∠=︒,又∵OC OD =,∴ADC OCD ∠=∠,又∵DCF CAD ∠=∠,∴90DCF OCD ∠+∠=︒,即OC FC ⊥,∴FC 是O 的切线;(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos ,10,5CD ADC AD AD∠===∴3cos 106,5CD AD ADC =⋅∠=⨯=∴8AC =,∴34CD AC =,∵FCD FAC F F ∠=∠∠=∠,,∴FCD FAC ∽,∴34CD FC FD AC FA FC ===,设3FD x =,则4310FC x AF x ==+,,又∵2FC FD FA =⋅,即2(4)3(310)x x x =+,解得307x =(取正值),∴9037FD x ==,【点睛】本题考查了圆周角的性质,切线的判定定理,正切的定义,相似三角形的性质和判定,找出正切的定义与相似三角形相似比的关联是解题的关键.19.(2023·辽宁·统考中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF 与O 相切;(2)若41sin 5BF AFE =∠=,,求BC 的长.【答案】(1)见解析(2)245BC =【分析】(1)利用圆周角定理得到2EOB EAB ∠=∠,结合已知推出CAB EOB ∠=∠,再证明OFE ABC ∽△△,推出90OEF C ∠=∠=︒,即可证明结论成立;(2)设O 半径为x ,则1=+OF x ,在Rt OEF △中,利用正弦函数求得半径的长,再在Rt ABC △中,解直角三角形即可求解.【详解】(1)证明:连接OE ,∵ =BEBE ,∴2EOB EAB ∠=∠,∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴245BC ==.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.题型三垂径定理20.(2023·四川凉山·统考中考真题)如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,,则OC =()A.1B.2C.D.4【答案】B 【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE ==,在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒ ,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,113322CE BE BC ===⨯在Rt OCE 中,603COE CE ∠=︒,32sin 6032CE OC ∴==︒,故选:B.【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.21.(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥.“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=︒时,则l 的值为()A.1123-B.113-C.823-D.843-【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴(22441144MN l AB OA-=+=+=-故选:B.【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.22.(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28m C.35m D.40m【答案】B 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=-=-,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===,在Rt △ADO 中,222AD OD OA +=,()2223772R R ⎛⎫∴+-= ⎪⎝⎭,解得:156528m 56R =≈,故选:B.【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.23.(2023·四川南充·统考中考真题)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =-=-=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.24.(2023·湖南永州·统考中考真题)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【分析】过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD =-=cm ,在Rt AOD 中,22221068AD AO OD =--cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.25.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是________寸.【答案】26【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,AB=可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x 由6的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OA,AB=寸,,且10⊥AB CDAE BE∴==寸,5==,设圆O的半径OA的长为x,则OC OD xQ,CE=1OE x∴=-,1在直角三角形AOE中,根据勾股定理得:222x x--=,化简得:222125(1)5-+-=,x x xx=,即226∴=(寸).CD26故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.26.(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,A 与x 轴相切于点B ,与y 轴相交于点,C D .连接AB ,过点A 作AH CD ⊥于点H .(1)求证:四边形ABOH 为矩形.(2)已知A 的半径为4,OB ,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.(2)如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =-,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20讲 圆的基本性质
(时间35分钟 满分70分)
A 卷
一、选择题(每小题3分,共21分)
1.(2017·广州)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( D )
A .AD =2O
B B .CE =EO
C .∠OCE =40°
D .∠BOC =2∠BAD
第1题图
第2题图
2.(2017·金华)如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为( C )
A .10 cm
B .16 cm
C .24 cm
D .26 cm
3.(2017·兰州)如图,在⊙O 中,AB ︵=BC ︵
,点D 在⊙O 上,∠CDB =25°,则∠AOB=( B )
A .45°
B .50°
C .55°
D .60°
第3题图
第4题图
4.(2017·黔东南州)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2,则弦CD 的长为( A )
A .2
B .-1
C . 2
D .4
(导学号 58824179)
5.(2017·潍坊)如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC =50°,则∠DBC 的度数为( C )
A .50°
B .60°
C .80°
D .90°
第5题图
第6题图
6.(2017·新疆生产建设兵团)如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接BE ,CE.若AB =8,CD =2,则△BCE 的面积为( A )
A .12
B .15
C .16
D .18
7.(2017·呼和浩特)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为M ,若AB =12,OM ∶MD =5∶8,则⊙O 的周长为( B )
A . 26π
B . 13π
C . 96π
5 D .
3910π
5
二、填空题(每小题3分,共18分)
8.(2017·北京)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,AD ︵=CD ︵
.若∠CAB=40°,则∠CAD=_25°_.
(导学号 58824180)
第8题图
9.(2017·本溪)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=_65_°.
10.(2017·十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的平分线交⊙O于点
D.若AC=6,BD=52,则BC的长为_8_.
第10题图
11.(2017·随州)如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD,CD,OB,若∠BOC=70°,则∠ADC=_35_度.12.(2017·南京)如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,
连接AC,AE.若∠D=78°,则∠EAC=_27_°.
第12题图
13.(2017·宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE
=2,则EG的长是
(导学号58824181)
三、解答题(本大题1小题,共11分)
14.(11分)(2017·安徽)如图,在四边形ABCD中,AD=BC,
∠B =∠D,AD 不平行于BC ,过点C 作CE∥AD 交△ABC 的外接圆O 于点E ,连接AE. (1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE.
证明:(1)由圆周角定理得,∠B =∠E, 又∠B=∠D,
∴∠E =∠D, ∵CE ∥AD ,
∴∠D +∠ECD=180°, ∴∠E +∠ECD=180°, ∴AE ∥CD ,
∴四边形AECD 为平行四边形;
(2)如解图,作OM⊥BC 于点M ,ON ⊥CE 于点N , ∵四边形AECD 为平行四边形, ∴AD =CE ,又AD =BC ,∴CE =CB , ∴OM =ON ,又OM⊥BC,ON ⊥CE , ∴CO 平分∠BCE.
B 卷
1.(3分)(2017·云南)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( A )
A .30°
B .29°
C .28°
D .20°
第1题图
第2题图
2.(3分)(2017·广安)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =4
5
,BD =5,则OH 的长度为( D ) A .23 B .56 C .1 D .76
3.(3分)(2017·遵义)
如图,AB 是⊙O 的直径,AB =4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两
点.若∠CMA=45°,则弦CD 的长为4.(11分)(2017·武汉)如图,△ABC 内接于⊙O,AB =AC ,CO 的延长线交AB 于点D. (1)求证:AO 平分∠BAC;
(2)若BC =6,sin ∠BAC =3
5,求AC 和CD 的长.
(导学号 58824182)
(1)证明:如解图①,延长AO 交BC 于点H ,连接BO ,
∵AB =AC ,OB =OC ,∴点A 、O 在线段BC 的垂直平分线上,∴AO ⊥BC ,又∵AB=AC ,∴AO 平分∠BAC;
错误! 错误!,图②)
(2)解:延长CD 交⊙O 于点E ,连接BE ,如解图②,则CE 是⊙O 的直径,∴∠EBC =90°,∴BC ⊥BE ,
∵∠E =∠BAC,∴sin ∠E =sin ∠BAC ,
∴BC CE =35,∴CE =5
3
BC =10, ∴BE =CE 2-BC 2
=8,OA =OE =12CE =5,
∵AH ⊥BC ,∴BE ∥OA ,∴△AOD ∽△BED , ∴OA BE =OD DE ,即58=OD 5-OD , 解得:OD =2513,
∴CD =5+2513=90
13
.
∵BE ∥OA ,即BE∥OH,OC =OE , ∴OH 是△CEB 的中位线, ∴OH =1
2BE =4,
CH =1
2
BC =3,
∴AH=5+4=9,
在Rt△ACH中,
AC=AH2+CH2=92+32=310.。